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ABSTRACT 

Introduction: Glioblastoma (GBM) is the most malignant brain tumor in adults. 

Transcriptional subgroups (proneural, PN, classical, CL, and mesenchymal, MES) 

have been identified, with MES being the most aggressive. Radiomics has been 

recently applied to neurooncology, but generally not to transcriptional affiliation. GBM 

derived glioma stem cells (GSCs) are used to model GBM, but culturing conditions 

may affect effective modeling. 

Materials and Methods: 36 IDHwt GBMs have been studied with advanced MRI 

protocols including diffusion sequences. 14 GSC lines were established from 48 GBMs 

and were transplanted to generate xenografts. Radiomic features were extracted 

from humans and xenografts to train a model predicting MES affiliation. Human GBMs 

and their GSC lines were profiled at the transcriptional and protein level.  

Results: In the first track of our study, we exploited radiomic features extracted 

from DTI and NODDI that indicate that MES tumors are more locally infiltrative and 

have more heterogeneous signal than non-MES tumors, probably due to more 

proliferative, less migrating cells and deposition of extracellular matrix. Models based 

on such features can predict MES affiliation. In the second study track, we 

demonstrated a progressive in vitro drift in transcriptional affiliation of GBM-derived 

GSCs, with some diverging to a PN profile, while other to a MES. CL component was 

generally downregulated in vitro. Still, PN lines efficiently model PN GBMs, as do MES 

GSCs for MES GBMs. We also demonstrated that protein-based categorizations 

effectively approximate transcriptional classification. In the third track, we 

demonstrated an increasing transcriptional distance of PN, CL and MES GBMs from 

healthy brain tissue, suggesting a likely progression from PN to MES. MES GBMs are 

more hypoxic and angiogenic and more dependent on extracellular matrix. On the 

contrary, PN tumors exploit neuronal ontologies, likely to establish synapses with 

neurons to guide infiltration along white matter tracts. In the last track, we identified 

IL7R as a candidate MES-specific mediator. Of note, tumor expression of IL7R in 

immunocompetent but not in immunocompromised murine recipients suggests a 

crosstalk between the immune microenvironment and tumor cells. 

Conclusions: We identified novel diffusion MRI radiomic features that correlate 

and predict MES affiliation of GBMs. We confirmed GSCs as powerful tools to model 

GBM heterogeneity, especially at early and intermediate passages, notwithstanding 

the progressive in vitro drift in transcriptional affiliation. We postulated a 

transcriptional-based evolution of GBMs, suggesting also different mechanisms of 

infiltration. We also propose a role of IL7R in MES GBM as potential biomarker. 
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1  ACRONYMS AND ABBREVIATIONS 

 

 

 

 

2HG: 2-hydroxyglutarate  

5-ALA: 5-aminolevulinic acid  

AC: astrocyte 

ADC: apparent diffusion coefficient 

AEDs: anti-epileptic drugs  

AIF1: allograft inflammatory factor 1 

aMRI: advanced magnetic resonance imaging 

AMPA: alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

AMPA-R: AMPA receptors 

ASCL1: achaete-scute homolog 1 

ATRX: alpha thalassemia/mental retardation syndrome X-linked 

AUC: area under the curve 

bFGF2: basic fibroblast growth factor 2  

BSA: bovine serum albumin 

CAR: chimeric antigen receptor 

CD: cluster of differentiation 

CDK4/6: cyclin-dependent kinase 4/6 

CDKN1A: cyclin-dependent kinase inhibitor 1A 

CDKN2A/B: cyclin-dependent kinase inhibitor 2A/B 

CHI3L1: chitinase 3 like 1 

CL: classical 

cMRI: conventional magnetic resonance imaging 

CNS: central nervous system 

CSCs: cancer stem cells 

CT: computed tomography 

DAB: diaminobenzydine 

DCE: dynamic contrast-enhancement 

DEGs: differentially expressed genes 

DGE: differential gene expression 

DLL3: delta-like ligand 3 

DMEM: dulbecco’s modified eagle’s medium 
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DMSO: dimethyl sulfoxide 

DSC: dynamic susceptibility contrast 

DTI: diffusion tensor imaging 

DWI: diffusion-weighted imaging 

EBSS: earle’s balanced salts 

ECM: extracellular matrix 

EDTA: ethylenediaminetetraacetic acid 

EGF: epidermal growth factor 

EGFR: epidermal growth factor receptor 

EGFRvI/II/III/IV/V: EGFR variant I/II/III/IV/V 

EMT: epithelial to mesenchymal transition 

EOR: extent of resection 

EORTC: european organization for research and treatment of cancer 

F: female 

FA: fractional anisotropy 

FBS: fetal bovine serum 

FGFR3: fibroblast growth factor receptor 3 

FDR: false discovery rate 

FECV: extra-neurite component of diffusion 

FICV: intra-neurite component of diffusion 

FISO: isotropic component of diffusion 

FLAIR: Fluid-attenuated inversion recovery 

FWER: family-wise error rate 

GBM: glioblastoma 

GCLs: glioma cell lines 

Gd: gadolinium 

GFAP: glial fibrillary acidic protein 

GLCM: grey level co-occurrence matrix 

GLDM: grey level dependence matrix 

GLRLM: grey level run length matrix 

GLSZM: grey level size zone matrix 

GO: gene ontology 

GPM: glycolytic/plurimetabolic 

GSCs: GBM stem cells 

GSEA: gene set enrichment analysis 

GTR: gross total resection 

HARDI: high angular resolution DWI 
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H&E: hematoxylin and eosin 

HEPES: N-2-hydroxyethylpiperazine-N-2 ethane sulfonic acid 

HLA: human leukocyte antigens 

HPLC: high performance liquid chromatography 

IBA1: ionized calcium binding adaptor molecule 1/allograft inflammatory factor 1 

IDH1/2: isocitrate dehydrogenase 1/2 

IDHwt: IDH wild-type 

IFNg: interferon gamma 

IHC: immunohistochemistry 

IL: interleukin 

IL7R: IL7 receptor 

IMC1/2: informational measure of correlation 1/2 

IRF8: interferon regulatory factor 8 

ITGAM: integrin subunit alpha M 

KNN: k-nearest neighbor 

KPS: karnofsky performance status 

LIF: leukemia inhibitory factor 

LMWH: low molecular weight heparin 

LOH: loss of heterozygosity 

LOO: leave-one-out cross validation 

LR: linear regression 

LSD1: lysine-specific demethylase 1 

M: male 

MD: mean diffusivity 

MES: mesenchymal 

MGMT: O6-methylguanine-DNA methyltransferase 

MHC: major histocompatibility complex 

M-MDSCs: monocytic-myeloid derived suppressor cells 

MMR: DNA mismatch repair 

MMP2/9: matrix metalloproteinase 2/9 

MRI: magnetic resonance imaging 

MRS: magnetic resonance spectroscopy 

MTC: mitochondrial 

mTOR: mammalian target of rapamycin 

(p)NDRG1: (phosphorylated) N-Myc downstream-regulated gene 1 

NES: Normalized enrichment score 

NEU: neural 
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NF1: neurofibromatosis type 1 

NF-kB: nuclear factor kappa B 

NGTDM: neighboring grey tone difference matrix 

NK: natural killer 

NODDI: neurite orientation dispersion and density imaging 

NOD-SCID: non-obese diabetic severe combined immunodeficiency 

NOG or NSG: NOD-SCID IL2Rgamma-null 

NPC: neural-progenitor cell 

NSA: neurosphere assay 

nu/nu: nude 

ODI: orientation dispersion index 

OLIG1/2: oligodendrocyte transcription factor 1/2 

OPC: oligodendrocyte-progenitor cell 

OR: odds ratio 

OS: overall survival 

PBS: phosphate-buffered saline 

PD1: programmed cell death protein 1 

PDGFRA: platelet derived growth factor alpha 

PDL1: programmed death-ligand 1  

PDX: patient-derived xenografts  

PFA: paraformaldehyde 

PFS: progression-free survival 

PN: proneural 

PPR: proliferative/progenitor 

PPV: positive predictive value 

PTEN: phosphatase and tensin homolog 

PWI: perfusion magnetic resonance imaging 

qRT-PCR: quantitative real time polymerase chain reaction 

RB: retinoblastoma gene 

rCBV: relative cerebral blood volume 

RF: random forest 

RIPA: radio-immunoprecipitation assay 

RNAseq: RNA sequencing 

ROC: receiver operating curve 

ROI: region of interest 

ROS: reactive oxygen species 

RT: radiotherapy 
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RTK: receptor tyrosine kinase 

RTOG: radiation therapy oncology group 

SCID: severe combined immunodeficiency 

SD: standard deviation  

SMOTE: synthetic minority oversampling technique 

SNP: single nucleotide polymorphism 

SVM: support vector machine  

SVZ: subventricular zone 

TACC3: transforming acidic coiled-coil-containing protein 3 

TAMs: tumor-associated macrophages 

TBS(-T): tris buffer saline (-Tween-20) 

TCGA: the cancer genome atlas 

TE: time to echo 

TERT: reverse transcriptase 

TGFb: transforming growth factor beta 

TGFBI: transforming growth factor-beta-induced 

TI: inversion time 

TMZ: temozolomide 

TP53: tumor protein 53 

TR: repetition time 

TRADD: tumor necrosis factor receptor type 1-associated death domain 

Tuj1: neuron-specific class III beta-tubulin 

UC: unsupervised cluster 

VAF: variant allele frequency 

VASARI: visually accessible rembrandt images 

VEGF: vascular endothelial growth factor 

VIF: variance inflation factor 

WB: western blot 

WES: whole exome sequencing 

WHO: world health organization 

YKL40: another name for CHI3L 
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3 INTRODUCTION 

 

 

 

 

3.1 Glioblastoma 

 

Glioblastoma (GBM) is the most common malignant tumor of the central nervous 

system affecting adults, second only to brain metastases and first among primary 

lesions. It accounts for the majority of deaths in patients with primary CNS neoplasia 

(Wen et al, 2020; Ostrom et al, 2019a). It accounts for 48.3% of primary malignant 

brain lesions, reaching up to 57.3% of all gliomas (Conti Nibali et al, 2021). 

GBMs cause disproportionate morbidity and mortality (Ostrom et al, 2019a). 

Despite progresses in deciphering their biology and despite surgical and medical 

advances, a significant amelioration in treatment schemes and outcomes have not 

yet been attained. With a median overall survival (OS) of less than 18 months (Conti 

Nibali et al, 2021) and 5-year OS of 6.8% (Wen et al, 2020) it represents a pathology 

with very poor prognosis, even if a recent investigation on almost 90,000 patients 

treated between 2004 and 2013 reports a minor increase in 3 years overall survival 

after the diagnosis (Conti Nibali et al, 2021). 

The focus of our work is on the IDH wild-type (IDHwt) GBMs, which represent 90-

95% of CNS WHO Grade 4 astrocytomas and have the worst prognosis (Wen et al, 

2020; Yan et al, 2009; Louis et al, 2016). 

 

 

 

3.1.1 Epidemiology 

The overall incidence of GBM in the western world is 3-5/100,000 persons after 

age-adjustment, being more frequent in males (M/F ratio of 1.6) (McKinnon et al, 

2021; Brodbelt et al, 2015; Ostrom et al, 2019a). Incidence rises with age, reaching 

its highest in the range between 65 and 84 years old, with a 2-fold increase with 

respect to people aged 55-64 (Conti Nibali et al, 2021). A regional variation in 

incidence has also been reported worldwide (Leece et al, 2017).  
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As reported in the literature, there is no increasing incidence in North America 

(Davis et al, 2020), as opposed to what reported for the UK (Philips et al, 2018). 

Such disproportions might be due to dissimilar surveillance protocols in the various 

countries besides changes in GBM classifications (Wen et al, 2020). 

Known risk factors explain GBMs to a very low extent (Ostrom et al, 2019b). 

Ionizing radiation to head and neck has been correlated to increased risk of 

developing GBM, while atopic diseases may play a protective role (Ostrom et al, 

2019b). On the contrary, there is no evidence for non-ionizing radiations, such as 

those associated with phone use, to be dangerous in this sense (Wen et al, 2020). 

Most GBM patients are sporadic. Still, roughly 5% of all gliomas show a familial 

predisposition, and few rare Mendelian syndromes have been implicated in GBM 

development (Ranger et al, 2014; Wen et al, 2020). Genome-wide association 

studies confirmed 25 single nucleotide polymorphisms to confer an increased risk to 

develop glial tumors, 11 of which are specific to GBMs (Melin et al, 2017). In most 

cases, the identified loci contain critical genes for gliomas, such as telomerase 

reverse transcriptase (TERT), epidermal growth factor receptor (EGFR), and cyclin-

dependent kinase inhibitor 2B (CDKN2B) (Melin et al, 2017; Labreche et al, 2018). 

 

 

 

3.1.2 Symptoms and diagnosis 

Rapid tumor growth and displacement or infiltration of eloquent structures brings 

about a variety of symptoms leading GBM patients to seek for medical attention and, 

eventually, diagnosis. Often, the initial disturbances are non-specific, being similar 

to those experienced with other primary or secondary brain tumors, or more 

commonly, with benign neurological conditions. Circa 50% of patients initially seek 

for emergency hospital care (McKinnon et al, 2021).  

Among the various symptoms, new onset epilepsy, progressive headaches, focal 

neurologic deficits, signs of increased intracranial pressure, and mental status 

alterations are the most indicative (Weller et al, 2017). However, the earliest and 

most common presenting symptom is headache. Still, only 0.1-0.2% of people with 

unusual, new onset headache bear an underlying brain tumor (McKinnon et al, 2021; 

Ozawa et al, 2019). Headache stigmata depend on tumor location, size, and growth 

rate, being either tension- or migraine-like (Kirby & Purdy, 2014). Exacerbated by 

supine position, it mostly presents on waking, is accentuated by the Valsalva 

maneuver, and frequently increases in occurrence and severity. In case it associates 
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with other neurological focuses, the likelihood of an underlying expanding lesion 

significantly increases (McKinnon et al, 2021; Ozawa et al, 2019). 

Seizures present at diagnosis in about 20% of GBM patients, even though they 

are more common as presenting symptoms in lower-grade gliomas. An additional 

20% of GBM patients develops epilepsy during the course of the disease (McKinnon 

et al, 2021). Notably, new onset seizures in adults have the greatest positive 

predictive value (PPV, 1.6%), followed by motor weakness (1.5%) and confusion 

(1.4%) (Ozawa et al, 2019). Thus, a combinations of such complaints strongly 

suggests an underlying intracranial mass, especially if progressive (Posti et al, 2015). 

Cognitive deficits, personality changes, and mood disturbances often complicate 

the clinical presentation (Pace et al, 2017). Interestingly, up to 91% of patients 

present cognitive deficits, though only a minority complains about them (Gehring et 

al, 2015; Wen et al, 2020). Cognitive impairment is frequently heightened by fatigue 

and sleep disturbances (Armstrong et al, 2017; Armstrong & Gilbert, 2012). 

Contrast-enhanced MRI is the gold standard diagnostic tool for GBM detection. 

 

 

 

3.1.3 Biology and molecular pathogenesis 

GBMs have been suggested to originate from neuroglial stem or progenitor cells 

and are molecularly heterogeneous. Genes and pathways typically mutated in 

sporadic GBMs have been identified (McLendon et al, 2008; Parsons et al, 2008; 

Barthel et al, 2018) and integrated with gene expression profiling and methylomic 

studies, allowing to identify molecular GBM subgroups enriched for peculiar 

alterations (Wen et al, 2020). 

As a matter of fact, The Cancer Genome Atlas (TCGA) Research Network provided 

a list of the genomic changes in 206 GBM patient samples providing a catalog of 

tumorigenic genomic abnormalities. For instance, previously reported TP53 and RB 

mutations were confirmed and new GBM-associated mutations such as in PIK3R1, 

neurofibromatosis type 1 (NF1), and ERBB2 were described. Further copy number 

and mutational analyses showed that most GBMs harbor abnormalities in TP53, RB, 

and receptor tyrosine kinase (RTK) pathways, suggesting their importance in 

glioblastomagenesis (Verhaak et al, 2010). Another typical feature, common in 

sporadic adult GBMs, is oncogene amplification on extrachromosomal DNA, which 

allows tumor cells to thrive even in case of scarce microenvironmental resources 

(Turner et al, 2017; Decarvalho et al, 2018).  
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Studies on 200 GBMs and 2 normal brain samples allowed identification of 1740 

genes with consistent but highly variable expression across the samples. Based on 

these, average linkage hierarchical clustering identified 4 groups which were named 

as Proneural, Neural, Classical, and Mesenchymal. Characterizing genes for each 

group were then deposited as signatures (Verhaak et al, 2010). 

The Proneural/RTK I group, more frequent in younger adults, was marked by 

cyclin-dependent kinase 4 (CDK4) and platelet derived growth factor alpha (PDGFRA) 

amplifications. Hallmark of the Classical/RTK II group are aberrations of EGFR and 

homozygous loss of CDKN2A/B, whereas the Mesenchymal group was characterized 

by NF1 loss and increased immune infiltrate. Transversal to these groups are the 

TERT promoter mutations (Wen et al, 2020; Brennan et al, 2013; Ceccarelli et al, 

2016; Wang et al, 2017). 

Mutually exclusive with TERT mutations, aberration of alpha thalassemia/mental 

retardation syndrome X-linked (ATRX) is associated with TP53 mutation and usually 

affects rarer GBMs harboring alterations in H3K27M or H3G34R (Wen et al, 2020). 

Another rare subset of GBMs is hallmarked by FGFR3-TACC3 fusion protein and shows 

stigmata of oxidative phosphorylation, rendering it metabolically divergent from the 

more common glycolytic GBMs (Frattini et al, 2018).  

Notably, treatment like chemo-radiation, may induce or select cell subclones with 

alterations in the DNA mismatch repair (MMR) machinery (Kim et al, 2015; Körber et 

al, 2019). As a matter of fact, up to 10% of recurrent, post-temozolomide (TMZ) 

GBMs show a markedly high mutational load (Draaisma et al, 2020). The 

hypermutational phenotype may be coupled with germline MMR defects, but most of 

the times it is acquired following alkylating agents administration (Touat et al, 2020; 

Hunter et al, 2006; Johnson et al, 2014) and usually occurs in O6-methylguanine-

DNA methyltransferase (MGMT) methylated gliomas (Wen et al, 2020). Other 

frequent mutations developed in recurrent tumors affect TP53, EGFR, and 

phosphatase and tensin homolog (PTEN) (Wen et al, 2020). 

 

 

3.1.3.1 Proneural (PN) subtype 

The Proneural class is characterized by alterations in PDGFRA, such as focal 

amplifications at 4q12, which are detected in all subtypes, yet at a much higher rate 

in PN samples. The PDGFRA signature leads to accumulation of many copies of 

PDGFRA gene product, which is almost exclusive of this subtype. Occasionally, 

besides amplification, PN samples also harbor point mutations in this gene, generally 
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observed in the immunoglobulin-domain, that might lead to disruption of ligand 

interaction (Verhaak et al, 2010). 

Mutations and loss of heterozygosity (LOH) of TP53 are frequent events in PN 

subtype. High expression of genes related to oligodendrocyte development, such as 

NKX2-2 and OLIG2 (Noble et al, 2004), are quite common. Increased OLIG2 

expression proved to inhibit the tumor suppressor function of CDKN1A, thus 

promoting proliferation (Ligon et al, 2007). Notably, PN tumors with no PDGFRA 

abnormalities harbor most of the PIK3CA/PIK3R1 mutations detected in GBMs 

(Verhaak et al, 2010). On the contrary, the typical chromosome 7 amplification and 

10 loss is strikingly less common as opposed to other subtypes (only 54% of PN 

samples) (Verhaak et al, 2010). 

Remarkably, the PN signature consists of many crucial genes for neural 

differentiation, such as SOX genes, DCX, DLL3, ASCL1, and TCF4 (Phillips et al, 

2006). PN tumors are characteristically enriched for gene ontologies (GO) involving 

neurodevelopmental processes and cell cycle/proliferation signatures (Whitfield et al, 

2002). 

As far as the tumor microenvironment is concerned, PN GBMs present a reduced 

immune infiltrate and a less immunosuppressive tumor milieu (Gangoso et al, 2021). 

