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Abstract
Purpose Radiomic features derived from the texture analysis
of different imaging modalities e show promise in lesion char-
acterisation, response prediction, and prognostication in lung
cancer patients. The present study aimed to identify an
images-based radiomic signature capable of predicting
disease-free survival (DFS) in non-small cell lung cancer
(NSCLC) patients undergoing surgery.
Methods A cohort of 295 patients was selected. Clinical param-
eters (age, sex, histological type, tumour grade, and stage) were
recorded for all patients. The endpoint of this study was DFS.
Both computed tomography (CT) and fluorodeoxyglucose pos-
itron emission tomography (PET) images generated from the
PET/CT scanner were analysed. Textural features were calculat-
ed using the LifeX package. Statistical analysis was performed

using the R platform. The datasets were separated into two co-
horts by random selection to perform training and validation of
the statistical models. Predictors were fed into a multivariate Cox
proportional hazard regression model and the receiver operating
characteristic (ROC) curve as well as the corresponding area
under the curve (AUC) were computed for each model built.
Results The Cox models that included radiomic features for
the CT, the PET, and the PET+CT images resulted in an AUC
of 0.75 (95%CI: 0.65–0.85), 0.68 (95%CI: 0.57–0.80), and
0.68 (95%CI: 0.58–0.74), respectively. The addition of clini-
cal predictors to the Cox models resulted in an AUC of 0.61
(95%CI: 0.51–0.69), 0.64 (95%CI: 0.53–0.75), and 0.65
(95%CI: 0.50–0.72) for the CT, the PET, and the PET+CT
images, respectively.
Conclusions A radiomic signature, for either CT, PET, or
PET/CT images, has been identified and validated for the
prediction of disease-free survival in patients with non-small
cell lung cancer treated by surgery.
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Introduction

Lung cancer is the fourth most frequently diagnosed malig-
nancy in Europe, with an incidence of 41.9 per 100,000, and is
the leading cause of cancer-related death, with a mortality of
35.2 per 100,000, in both sexes [1]. Non-small cell lung can-
cer (NSCLC) accounts for 85% of all primary lung cancers
[2]. The tumour node metastasis (TNM) staging system is the
most important postoperative prognostic tool and guides pa-
tient treatment [3–5]. However, survival times vary widely
among NSCLC patients at the same disease stage who
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undergo complete tumour resection, demonstrating the need
for novel prognostic methods [3, 6].

Computed tomography (CT) and fluorodeoxyglucose posi-
tron emission tomography/CT (FDG-PET/CT) are routinely
used for lesion detection, lesion characterisation and clinical
staging of NSCLC patients. Such imaging provides
Bphenotype^ information, is minimally or non-invasive, and
can be repeated, allowing a personalised assessment of the
disease. A quantitative radiomic approach, using features de-
rived from the texture analysis of different imaging modalities,
including FDG-PET and CT, has been tested for lesion charac-
terisation, response prediction and prognostication, with prom-
ising results [7–9]. However, most of these studies have been
affected by methodological drawbacks such as limited patient
datasets and lack of validation. Moreover, the combination of
information derived from both PET and CT has not been val-
idated [10]. The present study aimed to identify a CT- and PET-
based radiomic signature capable of predicting disease-free sur-
vival (DFS) in NSCLC patients undergoing surgery.

Methods

Study design and patient selection

In this retrospective single-centre investigation, the following
inclusion/exclusion criteria were applied to select patients from
the institutional database. The inclusion criteria were: a)
age > 18 years old, b) surgical intervention for a lung lesion
between 01/01/2011 and 30/11/2016, c) FDG-PET/CT scan
performed in our institution to characterise a lung lesion or to
stage a lung tumour within 45 days before surgery. The exclu-
sion criteria were: a) histology other than lung adenocarcinoma
or squamous cell carcinoma, b) concomitant or previous (with-
in 3 years from lung cancer diagnosis) other cancer type. A
total of 522 patients (M:F = 343:179) were selected from the
institutional database. A cohort consisting of 295 patients was
identified applying the above-mentioned inclusion and exclu-
sion criteria. For all patients, available clinical parameters such
as age, sex, histological type, tumour grade, and stage were
recorded. Smoking habits and performance status were not
considered in this analysis. Tumour staging was defined on
the basis of the American Joint Committee on Cancer TNM
Staging Manual, 7th Edition [11]. T and N status were defined
using the information provided in the histopathological report
of the surgical intervention. Identification of the presence of
distant metastases was based on histology and/or imaging.

Treatment and follow-up were performed according to our
internal standard procedures after discussion at the multidis-
ciplinary lung tumour board. In particular, for patients with
pT1–2a pN0 disease only follow-up was indicated. Patients
with pT1–2 N1, pT3 N0, and any T N2 disease received ad-
juvant chemotherapy; the last-mentioned group also

underwent radiation treatment to the mediastinum. For pa-
tients with stage III disease with pN1 involvement, adjuvant
chemotherapy was indicated.

The endpoint of this study was DFS, which was defined as
the time between the date of surgery and either the date of
relapse (event), which refers to tumour recurrence or
tumour-related death, or the date of last patient access (cen-
sored). The study was approved by the institutional ethics
committee.

FDG-PET/CT image acquisition

FDG-PET/CT image acquisition was performed according to
the European Association of Nuclear Medicine (EANM)
guidelines version 1.0 and from February 2015, 2.0 [12].
Briefly, appropriate patient preparation (fasting from at least
4 h) and adequate blood glucose levels (< 200 mg/dL) were
requested. Images were acquired 60 ± 5 min after FDG injec-
tion, using an integrated PET/CT scanner, either a Siemens
Biograph 6 LSO (Siemens, Erlangen, Germany) (n = 159 pa-
tients) or a General Electric Discovery 690 (General Electric
Healthcare, Waukesha, WI, USA) (n = 136 patients). Image
acquisition parameters are reported in Supplementary Table 1.
All PET images were corrected for attenuation using the ac-
quired CT data.

Texture analysis

The volume of interest (VOI) of the primary tumour lesion
was (semi-)automatically defined on PET images with a
threshold of 40% of the maximum standardised uptake value
(SUVmax) using a commercial software (PET VCAR, GE
Healthcare, Waukesha, WI, USA) by three nuclear medicine
certified physicians, all together. Partial volume effect correc-
tion was not performed.

Both CTand PET images generated from the PET/CTscan-
ner were analysed. Textural features were calculated on both
CT and PET images within the same VOI. The position of the
VOI on the CT images was manually adjust to identify the
correct position of the lesion when respiratory movements
determine a mismatch between CT and PET images. A con-
sensus among reviewers was found concerning the adjustment
of the position of the VOI on CT images. Features were ex-
tracted using the LifeX package (http://www.lifexsoft.org)
[13]. Tonal discretisation for PET data was performed to
reduce the continuous scale to 64 bins with absolute scale
bounds between 0 and 25. Similarly, the discretisation for
CT data was done with 10 Hounsfield unit (HU) increments
from −1000 to 3000 HU. The features included conventional
and histogram-based parameters, shape and size, and second
and high order features, as detailed in Supplementary Table 2.
LifeX calculates texture features only for VOI of at least 64
voxels. For some patients, the PET VOI did not reach the
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minimum number of 64 voxels related to the image matrix
resolution. Therefore, radiomic features derived from CT im-
ages were studied within the entire cohort of 295 patients (CT
dataset), while those from PET were studied within the sub-
sample of 259 patients (PET dataset) (Table 1).

Statistical analysis

Statistical analysis was performed using the open source R
platform. Median DFS and 1-year, 2-, and 3-year DFS rates
were calculated. Kaplan-Meier curves were used to describe
DFS for the CT dataset and the PET dataset, and to describe
the DFS stratified according to histology (adenocarcinoma
versus squamous cell carcinoma) and tumour stage (I–II
versus III–IV). Univariate analysis was used to test the clin-
ical predictors (age, sex, histology, and stage) in both CT

and PET (PET/CT) datasets. Tumour differentiation grade
was not included among clinical predictors since it was not
available for patients who underwent neo-adjuvant chemo-
therapy. Mann–Whitney U test was used to investigate tex-
ture feature differences between scanners (Siemens versus
GE) for both CT and PET images. In addition, CT and
PET datasets were studied regardless of the scanner used
for image acquisition in order to assess the reproducibility
of the radiomic analysis.