Before the new CNS WHO tumor classification (Louis et al, 2021), secondary 

IDH1/2 mutant lesions were mainly included in the PN subclass. As a matter of fact, 

11/12 IDH1/2 mutations in Verhaak’s study were detected in PN tumors, mostly in 

those not harboring PDGFRA abnormalities (Verhaak et al, 2010). 

 

 

3.1.3.2 Classical (CL) subtype 

The Classical subtype is distinguished by chromosome 7 amplification and 

chromosome 10 loss, which is present in 100% of CL samples. Although chromosome 

7 amplification is detected in lesions of other subtypes, amplification of epidermal 

growth factor receptor (EGFR) is generally spotted in CL tumors (97%) and very 

infrequently in other subgroups. The neural precursor and stem cell marker NES is 

typically expressed (Verhaak et al, 2010). 

EGFR/ERBB1/HER1 is a transmembrane glycoprotein belonging to tyrosine kinase 

receptor family, which includes also ERBB2/HER2/Neu, ERBB3/HER3, and 

ERBB4/HER4. They are activated upon ligand binding and receptor dimerization. 

Activation of EGFR induce downstream signaling through Ras/Raf/MAPK, PI3K/AKT, 

JAK/STAT, or PLC/PKC pathways, with an impact on cell proliferation, metabolism, 

apoptosis, survival, and differentiation (Rutkowska et al, 2019). 
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The gene encoding for EGFR consists of 28 exons. It comprises an extracellular 

domain for ligand binding and receptor dimerization (exons 1-16), an hydrophobic 

transmembrane domain (exon 17), and an intracellular domain endowed with 

tyrosine kinase activity plus a C-terminal linker region (exons 18-28) (Rutkowska et 

al, 2019). 

A majority of mutations affect the extracellular and tyrosine kinase domains and 

induce an increased or prolonged EGFR signaling (Su Huang et al, 1997), with 

resulting enhanced proliferation, apoptosis inhibition, and angiogenesis. (Rutkowska 

et al, 2019). In GBMs, EGFR amplification is mostly associated to rearrangements 

and deletions involving different exons and are designated as EGFRvI (deletion of N-

terminal part), EGFRvII (exons 14 and 15), EGFRvIII (exons 2-7), EGFRvIV (exons 

25-27), and EGFRvV (exons 25-28) (Francis et al, 2014; Wong et al, 1992; Cho et 

al, 2011). Most frequently, EGFRvIII is the pathogenic variant detected in GBMs 

(Rutkowska et al, 2019), with more than 50% of CL GBMs in Verhaak’s study 

displaying a point mutation in EGFR or EGFRvIII (Verhaak et al, 2010). 

As for the mechanism of action, EGFRvIII exhibits a constitutive activity 

(Nishikawa et al, 1994), since it can dimerize independently of the ligand, in a 

conformation which might resemble either active or inactive EGFR. Apparently, 

EGFRvIII constitutive activity is not extremely stark; however its stability might allow 

longer kinase activity translating into significant biological effects (Rutkowska et al, 

2019). Another possible mechanism of action could be linked to stable heterodimer 

formation with triggered wild-type EGFR (Fan et al, 2013). Additionally, EGFRvIII is 

likely to heterodimerize with other inactive receptors, such as MET and PDGFR, 

affecting their action (Chakravarty et al, 2017; Garnett et al, 2013). Moreover, 

EGFRvIII-positive cells show both autocrine and paracrine effects by secreting factors 

like leukemia inhibitory factor (LIF) and IL6, which in turn activate receptors on wild-

type EGFR-positive cells. Through NF-kB activation and induction of survivin, IL6 may 

amplify cell resistance to apoptosis (Rutkowska et al, 2019). 

Additionally, CL GBMs are distinctly lacking TP53 mutations, even if such gene is 

habitually mutated in GBMs (Verhaak et al, 2010). CDKN2A homozygous deletion is 

frequently associated to CL lesions, appearing together with EGFR amplification in 

94% of cases, and is mutually exclusive with other aberrations such those affecting 

RB1, CDK4, and CCDN2, all impairing RB pathway. Other pathways hyperactivated 

in CL lesions are those of Notch (NOTCH3, JAG1, and LFNG) and Sonic hedgehog 

(SMO, GAS1, and GLI2) (Verhaak et al, 2010). 
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3.1.3.3 Mesenchymal (MES) subtype 

Mesenchymal tumors express CHI3L1/YKL40, CD44 and MET (Phillips et al, 2006). 

Remarkably, increased expression of both mesenchymal and astrocytic markers 

resembles the epithelial-to-mesenchymal transition, observed in dedifferentiated or 

transdifferentiated epithelial tumors (Thiery, 2002). Genes pertaining the tumor 

necrosis factor superfamily and NF-kB pathway, such as TRADD, RELB, and 

TNFRSF1A, are highly expressed, possibly due to inflammatory cells infiltrating the 

extensive necrosis seen in MES tumors (Verhaak et al, 2010). Additionally, genes 

regulating extracellular matrix (ECM) turnover and wound healing correlate with MES 

tumors (Richards et al, 2021).  

MES GBMs frequently deactivate NF1 through genomic copy loss or somatic 

mutations. As a matter of fact, in the pivotal work by Verhaak et al., focal hemizygous 

deletions of NF1 locus predominantly occurred in the MES cluster, and 53% of MES 

samples expressed less NF1. Conversely, NF1 mutations were detected in 20 

specimens, 14 of which were MES (Verhaak et al, 2010). Moreover, most co-

mutations of NF1 and PTEN intersecting with the AKT pathway were observed in MES 

lesions (Verhaak et al, 2010). Notably, in an experimental model optimized by 

Gangoso et al., NF1 loss was enough to induce enrichment of various gene signatures 

relevant to glioblastomagenesis, including angiogenesis and cell migration, which 

suggests that NF1 plays a role in priming cells for malignant transformation. 

(Gangoso et al, 2021) 

Even more interestingly, NF1-deleted/mutated GBMs show reduced tumor purity 

due to a higher stromal and immune infiltration, when compared to NF1 wild-type 

GBMs. This association between reduced tumor purity and MES affiliation has been 

commonly identified across different cancers (Wang et al, 2017). Indeed, the 

interaction between tumor cells and microenvironment favors tumor adaptability and 

progression, particularly effective in MES neoplasia (Olar & Aldape, 2014).  

Among GBM-associated stromal cells, tumor-associated macrophages (TAMs) may 

derive from resident microglia or peripheral blood monocytes and are marked by 

integrin subunit alpha M (ITGAM or CD11B) and allograft inflammatory factor 1 (AIF1 

or IBA1). They account for up to 30-50% of the cells in the GBM microenvironment 

and through bidirectional communications with tumor cells are associated with tumor 

aggressiveness and resistance to therapies (Hambardzumyan et al, 2015; Lu-

Emerson et al, 2013). Accordingly, Wang et al. proved that tumor-promoting M2 

macrophages were associated to a higher extent with the MES subtype (13%) rather 

than to the PN (5%) and CL (6%) subgroups (Wang et al, 2017). Moreover, MES 

samples were significantly enriched in proinflammatory M1 macrophage and 
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neutrophil gene signatures. Contrarily, activated natural killer (NK) cells were 

significantly underrepresented in MES GBMs (Wang et al, 2017). Also, evidence 

suggests how radiotherapy could support TAM recruitment, thus selecting 

radioresistant GBM cells and inducing their MES differentiation (Bhat et al, 2013; Kim 

et al, 2021). 

The high burden of infiltrating non-tumoral cells might play a confounding role in 

defining the stigmata of MES tumors. However, Wang et al. demonstrated that MES 

signatures are actually intrinsic to tumor cells and not simply due to contaminating 

immune or endothelial cells. Nevertheless, it remains unclear how such molecular 

program is acquired (Wang et al, 2017). 

The immune infiltrate was further studied by Gangoso et al. in a murine model of 

MES GBMs. They reported major changes in the immune cell repertoire with an 

increase in CD8/CD4 T-cells, M1 and M2 macrophages, and a decrease in microglia. 

They also documented dysfunctional lymphoid populations marked by PD1 and TIM3. 

Interestingly, they reported an increased immune infiltrate in immune evasive MES 

tumors relative to non-immune evasive ones, with predominant monocytic-myeloid 

derived suppressor cells (M-MDSCs) and higher levels of PDL1-positive macrophages 

(Gangoso et al, 2021). 

Parallelly, the authors described an upregulation of several pro-tumorigenic 

chemokines, as well as immune-associated genes and gene ontologies (GO) in the 

immune evasive tumors. Among them, upregulation of interferon regulatory factor 8 

(IRF8), which is a myeloid-specific transcription factor expressed in hematopoietic 

cells (Driggers et al, 1990) to induce myeloid specification and macrophage 

differentiation, was strikingly detected in GBM cells (Gangoso et al, 2021). As a 

matter of fact, IRF8 responds to interferon gamma (IFNg) and is normally inactive in 

neural and glial cells. However, chronic immune attack and sustained IFNg signal 

from the microenvironment, might lead GBM cells to hijack its expression. 

Subsequent changes in DNA methylation then would be fundamental to stabilize the 

transcriptional changes imposed by immune attack (Gangoso et al, 2021). Such 

findings described in murine models would suggest a similar mechanism in human 

GBMs, undergoing similar transcriptional reconfiguration and epigenetic stabilization 

(Gangoso et al, 2021). 

 

 

3.1.3.4 Neural (NEU) subtype 

Neural tumors were defined based on neuronal markers, such as NEFL, GABRA1, 

SYT1, and SLC12A5. Related gene ontologies included neuron projection and axonal 
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transmission through synapses. Notably, the healthy brain samples included in the 

TCGA were catalogued as NEU (Verhaak et al, 2010). 

In the following work by Wang et al., the authors adopted a different strategy to 

investigate the transcriptional heterogeneity of GBMs subgroups, concentrating on 

tumor-intrinsic and microenvironment-independent factors. Therefore, they 

identified genes uniquely expressed by glioma cells by filtering the gene list obtained 

from the comparison between GBMs and their derived cultured neurospheres and by 

removing genes overexpressed in GBMs but not in their derivative neurospheres, 

thus eliminating microenvironmental contaminations. A further refinement was 

carried out eliminating genes pertaining to infiltrative tumoral margins with no more 

than 10% tumoral cells as opposed to core lesions (100% tumoral cells). The 

resulting filtered list (Affymetrix U133A microarray) was adopted to re-classify the 

TCGA GBMs, identifying 3 subtypes out of 369 IDHwt GBMs. Upon comparison of the 

resulting clusters with the preceding classification (Brennan et al, 2013; Verhaak et 

al, 2010), the newly identified clusters fitted with PN, CL, and MES GBMs. None of 

them was designated as NEU, advocating this last phenotype as non-tumoral. 

Therefore, the previous NEU class probably identified mostly tumoral margins, where 

mostly healthy white matter was contaminated by few infiltrating GBM cells (Wang 

et al, 2017). Contamination by normal healthy tissue might provide the underlying 

reason for the lack of characteristic gene aberrations in the NEU subgroup (Brennan 

et al, 2013). 

 

 

3.1.3.5 Glioblastoma heterogeneity 

Genetic, epigenetic, and microenvironmental signals influence biological programs 

and induce GBM heterogeneity. First, the above-described transcriptional subtypes 

can be differentially enriched in different regions of the same lesion, as proven by 

their multiple sampling. In addition, longitudinal analyses revealed treatment 

strategies can induce subtype switch over time, with different cells from the very 

same GBM activating pathways pertaining to different subtypes (Patel et al, 2014; 

Wang et al, 2017; Sottoriva et al, 2013). 

Secondly, GBMs hijack neural developmental pathways and contain subsets of 

GBM stem cells (GSCs) endowed with tumorigenic ability and resistance to chemo- 

and radiotherapy (Bao et al, 2006a; Chen et al, 2012; Parada et al, 2017; Neftel et 

al, 2019). Yet, it is still debated whether such cells exist in univocal or diverging 

cellular states and if distinct GSC subpopulations generate tumors of similar or varied 

cellular composition (Neftel et al, 2019), just as it still remains unknown whether 
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unidirectional hierarchies or reversible transitions govern GBM and GSC biology 

(Neftel et al, 2019; Suvà et al, 2014). 

In a recent work by Neftel et al., single cell RNA-Sequencing of 20 adult and 8 

pediatric GBMs allowed to define how GBM cells exist in a limited set of cellular states. 

Each state recapitulates one out of six meta-modules and is defined by a set of highly 

recurring genes, which can be clustered into 4 sets, 2 of which can be further divided 

into two subgroups (Neftel et al, 2019). 

In particular, two meta-modules enriched for mesenchymal genes were identified, 

the former being strongly associated with response to hypoxia, stress, and glycolysis, 

as opposed to the latter. As a consequence, the authors defined them as 

mesenchymal-like (MES-like) states, and subdivided them into hypoxia-independent 

(MES1) and dependent (MES2) meta-modules (Neftel et al, 2019). 

Four additional meta-modules presented genes implicated in neurodevelopment, 

reminding of neuronal or glial progenitors. Accordingly, they were enriched for 

astrocytic markers (S100B, GFAP, SLC1A3, GLAST, and MLC1), oligodendroglial 

markers (OLIG1, OMG, PLP1, PLLP, TNR, and ALCAM), and stem cell signatures, 

including neural progenitor markers (SOX4, SOX11, and DCX) (Tirosh et al, 2016; 

Venteicher et al, 2017; Darmanis et al, 2015, 2017; Nowakowski et al, 2017). 

Therefore, the states mimicking these developmental states were named as 

astrocyte-like (AC-like), oligodendrocyte-progenitor-like (OPC-like), and neural-

progenitor-like (NPC-like). Intuitively, being hijacked by tumor cells, all of these 3 

developmental-related modules presented important aberrations that distinguished 

them from their normal counterparts. Remarkably, NPC-like module was in turn split 

into NPC1 and NPC2 based on the inclusion of genes related to oligodendrocyte 

progenitors (NPC1) or to neuronal lineage (NPC2), likely reflecting the NPC ability to 

differentiate into either OPCs or neurons (Neftel et al, 2019).  

The authors reported that each tumor sample contains cells in multiple states. 

However, their percentual make-up varies from lesion to lesion and depends on 

aberrations in CDK4, PDGFRA, EGFR, and NF1, each favoring a specific state. As a 

matter of fact, EGFR is maximally upregulated in AC-high tumors, while high 

amplifications of PDGFRA and CDK4 induce OPC-like and NPC-like states specification, 

respectively (Neftel et al, 2019). On the contrary, NF1 alterations are correlated with 

MES-high tumors. Quite remarkably, deletions in chromosome 5q are negatively 

associated with MES-like state, suggesting that 5q loss could impair MES affiliation. 

In fact, this chromosome arm contains controllers of mesenchymal differentiation as 

well as numerous chemokines and cytokines that could interact with 
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microglia/macrophages and other immune cells (Neftel et al, 2019; Wang et al, 

2017). 

Lastly, even though most GBM cells correspond primarily to one of the four states, 

up to 15% of cells express two modules, configuring hybrid states, with some 

combinations being common (AC-like/MES-like, NPC-like/OPC-like, and AC-like/OPC-

like), while others almost totally undetected. On the other hand, from a whole-tumor 

point of view, each GBM contains cells pertaining to at least two of the four cellular 

states, mostly including all four of them to varying extent. As a matter of fact, most 

tumors consist either of NPC-like and OPC-like cells, or of AC-like and MES-like cells, 

though different combinations might be detected (Neftel et al, 2019). In turn, the 

predominance of a specific module or combination consistently concurs in defining 

the global affiliation of each tumor. In fact, the CL and MES subtypes represent 

tumors showing mainly the AC-like and MES-like states, respectively. On the 

contrary, PN GBMs entail the combination of OPC-like and NPC-like, which typically 

co-occur (Neftel et al, 2019). 

 
Figure 3.1. GBM heterogeneity and correspondence between GBM cell state and 

bulk tumor affiliation. Top panel, depiction of segregation of the 4 cell states according to 
single-cell RNAseq analysis. Bottom panel, composition of single tumors with each cell state 
adding up to final transcriptional affiliation of the bulk lesion. AC: astrocyte-like, CL: Classical, 
MES: mesenchymal, NPC: neural-progenitor-like, OPC: oligodendrocyte-progenitor-like, PN: 
proneural. Adapted from (Neftel et al, 2019) 
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Therefore, intra-lesional GBM heterogeneity globally matches cellular states 

shifting over a continuum of hybrid states, each with proliferative potential. Still, the 

highest proliferation potential has been linked to NPC-like and OPC-like states (Neftel 

et al, 2019). The immune microenvironment might then act on such gradient by 

eroding the epigenetic setting and altering transcription factors, thus conferring a 

versatile nature to GBMs (Gangoso et al, 2021). 

Another level of heterogeneity was recently identified in a work by Garofano et al., 

who submitted 36 adult high-grade gliomas to single-cell transcriptional analysis and 

subsequent pathway deconvolution. The authors proposed a transcriptional 

classification of IDHwt GBMs based on the core biological pathways exploited by 

individual cells. This classification identified 4 modules described by traits of either 

development (neuronal, NEU and proliferative/progenitor, PPR) or metabolism 

(glycolytic/plurimetabolic, GPM and mitochondrial, MTC) (Garofano et al, 2021). 

On the metabolic side, GPM cells exploited pathways such as lipidic and 

aminoacidic metabolism; however, they did not present features of mitochondrial 

activity and oxidative phosphorylation and were enriched in mesenchymal and 

immune-related functions. On the contrary, MTC cells depended on mitochondrial 

metabolism, oxidative phosphorylation, and fatty acid oxidation. Notably, these two 

states stand in a metabolic spectrum imposed by opposing transcriptomic programs 

and mutations, inducing definite metabolic needs. In fact, each state is associated 

with stable inactivation of genetic programs necessary to induce the opposed 

metabolic phenotype. Therefore, MTC GBMs are susceptible to inhibition of oxidative 

phosphorylation, and portend increased sensitivity to radiotherapy through ROS 

produced by mitochondria. Conversely, activation of several pathways in GPM GBMs 

induces a redundant metabolic profile that might explain overcoming of glycolysis 

inhibition and resistance to multiple treatment strategies (Garofano et al, 2021). 

 On the development-recapitulating side, the NEU cluster harbored stigmata of 

specialized neuronal functions like axon genesis and synaptic transmission, whereas 

the PPR cluster activated pathways associated with cell cycle progression, DNA 

replication and damage response, mitosis, and expressed neural stem/progenitor cell 

markers. Confronting this classification with the 6 abovementioned cellular states, 

PPR and NEU were enriched in NPC1, NPC2 and OPC signatures, while GPM and MTC 

preferentially correlated with the MES and AC cell states (Garofano et al, 2021). 

Interestingly, survival analysis exhibited significantly better survival for MTC GBMs 

independent of age, gender or MGMT methylation. The MTC state was evenly 

distributed across the CL, PN and MES subgroups, without restrictions of oxidative 
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phosphorylation to specific transcriptional affiliations, while MES cells were positively 

associated with the GPM state, suggesting them as codependent features in GBMs. 

On the other hand, NEU and PPR states were mostly undetected in MES GBMs 

(Garofano et al, 2021). 

 

 

3.1.3.6 Subtype and clinical correlation 

As reported by Verhaak et al., the most consistent clinical association for tumor 

subtypes is age, with younger patients overrepresented in the PN subtype. 

Additionally, a longer survival for PN GBM-bearing patients was reported, although it 

did not reach statistical significance (Verhaak et al, 2010). However, these findings 

could have been confounded by analyzing conjointly IDH-mutant and IDHwt GBMs, 

now considered two very distinct entities, as only IDHwt tumors are proper GBMs 

(Louis et al, 2021; Verhaak et al, 2010; Noushmehr et al, 2010). 

Notably, in the following study by Wang et al., the authors compared outcomes 

according to transcriptional affiliation restricted to IDHwt GBMs only, and observed a 

median overall survival of 11.5, 14.7, and 17.0 months in MES, CL, and PN cases, 

respectively. Patients with MES tumors, being them primary or recurrent, showed a 

worse overall survival. Consequently, patients bearing both primary and recurrent 

MES lesions showed the worst outcome, suggesting a likely additive or synergic effect 

of transcriptional affiliation at different times in the same pathology (Wang et al, 

2017). This difference in survival between MES and non-MES tumors (p-value = 0.03) 

is consistent with what described by Verhaak, in addition to a slightly milder 

progression for the PN subtype (Wang et al, 2017). 