The following analyses were performed on CT and PET
data. Each radiomic feature was scrutinised for its univariate
significance. The datasets were then separated into two co-
horts by random selection to perform training and validation
of the statistical models. The mutual correlation between the
preliminarily selected features was evaluated with the
Spearman correlation coefficient in order to assess potential

Table 1 Baseline patient characteristics

CT dataset PET dataset

Characteristic Overall
n = 295

Training
n = 195

Validation
n = 100

Overall
n = 259

Training
n = 169

Validation
n = 90

Age (years; mean±SD) 68.8 ± 8.8 68.7±8.8 68.9±8.6 70.1 ± 8.4 69.6 ± 8.7 70.9 ± 8.4

N pts. (%) N pts. (%) N pts. (%) N pts. (%) N pts. (%) N pts. (%)

Sex

Male 197 (67) 135 (69) 62 (62) 176 (68) 116 (69) 60 (67)

Female 98 (33) 60 (31) 38 (38) 83 (32) 53 (31) 30 (33)

Histology

Adenocarcinoma 193 (65) 132 (68) 61 (61) 162 (63) 110 (65) 52 (58)

Squamous cellular carcinoma 102 (35) 63 (32) 39 (39) 97 (37) 59 (35) 38 (42)

Pathological stage

I 109 (37) 71 (36) 38 (38) 93 (36) 60 (35) 33 (38)

II 75 (25) 53 (27) 22 (22) 71 (27) 49 (29) 22 (24)

III 96 (33) 61 (31) 35 (35) 83 (32) 52 (31) 31 (34)

IVa 15 (5) 10 (5) 5 (5) 12 (5) 8 (5) 4 (4)

Differentiation grade

G1 7 (2) 5 (2) 2 (2) 7 (3) 5 (3) 2 (2)

G2 136 (46) 86 (44) 50 (50) 120 (46) 75 (44) 45 (50)

G3 120 (41) 85 (44) 35 (35) 105 (41) 71 (42) 34 (38)

Not specifiedb 32 (11) 19 (10) 13 (13) 27 (10) 18 (11) 9 (10)

Scanner type

Discovery 690 – General Electric 136 (46) 91 (47) 45 (45) 118 (46) 78 (46) 40 (44)

Biograph 6 - Siemens 159 (54) 104 (53) 55 (55) 141 (54) 91 (54) 50 (56)

Outcome

No evidence of disease 151 (51) 105 (54) 46 (46) 130 (50) 90 (53) 40 (44)

Recurrence 144 (49) 90 (46) 54 (54) 129 (50) 79 (47) 50 (56)

Follow-up, mean±SD (months) 22.7±17.2 22.9±17.1 22.5±17.2 23.5±17.6 23.5±17.6 23.7±17.5

Follow-up, median 20.1 20.1 20.0 20.5 20.6 20.3

N, number; pts., patients; SD, standard deviation
a Patients with brain metastases at diagnosis that were treated radically before lung surgery
bGrading was not specified for those patients who underwent neo-adjuvant chemotherapy
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redundancy between these features [14]. A threshold of 0.90
was used when testing correlations between features. All
uncorrelated predictors identified as significant (p < 0.05;
p values were corrected for false discovery rate) after mul-
tiple testing correction (with the Holm-Bonferroni method),
in both the training and the validation dataset, were fed into
a multivariate Cox proportional hazard regression model.
The choice to include only significant predictors in the mul-
tivariate Cox proportional hazard regression model was
based on the wish to test reproducible features within the
training and validation datasets. Clinical predictors were in-
cluded in the multivariate analysis regardless of their signif-
icance at univariate analysis. The Cox proportional hazard
regression model was further used to predict the DFS in the
training and validation datasets. Different models were con-
structed: a) including clinical predictors only (age, sex, his-
tological type, and stage), b) including radiomic parameters
only – the radiomic signature (b1 - not including and b2 -
including the features found to be significantly different be-
tween scanners by the Mann–Whitney U test), and c) includ-
ing both the radiomic signature (including all the significant
features) and clinical predictors.

To evaluate the model performance of the validation set,
the receiver operating characteristic (ROC) curve was deter-
mined and the corresponding area under the curve (AUC)
computed for each model. The 95% confidence interval for
the AUC was computed with the default of 2000 stratified
bootstrap replicates.

All the patients were dichotomised into low- and high-risk
groups and the actuarial DFS curves were determined. For
each radiomic feature found to be significant at univariate
analysis, a search for the threshold that could better split the
population into low- and high-risk groups was performed.
This was achieved by dividing the population into groups
using a continuously moving covariate value in the range of
all available values. The best threshold was defined as the
value with the lowest log-rank p value in the Kaplan-Meier
statistic. To overcome the noisy distribution of the p values, a
simplified bootstrap procedure was implemented. The thresh-
old search procedure was repeated 500 times, each time leav-
ing out 20% of the sample and retaining the remaining 80%
randomly chosen. The radiomic feature was then retained if it
was significant on 80% of the tests and its dichotomising
threshold was defined as the average over the runs.

Table 2 Results of univariate analysis and Cox regression models for CT images

CT dataset
(n = 295)

Univariate
p value

Cox regression p value

Parameter Clinical model (a) Radiomic models (b) Radiomic and
clinical model (c)

b1 b2

Clinical predictor

Age 0.09 n.s. n.a. n.a. n.s.

Sex 0.1 0.07 n.a. n.a. n.s.

Histological type 0.2 n.s. n.a. n.a. n.s.

Tumour stage <0.001 <0.001 n.a. n.a. <0.001

CT feature

Compacity_GLCM 0.02 n.a. Not included n.s. n.s.

Homogeneity 1_GLCM 0.05 n.a. 0.05 n.s. n.s.

SRE_GLRLM 0.001 n.a. 0.01 0.006 0.001

LRE_GLRLM 0.04 n.a. Not included 0.02 0.05

RP_GLRLM 0.05 n.a. Not included n.s. n.s.

AUC (95%CI) for the
validation cohort

0.58 (0.50–0.67) 0.62 (0.51–0.72) 0.75 (0.65–0.85) 0.61 (0.51–0.69)

DFS low-risk group (median±SD) [months]

Training 26.0 ± 2.7 28.0 ± 2.5 36.8 ± 3.7 35.0 ± 3.5

Validation 34.6 ± 3.1 Not reached Not reached 30.2 ± 2.8

DFS high-risk group (median±SD) [months]

Training 11.1 ± 1.2 14.2 ± 2.1 16.1 ± 2.1 11.2 ± 1.1

Validation 13.2 ± 1.4 10.7 ± 1.3 10.8 ± 1.4 11.8 ± 1.1

Model b1: included features significant at univariate analysis and not significantly different between scanners. Model b2: included all features significant
at univariate analysis. AUC, area under the curve; 95%CI, 95% confidence interval; CT, computed tomography; DFS, disease-free survival; GLCM,
grey-level co-occurrence matrix; LRE_GLRLM, long-run emphasis computed within the grey-level run-length matrix; n.a., not applicable; n.s., not
significant (the exact value was not provided by R when >0.05); RP_GLRLM, run percentage computed within the grey-level run-length matrix; SD,
standard deviation; SRE_GLRLM, short-run emphasis computed within the grey-level run-length matrix
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Results

Patients’ clinical characteristics are reported in Table 1. The
median DFS was 19.8 ± 3.2 months (95%CI: 13.4–
26.1 months) and 18.9±2.4 months (95%CI: 14.1–
23.7 months) for the CT and PET datasets, respectively.
One-, 2-, and 3-year DFS rates for the CT dataset were
65.0% ± 3.0%, 46.2% ± 3.0%, and 36.1% ± 3.6%, respective-
ly. One-, 2-, and 3-year DFS rates for the PET dataset were
63.5% ± 3.0%, 44.2% ± 4.0%, and 36.1% ± 4.0%, respective-
ly. The actuarial overall DFS curve and the DFS curves for the
subgroups stratified according to the histological type (adeno-
carcinoma versus squamous cell carcinoma) and tumour stage
(I–II versus III–IV) are shown in Supplementary Fig. 1 for
both datasets. At univariate analysis, among the clinical pre-
dictors, tumour stage was found to be significant in both CT
and PET datasets, as reported in Tables 2 and 3, respectively.

No statistically significant difference was found for 25/41
CT features and 32/43 PET features extracted from images

acquired using the two different scanners (Supplementary
Figs. 2 and 3).