 

 

3.1.3.7 Subtype and treatment 

The PN and MES subtypes are the most constantly addressed subtypes in the 

literature and have been described to bear different responses to therapeutic 

schemes (Huse et al, 2011; Phillips et al, 2006; Wang et al, 2017). Analyses of the 

Murat and TCGA datasets showed that patients treated with concurrent chemo-

radiotherapy or > 3 cycles of chemotherapy had reduced mortality if affected by CL 

(hazard ratio 0.45; p-value = 0.02) or MES tumors (hazard ratio 0.54; p-value = 

0.02), while survival was not affected in PN lesions (hazard ratio 0.8; p-value = 0.4) 

(Murat et al, 2008). 
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Methylation of the DNA repair gene MGMT, a known prognostic factor for response 

to alkylating agents, was not associated with GBM subtype (Hegi et al, 2005). On the 

contrary, resistance to antiangiogenic therapy with bevacizumab, recently introduced 

in GBM treatment, is closely linked to MES affiliation (Piao et al, 2013). Sandmann et 

al. in a retrospective analysis of a trial investigating the use of bevacizumab in GBMs, 

found that only IDHwt PN GBM patients derived an overall and progression-free 

survival benefit compared to placebo (Sandmann et al, 2015). Contrarily, although 

MES GBMs presented a longer PFS with bevacizumab, their OS was not affected. 

Other evidence showed that radiations induced a MES drift which drive to resistance 

to alkylating agents (Kim et al, 2021). Remarkably, temozolomide can in its turn 

induce a hypermutation state in recurrent tumors (Hunter et al, 2006; Kim & 

Verhaak, 2015; Felsberg et al, 2011; McFaline-Figueroa et al, 2015; Indraccolo et al, 

2019), possibly generating neoantigens to be exploited and targeted by CD8+ T cells 

(Schumacher & Schreiber, 2015). 

Considering the immune scars of each transcriptional subgroup, CL tumors are 

enriched for the activated dendritic cell gene signature, and therefore may benefit 

from dendritic cell vaccines (Palucka & Banchereau, 2012). Similarly, MES GBMs show 

increased levels of M2 macrophages and might be suitable for therapies attacking 

tumor-associated macrophages (Wang et al, 2017). 

 

 

3.1.3.8 Proneural to mesenchymal transition 

GBMs have been theorized to evolve from PN to MES. Cytoreductive surgery and 

adjuvant treatments provide survival benefits but induce tumor evolution by selecting 

therapy-resistant tumor cells. This often leads to a switch upon recurrence that has 

been linked to treatment resistance, although its frequency and relevance remains 

controversial (Bao et al, 2006a; Bhat et al, 2013; Ozawa et al, 2014; Phillips et al, 

2006). To determine the significance of this transition in IDHwt GBMs, Wang et al. 

performed a longitudinal transcriptional analysis on paired samples obtained at 

diagnosis and recurrence. The MES subtype was the most stable between primary 

and recurrent tumors (65%), as opposed to CL (51%) and PN (41%) classes. At 

recurrence, 10, 13, and 18 tumors switched affiliation to become CL, MES, and PN, 

respectively. Therefore, at recurrence, PN and MES were increased, while CL became 

less frequent. In fact, as the CL cells are the most sensitive to intensive therapy, 

there may be an actual advantage for non-CL cells (Verhaak et al, 2010), leading to 

underrepresentation of CL subtype after treatment (Van Den Bent et al, 2015). 

Furthermore, subtype stability at recurrence was linked to lower transcriptional 
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heterogeneity, with same affiliation at recurrence in 30 out of 45 (67%) recurrent 

cases, compared to only 26 out of 46 (57%) cases of tumors with higher 

transcriptional heterogeneity (Wang et al, 2017). 

The PN-to-MES transition is also affected by tumor microenvironment. Tumor-

associated macrophages, deriving from peripheral blood or from resident microglia 

(Gabrusiewicz et al, 2016; Hambardzumyan et al, 2015), could perturb this process 

through NF-kB activation (Bhat et al, 2013) or other proliferative signals (Patel et al, 

2014; Wang et al, 2017). 

In the work by Wang et al., a comparison between 91 primary and recurrent IDHwt 

tumors pinpointed a relative depletion of peripheral blood-derived monocytes upon 

recurrence. However, primary non-MES tumors switching to MES showed a boosted 

immune infiltrate, as opposed to recurrent non-MES lesions. In particular, M2 

macrophage were significantly more frequent in cases transitioning to MES, just as a 

higher M2 fraction was observed in primary MES relative to primary non-MES GBMs. 

Hence, the relationship between MES GBMs and macrophages is further 

strengthened, extending their codependence to disease recurrence (Wang et al, 

2017). 

 

 

 

3.1.4 Pathology and classification 

From a histopathologic point of view, GBMs are diffuse, infiltrative astroglial 

neoplasms with microvascular proliferation and pseudo palisading necrosis. Nuclei 

are angulated with irregular chromatin. Mitoses are frequent (Wen et al, 2020). 

The 2016 CNS WHO classification of brain tumors divided them into IDHwt GBMs 

(about 90% of cases), which correspond to primary GBMs and predominate in 

patients older than 55 years, and IDH-mutant GBMs (10% of cases), corresponding 

to secondary tumors deriving from dedifferentiation of prior lower-grade gliomas and 

affecting younger people (Louis et al, 2016). 

Sometimes GBMs may lack their typical histologic hallmarks. Prior to the 

integration of molecular analyses, they used to be classified as lower-grade gliomas. 

However, several studies demonstrated that if these tumors harbor specific molecular 

scars, they act like proper GBMs and should be treated as such (Brat et al, 2018). In 

particular, when IDHwt tumors harbor either TERT promoter mutation, EGFR 

amplification, or combined +7/-10 chromosome alterations, they are rightfully 

assigned the highest WHO grade, even when histology meets only WHO grade 2 or 

3 criteria (Brat et al, 2018; Tesileanu et al, 2020; Louis et al, 2021). 
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Conversely, mutations in IDH1/2 portends extended patient survival (Yan et al, 

2009). Usually IDH status is initially screened by mutation-specific 

immunohistochemical search for IDH1-R132H, which makes up to >90% of IDH 

mutations in GBMs (Wen et al, 2020). Sequencing analyses to detect other non-

canonical mutations, such as those in IDH2 or non-R132H mutations in IDH1, is 

optional in patients older than 55, since they are very unusual at this age (Wen et al, 

2020). It is also very unlikely to diagnose an IDH-mutant lesion when microthrombi 

or pseudo palisading necrosis are spotted. Remarkably, most IDH-mutant GBMs 

display concurrent loss of ATRX, easily detected at immunohistochemistry (Wen et 

al, 2020). 

Given this difference in clinical behavior as a function of IDH mutation, the new 

2021 CNS WHO classification of brain tumors clustered adult diffuse gliomas into 

IDH-mutant and IDHwt astrocytomas, IDH-mutant and 1p/19q-codeleted 

oligodendrogliomas, and IDHwt GBMs. Therefore, all IDH-mutant diffuse astrocytic 

tumors are considered a single entity graded as CNS WHO grade 2, 3, or 4. 

Additionally, grading no longer relies on pure histology, as the presence of at least 

one of the three aforementioned genetic aberrations or of homozygous deletion of 

CDKN2A/B results in a CNS WHO grade 4 astrocytic tumor, even if microvascular 

proliferation or necrosis are not detected (Louis et al, 2021). 

Consequently, IDHwt GBM are diagnosed in case of a IDHwt diffuse astrocytic 

tumor with microvascular proliferation or necrosis, or TERT promoter mutation, or 

EGFR amplification, or +7/−10 chromosome aberrations (Louis et al, 2021). 

Another important molecular parameter to predict treatment response is the 

status of MGMT promoter. Multiple trials have shown a significant survival advantage 

(an increase of circa 50%) with TMZ treatment in case of MGMT methylation (Hegi 

et al, 2005; Stupp et al, 2005). On the contrary, unmethylated MGMT GBMs derive 

little to no benefit from TMZ (Hegi et al, 2005; Weller, 2018). Perhaps one of the 

most considerable limitations to this prognostic factor is the absence of standardized 

cutoff values for MGMT status, generally set at 8-10% (Butler et al, 2020). However, 

not all studies use the same cutoffs, potentially confounding the clinical correlation 

of MGMT status (Brigliadori et al, 2016; Dunn et al, 2009). Even MGMT protein 

expression cutoffs vary, ranging from 10% to 25%, 30%, or 50% (Butler et al, 2020). 

Furthermore, approximately 10% of patients bear tumors that cannot be definitely 

classified as methylated or unmethylated, but derive a significant advantage from 

TMZ compared to those truly unmethylated (Hegi et al, 2019). This likely confounds 

the clarification between MGMT methylation thresholds and patient outcome 

(Mansouri et al, 2019; Taylor & Schiff, 2015). Therefore, it is vital to standardize 
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relevant cutoffs for diagnostic assays, possibly introducing a third intermediate class 

containing patients with intermediate methylation, who, may still profit from TMZ 

treatment (Butler et al, 2020). 

 

 

3.1.4.1 Histological variants of GBMs 

A few histological variants of GBMs have been described. Gliosarcomas account 

for a small subset of GBMs. They present a biphasic tissue pattern with a sarcomatous 

component mixed with more canonical cells (Dardis et al, 2021). Expression of 

SNAI2, TWIST, MMP2 and MMP9 is characteristic of mesenchymal areas, suggesting 

a more pronounced epithelial to mesenchymal transition (EMT). They typically have 

lower EGFR copy number alteration with respect to GBMs (8% vs up to 50%). 

Canonical genetic and chromosomal alterations detected both in the glial and 

mesenchymal components indicate a common clonal origin. Gliosarcomas are 

described to be more immuno-evasive via PD1/PDL1, which, however, may be 

exploited as therapeutic target (Dardis et al, 2021). 

A second variant is giant cell GBM, which is composed of large cells with 

polymorphic nuclei, eosinophilic cytoplasm, and increased reticular fibers. It accounts 

for 2-5% of all GBMs, primarily affecting the temporal lobes in younger men. There 

is rare endothelium proliferation (Xue et al, 2021). From a molecular point of view, 

giant cell GBMs often harbor TP53 mutations but only rare EGFR amplifications. 
Although with similar clinical presentation, the prognosis of giant cell GBMs is better 

than that of typical GBMs, with >10% experiencing prolonged survival (12.3% 5-

year OS in giant cell GBMs vs 3.4% in typical GBMs) (Xue et al, 2021). This might be 

explained by the fact that giant cell GBMs have clearer, well demarcated boundaries 

compared to usual GBMs, rendering them easier for surgeons to remove. Hence, 

maximal surgical resection followed by adjuvant chemoradiation improves the 

prognosis of these patients (Xue et al, 2021). 
One recently added histologic variant of GBM is the epithelioid GBM. It features 

large cells with abundant cytoplasm, vesicular chromatin, and prominent nucleoli, 

often resembling melanoma or poorly differentiated carcinoma (Louis et al, 2016). It 

generally affects children or young adults and forms superficial or diencephalic 

masses, frequently marked by BRAF V600E mutation. They often lack other canonical 

molecular features (Louis et al, 2016).  

GBMs with primitive neuronal component consists in diffuse astrocytomas of any 

grade (or even oligodendrogliomas) with well-demarcated nodules displaying 

neuronal differentiation (e.g., Homer Wright rosettes, synaptophysin-positive, GFAP-
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negative cells). MYC or MYCN amplification is occasionally reported, and lesions tend 

to disseminate in craniospinal fluid. Around 25% of cases affect people with a prior 

history of lower-grade glioma. Very remarkably, this pattern should suggest the 

clinician to investigate the craniospinal axis in its entirety to exclude tumor seeding 

(Louis et al, 2016). 

Small cell GBM and granular cell GBM are tumor variants, characterized either by 

uniform, small, EGFR-amplified cells reminding of oligodendroglioma, or by granular, 

macrophage-like, lysosome-rich tumor cells. In both cases, the prognosis is 

extremely poor even without other histological stigmata of grade 4 tumors (Louis et 

al, 2016). 

 

 

3.1.4.2 Transcriptional variants of GBMs 

As previously described, GBMs can be clustered into 3 transcriptional subtypes 

expressing peculiar genesets and with diverging theranostic implications (Wang et 

al, 2017; Phillips et al, 2006). Genes typically expressed in neurons (e.g., ASCL1, 

OLIG2) and associated to CpG island methylator phenotype (Noushmehr et al, 2010) 

define the PN subgroup, frequently associated to mutations of TP53. CL GBMs portend 

EGFR alterations, such as amplification or EGFRvIII. Inactivation of CDKN2A, absence 

of TP53 mutations, and alterations in RB pathway are also common (Verhaak et al, 

2010). The MES class is marked by genes such as YKL40, MET, and CD44, besides 

frequent NF1 deletions, anomalies in CDK6, CDKN2A and RB1, and activation of NF-

kB (Wang et al, 2017). 

 

 

3.1.4.3 Immunohistochemical panel for GBM transcriptional affiliation 

Transcriptional signatures are associated with different molecular alterations 

(Verhaak et al, 2010), key signaling pathways (Brennan et al, 2009), and DNA 

methylation (Noushmehr et al, 2010). However, GBM transcriptional classification 

has not yet converted into routine practice primarily because of the absence of 

reliable and cost-effective clinical assays. Further confounding factors include 

analysis on homogenized samples, which cannot discern microenvironmental 

contamination, reaching up to 70% of tumor bulk (Orzan et al, 2020). This is 

especially true for MES tumors, which reach the highest percentage of 

immune/inflammatory component. Likewise, the previously described GBM 

heterogeneity further complicates transcriptional classification, which may not be 
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illustrative of the whole neoplasm. This conundrum may be partially overcome by 

immunohistochemistry (IHC), which allows to discern different compartments within 

the entire sample, scoring the biomarkers only in neoplastic cells and excluding 

stroma and immune components (Orzan et al, 2020). 

Orzan et al. developed a novel algorithm to predict GBM molecular profile by 

combining transcriptional and IHC data that can be easily applied to the routine 

clinical diagnostic practice (http://fisher.med.unibs.it:3838/GBMscore) (Orzan et al, 

2020). The authors validated a simple and reproducible, restricted panel of 8 

subgroup-specific gene classifiers (EGFR for CL, ASCL1, OLIG2, PDGFRA for PN, MET, 

YKL40, pNDRG1 for MES, and TP53). These markers are mutually exclusive or 

inversely correlated, allowing for accurate clustering analysis discerning 

transcriptional subtypes (Orzan et al, 2020). This assay attested high concordance 

with transcriptional analysis. Notably, concordance rates reached 81.3% and 90% 

for CL and MES respectively, while it reached only 69.2% in case of PN tumors. 

Moreover, the authors observed that CL and MES lesions reliably clustered 

separately, as opposed to PN lesions, which often overlapped with other subtypes, 

reflecting a heterogeneous phenotype (Orzan et al, 2020). 

 

 
Figure 3.2. GBM transcriptional affiliation according to IHC panel classification 

and validated by RNAseq analysis. Random Forest performed based on IHC signal clustered 
RNAseq-verified CL and MES subtypes consistently in separate groups, while PN often shared 
overlapping features with other subtypes. CL: Classical, IHC: immunohistochemistry, MES: 
mesenchymal, PN: proneural, RF: random forest. Adapted from (Orzan et al, 2020) 
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3.1.5 Management 

Despite advances in deciphering GBM pathogenesis, prognosis remains poor. With 

gold standard management, consisting of surgery, radiotherapy, and TMZ 

chemotherapy, median OS still attests at 15-18 months (Stupp et al, 2005; Gilbert 

et al, 2014), and 5-year OS hardly reaches 10% (Stupp et al, 2009). Upon 

recurrence, median OS is generally 24-44 weeks (Lamborn et al, 2008; Clarke et al, 

2011). According to recent trends in medicine, treatment should be adapted to the 

patient, based on their performance status and age, even in case of GBMs. 

Additionally, palliative and best supportive care is of utmost importance in many 

patients (Weller et al, 2017). 

 

 

3.1.5.1 Surgery 

Surgery is crucial to obtain the histopathologic and molecular characterization of 

the lesion and may benefit patients also by cytoreduction and alleviating mass effect 
(Youngblood et al, 2021). Surgical management ought to be adapted to individuals, 

balancing risks and benefits, and weighing the effects on prognosis in each single 

case (Wen et al, 2020). 

Current typical surgical aides involve stereotactic navigation, intraoperative 

functional monitoring, intraoperative MRI, ultrasound, and 5-aminolevulinic acid (5-

ALA), which are utilized to increase the extent of resection (EOR) while containing 

the hazard of treatment-induced neurologic deficits (Stummer et al, 2006; De Witt 

Hamer et al, 2012; Gerritsen & Vincent, 2020). In particular, intraoperative brain 

mapping is crucial when eloquent circuitries are affected, as FLAIR-positive, non-

enhancing areas often maintain neurologic function despite tumor infiltration 

(Youngblood et al, 2021). In general, avoiding new persistent deficits is more 

imperative than maximizing the EOR, since surgery is not sufficient for GBM 

eradication and postoperative deficits are negative prognostic factors (Wen et al, 

2020). 

The procedural success is commonly expressed in terms of EOR. As reported in 

the literature, greater EOR is associated with prolonged survival. Accordingly, 

surgeons aim to resect all the tumoral tissue that can be safely separated from critical 

neurovascular structures. Usually, EOR is defined solely on post-contrast T1-

weighted MRI sequences; however, hyperintense T2/FLAIR tumor volume should be 

included into the resection target when feasible to complete the excision. 

Consequently, asportation of the enhancing nodule and additional T2/FLAIR 

abnormalities is the ultimate surgical goal (Wen et al, 2020). Although radical 
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microsurgical resection is unattainable due to GBM capillary invasion along white 

matter tracts (Sahm et al, 2012), maximal excision can be accomplished in many 

cases and only rarely surgeons perform secondary interventions on residues 

(Youngblood et al, 2021). Tumor EOR is assessed at an early postoperative contrast 

enhanced MRI, typically within the first 48 hours following surgery (Wen et al, 2020). 

Gross total resection (GTR) is associated with better outcome in both newly 

diagnosed (Sanai et al, 2011; Grabowski et al, 2014; Stummer et al, 2006; Kreth et 

al, 2013; Marko et al, 2014; Brown et al, 2016) and recurrent GBMs (Ringel et al, 

2016; Suchorska et al, 2016). GTR is defined based on varying cutoffs of volume 

reduction of the initial enhancing nodule, ranging from 90 to 100%. Notably, small 

changes in EOR in the range of 90-100% may bring about clinical differences 

(Karschnia et al, 2021). Beside EOR, also the residual enhancing volume 

independently affects survival (Youngblood et al, 2021). 

Consequently, extensive excisions should represent the primary intent. 

Furthermore, resection of peripheral FLAIR anomalies and even surrounding 

apparently normal tissue may prove beneficial in removing a great deal of infiltrating 

malignant cells (Youngblood et al, 2021). This is corroborated by evidence comparing 

MRI and PET, which exposed significant tumor volumes beyond contrast 

enhancement (Karschnia et al, 2021). Therefore, supratotal resection does have a 

rationale in GBM treatment and has been associated with longer survival. In younger 

patients this approach may even result in comparable survival benefits between IDH-

mutant and IDHwt neoplasms. It also delays malignant transformation of diffuse 

lower-grade gliomas (Youngblood et al, 2021; Rossi et al, 2021). Basically, by 

identifying functional boundaries with the aid of intraoperative neurophysiological 

monitoring, the tumor resection can be safely extended beyond the preoperative MRI 

contours (Youngblood et al, 2021). Li et al. identified 53% of the surrounding 

T2/FLAIR-abnormality as a threshold to attain an additional survival benefit (Li et al, 

2016). In a similar study, Pessina et al. set this threshold to >45% of T2/FLAIR-

abnormality (Pessina et al, 2017). As far as absolute volumes of non-enhancing 

T2/FLAIR residues are concerned, Molinaro et al. identified a limit of 5.4 cm3 under 

which patients had improved outcome compared to those above it (Molinaro et al, 

2020). 

Remarkably, when GTR or supratotal resection cannot be attained, patients may 

still derive survival benefits from near-total resection. This scenario includes those 

patients in which >80% of tumor volume (with <5 cm3 residue) has been resected. 

However, patients who undergo a >95% resection achieve better outcomes than 

those with a <95% resection. Therefore, patients with 95-99% EOR have an 
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intermediate survival curve between patients with 80-94% and those with 100% 

resection (Karschnia et al, 2021). Similar findings were reported concerning contrast 

enhancing tumor residues. As a matter of fact, GBM patients with 0-1 cm3 residue 

had more favorable outcome than patients with 1-5 cm3 or >5 cm3 residual enhancing 

lesion (Incekara et al, 2020). Interestingly, this evidence proved true independent of 

MGMT status. Hence, only patients with 95-99% EOR and 1 cm3 contrast-enhancing 

residue should properly be denoted as near-total resection cases (Karschnia et al, 

2021). 

Subtotal resection appeals to cases where a substantial proportion of the tumor is 

not excised. Most studies reported a minimum of 78-80% EOR to achieve a significant 

survival benefit. Accordingly, subtotal resection should be kept for cases with >80% 

resection of enhancing nodule and <5 cm3 residue, with remaining cases defined as 

partial resections (Karschnia et al, 2021). 

Lastly, whenever microsurgical resection is deemed too risky due to patient’s 

comorbidities and/or the eloquence of the areas involved, the lesion should undergo 

at least needle or open biopsy for histological and molecular diagnosis, by targeting 

the viable, contrast-enhancing areas in solid tumor, and avoiding necrotic areas or 

normal parenchyma (Weller et al, 2017). The most frequently used markers (IDH1/2 

and MGMT status) are consistently represented throughout the tumor, with a low risk 

of false-negatives or misclassification. Still, additional markers may gain clinical 

importance, demanding larger samples for advanced genomic analyses (Wen et al, 

2020). 

The correlation between EOR and survival still represents a debated topic. Due to 

its infiltrative nature, even GTR is a temporary measure for GBM containment. As a 

matter of fact, surgery alone does not eradicate the tumor, which, after GTR, recurs 

after a median of 13 months. Nevertheless, lesion removal portends increasing 

survival with greater EOR, even when correcting for significant covariates 

(Youngblood et al, 2021). First, reduction of the mass effect relieves incapacitating 

neurologic symptoms, such as weakness, nausea, visual changes, headache, and 

seizures, or death following critical parenchymal herniation. However, besides 

parenchymal decompression, GTR seems to exert its action also through 

cytoreduction. In fact, extensive resections alter tumor architecture, inducing 

changes in the microenvironment that can freeze tumor progression. For instance, 

surgery primarily targets nodules containing hypoxic areas, which are associated with 

greater proliferation and behave more aggressively. Therefore, long-term outcome 

is also influenced by the biological profile of the residue, which may differ from that 
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of the initial lesion. Lastly, cytoreduction also helps the effects of radio-chemotherapy 

(Youngblood et al, 2021). 

In conclusion, surgery plays a central role in handling GBMs and constitutes the 

foundation of the gold standard multimodal approach. Surgical goals are set on the 

benefits foreseen for the patients and limited by the preventable postoperative 

deficits. The subtle balance between tumor excision and operative morbidity must 

therefore be carefully pondered (Youngblood et al, 2021). 

 

 

3.1.5.2 Adjuvant treatment 

After maximal safe resection, GBM treatment consists of radiotherapy (RT) with 

concurrent radiosensitizing TMZ (75 mg/m2/day per 6 weeks) and following 

maintenance TMZ (150–200 mg/m2/day per 5 days for six 28-day cycles) (Stupp et 

al, 2005, 2009). Inhibition of DNA repair through MGMT methylation and loss of 

chromosome 10 confer TMZ sensitivity and predict treatment response (Hegi et al, 

2005). Thus, TMZ might be withheld in case of MGMT unmethylated tumors, where 

it confers too limited benefit. In such cases, neither dose-dense TMZ regimens, nor 

prolonging treatment further benefits survival (Wen et al, 2020). 

Standard RT approaches reckon on 60 Gy in 30 fractions. The European 

Organization for Research and Treatment of Cancer (EORTC) advise a single-phase 

treatment (60 Gy, 2 Gy/fraction) whereas the Radiation Therapy Oncology Group 

(RTOG) suggests an initial larger target exceeding the FLAIR abnormality by a 2-cm 

margin (46 Gy, 2 Gy/fraction), with a surplus 14 Gy dose (2 Gy/fraction) to the 

surgical bed and residue. It is paramount to spare structures sensitive to radiations, 

such as optic pathways, brainstem, cervical cord, cochlea, and, when possible, 

temporal lobes and hippocampi (Wen et al, 2020). 

Approximately 10-30% of patients develop a transitory increase in contrast uptake 

at MRI for several months after radiochemotherapy, occasionally coupled with 

symptomatic mass effect (Ellingson et al, 2017; Strauss et al, 2019). Such 

“pseudoprogression” poses quite a few challenges to be discerned from actual 

progressive disease; perfusion MRI (Thust et al, 2018; Gharzeddine et al, 2019) and 

amino acid-PET may aid the differential diagnosis (Albert et al, 2016).  

Studies with adjunct of bevacizumab reported contrasting results, with no survival 

benefits unless stratifying for transcriptional affiliation (Gilbert et al, 2014; Wick et 

al, 2017; Chinot et al, 2014; Sandmann et al, 2015). Nevertheless, bevacizumab is 

helpful in diminishing peritumoral edema and associated symptoms (Friedman et al, 

2009), in elongating PFS and in reducing the needs for corticosteroids. Thus, it has 
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been approved in the US, but not in the EU, for recurrent GBMs (Wick et al, 2017). 

Additionally, bevacizumab is effective in radionecrosis at inferior dosages than those 

used for recurrent GBMs (7.5 mg/kg every 3 weeks for a maximum of 4 treatments) 

(Wen et al, 2020). 

 

 

3.1.5.3 Elderly patients 

GBM typically affects older people, with a median onset at 65 years. Therefore, a 

substantial portion of patients are actual elders (Ostrom et al, 2019a). Treating older 

people may be challenging, as they are more prone to a worse prognosis and 

treatment toxicities (Wick et al, 2018). A very thorough and systematic review of 

GBM treatment in elders has been carried out by Conti Nibali et al., whose main 

points are followingly summarized. As highlighted by the authors, the elderly age 

starts at 65 according to the WHO; however, the National Comprehensive Cancer 

Network moved this threshold to 70 years in GBM patients. Nonetheless, general 

amelioration of life conditions and medical assistance in western countries translated 

into expanding the active lifespan, and present-day 70-year-old people may still have 

a vigorous social and intellectual life. Therefore, physiologic age is more important 

than its chronological counterpart (Conti Nibali et al, 2021). 

As a matter of fact, age does not imply frailty, which, instead, reflects a physical 

status. Frailty consists in an unintentional weight loss, self-reported exhaustion, 

weakness, slow walking speed, and low physical activity. Despite age and frailty not 

being perfectly superimposable, age still remains an independent negative prognostic 

factor (Conti Nibali et al, 2021). 

Just as in younger patients, EOR affects survival in elders as well. People 

undergoing GTR experience a mean gain in OS of 7.05 months, a better functional 

recovery, a longer PFS, and comparable mortality and morbidity to those undergoing 

biopsy (Conti Nibali et al, 2021). 

As for molecular predictors, though methylation physiologically decreases in aging 

cells, this does not hold true for MGMT. On the contrary, VEGF expression increases 

in recurrent GBMs affecting people older than 55. Lastly, contrarily to younger 

subjects, TP53 and CDKN1A/p16 aberrations are prognostically unfavorable in people 

>70 years old (Conti Nibali et al, 2021). 

As for adjuvant therapies, RT extends survival in case of unmethylated MGMT, 

while TMZ yields to better PFS in MGMT methylated patients. Globally, RT (50 Gy, 

1.8 Gy/fraction) prolongs OS and is superior to the best supportive care in elders 

with a Karnofsky Performance Status of 70. Hypofractionated regimens are 
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preferred and have become the standards in elders with unmethylated MGMT (Conti 

Nibali et al, 2021). 

TMZ proves efficacious and is well-tolerated in elders too, with <15% of severe 

side effects. Post-RT TMZ should be administered in case of MGMT methylation. Also, 

depending on the MGMT status, exclusive TMZ represents an opportunity for elders 

with an extremely dismal prognosis and poor functional status (Conti Nibali et al, 

2021). 

 

 

3.1.5.4 Recurrent Glioblastoma 

GBM regularly recurs after a median PFS <7 months (Stupp et al, 2005). Surgery 

may be helpful in symptomatic or large recurrences. However, parallelly to what seen 

with initial lesions, only recurrent patients undergoing new GTR derive survival 

benefit (Suchorska et al, 2016). 

Rechallenge with TMZ could be considered in cases of relapsing MGMT methylated 

tumors. Yet, recurrence must be delayed, as rechallenge can be adopted only after a 

reasonable timelapse since first-line TMZ (Perry et al, 2010; Weller et al, 2015). 

However, there is no conclusive proof that TMZ rechallenge is more effective than 

nitrosoureas, which in turn can be started earlier than TMZ rechallenge (Wen et al, 

2020). 

Nitrosoureas (lomustine, carmustine, and fotemustine) can easily penetrate the 

blood-brain barrier (Brandes et al, 2016a). Lomustine is preferred because it can be 

administered orally and has a preferable administration schedule and better safety. 

Monotherapy lomustine (6-week cycles of 100-130 mg/m2 for up to 6 cycles) is 

associated with median OS of 7.1-8.6 months and PFS of 1.5-3 months (Wick et al, 

2017). Similarly to TMZ, MGMT-methylated GBMs respond better to nitrosoureas 

(Wick et al, 2017; Brandes et al, 2016b; Wen et al, 2020). 

Repeated RT, such as hypofractionated radiotherapy (30-35 Gy in 5-15 fractions) 

or single-boost radiosurgery, is a further option, but no definitive data regarding 

benefit has been reported (Straube et al, 2019; Scoccianti et al, 2018). Other options 

include bevacizumab or, when there is no space for further strategies, palliative care 

(Wen et al, 2020). Preliminary results of a phase II trial in recurrent GBMs showed 

that addition of re-irradiation to bevacizumab improved PFS but not OS (Wen et al, 

2020). 

 

 



 41 

3.1.5.5 Supportive Care 

Corticosteroids, usually in the form of dexamethasone, are administered to reduce 

symptomatic vasogenic edema (Pace et al, 2017). Low-dose dexamethasone (4 

mg/day in 1-2 doses) is efficacious in the majority of patients (Wen et al, 2020). 

Notably, increasing evidence suggests that corticosteroids may affect negatively 

patients’ outcome, so it is advisable to avoid them in asymptomatic patients (Pitter 

et al, 2016). 

Seizures affect 23% of GBM patients at presentation and an additional 20% later 

in the disease course (Chang et al, 2005). Treatment with anti-epileptic drugs (AEDs) 

is recommended only for patients who developed seizures, while there is no evidence 

supporting the prolonged use of AED in primary prophylaxis for those who never 

experienced seizures or in a perioperative setting. Current guidelines recommend 

avoiding long-term AED prophylaxis (Wen et al, 2020). Among AEDs, levetiracetam 

and lacosamide are preferentially utilized due to their fewer side effects compared to 

other molecules, reduced requirements to monitor blood routine, and absence of drug 

interactions (Schiff et al, 2015). Interestingly, emerging data demonstrated the 

establishment of synapses between neurons and glioma cells via alpha-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA-R) receptors. Synaptic 

interactions are exploited by tumor cells to derive proliferation inputs and to drive 

infiltration along white matter fibers. Hence, AEDs inhibiting AMPA-R (e.g., 

perampanel) may have a doubly favorable effect, both for seizure control and for 

potential antitumoral action (Venkatesh et al, 2019; Venkataramani et al, 2019). 

Venous thromboembolism risk is perioperatively high and persists well beyond, 

with 20% incidence at 1 year (Wen et al, 2020). Most studies balancing thrombotic 

and hemorrhagic hazards suggest that the bleeding risk of the lesion under 

anticoagulants is tolerably contained, even in case of concomitant bevacizumab 

treatment (Norden et al, 2012; Wen et al, 2020). In this context, low molecular 

weight heparin (LMWH) is usually adopted, but also direct oral anticoagulants have 

proven safe (Wen et al, 2020). 

 

 

3.1.5.6 Targeted therapies 

Notwithstanding progress in elucidating the pathogenetic mechanisms driving 

GBM, there has not been a parallel advance in discovering efficient targeted therapies 

(Le Rhun et al, 2019). Challenges include the scarcity of drugs effectively crossing 

the blood-brain barrier (Arvanitis et al, 2020), the lack of easy targets, redundant 

signaling pathways, tumor heterogeneity (Neftel et al, 2019; Draaisma et al, 2020), 
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targeting subclonal alterations instead of oncogenic drivers, and development of 

resistance (Wen et al, 2020). 

Some putative treatment-exploitable biomarkers include EGFR aberrations, which 

have been targeted with EGFR inhibitors such as erlotinib, or addressed for 

vaccination with rindopepimut, or for specific drug delivery with depatuxizumab 

mafodotin, still with no significant outcome benefits (Wen et al, 2020). Raf inhibitors 

or combined BRAF/MEK inhibitors proved to be clinically efficacious in targeting BRAF 

V600E mutations. However, these aberrations are rare in GBMs, except for epithelioid 

variant, hence their clinical impact remains limited (Wen et al, 2020). Similarly, other 

druggable mutations, such as TRK fusions, H3K27M mutations, FGFR mutations and 

FGFR3-TACC3 fusions, are all quite sporadic in GBMs, hampering their strategic 

contribute. Microsatellite instability may be addressed with pembrolizumab (Wen et 

al, 2020). 

The mammalian target of rapamycin (mTOR) Ser2448 phosphorylation, as well as 

PTEN loss (Cloughesy et al, 2008), might predict effective response to temsirolimus 

+ RT in unmethylated GBMs (Wick et al, 2016). 

Multiple recent studies identified metabolism as a major element in glioma 

progression. Oncogenes and microenvironmental cues control GBM metabolism to 

endorse survival, replication, and drug resistance (Venneti & Thompson, 2017; Bi et 

al, 2020). Controllers of GBM metabolic activity might provide useful prognostic and 

diagnostic indicators (Bi et al, 2020; Pieri et al, 2022). Moreover, tumor genotype 

and molecular affiliation influence GBM metabolism, inducing weaknesses that could 

be therapeutically exploited (Bi et al, 2020; Garofano et al, 2021; Pieri et al, 2022). 

A classic biochemical adaptation in GBMs is the switch to anaerobic glycolysis, 

regardless of oxygen availability (Bi et al, 2020). In this sense, GBMs relying on 

oxidative phosphorylation provide a unique weakness profile which can be specifically 

addressed (Bi et al, 2020; Garofano et al, 2021). Likewise, cholesterol metabolism 

might be therapeutically interesting for CL tumors, which depend on cholesterol 

uptake and may suffer from reduced cholesterol uptake by liver receptor agonists (Bi 

et al, 2020). Therefore, targeting genes tuning metabolism might open new avenues 

for efficacious treatment. 

 

 

3.1.5.7 Immunotherapies 

Just like for other forms of targeted therapy, no considerable advance has been 

observed for immunotherapy in GBMs (Sampson et al, 2020; Lim et al, 2018). 

Although relieving glioma-associated immunosuppression to allow immune-mediated 
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antitumor response has been sustained by positive preclinical experiments, clinical 

trials involving chemokines, vaccines, or immune checkpoint blockade were 

unsuccessful (Sampson et al, 2020; Lim et al, 2018). 

Sporadic positive results with immune checkpoint blockade in the presence of 

hypermutator phenotype indicate the presence of relevant neoantigens to be 

recognized and attacked (Wen et al, 2020). Notably, hypermutator phenotype is 

observed in circa 10% of relapsing GBMs after TMZ challenge (Wang et al, 2016; 

Draaisma et al, 2020). However, whereas the number of mutations may be 

insufficient to sustain an immune response, their intrinsic immunogenicity and 

clonality could drive a positive reaction to immunotherapy (Keenan et al, 2019). 

GBMs are immunologically cold tumors characterized by scant infiltration of 

effector lymphocytes. Accumulating evidence suggests that microenvironment plays 

a role in affecting treatment response and may allow for selecting patient subsets 

differentially responding to specific regimens (Jackson et al, 2019; Sampson et al, 

2020). Other factors driving intrinsic GBM resistance include a scarcity of neoantigens 

due to low mutational burden (except for lesions presenting the aforementioned 

hypermutator phenotype), and active immune inhibition by soluble 

immunosuppressors such as TGFb, IL10, and prostaglandin E2 (Jackson et al, 2019; 

Sampson et al, 2020; Platten et al, 2019). Thus, GBMs promote adaptive resistance 

by inducing exhaustion of infiltrating T-cells (Woroniecka et al, 2018) and engaging 

suppressive myeloid and regulatory T-cells (Jackson et al, 2019; Lim et al, 2018). In 

addition, medications regularly administered, such as corticosteroids, bring about 

immunosuppressive effects, thus acting against immunotherapies (Wen et al, 2020). 

Myeloid cells are instructed by GBMs to be immunosuppressive (Jackson et al, 

2019). However, therapies with oncolytic viruses can switch macrophages from 

immunosuppressive M2 to proinflammatory M1 phenotype, inducing antigen 

presentation and promoting immune attack against the tumor (Lawler et al, 2017). 

Over the last years, cellular therapies such as dendritic cells and chimeric antigen 

receptor (CAR) T-cells and CAR-transduced NK cells have earned increasing interest. 

Dendritic cells present tumor antigens to effector T cells. Some groups have exploited 

them to induce T, B and NK antitumor response, treating more than 500 gliomas with 

dendritic cells, with an increased survival in 15.6% of cases (Finocchiaro & Pellegatta, 

2014). Remarkably, dendritic cell immunotherapy led to increased frequency and 

IFNg-dependent activation of NK cells, whose levels correlated with prolonged PFS 

and OS. Fittingly, immunosuppressive cytokines showed an inverse correlation with 

patient survival. Mature rather than immature dendritic cells specifically favors 

interactions with NK cells and consequent NK response potentiation (Pellegatta et al, 
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2013). However, an immunosuppressive environment negatively affects NK and T 

cells and impairs dendritic cell action. On the contrary, radio-chemotherapy enhances 

immune response (Finocchiaro & Pellegatta, 2014). 

CAR T-cells bear chimeric receptors which let them bind specific antigens on tumor 

cells with subsequent target killing independently of HLA (Bagley et al, 2018). As a 

matter of fact, normal antigen-specific cytotoxic T cells recognize antigens presented 

by MHC-I. Yet, GBMs frequently harbor alterations in genes associated with the very 

mechanisms of antigen processing and presentation. CAR T-cells have been 

manipulated to bear an artificial protein, binding an antigen-specific extracellular 

fragment to an intracellular signaling domain and a costimulatory molecule. This 

allows to combine the effector T cell functions with the ability of antibodies to 

recognize surface antigens independent of MHC restriction (Finocchiaro & Pellegatta, 

2014). Thus, CAR T-cells bypass many tumor-inherent obstacles and improve T-cell 

specificity and tumoricidal effect. However, shortcomings regarding this strategy 

include the risks of unexpected on-target or off-target effects. Therefore, meticulous 

selection of antigens is essential to design an efficacious and safe treatment. 

Additionally, the costimulatory signals may induce severe cytokine storms 

(Finocchiaro & Pellegatta, 2014). 

 

 

 

3.1.6 Challenges in glioblastoma management 

Despite decades of research, GBMs are still among the most frightening diagnoses, 

with disproportionate mortality. As a matter of fact, even though they represent only 

1.4% of all malignant tumors, they cause up to 2.9% of tumor-related deaths (Wen 

et al, 2020). 

Several challenges must still be tackled. First, their location prompts consideration 

of treatment-related neurologic toxicities (Murphy et al, 2015), which severely affect 

the patients’ quality of life. A second aspect is the blood-brain barrier, which prevents 

the diffusion of large, electrically charged, water-soluble compounds into the CNS. 

Unfortunately, most drugs (especially conjugated antibodies and the new target-

designed molecules) do possess these features and, thus, are not able to cross this 

barrier to a significant degree (Heffron, 2018). Additionally, the presence of 

transporter proteins and active pumps on the blood-brain barrier helps extruding 

drugs from the brain (Heffron, 2018; Arvanitis et al, 2020). Although GBMs have a 

leaky, compromised blood-brain barrier in the central enhancing core, significant 
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tumor regions at the margins have a healthy barrier preventing antitumoral drugs 

from reaching useful concentrations (Sarkaria et al, 2018; Arvanitis et al, 2020). 