CT dataset

The results of the univariate analysis and of the Cox models
are detailed in Table 2. The Cox model (b1), built using only
the radiomic features that were significant at univariate anal-
ysis and excluding the features that were significantly differ-
ent between the two scanners, resulted in an AUC of 0.62
(95%CI: 0.51–0.72) with a dichotomising threshold of 0.03.
Adding into the Cox model (b2) also the features that were
significantly different between the two scanners resulted in an
AUC of 0.75 (95%CI: 0.65–0.85) with a dichotomising
threshold of 0.06. The Cox model (c), which included both
the radiomic signature (all the significant radiomic features at
univariate analysis) and clinical predictors, resulted in an
AUC of 0.61 (95%CI: 0.51–0.69). Figure 1 shows the results
for all models from the CT dataset. For all the five CT

Table 3 Results of univariate analysis and Cox regression models for PET images

PET dataset
(n = 259)

Univariate
p value

Cox regression p value

Parameter Clinical model (a) Radiomic models (b) Radiomic and
clinical model (c)

b1 b2

Clinical predictor

Age n.s. n.s. n.a. n.a. n.s.

Sex n.s. n.s. n.a. n.a. n.s.

Histological type n.s. n.s. n.a. n.a. n.s.

Tumour stage <0.001 0.004 n.a. n.a. <0.001

PET feature

SUVmean 0.008 n.a. 0.001 0.007 0.06

SUVmax 0.008 n.a. 0.001 0.008 0.01

Energy_GLCM 0.02 n.a. Not included n.s. n.s.

LRHGE_
GLRLM

0.04 n.a. 0.01 n.s. n.s.

HGRE_GLRLM 0.05 n.a. n.s. n.s. n.s.

LZHGE_GLZLM 0.02 n.a. Not included 0.004 0.03

AUC (95%CI) for the
validation cohort

0.58 (0.50–0.69) 0.66 (0.56–0.78 0.68 (0.57–0.80) 0.64 (0.53–0.75)

DFS low-risk group (median±SD) [months]

Training 30.2 ± 3.6 30.5 ± 3.3 36.1 ± 4.0 33.5 ± 3.8

Validation 58.0 ± 4.7 22.7 ± 3.1 30.0 ± 4.3 26.0 ± 3.1

DFS high-risk group (median±SD) [months]

Training 11.1 ± 1.0 13.5 ± 1.4 12.3 ± 1.0 13.2 ± 1.6

Validation 13.1 ± 1.2 15.0 ± 1.6 10.5 ± 1.0 12.1 ± 1.3

Model b1: included features significant at univariate analysis and not significantly different between scanners. Model b2: included all features significant
at univariate analysis. AUC, area under the curve; 95%CI, 95% confidence interval;DFS, disease-free survival;GLCM, grey-level co-occurrence matrix;
HGRE_GLRLM, high grey-level run emphasis computed within the grey-level run-length matrix; LRHGE_GLRLM, long-run high grey-level emphasis
computed within the grey-level run-length matrix; LZHGE_GLZLM, long-zone high grey-level emphasis computed within the grey-level zone-length
matrix; n.a., not applicable; n.s., not significant (the exact value was not provided by R when >0.05); PET, positron emission tomography; SD, standard
deviation; SUV, standardised uptake value
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radiomic features selected, it was possible to identify repeat-
able thresholds in both the training and the validation group
(Supplementary Fig. 4).

PET dataset

The results of the univariate analysis and of the Cox models
are detailed in Table 3. The Cox model (b1), which took into
account the features that were significant at univariate analy-
sis, but excluded those that were significantly different be-
tween the two scanners, had an AUC of 0.66 (95%CI: 0.56–
0.78) with a dichotomising threshold of 0.09. The Cox model
(b2), built using the radiomic signature including all the sig-
nificant features at univariate analysis, had an AUC of 0.68
(95%CI: 0.57–0.80) with a dichotomising threshold of 0.09.
The Cox model built using both radiomic features and clinical
predictors (c) had an AUC of 0.64 (95%CI: 0.53–0.75).
Figure 2 shows the results for all the multivariate models for
the PET dataset. No repeatable thresholds were found for the
selected PET-based features.

PET+CT dataset

Table 4 shows the results of the univariate analysis and of the
Cox regression models for the combined PET+CT analysis

using both CT and PET signatures. Figure 3 shows the results
for all the multivariate models for the PET+CT data. The
AUC for the different Cox regression models which included
radiomic features were (b1) 0.62 (95%CI: 0.52–0.70), (b2)
0.68 (95%CI: 0.58–0.74), and (c) 0.65 (95%CI: 0.50–0.72),
respectively. The dichotomising threshold was 0.09 and 0.07
for the radiomic b1 and b2 models, respectively.

Figure 4 shows PETand CT images of patients classified as
low and high risk according to the PET+CT radiomic
signature.

Discussion

The present study assessed the performance of a radiomic
approach for outcome prediction in NSCLC patients undergo-
ing surgery. The main finding of the study was that image-
derived parameters outperformed common clinical predictors,
including TNM staging.

Currently, the TNM staging system is the reference method
for risk estimation and decision-making on treatment ap-
proach. However, the TNM staging system has some limita-
tions. First, patients with disease at the same stage exhibit
wide variations in the incidence of recurrence after curative
resection [15]. Additionally, the pathological TNM stage may

Fig. 1 Disease-free survival prediction results for the CT data. Kaplan-Meier curves for the DFS resulting from the Cox regression models built using
clinical variables (a), the radiomic signature (b and c), and their combination (d) for the training and validation groups within the CT dataset
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differ from the stage at diagnosis in patients who have under-
gone neo-adjuvant chemotherapy since the TNM staging sys-
tem is based on the pathological assessment after resection
[16]. Moreover, the N parameter may be affected by the num-
ber of lymph nodes removed during surgery, which is related
to the surgeon’s ability and the surgical approach [17, 18].
Finally, pathological TNM staging is not feasible in patients
with advanced disease.

The results of the present study show that the radiomic
signature of CT, PET, and PET+CT images is able to predict
DFS in patients with NSCLC treated with surgery with cura-
tive intent. Improvement in the accuracy of prediction of pa-
tient outcome at baseline has multiple positive implications
for medical and personal decision making. The identification
of those patients in whom disease is likely to recur can impact
on the therapeutic approach and patient management after
primary treatment [15, 19]. There is growing evidence that
radiomics can provide accurate risk stratification in NSCLC
that may allow for individualised patient treatment [8, 20].
Moreover, this approach presents several logistic advantages:
firstly, it is almost simultaneous with the baseline image ac-
quisition and does not entail any additional procedure for the
patient; secondly, it provides data on CT and PET images at
the same time; finally, thanks to automated algorithms, it is
relatively easy and fast. Texture analysis is non-invasive and

objective when automatic/semi-automatic approaches for seg-
mentation are used; moreover, it seems not to be hampered by
use of different scanners and is potentially cost-effective in
predicting DFS in NSCLC.

Literature on the role of radiomics of both PET and CT
images in predicting outcome in NSCLC after curative re-
section is relatively scarce [21–24]. Textural parameters of
pre-treatment FDG-PET/CT proved to be predictive of re-
currence [21] and survival [22, 23]. More interestingly, in a
cohort of 119 patients (including 59 treated with surgery),
Desseroit et al. [24] retrospectively built a nomogram com-
bining the best features of different categories (clinical
variables, volume and standard metrics, PET and CT tex-
ture features) in order to improve patient stratification. The
nomogram including texture features on both CT and PET
images provided higher stratification power than staging
alone. However, none of the aforementioned studies per-
formed a validation of the results. The goal of radiomic
analysis is to obtain a prognostic or predictive model with
a high accuracy and efficiency. Therefore, an external val-
idation, or at least a cross-validation (internal validation),
should always be performed to assess the accuracy of the
model [8, 25]. Conventional image-derived parameters
(e.g., SUVmax) have been used as reference models in
radiomic studies [26]. Incorporation of the most

Fig. 2 Disease-free survival prediction results for the PET data. Kaplan-Meier curves for the DFS resulting from the Cox regression models built using
clinical variables (a), the radiomic signature (b and c), and their combination (d) for the training and validation groups within the PET dataset
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informative radiomic features into these reference models
provides an indication of the gain in model performance.
Patient and clinical characteristics might be added to the
input variable list, as they may influence the outcome var-
iable and the extracted radiomic features [25]. In our
datasets, the model including both clinical predictors and
the radiomic signature performed worse than the radiomic
signature alone in CT, PET, and PET+CT analyses, in both
training and validation groups.