A third challenging aspect is the inter- and intratumoral heterogeneity as described 

previously. Distinct regions within the same lesion may contain cells with different 

genetic compositions, transcriptional affiliations, metabolic activity and proliferation 

kinetics (Lan et al, 2017). Preclinical studies suggest that these distinct cell 

subpopulations can have differential responses to TMZ or RT, explaining resistance 

to conventional treatments (Lan et al, 2017; Bao et al, 2006a). 

Lastly, GBMs also present a noteworthy plasticity to elude treatment toxicities. For 

instance, they can elude tyrosine kinase inhibition through regulation of DNA 

accessibility through epigenetic chromatin reconfiguration, new inhibition of tumor 

suppressors or reactivation of oncogenes (Wen et al, 2020). 
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3.2 Magnetic Resonance Imaging (MRI) 

 

 

 

3.2.1 Conventional MRI 

Conventional MRI (cMRI) is the gold standard technique to study GBMs (Wen et 

al, 2020). It assesses both the T2/fluid-attenuated inversion recovery (FLAIR) 

anomalies and the gadolinium uptake on postcontrast T1 images, indicating sites of 

abnormal blood-brain barrier, where contrast agents can leak. 

cMRI provides essential morphologic information about the neoplasm and its 

vasculature, in addition to assessing the disease burden. These sequences are also 

useful in showing the deformation of healthy structures consequent to the presence 

of the lesion. Evaluation of these sequences is usually enough to consistently suggest 

a diagnosis of GBM in most cases (Riva et al, 2021). 

 

 

 

3.2.2 Advanced MRI 

Advanced MRI techniques (aMRI) include diffusion MRI, perfusion-weighted 

imaging, and proton magnetic resonance spectroscopy. They can provide quantitative 

measures of pathophysiologic features of GBMs (Henriksen et al, 2022). 

 

 

3.2.2.1 Diffusion MRI (DWI) 

Diffusion MRI sequences to study GBMs range from standard diffusion-weighted 

imaging (DWI) and apparent diffusion coefficient (ADC) to more complex 

elaborations, such as diffusion tensor imaging (DTI) or microstructural models. 

The basic DWI sequence relies on diffusion of water molecules. Henriksen et al. 

provide a detailed description of the DWI and ADC specifics, which are here 

summarized. Gradient strength and duration are expressed in b-values (s/mm2). The 

b-value is defined as b = 2G22(-/3), where  is the diffusion gradient length,  the 

separation,  the gyromagnetic ratio and G strength (Henriksen et al, 2022). B-values 

for brain imaging are up to 1000 s/mm2 and signal decay may be approximated by a 

normal distribution. Higher b-values correlate with more restricted diffusion 

employed in non-Gaussian, microstructural models (Henriksen et al, 2022). 
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ADC is the most frequently adopted diffusion parameter. By scaling the diffusion 

image with a non-weighted image, quantitative and qualitative maps are obtained 

(Henriksen et al, 2022). Supposing a pure Gaussian water diffusion and a log-linear 

signal decay with increasing b-values, Sb equals S0e-b·ADC. Thus, ADC can be derived 

after acquisition of both a diffusion weighted (Sb) and an unweighted (S0) image 

(Henriksen et al, 2022). To improve sensitivity of Sb, the gradient is set along each 

of the 3 gradient axes; then the images are averaged acquiring four separate volumes 

(the unweighted S0 and 3 Sb) (Henriksen et al, 2022). 

The DWI ADC has been correlated with tumor cellularity, because the motion of 

extracellular water is aberrantly hindered by proliferating neoplastic cells which alter 

the healthy histoarchitecture (Riva et al, 2021). Also, it has been correlated with 

MGMT methylation and patients’ survival (Romano et al, 2013; Moon et al, 2012; 

Sunwoo et al, 2013). In postoperative setting, DWI proves extremely useful in 

highlighting ischemic areas in the periphery of resection cavity (Riva et al, 2021). 

DWI is easily handled by clinicians with good expertise in interpreting images. 

However, it is affected by geometric distortions at the periphery of the image, or due 

to air and hematic byproducts, possibly impairing diagnostic ability in brain areas 

adjacent to bone and surgical cavity (Henriksen et al, 2022). 

 

 

3.2.2.2 Diffusion Tensor Imaging (DTI) 

Diffusion imaging allows a quantitative assessment of microstructural changes in 

the brain. DTI is the most frequently used technique worldwide (Caverzasi et al, 

2016). By sampling the diffusion signal in 6 directions, it allows for creation of a 

tensor, a multi-dimensional vector determining quantitative parameters such as 

mean diffusivity (MD) and diffusion fractional anisotropy (FA) (Basser et al, 1994). 

In particular, FA ranges from 0 to 1 to indicate the degree of asymmetrical diffusion 

in a voxel. Given this, FA maps can reconstruct white matter tracts’ routes and show 

where tumoral invasion destroys their organization (Henriksen et al, 2022). 

However, DTI metrics are not specific in differentiating pathological conditions 

inducing microstructural changes (Caverzasi et al, 2016). Moreover, the ground 

assumption in DTI is that water diffusion is strictly Gaussian (Niendorf et al, 1996), 

which holds true in a singular, homogeneous environment, but rarely stands in highly 

organized human tissue (Henriksen et al, 2022). Thus, the tensor model is 

increasingly proving to be flawed for modeling biological systems (Caverzasi et al, 

2016). Nevertheless, DTI-derived maps successfully predicted GBM recurrence (Price 

et al, 2007). 
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Several software exist that utilize both deterministic and probabilistic algorithms 

and allow for fiber track reconstructions based on DTI data (Price et al, 2006). 

Notably, newer models based on high angular resolution DWI (HARDI) have recently 

been elaborated to increase tractography reliability (Riva et al, 2021; Sarkaria et al, 

2018). 

 

 

3.2.2.3 Neurite Orientation Dispersion and Density Imaging (NODDI) 

Recently, an advanced, open source diffusion MRI model called NODDI (neurite 

orientation dispersion and density imaging) has allowed to outdo DTI limitations, still 

being compatible with routine clinical activity (Zhang et al, 2012). 

NODDI quantitatively subdivides the total voxel diffusion into 3 distinct 

compartments. These partitions are characterized by isotropic, anisotropic Gaussian, 

and anisotropic non-Gaussian diffusion, which respectively approximate 

cerebrospinal-fluid-like, extraneurite and intraneurite compartments (Zhang et al, 

2012). 

The signal elaboration consists of two main steps: first, discerning the isotropic 

diffusion (fiso) component from the total diffusion signal and subsequently identifying 

the intraneurite fraction (ficv) component from the residual anisotropic diffusion. The 

remainder represents the extraneurite component (fecv). Also, the computation 

returns the coherence of fiber direction through the orientation dispersion index (odi) 

(Zhang et al, 2012). 

In a fundamental work by Caverzasi et al., the authors elaborated a color map to 

visualize the actual variety of lesions looking homogeneous on cMRI in a single map 

that summarizes the compartmentalization of diffusion signals. As a matter of fact, 

the NODDI color map allows to identify vasogenic edema, characterized by a stark 

fiso signal (blue), from tumor-infiltrated edema, depicted by a strong fecv signal 

(red). On the other hand, hindered diffusion, for instance due to acute ischemia, 

shows increased ficv signal (green) (Caverzasi et al, 2016). 
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Figure 3.3. NODDI algorithm. A, diagram of isolation of single diffusion components per 

voxel. B, elaboration of NODDI color map for different brain lesions (red for fecv, green for 
ficv, blue for fiso). Post-contrast T1 sequences for each lesion are paired with corresponding 
NODDI color maps. Perinodular edema, which looks alike in high-grade glioma, B-cell 
lymphoma, and metastasis, appears different at NODDI elaboration, with higher fiso signal for 
the latter two (suggesting higher vasogenic edema) and higher fecv signal for high-grade 
glioma, suggesting more of an infiltrative nature of the edema. fecv/VEC: extra-neurite 
component of diffusion, ficv/VIC: intra-neurite component of diffusion, fiso/VISO: isotropic 
component of diffusion. Adapted from (Caverzasi et al, 2016) 
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3.2.2.4 Perfusion MRI (PWI) 

PWI measures changes associated with tumoral neoangiogenesis. The dynamic 

susceptibility contrast (DSC)-derived relative cerebral blood volume (rCBV) is the 

most reliable feature. It reliably correlates with changes like increased microvessel 

density. Dynamic contrast-enhancement (DCE) is an additional PWI acquisition 

describing intravascular volume, microvessel permeability, and extravascular-

extracellular space. It provides a multiparametric measure of microvascular texture. 

Remarkably, perfusion has been proven to correlate with fundamental molecular 

features, such as EGFRvIII positivity. Moreover, at follow-up, PWI accurately 

separate true viable tumor remnants from treatment-induced changes, with 

sensitivities and specificities of 90% and 88% for DSC, and 89% and 85% for DCE 

(Riva et al, 2021). Thus, it represents a valuable tool in the differential diagnosis 

between radionecrosis and GBM relapse. 

 

 

3.2.2.5 MR Spectroscopy (MRS) 

Hydrogen-MRS supplements MRI-derived anatomic and physiologic information by 

providing metabolite peaks that differ across pathologies. Besides more common, 

generic peaks (i.e., N-acetyl aspartate, choline), MRS also detects accumulation of 

2-hydroxyglutarate (2HG), which is the hallmark of IDH-mutant gliomas. Though still 

technically difficult to implement, MRS based detection of 2HG peak showed 

outstanding performance, with sensitivity and specificity of 95% and 91%, 

respectively (Riva et al, 2021). Further pivotal implementations of 1- and 2-

dimensional MRS sequences might be utilized to detect molecular subgroup-restricted 

metabolites identified by joint metabolomic and transcriptomic analyses. 

 

 

 

3.2.3 Glioblastoma Imaging 

Often GBMs are first investigated through CT imaging under emergency settings, 

due to new-onset neurological symptoms. General appearance at basal CT consists 

in a hypodense mass delimited by a rim which variably show iso- or hyperdense 

signal. It may present stigmata of fresh or dated hemorrhage, while calcifications 

seldom appear and suggest more of an oligodendrocytic diagnosis. Mass effect is 

quite common and is explained by a conjunct effect of the nodule itself and significant 

peritumoral edema. Upon contrast administration, strong, heterogeneous, 
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sometimes irregular ring enhancement is demonstrated. Hypertrophic vessels might 

be detected as linear enhancing streams in the proximity of the main mass (Osborn 

et al, 2017). 

Diagnostic work-up is then completed with contrast-enhanced MRI, showing most 

frequently a poorly marginated mass with mixed signal intensity on basal T1 

sequences, encased by a thick ring enhancement, which encloses a necrotic core. 

Sometimes further minute nodular or patchy enhancing foci are observed in the 

proximity of the main mass, signifying development of additional macroscopic tumor 

nodules into adjacent structures. T2/FLAIR sequences show heterogeneous 

hyperintensity characterized by faint margins and broad vasogenic edema. Other 

usual findings consist of necrotic or fluid-filled collections, with fluid/debris levels, 

hemorrhage at various evolutionary stages, and flow voids in case of deranged, 

extensive neoangiogenesis. Rarely, a proper dominant lesion cannot be detected, and 

the tumor extensively infiltrates through the white matter fibers (Osborn et al, 2017). 

Occasionally liquoral metastasization is demonstrated, with enhancing foci painting 

sulci and cisterns and adhering to cranial nerves, generating a picture strongly 

resembling that of pyogenic meningitis. Parallelly, when ependymal or subependymal 

spread takes place, a picture reminiscent of pyogenic ventriculitis is demonstrated at 

MRI (Osborn et al, 2017). 

As a rule, GBMs do not cause signal restriction on DWI sequences. At DTI, FA may 

be reduced in favor of a more isotropic, disorganized architecture due to disrupted 

white matter tracts directionality by tumor invasion. ADC inversely correlates with 

tumor cell density and shows an intermediate signal between lower-grade gliomas 

and lymphomas, suggesting progressively increasing local cellularity from lower-

grade to higher-grade gliomas, to lymphoproliferative disease (Wen et al, 2020; 

Hayashida et al, 2006; Lu et al, 2019; Higano et al, 2006). 

Microvascular proliferation due to neoangiogenesis and cooptation and 

hypertrophy of existing blood vessels is a hallmark of GBMs. Therefore, PWI-rCBV 

has been proposed to aid in differentiating GBMs from other tumor types and grades. 

As a matter of fact, measures of vessel density and permeability show increased 

values in GBMs (Wen et al, 2020; Kickingereder et al, 2014; Lee et al, 2018a; Suh 

et al, 2019; Law et al, 2004). MRS typically shows significantly higher choline peak 

due to augmented cell turnover, lower N-acetyl aspartate due to neuronal loss, and 

a lipid/lactate peak. These findings are sensitive but not specific, as analogous 

alterations can be detected in the setting of other tumors or inflammatory diseases 

(Wen et al, 2020; Gharzeddine et al, 2019). 
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Different from GBMs, gliosarcomas tend to appear as peripheral, heterogeneously 

enhancing solid masses, usually inducing marked vesogenic edema. Frequently they 

impinge the meninges but lack dural attachment or invasion. In case of deep-seated 

gliosarcomas, the radiologic findings are perfectly superimposable to those seen in 

other GBMs (Osborn et al, 2017). 

The main differential diagnoses of GBMs are with IDH-mutant WHO grade 3 and 4 

astrocytomas. These astrocytomas affect predominantly the frontal lobes and have 

significant representations of non-enhancing areas, generally lacking the classic 

enhancing rim around the necrotic core, though exceptions are common. MRS may 

reveal the scar of IDH1/2 mutation, i.e., a significant accumulation of 2HG, signaled 

by peak at 2.25 ppm (Osborn et al, 2017). Other major neoplasms in differential 

diagnosis are metastases. They are more frequently multiple and locate at the 

interface between gray and white matter. They can reach very large dimensions but 

usually maintain a more regular, round shape and do not infiltrate like GBMs. Notably, 

they cause extensive reactive edema, sometimes even more pronounced than what 

seen in GBMs. Finally, primary CNS lymphoma usually affects the corpus callosum 

and strongly enhances, often in a homogeneous manner as necrosis is seldom 

observed unless in HIV/AIDS patients (Osborn et al, 2017). 

The principal non-tumoral lesion to differentiate from GBM is abscess. Abscesses 

classically present thinner, regular circumferential borders. The main aid in 

differentiating them from GBMs are DWI and MRS. In fact, infective collections 

restrict on DWI and display succinate and cytosolic amino acids peaks, which are 

uncommon in GBMs, and lack other typical peaks of glial tumors (Osborn et al, 2017). 

 

 

 

3.2.4 Radiomics 

In addition to qualitative assessment by neuroradiologists, MRI also provide a lot 

of quantitative information, which escape simple visual inspection and cannot be 

grasped by single measure assessment (Gillies et al, 2016). Advances in 

computational informatic techniques eased the extraction and elaboration of 

quantitative information on the texture and morphology of a given tumor. These 

factors led to the recent development of radiomics, an emerging neuroimaging 

branch that relies on identification of hand-crafted features from clinical images that 

are too complex for human eyes to be discerned (Chaddad et al, 2019; Lambin et al, 

2017). Such radiomic features describe pixel-wise the image region containing GBMs 

and provide information regarding shape, regular or irregular tumor edges (Ismail et 
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al, 2018), intratumoral heterogeneity through gray levels (Prasanna et al, 2017; 

Rathore et al, 2018), as well as tumor-induced deformation of the surrounding 

normal brain structures (Beig et al, 2020). In neurooncology, radiomics has been 

recently applied as an emerging, non-invasive prognostic and predictive tool, also to 

distinguish treatment effects from tumor recurrence (Zhou et al, 2018; Kickingereder 

et al, 2019; Beig et al, 2020). 

As a further subclass of radiomics, radiogenomics focuses on the relationships 

between radiomic phenotypes and gene expression and mutations, or other 

molecular profiles (Aftab et al, 2022; Verduin et al, 2018; Liu et al, 2021), without 

affecting the clinical workflow (Beig et al, 2020). It has already been reported in the 

literature to estimate GBM subgroup, mutation status and heterogeneity, and to 

predict progression, survival and response to targeted therapies (Verduin et al, 2018; 

Chaddad et al, 2019). Notably, by sampling the entire tumor image, radiogenomics 

offers more information as opposed to surgical biopsy which can offer only a limited 

view of spatial tumor heterogeneity (Chaddad et al, 2019), especially for recurrent 

GBMs (Aftab et al, 2022; Xi et al, 2018; Louis et al, 2016; Park et al, 2018). 

Just as for other -omics analyses, radiogenomic studies are either exploratory or 

hypothesis driven. In the former, different features are tested against several 

genomic alterations to blindly scavenge significant associations. On the contrary, 

hypothesis-driven studies explore the relevant radiophenotypes that best fit an a-

priori defined genetic alteration. Up to now, most studies have been designed to 

profile gene expression characterizing tumors discernible by radiomic features, thus 

being exploratory in their nature (Fathi Kazerooni et al, 2020). 

The radiogenomic pipeline typically includes the following steps: 1. image 

acquisition and pre-processing (i.e., image registration, noise reduction, MRI field 

intensity/orientation normalization and corrections, and spatial resampling); 2. 

manual or semiautomatic segmentation of region of interest (ROI); 3. feature 

extraction; 4. feature selection through supervised or unsupervised methods, to 

avoid redundancy and overfitting; 5. model building and evaluation. Usually, a 

training dataset is used to learn the classifier parameters and a validation dataset is 

used to tune them. After training and validation, the final model should be tested on 

an unrelated, independent test dataset to evaluate the performance and show its 

value for clinical promotion and application (Fathi Kazerooni et al, 2020; Liu et al, 

2021). 

Preprocessing is a key step to correct for patient movement and image variations 

across different MRI machineries. The ROI is then segmented. Usually, T2/FLAIR 

scans are used to define edema and infiltrative volume, while postcontrast T1 
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sequences are adopted for necrosis and enhancing volumes (Beig et al, 2020). The 

3 segmented tumor compartments are then superimposed and coregistered to other 

acquisitions, from which radiomic features pertaining only to the tumor 

subcompartments can be extracted. Further preprocessing includes skull stripping 

and signal intensity standardization and are used to homogenize magnetic field 

strengths and slice depths, making the studies comparable across machineries. (Beig 

et al, 2020) 

Quantitative features extracted from ROIs are grouped into semantic, shape, 

texture/gradient-based, deformation, and wavelet features (Beig et al, 2020). 

Semantic features describe GBM visual phenotype. They include lesion location, 

morphology, major and minor axis lengths, margins, and lesion vicinity. These 

features are known as Visually AcceSAble Rembrandt Images (VASARI) (Beig et al, 

2020). The literature reports studies proving that GBM patients’ OS is significantly 

correlated with VASARI features, providing further insight into prognosis in addition 

to clinical variables (Gutman et al, 2013). Also, several radiogenomic studies have 

demonstrated a correlation between GBM genetic landscape and the VASARI features 

(Colen et al, 2014; Jamshidi et al, 2014; Diehn et al, 2008). 

Shape features describe qualities, such as irregular tumor infiltration, which affects 

tumor surface and its relationship with surrounding areas. A greater surface/volume 

ratio denotes a more spiculated tumor, potentially more malignant than a round mass 

with a smaller ratio. Shape features are divided into local and global. Local features 

include curvature and its sharpness, as well as shape (Beig et al, 2020). Global 

features comprise major and minor axes, and the ratio between them. Several 

studies demonstrated shape-based features efficacy in predicting OS in GBMs 

(Rathore et al, 2018; Chaddad et al, 2016; Henker et al, 2017; Sanghani et al, 2019; 

Czarnek et al, 2017). For instance, highly irregular enhancement heralds a lower OS 

(Gevaert et al, 2014).  

The most common texture/gradient-based features include gray-level co-

occurrence matrix (GLCM), capturing the variations in gray levels via second-order 

intensity statistics (e.g., entropy, angular second moment, contrast, and differential 

entropy); gray-level run length matrix (GLRLM), analyzing pixel runs instead of pairs 

of pixels; laws features, defining texture parameters (e.g., spot, edge, ripple, and 

level surfaces), and co-occurrence of local anisotropic gradient orientations 

(CoLlAGe), capturing confined anisotropic disparities within a restricted area. These 

features proved to predict survival in neurooncology (Prasanna et al, 2017; Beig et 

al, 2018; Kickingereder et al, 2016; Bae et al, 2018; Beig et al, 2020). 
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Deformation-based features quantify brain parenchyma deformation due to the 

presence of tumor. MRI scans are non-rigidly registered to equivalent healthy 

imaging atlases. Then, forward and inverse mappings allow to compute a deformation 

field and the deformation measurements are used for radiomic analysis. The 

literature reports how high deformation affecting language, visual, cognitive, and 

motor-control areas, particularly in the memory areas, are associated with decreased 

OS (Beig et al, 2020). 

Wavelet-based features use different wavelengths, amplitudes, and frequencies to 

describe the lesion texture. Highly negative skewness of such features portends a 

meaningful increase in median OS in GBM patients (Tixier et al, 2019). 

Since there is a plethora of radiomic features, computational costs of predictive 

models including even just a major part of them would be unjustifiable high. 

Therefore, to build classifier models, the radiomic features need to be selected to 

include only the most discriminative ones. Feature selection can be carried out either 

by univariate or multivariate statistics. Univariate methods (filter methods) depend 

solely on feature associations to the outcome of interest, ignoring feature redundancy 

in explaining overlapping pieces of information, while multivariate methods (wrapper 

methods) examine codependency of different features, accounting for association to 

outcome and redundancy. Among the filter methods, the most frequently used are 

Fisher, Chi-squared, and Wilcoxon tests. Wrapper methods include forward or 

backward feature selection, exhaustive greedy algorithms, or bidirectional search. 

However, wrapper models are computationally expensive and therefore less 

frequently used than filter methods (Beig et al, 2020; Lohmann et al, 2021). 

Prediction models are divided into supervised and unsupervised approaches. The 

former use a-priori defined sets of labels to select features best fitting the outcome 

to be predicted. Then, the model is built on the selected features and their thresholds 

tuned on training/validation sets. On the contrary, unsupervised approaches, such as 

clustering, are utilized when labels are unknown. Labels are defined solely on the 

Euclidean, Manhattan, Minkowski, Hamming, or Cosine distances between samples’ 

features and the so-obtained classification is correlated to molecular or clinical 

outcomes. Many classifiers have been adopted to model prediction algorithms, like 

random forest, support vector machines, or generalized linear models (Ismail et al, 

2018; Beig et al, 2018; Lohmann et al, 2021). 
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Figure 3.4. Radiomic and radiogenomic pipeline. Conventional or advanced MR image 
datasets are acquired and coregistered, then signal from parenchyma is stripped from skull 
signal and standardized. Radiomic feature are extracted and utilized to correlate with clinical 
or survival data in a pure radiomic approach, or with genomic/transcriptomic data in a 
radiogenomic approach. From (Beig et al, 2020) 
 

 

 
 
 
 
 
 
 
 
 
 



 57 

3.3 Glioma Stem Cells (GSCs) 

 

As extensively reported in the literature, tumors are not uniform masses of 

identical cells; rather, they are complex networks including various cellular 

populations and supportive stroma (Gimple et al, 2019). Many cancers rely on 

developmental and differentiation programs typical of normal tissue stem cells. Often 

neoplastic cells show a hierarchical organization in many neoplasms (Shibue & 

Weinberg, 2017; Suvà & Tirosh, 2020). In fact, according to the hierarchical cancer 

stem cell hypothesis, tumors behave like normal healthy tissues, where aberrantly 

differentiated cell subpopulations are dynamically regulated and derive from rare 

stem-like cells. These cancer stem cells show self-renewing capacity, tumor-

propagating potential, and share markers of stemness (Gimple et al, 2019). As such, 

cancer stem cells (CSCs) are a small, apical population from which terminally 

differentiated cells arise to make up the bulk of the neoplasia (Kreso & Dick, 2014). 

On the other hand, according to the stochastic model, tumor cells are in fact 

heterogeneous but virtually all of them can function as tumor-initiating cells in the 

proper setting (Vescovi et al, 2006). Notably, different cancers can behave 

differently, and this last model appears to best fit the gliomagenesis process, where 

each GBM cell can dynamically assume a stem cell profile. Anyhow, independent of 

the model, these cells, with the ability to regenerate the functional diversity present 

within the original tumor, have been identified in many neoplasms and labelled CSCs.  

 

 
Figure 3.5. Stochastic and hierarchical model for cancer stem cells. A, the stochastic 

model suggests that cancer cells are heterogeneous, but all of them may act as a tumor-
founding cell, although only rarely. B, the hierarchical model implies that only a small 
subpopulation of cancer stem cells extensively proliferates and sustain tumor growth and 
progression in the long run. Adapted from (Vescovi et al, 2006) 
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The initial steps of CSC theory date back to early functional studies demonstrating 

that injection of a single leukemic cell into rodents would regenerate the whole tumor. 

This theory was later corroborated by demonstration that a subset of leukemic cells 

could home to the bone marrow in lab rodents, where they started to proliferate and 

differentiate to recapitulate the initial tumoral phenotype (Gimple et al, 2019). Most 

notably, CSCs showed higher resistance to anticancer treatments than their more 

differentiated progeny, coherently implicating them in recurrences (Bao et al, 2006a; 

Chen et al, 2012). Also, the literature reports that transcriptional signatures of CSCs 

predict overall outcome, supporting their clinical relevance (Shibue & Weinberg, 

2017; Suvà & Tirosh, 2020). 

Following precursor studies in hematologic malignancies, a hunt for CSCs took 

place in other neoplasms, including brain cancer (Hemmati et al, 2003; Singh et al, 

2004). Consequently, glioma stem cells (GSCs) were detected in IDHwt GBMs 

through expression of surface proteins such as CD133, CD44, SSEA1, L1CAM, CD49f, 

A2B5, PDGFRA, and EGFR (Anido et al, 2010; Lathia et al, 2010; Piccirillo et al, 2006; 

Singh et al, 2004; Son et al, 2009; Gimple et al, 2019; Mazzoleni et al, 2010). Like 

for other CSCs, GSCs have been described to long-term persist through self-renewal 

and to give rise to full blown tumors in animal recipients (Gimple et al, 2019; Lathia 

et al, 2015; Singh et al, 2004; Lee et al, 2006). Evidence in the literature supports 

their role in radioresistance (Bao et al, 2006a), chemoresistance (Liu et al, 2006; 

Chen et al, 2012), angiogenesis (Bao et al, 2006b; Cheng et al, 2013), local invasion 

of white matter tracts (Wakimoto et al, 2009), and recurrence (Chen et al, 2012). In 

addition, GSCs have been reported to differentiate, generally aberrantly, into multiple 

cellular lineages of the central nervous system (Suvà & Tirosh, 2020). 

As discussed previously, GBMs consist of four states: 3 related to 

neurodevelopmental processes (NPC-like, OPC-like, and AC-like), and a fourth 

mesenchymal (MES-like) totally disconnected from neurodevelopment. These states 

are differently enriched in diverse GSC subpopulations (Neftel et al, 2019). 

Interestingly, most GSC surface markers are significantly associated with one of the 

aforementioned states, though not exclusively. As a matter of fact, CD24 is highest 

in NPC-like cells, CD133 in OPC-like cells, EGFR in AC-like cells, and CD44 in MES-

like cells (Suvà & Tirosh, 2020). 

Multiplicity of GSC subpopulations also explains GBM state plasticity. In fact, upon 

transplantation in animal models, cells with a specific profile do not generate 

xenocopies of only that very state, but re-establish the entire spectrum of cellular 

states spotted in the original lesion (Neftel et al, 2019; Mazzoleni et al, 2010). Thus, 

GSCs can switch from state to state, as pointed out by lineage-tracing experiments 
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(Neftel et al, 2019). Given this, the cellular states highest represented in a single 

tumor define the predominant signal detected at bulk RNA Sequencing. This in turn 

determines the main transcriptional affiliation of the GBM, being it PN, CL or MES 

(Suvà & Tirosh, 2020). 

It must be noted that it is not yet proven whether GSCs are the actual GBM cells 

of origin, arising through mutations in normal neural stem cells. In fact, there is still 

much debate in the literature, with only a few reports suggesting that GBMs actually 

derive from normal stem cells populating the subventricular zone (SVZ) or 

subgranular zone. The SVZ raised particular attention due to the similarities between 

GSCs and neural stem cells normally residing in the vicinity of cerebral ventricles 

(Lee et al, 2018b). Transcriptional profile of immature outer SVZ radial glial cells 

outstandingly overlaps with that of GBM cells, suggesting them as possible early 

glioma precursors (Pollen et al, 2015; Lee et al, 2018b). Also, studies demonstrated 

the presence of GBM cells in normal SVZ, by detecting 5-ALA positive cells in its 

context (Piccirillo et al, 2015). Experimental evidence proved that induction of mutant 

IDH1 in adult murine SVZ causes hyperproliferation of progenitor cells and formation 

of aberrant nodules, as if recapitulating initial stages of gliomagenesis (Bardella et 

al, 2016). Additionally, knock-out of NF1, TP53, and PTEN in murine healthy 

precursors generated GBM-like lesions in vivo. Most notably, mutations in PTEN are 

able to transform neural stem cells into neoplastic counterparts but are not effective 

in doing the same in mesenchymal stem cells (Duan et al, 2015). Therefore, different 

neural progenitors harbor diverging molecular profiles which poise specific 

populations for tumorigenesis, and generate tumors with distinct properties (Gimple 

et al, 2019). 

Exomic and transcriptional studies on GBMs and their matched normal SVZ showed 

common mutations in the tumor and SVZ in about 50% of cases. Still, most genetic 

and copy number aberrations were restricted to tumors. Clones from SVZ with shared 

mutations lacked the tumor-private aberrations (Gimple et al, 2019). This may 

suggest an initial event in a progenitor cell of SVZ or subgranular zone and 

subsequent development of full-blown GBM in distant regions after initiated cells 

migration. However, initiation of GBM from a differentiated cell and possible 

subsequent migration toward the SVZ due to a particular tropism after reacquisition 

of stem-like properties cannot be excluded. 

Remarkably, recent in vitro and in vivo data showed that CD133-high cells display 

increased migratory and invasive potential when compared with matched CD133-

low/negative cells. Coherently, infiltrating cells at the tumor margins express other 

stem cell markers such as L1CAM, nucleostemin, and nestin. Taken together, these 
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findings hint at a possible role for GSCs in GBM invasiveness (Ortensi et al, 2013). 

Therefore, both the tumor margins and the core lesion may contain GSCs that are 

characterized by different markers and tumorigenic potential, are enriched in 

different cellular states, and may deploy diverging molecular and metabolic 

programs. In light of this, the invasive edge could represent a new niche where GSCs 

switch from a stationary, proliferative phenotype to a migratory one (Ortensi et al, 

2013). 

 

 

 

3.3.1 Neurosphere Assay 

One of the most commonly used technique to isolate and enrich GSCs in vitro is 

based on the assay used to isolate normal neural stem cells. The neurosphere assay 

(NSA) relies on self-renewal ability to select and enrich GSCs by growing them in  

nonadherent conditions, while progressively diluting and eliminating transiently 

amplifying progenitors and differentiated cells (Gimple et al, 2019). 

Several studies applied this technique to GBM samples (Galli et al, 2004; Singh et 

al, 2003; Hemmati et al, 2003). In the work by Galli et al., the authors applied NSA 

to a variety of human brain tumors, ranging from lower-grade gliomas to GBMs and 

medulloblastomas. After dissociation, cells were plated at clonal low-density in 

serum-free medium and exposed to mitogens, providing a stringent environment 

which specifically enriched for stem cells to proliferate exponentially (Galli et al, 

2004). Spheroids reminiscent of healthy neurospheres were isolated from all GBMs 

with a clonal frequency of 0.5-31% of the total cells. Conversely, no clonal spheres 

was established from either grade 1 or grade 2 gliomas (Galli et al, 2004). 

A fundamental aspect regarding NSA is that it fails in the short term to specifically 

enrich for proper stem cells. In fact, clone generation from disaggregated primary 

cancers provides only a surrogate index of their clonogenicity. However, even 

transiently amplifying precursors may yield neurospheres that are propagated for a 

limited number of passages. Therefore, only long-term propagation of primary 

cultures under NSA conditions safely detects and enrich for proper stem cells. Also, 

spheroids mimicking neurospheres may result from cell aggregation following 

excessive density. Besides the evidence of long-term proliferation, to further confirm 

the identity of these cultures as true GSCs, the authors assessed their capacity of 

self-renewal, multipotency and tumorigenicity (Galli et al, 2004). 

Specifically, cultured lines were expanded well beyond 80 passages, even though 

they could be considered soundly established at earlier passages, with a mean 
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doubling time of 3-4 days. Like normal human fetal neural stem cells and glioma cell 

lines (GCLs), expansion of these lines followed an exponential kinetics. Notably, their 

proliferative activity increased at increasing culturing stages, suggesting a 

progressive enrichment in cells endowed with aberrant proliferative advantage, or 

their adaptation to culture conditions (Galli et al, 2004). 

 

 

 
Figure 3.6. Neurosphere Assay (NSA) to isolate glioma stem cells (GSCs). The 

neurosphere assay is a serum-free culture system for isolation and propagation of neural stem 
cells or GSCs. Tumor cells are dissociated and plated in the presence of mitogens (EGF and 
bFGF2). In the absence of serum and at low density, most cells die, except those dividing 
because of mitogen stimuli. These cells proliferate to form clusters named neurospheres. 
Neurospheres can be subsequently dissociated and re-plated to generate daughter 
neurospheres, resulting in geometric expansion. Following mitogen removal, cells can 
differentiate into glial or neuronal cells, or aberrant hybrids. Under these conditions GSCs can 
be expanded indefinitely. From (Vescovi et al, 2006) 

 

 

 

 

To determine the differentiative ability of GBM-derived cell lines, they were 

terminally differentiated upon mitogen withdrawal. Like normal neural stem cells, 

these clonal lines differentiated either into astrocytic progeny (as indicated by GFAP-

positivity) or into neuron-like cells, expressing beta-tubulin, MAP5, MAP2, NF20, 

glutamate, and GABA, or even into GalC-immunoreactive oligodendrocyte-like cells. 

Multipotency was observed throughout culturing stages, from early to late passages. 

Notably, upon differentiation of the cultures, a few cells colabeled promiscuously with 
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neuronal and glial markers, indicating aberrant differentiation, typical of tumor and 

not of normal stem cells (Galli et al, 2004). 

Subcloning experiments assessed self-renewal capacity: as a matter of fact, all 

the lines generated multiple secondary clones. Notably, lines growing slower had a 

significantly lower frequency of symmetric divisions than those growing faster, 

suggesting a constitutional difference in the self-renewal capacity (Galli et al, 2004). 

Lastly, upon transplantation into immunosuppressed animal recipients, all the 

established lines generated tumors, with a take efficiency ranging from 50% for 

subcutaneous to up to 100% for orthotopic injections. Remarkably, orthotopic models 

showed high proliferation and marked infiltration, distinctive of human glial lesions. 

All these features were also confirmed after serial orthotopic transplantations (Galli 

et al, 2004). 

In a comparison between the GSC propagation in vitro through NSA and in vivo 

through serial direct patient-derived xenografts, Richichi et al. demonstrated that 

86% of the specimens was tumorigenic in vivo, and 54% also generated 

neurospheres under NSA conditions, while the remaining 46% did not. Thus, the lack 

of neurosphere generation under NSA does not necessarily imply a tumorigenic 

inability. By transplanting cells in a limiting dilution setting, the same group 

demonstrated that GSCs are rare and show highly variable frequencies between 

patients (Richichi et al, 2016). However, GSC content was 10-fold higher in NSA-

propagated neurospheres than in freshly dissociated GBMs (Richichi et al, 2016). 

Nonetheless, GSCs obtained from either setting demonstrated the same tumorigenic 

potential at in vivo limiting dilution assay. Interestingly, when stratifying xenografts 

according to their GSC content, fewer was the amount of intracerebrally engrafted 

GSCs, greater was the mice survival, a finding that showed a parallel trend, though 

not significant, for PFS and GSC quantification in human lesions (Richichi et al, 2016). 

Therefore, NSA has the advantage to high throughput functionally identify bona 

fide GSCs and make available long-term expanding GSC lines. However, caveats 

regarding this method include the inability to identify quiescent stem populations, 

and model cell-microenvironment interactions. Also, relying on unphysiological 

conditions, it induces a progressive loss of tumor heterogeneity since the very initial 

steps of thriving cell selection. Moreover, it fails to determine tumor formation 

capacity, even though such limitation can be overcome with in vivo 

xenotransplantation assays (Lee et al, 2006; Wan et al, 2010; Pastrana et al, 2011). 

Leveraging all these findings, NSA stands as a valid method to isolate cell lines 

from human GBMs that properly satisfy all of the criteria deemed necessary to define 

GSCs (Galli et al, 2004). As a consequence, subsequent works from our group relied 
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on NSA to generate a collection of GSC lines utilized to better discern GBM 

pathophysiology and identify subgroup-specific theranostic candidates for the disease 

(Mazzoleni et al, 2010; Narayanan et al, 2019; Gagliardi et al, 2020; Pieri et al, 

2022). 

 

 

 

3.3.2 Culture media and supplements 

As reported in the literature, GSCs isolated by means of NSA more faithfully 

replicate GBM phenotype than serum-cultured GCLs (Lee et al, 2006). However, a 

plethora of culturing media exists, possibly leading to discrepancies in the results 

between laboratories, as the lack of standardized media may affect experimental 

outputs (Zhang et al, 2020). 

In serum-free media serum is replaced by selected hormones, promoting growth. 

In particular, the medium-hormone mix recipe is one of the most widely used. It 

consists of basal medium added with hormones and salts. The basal medium 

comprises Dulbecco’s modified Eagle’s medium (DMEM) and Ham’s F-12-based 

medium in equal parts. DMEM has a high concentration of amino acids, and Ham’s F-

12 contains high amounts of trace elements. The DMEM/F-12 mixture is 

supplemented with 0.6% glucose, 2 mM glutamine, 3 mM sodium bicarbonate, and 

5mM N-2-hydroxyethylpiperazine-N-2 ethane sulfonic acid (HEPES), to which the 

hormone and salt mixture is then added. Further supplementation with growth factors 

such as bFGF, EGF, leukemia inhibitory factor, N-acetylcysteine, and neuronal 

survival factor-1 has been widely used to isolate GSCs (Singh et al, 2004; Bao et al, 

2006a, 2006b; Piccirillo et al, 2006). 

Alternatively, Neurobasal medium is broadly used. It replicates DMEM/F-12, 

except for decreased sodium chloride to 3.0 g/liter, cysteine to 10 pM, and glutamine 

to 0.5 mM. The neurobasal medium is generally adopted with addition of supplements 

such as N2 and/or B27 and growth factors (Lee et al, 2006). 

Three main supplements are used in GSC culture: N2 contains 5 μg/ml insulin, 

100 μg/ml transferrin, 20 nM progesterone, 30 nM Na selenite, and 100 μM putrescine 

dihydrochloride (Zhang et al, 2020). B27 supplement contains 20 factors adjusted 

for insulin, transferrin, progesterone, putrescine, and selenium, in addition to T3, 

fatty acids, alpha tocopherol, and additional antioxidants. However, retinyl acetate 

and T3 may induce progenitor cells to differentiate. Consistently, B27 without such 

components slows differentiation and is more frequently adopted than its original 

version (Zhang et al, 2020). Lastly, hormone and salt mixture (hormone mix) is a 
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modification of N2 with 25 μg/ml insulin, 100 μg/ml transferrin, 20 nM progesterone, 

60 μM putrescine, and 30 nM selenium (Zhang et al, 2020). 

As previously stated, these media are further supplemented with growth factors. 

In fact, EGF and bFGF serve as mitogens essential to isolate neural and glioma stem 

cells (Singh et al, 2004; Gritti et al, 1996; Reynolds et al, 1992). In particular, EGF 

is fundamental for neuronal development and for propagating GSCs in suspension, 

and bFGF contributes to neuron production, enhances precursor proliferation, and 

promotes the long-term growth of GSCs (Svendsen et al, 1998; Reynolds et al, 

1992). However, both bFGF receptor binding affinity and its subsequent mitogenic 

activity depend on heparin. Hence, either heparin or heparan sulphate is generally 

co-supplemented (Zhang et al, 2020). 