Our findings are in line with recent studies that evaluated
texture analysis of CT images alone in predicting patient

outcome. These investigations pointed out the prognostic role
of radiomic features [27, 28], and validation of the results was
also provided [28–30]. Moreover, texture features extracted
from CT and cone-beam CT images can be considered com-
parable since they show high concordance values [30].
Textural parameters were found to be associated with survival
[31] and recurrence [32] also in NSCLC patients treated with
external beam radiotherapy. Considering these very promising
data, efforts aiming at standardisation of methods for feature
extraction and identification of reproducible radiomic features
among centres are warranted.

Table 4 Results of univariate analysis and Cox regression models for PET+CT images

PET dataset
(n = 259)

Univariate
p value

Cox regression p value

Parameter Clinical model (a) Radiomic models (b) Radiomic and
clinical model (c)

b1 b2

Clinical predictor

Age 0.09 n.s. n.a. n.a. n.s.

Sex 0.1 n.s. n.a. n.a. n.s.

Histological type 0.2 0.005 n.a. n.a. n.s.

Tumour stage <0.001 <0.001 n.a. n.a. <0.001

CT feature

Compacity_GLCM 0.02 n.a. Not included n.s. n.s.

Homogeneity_
GLCM

0.05 n.a. n.s. n.s. n.s.

SRE_GLRLM 0.001 n.a. 0.05 0.006 0.01

LRE_GLRLM 0.04 n.a. Not included n.s. n.s.

RP_GLRLM 0.05 n.a. Not included n.s. n.s.

PET feature

SUVmean 0.008 n.a. 0.008 0.008 0.06

SUVmax 0.008 n.a. 0.05 n.s. n.s.

Energy_GLCM 0.02 n.a. Not included n.s. 0.02

LRHGE_GLRLM 0.04 n.a. n.s. 0.01 0.005

HGRE_GLRLM 0.05 n.a. n.s. n.s. n.s.

LZHGE_GLZLM 0.02 n.a. Not included 0.01 0.06

AUC (95%CI) for the
validation cohort

0.61 (0.50–0.73) 0.62 (0.52–0.70) 0.68 (0.58–0.74) 0.65 (0.50–0.72)

DFS low-risk group (median±SD) [months]

Training 33.2 ± 3.8 26.0 ± 3.8 36.7 ± 3.8 36.2 ± 3.6

Validation 21.7 ± 4.1 24.3 ± 4.3 27.3 ± 4.5 28.1 ± 4.2

DFS high-risk group (median±SD) [months]

Training 11.6 ± 1.6 11.7 ± 1.6 12.4 ± 1.7 13.0 ± 1.7

Validation 12.1 ± 1.7 14.5 ± 2.1 11.3 ± 1.8 10.8 ± 1.3

Model b1: included features significant at univariate analysis and not significantly different between scanners. Model b2: included all features significant
at univariate analysis. AUC, area under the curve; 95%CI, 95% confidence interval; CT, computed tomography; DFS, disease-free survival; GLCM,
grey-level co-occurrence matrix;HGRE_GLRLM, high grey-level run emphasis computed within the grey-level run-length matrix; LRE_GLRLM, long-
run emphasis computed within the grey-level run-length matrix; LRHGE_GLRLM, long-run high grey-level emphasis computed within the grey-level
run-length matrix; LZHGE_GLZLM, long-zone high grey-level emphasis computed within the grey-level zone-length matrix; n.a., not applicable; n.s.,
not significant (the exact value was not provided by R when >0.05); PET, positron emission tomography; SD, standard deviation; RP_GLRLM, run
percentage computed within the grey-level run-length matrix; SRE_GLRLM, short-run emphasis computed within the grey-level run-length matrix; SUV,
standardised uptake value
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Recently, reconstruction methods have been reported to
have an impact on the repeatability of radiomic features
extracted from PET/CT images acquired using the same
scanner in NSCLC [33, 34]. In particular, texture features
proved more sensitive to a change in the segmentation than

to a change in the reconstruction method [33]. In our co-
horts (CT and PET datasets) we tested feature variability
between images acquired using two scanners and different
acquisition parameters and reconstruction methods
(Supplementary Table 1). Only 39% and 25% of the