Leukemia inhibitory factor is an interleukin 6-related cytokine that inhibits 

embryonic stem cells from differentiation and regulates GSC biology. Recently, 

Neuronal survival factor-1 and N-acetylcysteine were adopted as supplements to 

generate GSCs. Neuronal survival factor-1 endorses neural stem cells survival. N-

acetylcysteine prevents oxidative DNA damage by glutathione synthesis (Zhang et 

al, 2020). 

Notably, each research group uses different combinations and concentrations of 

growth factors. For instance, Dirks’ and Rich’s mix is a combination of EGF 20 ng/ml, 

bFGF 20 ng/ml, and leukemia inhibitory factor 10 ng/ml. Weiss’ group uses EGF 20 

ng/ml and bFGF 20 ng/ml with heparan sulfate 2 μg/ml, while Fine’s mix consists of 

only EGF 50 ng/ml and bFGF 50 ng/ml. Remarkably, a recent study demonstrated a 

differential fate for neural stem cells cultured in the presence of low (0.1 ng/ml) or 

high (1-10 ng/ml) concentrations of bFGF, in the former case shifting towards 

neurons and in the latter towards both neurons and oligodendrocytes. Hence, varying 

combinations and concentrations of growth factors could produce discrepancies 

among various groups’ results (Zhang et al, 2020). This further proves the necessity 

to standardize medium recipes to introduce fewer possible confounding factors in 

experimental settings. 

Lastly, antibiotics are added to media at standard concentrations to prevent 

microbial contaminants. Generally, antibiotics do not prove toxic for GSCs, but still 

might affect cell function (Zhang et al, 2020). 
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3.3.3 Other strategies to isolate glioma stem cells 

Beside NSA, other strategies to isolate GSCs may involve specific cellular markers 

or growing cells under conditions obtaining the same effects as NSA. Strategies 

relying on markers depend on their accuracy in selecting stem-like populations and 

rely on proteins used to identify normal neural stem cells, such as nuclear and 

cytosolic proteins (SOX2, OLIG2, MYC, and NESTIN) or surface markers (CD133, 

L1CAM, CD44, and A2B5) (Gimple et al, 2019; Brescia et al, 2013, 2012). Though 

prospectively identifying putative GSCs, this technique does not test any functional 

parameter. Also, the very limited set of markers may be too selective, thus missing 

some GSC subpopulations and depleting heterogeneity. Additionally, surface markers 

could be disrupted at cell dissociation steps (Singh et al, 2004; Son et al, 2009; Wan 

et al, 2010). 

An alternative to NSA is adhesive culture onto poly-L-lysine/laminin-coated plates. 

As reported in the literature, this technique reduced cellular differentiation compared 

with floating neurosphere cultures (Lee et al, 2006). It shares with NSA the 

advantage of being high throughput. However, like NSA, it is limited by the inability 

to determine tumorigenicity, to identify quiescent stem populations, and to model 

interactions with the microenvironment. Besides, the artificial conditions to which 

cells are exposed might lead to losing tumor heterogeneity (Pollard et al, 2009).  

Additionally, three-dimensional GSC cultures were established in the form of 

organoids. They recap cellular heterogeneity, hypoxic gradients, and to some extent 

in vivo tumor growth architecture (Hubert et al, 2016). Their main advantage is to 

model the in vivo settings with greater reliability than other in vitro methods. 

Organoids partially recapitulate tumor cells interactions with the microenvironment, 

still missing interactions with microglia or vasculature, but show a reduced 

throughput compared with NSA or adherent cultures. Moreover, the technical 

procedure to generate and maintain organoids is more complex than other in vitro 

methodologies (Hubert et al, 2016; Ogawa et al, 2018; Gimple et al, 2019). 

A last technique consists in patient-derived xenografts (PDXs), which allows to 

simultaneously isolate GSCs and generate tumor models mimicking cellular 

interactions in a somehow physiologic setting. They differ from GSC-derived 

xenografts in that tumor cells are directly transplanted upon dissociation from 

specimens to the mouse striatum and propagated from primary PDXs to advanced 

order PDXs with no intervening in vitro passages. The major shortcomings of this 

technique are that it is very expensive by requiring a sufficient number of animals to 

propagate the line, and it is labor-intensive, while still providing neither mechanistic 

insights of GBM initiation nor interactions with adaptive immune system. Additionally, 
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sequential passaging from PDX to PDX may select away heterogeneity and induce 

private genomic aberration not shared with original tumor, just like with less 

expensive and less laborious in vitro methods (Singh et al, 2004; Hidalgo et al, 2014; 

Ben-David et al, 2017; Gimple et al, 2019). 

 

 

 

3.3.4 Glioma stem cells as a tool to investigate and model GBM 

A valuable tool in tumor research is the use of cancer stem cell cultures, which 

already allowed important steps forward in understanding other cancers. For 

instance, in the field of breast cancer, CSCs allowed the discovery of gene signatures 

predicting the risk of distant metastases, with a clear potential impact on clinical 

decision-making (Pece et al, 2019).  

Parallelly, GCLs and GSCs have been used to study GBMs. However, one major 

issue in this setting is the difficulty in effectively modeling this heterogenous disease. 

Therefore, the appropriate choice of the cell line to use, based on the features it 

replicates, is paramount since none of the available cell models reproduces the entire 

spectrum of GBM characteristics (Ledur et al, 2017). 

The first studies with cell models adopted cell lines derived from induced rodent 

tumors of the central and peripheral nervous system. Subsequently, long-term 

cultures of GCLs were established from human GBMs. They provided an unlimited cell 

supply and reproducible results. The most common human GBM immortalized cell 

lines are U87MG, U252, T98G, and LN229. (Gómez-Oliva et al, 2021) They represent 

the fastest way to obtain preliminary results both in vitro and in vivo, with very rapid 

doubling time and short latency in generating full blown tumors in animal recipients. 

Still, GCLs not only fail to recreate a trustworthy microenvironment, but are also 

affected by decreased heterogeneity, private chromosomal aberrations and 

phenotypic alterations, and even higher proliferative potential than original tissues 

due to progressive selection by long-term serum culturing. Therefore, they are not a 

very reliable model, at least for experiments beyond preliminary investigations. 

Additionally, U87MG have been proven to have an unknown origin, with almost 

certain contamination by other non-glioma cell lines (Allen et al, 2016). Thus, 

experiments only relying on GCLs almost certainly fail to recapitulate the patients’ 

disease (Gimple et al, 2019). 

With the isolation of GSCs from patients, GBM primary cultures became the gold 

standard to model and investigate these tumors (Lee et al, 2006). They are more 
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challenging to maintain than GCLs, as they cannot be grown in serum but require 

complex media, as described previously (Lee et al, 2006). 

Notably, there are claims that the useful experimental life of patient derived GSCs 

seems limited. In fact, after about 30 culturing passages, these cells accumulate 

genomic and transcriptional alterations in metabolic and signaling pathways which 

may resemble the same critical drift described for GCLs, rendering them too different 

from the parental GBMs (Baskaran et al, 2018). 

The versatility of GSCs provides further modeling advantages. As a matter of fact, 

their ability to be propagated either as neurospheres or as adherent cultures, might 

combine benefits of the two culturing methods to study GBMs (Rahman et al, 2015). 

In fact, though both techniques share common pros and cons profiles, neurospheres 

perform better in preserving heterogeneity, while adherent cultures allow higher 

efficiency in generating GSC lines (close to 100%) from the primary tissue. 

Additionally, since GSCs are isolated from many individual patients, they may offer 

insights facilitating the study of inter-individual differences (Gómez-Oliva et al, 

2021). 

As a next step in modeling GBMs, in vivo transplantation in animal recipients allows 

to study neoplasm development and progression after engraftment of GSCs into 

immunodeficient models. The so-obtained xenografts may be either patient derived 

(PDX), in which dissociated tumor cells are directly implanted into mice without 

intervening in vitro culturing, or more frequently GSC derived, in which GSC line is 

first established and later transplanted in mice (Engebraaten et al, 1999; Gómez-

Oliva et al, 2021). Notably, GSC derived engraftment is more efficient than PDX 

engraftment, with a more potent tumor induction still preserving a heterogeneous 

phenotype (Lee et al, 2018b). Mainly, three murine strains are utilized: nude (nu/nu) 

mice, which lack T cells; non-obese diabetic severe combined immunodeficiency 

(NOD-SCID) and SCID-beige mice, missing both T and B cells; and NOD-SCID 

IL2Rgamma-null (NSG/NOG) mice, completely devoid of T, B, and NK cells (Yoshida, 

2020). Implantation is generally achieved subcutaneously (heterotopic) aiding the 

visual control over tumor formation, or in the brain (orthotopic), which provides a 

more physiological microenvironment (Shu et al, 2008). Compared to GCL 

xenografts, GSC derived tumors and PDX take much longer to grow but reproduce 

more heterogeneous lesions and preserve the original tumor histoarchitecture 

(Gómez-Oliva et al, 2021). 

Many groups exploited combinations of in vitro and in vivo GSC-based models of 

GBMs to test new drugs or innovative drug combinations/formulations (Valtorta et al, 

2017; Di Mascolo et al, 2021) and to identify novel candidates with pathogenetic and 
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theranostic implications (e.g., EGFR, MET, ASCL1, LSD1), some of which are already 

routinely evaluated (Faletti et al, 2021; De Bacco et al, 2016; Boccaccio & Comoglio, 

2013; Narayanan et al, 2019; Mazzoleni et al, 2010; Park et al, 2017). 

 

 

 

3.3.5 Controversies on glioma stem cells 

Controversies on GSCs mostly derive from their vague and uncertain delineation. 

First, the term itself does not propose any assumption regarding the GBM cell of 

origin and are frequently used to define cell populations with the ability to long-term 

generate neurospheres in vitro and neoplasms in vivo. While GSCs may derive from 

the malignant conversion of a healthy resident stem cell, they may also result from 

differentiated tumoral cells reactivating stem-like developmental and survival 

programs (Gimple et al, 2019). Therefore, some authors suggest defining these cells 

as tumor initiating cells (TICs) or gliomasphere-forming cells (GSFCs), especially 

because, as previously reported, GBM stemness seems to be approximated more by 

the stochastic model than by a hierarchical one. 

Second, GSCs are not unequivocally defined by surface markers. So far, the 

prognostic value of cancer stem cells has been connected in other neoplasms to well-

defined features, such as markers of stemness. Similarly, these have been correlated 

with clinical outcomes in GBMs. Nevertheless, evidence is still controversial, as some 

authors reported that stem-cell markers do not invariably have a prognostic effect in 

GBMs (Richichi et al, 2016). Additionally, although some markers such as CD133, 

CD44, and CD15, have been reported to consistently enrich for GSCs, recent studies 

demonstrated that most are neither fully sensitive nor specific (Gimple et al, 2019). 

Moreover, varying marker combinations might identify cells in diverse states and with 

diverse genotypes. Consequently, different authors might indicate as GSCs entirely 

different cell populations (Suvà & Tirosh, 2020). 

Third, the main GSC functional properties (i.e., self-renewal and tumorigenicity) 

are common to several other cancerous cells, and are tested in factitious in vitro 

settings and in xenogeneic animal models that do not perfectly replicate the native 

human milieu (Suvà & Tirosh, 2020). Additionally, the stem state is not static, but 

undergoes a plastic reorganization also by means of epigenetic changes, allowing for 

interconversion between distinct cellular states. Microenvironmental exposures, 

nutrient deprivation, hypoxia, or radiation all affect the dynamic balance between the 

GSC and non-GSC pools (Gimple et al, 2019). Thus, partially or completely conflicting 

results might be documented under the same experimental conditions when 
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heterogeneous cell populations in different states are indistinctly addressed as GSCs 

(Suvà & Tirosh, 2020). 

Traditionally, GSCs have been associated to quiescence, implying a lower 

proliferation than other malignant cells and advocating the generally higher 

resistance of dormant cells to treatments that inherently target proliferating cells. On 

the contrary, recent evidence showed that GSCs could replicate more than other  

quiescent cell populations making up the tumor bulk (Suvà & Tirosh, 2020; Lathia et 

al, 2015). 

Another criticism to the cancer stem cell theory for GBMs is that it does not address 

the frequency of GSCs within GBMs and diminishes the role of more differentiated 

progeny in maintaining complex tumor tissue systems. CSCs are relatively rare in 

most cancers, ranging from 0.0001% to 0.1% of the tumor bulk. However, recent 

studies report higher frequencies of 25-40% in GBMs (Richichi et al, 2016; Mazzoleni 

et al, 2010), consistent with a stochastic model, where each cell can assume a stem 

behavior. Various aspects may influence GSC frequency estimate (GSC isolation 

technique, in vitro cell manipulation, agents promoting cell engraftment, recipient 

immunodeficiency, and timelapses following GSCs injection). Additionally, the most 

reliable assay to determine GSC frequency is the limiting dilution cell transplantation. 

Yet, only rarely such experiments are performed (Richichi et al, 2016). 

Lastly, clonal selection during in vitro culture for cell line propagation rapidly 

depletes cellular heterogeneity. This affects modeling tumor complexity and explains 

why some efficacious therapies in experimental settings, with homogenous tumors, 

fail in heterogenous human neoplasms (Gimple et al, 2019). Also, in vitro studies 

rely on hyperoxic, hyperglycemic, non-physiologic conditions, and are devoid of 

normal cell-cell interactions (Gimple et al, 2019). An additional reason for failures of 

clinical translations of drugs positively selected in preclinical studies is the fact that 

human brain microenvironment is not as effectively reproduced in rodents, limiting 

the study effectiveness. Furthermore, since these murine models have either a very 

weak or completely absent inflammatory and immune response, they are not suitable 

for testing immunomodulatory therapies (Gómez-Oliva et al, 2021). 
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4 AIM OF THE WORK 

 

 

 

 

 

GBMs are highly malignant brain tumors, that rapidly grow and invade adjacent 

white matter tracts and are very resistant to standard treatment, despite multimodal 

therapies. Recent revisions of the pathology and progressive access to molecular 

information led the WHO to update the GBM classification by introducing molecular 

prognosticators. In this regard, accumulating evidence led to identification of 

molecular subtypes of GBMs (i.e., proneural, classical and mesenchymal) that, 

although not yet included in the WHO classification, are worthy to be elucidated as 

for their clinical implications. 

The identification of glioma stem cells (GSCs) which are not a restricted tumor 

component, but rather comprise most of the cells within the tumor bulk, with the 

ability to propagate the pathology, allowed for their exploitation in the modeling of 

GBMs and their molecular subtypes both in vitro and in vivo. However, primary 

cultures of patient-derived GSCs may suffer from the factitious conditions of the 

neurosphere assay (NSA) used to isolate and culture them, possibly inducing a drift 

as happened with the canonical high-passage glioma cell lines (GCLs), which 

nowadays appear inadequate. Nonetheless, xenografts derived from subgroup-

specific GSC lines tend to show more homogenous subgroup-specific phenotypes 

than the original heterogenous human tumors, which may be an aid in identifying 

subgroup-restricted features. 

Advancement in MRI technology and computational analysis allowed to develop 

new study sequences from which deriving radiomic features to relate with molecular 

information and, possibly, pathophysiological behavior of GBM subtypes. 

Given this, the aim of my PhD project was to exploit new, advanced 3-

compartment diffusion-weighted MRI sequences to study human GBMs of different 

subtypes (MES, the most aggressive and treatment-resistant, vs non-MES GBMs), in 

order to identify radiomics markers that might predict non-invasively the 

transcriptional subgroup of GBM.  

GBM patients underwent advanced MRI and then were subjected to surgery. The 

tumors from these patients were processed for GSC isolation by NSA and were 

transplanted to generate murine xenografts to be studied with the same advanced 
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diffusion MRI protocol. The discriminative radiomic features between MES and non-

MES tumors were selected by matching common significant ones between the human 

cohort and the more extremized xenograft cohort. A subsequent simplified model for 

non-invasive molecular diagnosis was elaborated on the selected features.  

Parallelly, aiming at understanding the dynamics underlying GSC molecular profile 

evolution observed under progressive serial culturing passages by the NSA, we 

subjected the original patient specimens and the early/intermediate GSC lines to 

Western blot analysis for protein markers of the different molecular subgroups. Then, 

IHC molecular diagnosis was performed on the original human tumor and on the 

matched GSC-derived xenografts, to assess whether and which modifications in the 

molecular affiliation of GBM were taking place during the establishment of GSC lines. 

Finally, GSC lines were subjected to transcriptomic and whole exome sequencing 

analyses to identify possible new candidate genes responsible for the different 

biological behavior of the different GBM subtypes. To further substantiate GSCs as a 

reliable modeling tool for GBMs, transcriptomic data were utilized to derive gene 

signatures to determine subtype affiliation of unmatched human GBMs. As a further 

step in confirming the reliability of GSCs as GBM preclinical model, in silico 

transcriptional analyses were also carried out on publicly available datasets of MES 

and non-MES GBMs vs healthy brain tissue and compared to results obtained from 

GSCs.  

Overall, all these different experimental tasks converged on the definition of a 

composite picture of the molecular features that GSCs are endowed with, thus helping 

us better understand their plasticity and their exploitability as valuable preclinical 

models for the different molecular subgroups of GBM, to be used also in the context 

of clinically relevant projects, e.g., radiogenomics. 
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Figure 4.1. Schematic representation of study design. Global study design can be 
divided into 4 sub-projects (Radiogenomic, GSC evolution and model reliability, Novel 
candidate genes, and GBM subtype evolution) intertwined with each other as represented by 
the arrows depicting the project flow. Dashed arrow from “Transcriptomic” to “TCGA GBMs vs 
healthy brain” indicates that only the analysis and R scripts were transposed and applied to 
separate, independent data. 
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5 RESULTS 

 

 

 

 

 

5.1 Identification of radiogenomic features discriminating GBM 

subtypes. 

 

5.1.1 GBM patient population enrollment and subgroup affiliation. 

Over the course of 5 years, we prospectively screened and enrolled 56 CNS WHO 

Grade 4 gliomas that presented to the Neurosurgery Department of San Raffaele 

Hospital. We first selected patients privileging those who were first diagnosed with 

high-grade glioma and had not yet undergone surgical resections and/or chemo- or 

radiotherapy treatment. However, as progressive analysis of tumors subgroup 

affiliation showed that MES samples were scarcely represented in our cohort, we also 

enrolled 5 recurrences, as it is reported in the literature a tendency to a MES shift in 

recurrent tumors (Bhat et al, 2013). We also privileged open surgeries, as biopsies 

would provide us with scant material for further processing. 

At the end of patient enrollment, we recruited 16 females (28.6%) and 40 males 

(71.4%), with a mean age of 61.3  11.3 years (median 61.0, range 35-80 years). 

Mean preoperative Karnofsky performance status (KPS) was 90.0  13.6 (median 90, 

range 20-100). The lowest KPS was recorded in a patient who rapidly deteriorated 

neurologically, requiring emergent surgery. Twenty-three patients were diagnosed 

following clinically evident seizures, none of them due to hemorrhages; the remaining 

33 patients were diagnosed following non-specific symptoms, such as intense 

headache, not responsive to medications, or following development of neurological 

deficits. In total, 41 out 56 patients had preoperative neurological deficits, ranging 

from mild (e.g., seldom anomias or paraphasias, limited quadrantanopia) to more 

severe defects such as complete aphasia or severe hemiparesis. 

Three patients had previous stereotactic biopsy for diagnosis (in all cases GBMs). 

Five patients had previous open surgeries with diagnosis of GBM in 2 cases, anaplastic 

astrocytoma in 2, and lower-grade glioma in 1. Out of these latter 5, 1 patient had 

no subsequent treatments, 1 underwent chemotherapy, and 3 patients both chemo- 

and radiotherapy after the former intervention and before the surgery for which we 
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enrolled them in our study. Table 5.1 reports the location of the tumors in these 56 

patients. Twenty-eight lesions (50.0%) were right sided, 27 (48.2%) left sided, and 

1 (1.8%) diffuse on both sides. Fifty-four patients underwent open surgery, with 40 

gross-total resections of the enhancing nodule (74.1%), 12 subtotal resections 

(<10% residue, 22.2%), and 2 partial resections (>10% residue, 3.7%). Two 

patients underwent only stereotactic biopsy. 