Fig. 4 Clinical cases PET/CT images of a low-risk (A) and a high-risk
(B) patient. A Low-risk patient: axial PET, CT, PET/CT and a three-
dimensional reconstruction of PET/CT images (a, b, c, and d,
respectively) of a 64-year-old female with adenocarcinoma,
pathological stage 2a (T2N0M0), with no evidence of disease
31 months after surgery. PET parameters: (↑ and ↓: above and below
the median value) SUVmean 2.0↓, SUVmaximum 5.1↓, EnergyGLCM
0.028↑, LRHGE 75.6↓, HGRE 46.7↓, LZHGE 21298↑. CT parameters:
Compacity 3.10↑, Homogeneity1 0.214↓, Short-run emphasis 0.966↑,

Long-run emphasis 1.17 ↓ and Run percentage 0.953↑. B High-risk
patient: axial PET, CT, PET/CT, and a three-dimensional reconstruction
of PET/CT images (a, b, c and d, respectively) of a 60-year-old male, with
squamous cell carcinoma, pathological stage 2a (T2N0M0), who
experienced disease recurrence 11 months after surgery. PET
parameters: SUVmean 8.8↑, SUVmaximum 15.4↑, EnergyGLCM 0.002↓,
LRHGE 991.7↑, HGRE 864.3↑, LZHGE 5372↑. CT parameters:
Compacity 2.98↑, Homogeneity1 0.281↑, Short-run emphasis 0.938↓,
Long-run emphasis 1.34↑ and Run percentage 0.912↓

Fig. 3 Disease-free survival prediction results for the PET+CT data. Kaplan-Meier curves for the DFS resulting from the Cox regression models built
using clinical variables (a), the radiomic signature (b and c), and their combination (d) for the training and validation groups within the PET+CT dataset
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features were statistically different for the CTand PET images,
respectively. Moreover, in the overall CT dataset, a reproduc-
ible threshold was found for each texture feature of the
radiomic signature (Supplementary Fig. 4) for all bootstrap
replicates in both the training and the validation dataset. This
was not possible for PET images, likely because texture fea-
tures from PET datasets are more sensitive to the acquisition
and reconstruction parameters than CT features, resulting in
fluctuating thresholds. Nonetheless, reproducible models were
found in both the training and the validation set for CT, PET,
and PET+CT images, also using features apparently different
between scanners. Furthermore, the model with the best dis-
crimination power between low- and high-risk patients was
the one that included all the significant texture features,
resulting in the highest AUC [0.75 (95%CI: 0.65–0.85) for
the CT dataset].

Just focussing on the primary lesion evaluation, the
added value of PET appears limited when comparing the
AUC of the radiomic signature among CT, PET, and PET+
CT (Tables 2, 3, and 4) in the prediction of DFS. In the CT
analysis, radiomic features were more reliable since, as
mentioned above, a stable threshold was identified for each
texture feature in both the training and the validation
groups. One might speculate that these findings, if con-
firmed in future investigations, would impact on the diag-
nostic and staging work-up of patients with lung tumours.
The role of FDG-PET/CT could remain crucial in the as-
sessment of metastatic spread of the disease.

Some limitations of this study have to be acknowl-
edged. First, the study analysed in a retrospective fashion
images acquired during clinical routine, using two differ-
ent PET/CT scanners. Nonetheless, radiomic features were
found to be significant and reproducible in the training
and validation groups. This is in favour of the applicabil-
ity of texture analysis in different centres using different
scanners. An external validation is planned to confirm
these results. Second, texture analysis of CT images was
performed using the CT component of the PET/CT instead
of high-resolution diagnostic CT images. This choice was
related to the fact that even if all patients performed a
high-resolution diagnostic CT as part of their pre-
operative work-up, these images were not available in
our institutional database for a large percentage of patients
since in many cases they performed this examination in
other hospitals and it was not repeated to avoid an addi-
tional radiation dose to the patients. Third, smoking habit
and differentiation grading are recognised prognostic fac-
tors but they were not tested in the present study due to
the unavailability of these data for the whole cohort of
patients. However, while in clinical practice these factors
have some influence on the choice of treatment approach,
TNM stage, and comorbidities are the main determinants
of treatment strategy.

Conclusions

The radiomic signature derived from baseline PET/CT images
was predictive of disease-free survival in non-small cell lung
cancer patients undergoing surgery. Our experience confirms
the rationale for initiating studies in very large cohorts of
patients with the aim of standardising and implementing this
non-invasive approach in the clinical setting in order to facil-
itate imaging-based personalisation of treatment strategy.
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