 

Location  % 

Frontal 17 30.4 

Fronto-parietal 2 3.6 

Fronto-temporal 1 1.8 

Fronto-temporo-insular 1 1.8 

Temporal 18 32.1 

Temporo-parietal 3 5.4 

Temporo-occipital 1 1.8 

Temporo-parietal-occipital 2 3.6 

Parietal 3 5.4 

Parieto-occipital 6 10.7 

Occipital 1 1.8 

Diffuse 1 1.8 

 
Table 5.1. Location of 56 CNS grade 4 gliomas. Absolute and percentual (%) numbers. 
 

 

Transcriptional subgroup affiliation of these tumors was determined by using an 

immunohistochemical panel developed by our collaborators, as described in the 

Method section (Figure 5.1). Based on this panel, we enrolled 5 (8.9%) MES WHO 

grade 4 gliomas, 19 (33.9%) CL, 20 (35.7%) PN, 8 (14.3%) mixed PN/CL, and 4 

(7.2%) balanced mixes of all subtypes. Notably, PN and CL subgroups were equally 

represented in our cohort, while MES tumors were unexpectedly scarce.  

In 2021 the WHO published an updated version of brain tumor classification, 

separating IDH1/2 mutant grade 4 tumors (now called grade 4 astrocytomas) from 

IDHwt GBMs (Louis et al, 2021). In this view, our cohort consisted of 50 IDHwt GBMs 

and 6 CNS WHO grade 4 astrocytomas. Consistently, 5/6 Grade 4 astrocytomas were 

PN and 1/6 CL, in line with the observation that most IDH mutant lesions are PN. 

Table 5.2 reports the percentual make up of each of these samples and the overall 
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affiliation. Out of these 56 tumors, we subjected 48 specimens to Glioma Stem Cell 

(GSC) derivation by the Neurosphere Assay (NSA) and established 14 GSC lines. 

 

Sample % PN % CL % MES Affiliation aMRI 

GBM 160315 9.2 1.4 89.4 MES Yes 

AG4 160404 86.4 9.2 4.4 PN No 

GBM 160407 75.0 20.0 5.0 PN Yes 

GBM 160411 36.6 62.4 1.0 CL Yes 

GBM 160415 21.2 78.4 0.4 CL No 

GBM 160511 84.4 11.6 4.0 PN No 

AG4 160428 20.4 62.2 17.4 CL Yes 

GBM 160503 28.2 69.4 2.4 CL Yes 

GBM 160525 63.4 34.2 2.4 PN Yes 

GBM 160526 18.2 81.8 0.0 CL No 

GBM 160622 21.6 77.2 1.2 CL No 

GBM 160610 72.6 20.2 7.2 PN No 

GBM 160704 #1 21.8 77.8 0.4 CL No 

AG4 160704 #2 81.0 9.4 9.6 PN No 

GBM 160628 7.8 92.2 0.0 CL No 

GBM 160808 56.6 42.0 1.4 PN/CL No 

GBM 160817 38.6 31.2 30.2 MIX No 

GBM 161007 61.8 37.2 1.0 PN No 

GBM 161019 32.4 46.8 20.8 MIX No 

GBM 161103 13.8 26.0 60.2 MES Yes 

GBM 161116 85.8 7.0 7.2 PN Yes 

GBM 161205 53.0 44.6 2.4 PN/CL Yes 

GBM 161130 15.8 9.6 74.6 MES No 

GBM 161128 17.8 82.0 0.2 CL Yes 

AG4 170126 #1 64.6 27.2 8.2 PN Yes 

GBM 170126 #2 72.8 24.0 3.2 PN No 

GBM 170413 3.8 96.2 0.0 CL Yes 

GBM 170421 9.0 91.0 0.0 CL Yes 

GBM 170426 59.2 38.0 2.8 PN Yes 

GBM 171025 11.8 88.2 0.0 CL Yes 

GBM 171027 24.4 74.6 1.0 CL Yes 
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GBM 171031 14.0 85.6 0.4 CL Yes 

GBM 171211 33.6 65.4 1.0 CL Yes 

GBM 180111 21.8 77.8 0.4 CL Yes 

GBM 180131 61.8 32.8 5.4 PN No 

GBM 180201 47.4 19.4 33.2 MIX No 

GBM 180510 55.4 39.4 5.2 PN/CL Yes 

GBM 191119 60.2 37.2 2.6 PN Yes 

GBM 190920 33.6 65.4 1.0 CL Yes 

GBM 180420 20.2 5.2 74.6 MES Yes 

GBM 180522 70.2 27.8 2.0 PN Yes 

GBM 180515 54.8 42.0 3.2 PN/CL Yes 

GBM 180507 46.0 26.2 27.8 MIX Yes 

AG4 180330 80.6 12.0 7.4 PN Yes 

GBM 190125 56.8 41.6 1.6 PN/CL No 

GBM 171214 51.0 43.2 5.8 PN/CL Yes 

AG4 180504 62.8 30.0 7.2 PN Yes 

GBM 180611 77.2 19.4 3.4 PN Yes 

GBM 190724 54.6 40.6 4.8 PN/CL Yes 

GBM 181224 80.4 17.6 2.0 PN Yes 

GBM 190222 67.0 27.8 5.2 PN Yes 

GBM 190207 34.8 64.0 1.2 CL Yes 

GBM 181012 43.4 30.2 26.4 MIX Yes 

GBM 190515 57.4 38.2 4.4 PN Yes 

GBM 201113 67.0 27.6 5.4 PN Yes 

GBM 190628 35.6 63.2 1.2 CL Yes 

GBM 181123 56.0 41.6 2.4 PN/CL Yes 

GBM 200310 11.4 20.4 68.2 MES Yes 

 

Table 5.2. Transcriptional subgroup affiliation of CNS WHO Grade 4 gliomas. 
Percentual representation of each component is reported for each sample, as well as main 
affiliation according to protocol established by our collaborators in the Pathology department 
of University of Brescia (Orzan et al, 2020). Samples in bold are those with IDH1 mutation and 
thus classified as CNS Grade 4 Astrocytomas by the new WHO brain tumor classification and 
were therefore eliminated from MRI analysis. The last column indicates samples for which also 
advanced MRI studies were available for further radiogenomic analyses. AG4: grade 4 
astrocytoma, aMRI: advanced MRI sequences, CL: classical, GBM: glioblastoma, MES: 
mesenchymal, MIX: balanced mix of the three subgroups, PN: proneural. 
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Figure 5.1. Transcriptional subgroup affiliation of GBMs based on 
immunohistochemical panel tested on a representative MES, CL, and PN tumor. Each 
panel reports a hematoxylin and eosin (H&E) staining of the specimen and IHC for GFAP, which 
shows consistently strong signal in all the subgroups. Signal intensity of the staining for EGFR, 
Olig2, ASCL1, PDGFRa, p53, MET, YKL40, and pNDRG1 is quantified and elaborated to give a 
percentage for each component and thus determine tumor affiliation, as described in Method 
section. CL: Classical, MES: mesenchymal, PN: proneural. 
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Considering all 56 grade 4 gliomas, 2 patients died during the postoperative 

hospital stay, 12 were alive at last follow-up and 44 dead, with no statistical 

difference between subgroups (mean follow up time 16.18  15.44 months). For 

uncensored, dead patients at last follow up, the mean overall survival was 15.72  

15.14 months, corresponding to 9.35  2.26 months for MES, 13.43  15.66 months 

for PN, 19.43  16.37 months for CL, 19.97  19.70 months for PN/CL, and 13.46  

8.01 months for mixed affiliation tumors. Figure 5.2A shows Kaplan Meier curves for 

Grade 4 gliomas subtypes, while Figure 5.2B shows Kaplan Meier curves for Grade 4 

gliomas divided in MES vs non-MES tumors. Statistical significance was not reached 

in either case as reported by log-rank test, even if a trend for MES tumors as being 

associated with a worse prognosis was evident. After removal of the 6 IDH1-mutant 

Grade 4 astrocytomas, thus retaining only the 50 IDHwt GBMs, 10 patients were alive 

and 40 dead at last follow-up, one of which died during the postoperative hospital 

stay. The mean overall survival of patients who died was 13.64  11.68 months, 

corresponding to 9.35  2.26 months for MES, 9.36  4.04 months for PN, 16.95  

14.33 months for CL, 19.97  19.70 months for PN/CL, and 13.46  8.01 months for 

mixed affiliation tumors. Figure 5.2C shows Kaplan Meier curves for GBM subtypes, 

while Figure 5.2D shows Kaplan Meier curves for GBMs divided in MES vs non-MES 

tumors. Again, statistical significance was approached but not reached in either case 

as reported by log-rank test, suggesting however that MES GBMs were more 

aggressive. 
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Figure 5.2. Kaplan Meier curves for overall survival. A, B, Survival analyses carried on 
all 56 grade 4 gliomas; A shows singular curves for each subtype (orange CL, olive green MES, 
cyan PN, purple PN/CL, and emerald green for balanced mixed affiliation); B shows MES vs 
non-MES samples (orange MES, light blue non-MES). Log rank statistics is reported in each 
panel. C, D, Survival analyses carried only on the 50 IDHwt GBMs; C shows singular curves 
for each subtype (colors as in A); B shows MES vs non-MES samples (colors as in B). Log rank 
statistics is reported in each panel. CL: classical, MES: mesenchymal, mix: balanced mix of 
the 3 subgroups, non-MES: non mesenchymal, PN: proneural, PN/CL: mixed proneural and 
mesenchymal. 
 
 

 

 

5.1.2 Characteristics of GBM patients utilized for radiogenomic analyses. 

Out of the above described 56 patients, we downsized our cohort for subsequent 

radiogenomic analyses. The main inclusion criterium was the presence of 

preoperative advanced diffusion MRI sequences (see Table 5.2 above), which were 

available for 40 total patients. Further reduction of patients was carried out excluding 

those cases that would be no more considered pure GBMs by the new 2021 WHO 

brain tumor classification. We therefore reduced our study sample to 36 total cases, 

of whom 13 were females (36.1%) and 23 males (63.9%), with a mean age of 62.6 

 10.4 years (median 63.5, range 41-80 years). Mean preoperative KPS was 90.8  
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9.7 (median 90, range 70-100). Sixteen patients (44.4%) were diagnosed due to 

seizures; the remaining 20 following non-specific symptoms or development of stable 

neurological deficits. In total, 28 (77.8%) patients had preoperative neurological 

deficits, either mild or severe. 

Two patients had previous stereotactic biopsy for diagnosis. Three more patients 

had previous open surgeries with diagnosis of GBM in 2 cases and anaplastic 

astrocytoma in the remaining. Out of these three, 1 patient had no subsequent 

treatments, and 2 patients both chemo- and radiotherapy before undergoing surgery 

for which we enrolled them in our study. Fourteen lesions (38.9%) were right sided, 

21 (58.3%) left sided, and 1 (2.8%) diffuse on both sides. Thirty-four patients 

underwent open surgery, with 27 gross-total resections (79.4%), 6 subtotal 

resections (<10% residue, 17.6%), and 1 partial resections (>10% residue, 2.9%). 

Two patients underwent only stereotactic biopsy. 

As for transcriptional subgroup affiliation, 4 (11.1%) were MES GBMs, 13 (36.1%) 

CL, 11 (30.6%) PN, 6 (16.6%) mixed PN/CL, and 2 (5.6%) balanced mixes of all 

subtypes. Remarkably, our final patient population shows similar distribution to our 

initial cohort of 56 cases. 

The above selected eligible patients were subjected to conventional cMRI (T2-

weighted, T1-weighted, post-contrast T1-weighted and 3D-FLAIR) and aMRI by a 

standardized protocol implemented on a 3T scanner, including DTI and 

multicompartmental dMRI (35 directions at b=711 s/mm2 and 60 directions at 

b=3000 s/mm2) such as NODDI that allows the characterization of brain tissue 

microstructure, neurite density and fiber orientation. 

 

 

 

5.1.3 Generation of xenografts for radiogenomic feature analysis. 

As reported earlier, we sampled 48 GBMs to generate GSC lines by the NSA. We 

were able to derive 14 cell lines, for an efficiency of 29.2% of our conditions in 

stabilizing GSCs. In vitro culturing generally selects cells with extremized features, 

with a trend towards purer subgroup affiliation, as opposed to human tumors, which 

consist of mixtures of PN, MES and CL subgroup to varying extent. Consequently, 

also GSC-derived xenografts tend to show more extreme characteristics of the 

different subgroup, and thus are helpful tools for identifying features discriminating 

the various subtypes. As a matter of fact, PN lines tend to generate more infiltrating 

tumors that spread along the white matter, but generally lack the ability to give rise 

to a full blown and contrast-enhancing nodule that is typical of GBMs. On the 
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contrary, pure MES lines, which are reported to be more difficult to establish under 

NSA conditions, usually grow as compact, less infiltrating masses, which model to 

some extent proper GBM nodules. Thorough dissertation on the features and 

subgroup dynamics of our cell lines are thoroughly reported in the next section.  

For the radiogenomic analysis, tumors affiliated with either CL or PN subgroups 

were grouped together under the definition ‘non-MES’.  

We then transplanted MES and non-MES GSC lines in the striatum of 

immunocompromised mice to generate intracranial xenografts, which underwent the 

same advanced diffusion MRI study protocol as our patients. Transcriptional subgroup 

affiliation of the xenografts was confirmed by means of the same IHC panel used to 

assess parental human tumor affiliation. This in vivo modeling was very helpful, as it 

allowed us to generate balanced study groups of MES (9, 42.9%) and non-MES (12, 

57.1%) xenografts, overcoming in this case the inherent limitation of our unbalanced 

patient cohort. In particular, the non-MES fraction of xenografts consisted of 8 CL 

(38.1%), 3 PN (14.3%) and 1 PN/CL (4.7%) tumors. 

 

 

 

5.1.4 Radiomic feature selection and validation. 

After masking the tumors’ region of interest (ROI) on FLAIR and post-contrast T1-

weighted sequences in humans and on diffusion B0 sequence in mice, they were 

imported in the diffusion maps to extract radiomic features pertaining to tumoral 

ROIs. Ninety-one features were extracted from each map (MD, FA for DTI, and fecv, 

ficv, fiso and odi for NODDI), thus isolating 1092 features (546 x2 masks) for each 

human study and 546 for each murine study. Discriminative features were selected 

independently in the patient and mice datasets by evaluating their capability in 

discriminating MES from non-MES tumors in a univariate manner. Thirteen features 

were identified for patients on 3D-FLAIR masks (Table 5.3) and 9 on post-contrast 

T1 masks (Table 5.4), while 45 for xenografts on the B0 mask (Table 5.5). Such 

disparity is not surprising as xenografts are more divergent and extreme than 

parental human tumors, as explained above. Notably, only features isolated on 3D-

FLAIR masks in human and B0 masks in mice were comparable, since most non-MES 

xenografts did not uptake contrast and, thus, an equivalent to human post-Gd T1 

mask was not retrievable. Therefore, we concentrated only on features isolated on 

3D-FLAIR and B0 masks. 
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Radiomic feature p-Value 

'fecvf_FL_original_glcm_Imc2' 0.0048 

'FA_FL_original_glcm_Imc2' 0.0127 

'fecvf_FL_original_glcm_Imc1' 0.0127 

'FA_FL_original_glcm_Imc1' 0.0286 

'fecvf_FL_original_firstorder_90Percentile' 0.0296 

'fecvf_FL_original_glcm_JointEnergy' 0.0324 

'FA_FL_original_gldm_SmallDependenceLowGrayLevelEmphasis' 0.0367 

'fecvf_FL_original_glcm_JointEntropy' 0.0367 

'fecvf_FL_original_glcm_MaximumProbability' 0.0367 

'fiso_FL_original_glszm_SmallAreaLowGrayLevelEmphasis' 0.0367 

'FA_FL_original_glszm_LowGrayLevelZoneEmphasis' 0.0468 

'FA_FL_original_glszm_SmallAreaLowGrayLevelEmphasis' 0.0468 

'fiso_FL_original_glszm_LowGrayLevelZoneEmphasis' 0.0468 

 

Table 5.3. Significant radiomic features discriminating human MES vs non-MES GBMs 
(3D-FLAIR mask). The first component of the feature indicates the diffusion map in which it 
was significant (FA, MD, fiso, fecv, ficv, odi), the second part which sequence mask was applied 
to the map (FL), the last part the actual radiomic feature. In bold are reported the features in 
common to xenografts (see Table 5.5). FA: fractional anisotropy (DTI), fecv: fraction of 
extraneurite volume (NODDI), ficv: fraction of intraneurite volume (NODDI), fiso: fraction of 
isotropic diffusion (NODDI), FL: FLAIR, MD: mean diffusivity (DTI), odi: orientation dispersion 
index (NODDI). 

 

Radiomic feature p-Value 

'FA_T1_original_glcm_ClusterTendency' 0.0383 

'FA_T1_original_glcm_SumSquares' 0.0194 

'FA_T1_original_glrlm_GrayLevelVariance' 0.0484 

'FA_T1_original_gldm_GrayLevelVariance' 0.0480 

'fiso_T1_original_glcm_InverseVariance' 0.0041 

'fiso_T1_original_glrlm_GrayLevelVariance' 0.0432 

'fiso_T1_original_glszm_GrayLevelVariance' 0.0323 

'fiso_T1_original_glszm_LargeAreaHighGrayLevelEmphasis' 0.0027 

'fiso_T1_original_gldm_LargeDependenceHighGrayLevelEmphasis' 0.0040 

 

Table 5.4. Significant radiomic features discriminating human MES vs non-MES GBMs 
(post-Gd T1 mask). The first component of the feature indicates the diffusion map in which 
it was significant (FA, MD, fiso, fecv, ficv, odi), the second part which sequence mask was 
applied to the map (T1), the last part the actual radiomic feature. FA: fractional anisotropy 
(DTI), fecv: fraction of extraneurite volume (NODDI), ficv: fraction of intraneurite volume 
(NODDI), fiso: fraction of isotropic diffusion (NODDI), MD: mean diffusivity (DTI), odi: 
orientation dispersion index (NODDI), T1: post-contrast T1. 
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Radiomic feature p-Value 

'odi_B0_original_glcm_Imc2' 0.0002 

'odi_B0_original_glcm_Imc1' 0.0005 

'fecvf_B0_original_firstorder_RootMeanSquared' 0.0018 

'fecvf_B0_original_firstorder_Median' 0.0019 

'fecvf_B0_original_firstorder_Mean' 0.0024 

'FA_B0_original_glcm_Imc2' 0.0043 

'odi_B0_original_glcm_JointEntropy' 0.0048 

'fecvf_B0_original_firstorder_90Percentile' 0.0050 

'fecvf_B0_original_firstorder_Maximum' 0.0062 

'odi_B0_original_glcm_ClusterTendency' 0.0065 

'ficvf_B0_original_glszm_SmallAreaHighGrayLevelEmphasis' 0.0071 

'odi_B0_original_gldm_GrayLevelVariance' 0.0078 

'odi_B0_original_glrlm_GrayLevelVariance' 0.0082 

'odi_B0_original_glcm_SumSquares' 0.0083 

'FA_B0_original_glcm_Imc1' 0.0086 

'odi_B0_original_glrlm_GrayLevelNonUniformityNormalized' 0.0093 

'odi_B0_original_firstorder_Uniformity' 0.0099 

'odi_B0_original_glcm_SumEntropy' 0.0121 

'odi_B0_original_firstorder_Entropy' 0.0123 

'FA_B0_original_glszm_SmallAreaHighGrayLevelEmphasis' 0.0142 

'odi_B0_original_glcm_ClusterProminence' 0.0156 

'odi_B0_original_glcm_Correlation' 0.0169 

'fecvf_B0_original_firstorder_Range' 0.0209 

'odi_B0_original_firstorder_Kurtosis' 0.0255 

'odi_B0_original_ngtdm_Complexity' 0.0266 

'ficvf_B0_original_firstorder_10Percentile' 0.0302 

'ficvf_B0_original_firstorder_Minimum' 0.0302 

'ficvf_B0_original_firstorder_Range' 0.0302 

'odi_B0_original_glcm_DifferenceVariance' 0.0343 

'fecvf_B0_original_firstorder_10Percentile' 0.0352 

'MD_B0_original_firstorder_Mean' 0.0360 

'MD_B0_original_firstorder_Median' 0.0360 

'MD_B0_original_firstorder_RootMeanSquared' 0.0360 

'FA_B0_original_firstorder_Minimum' 0.0365 



 84 

'odi_B0_original_glcm_DifferenceEntropy' 0.0371 

'FA_B0_original_firstorder_10Percentile' 0.0428 

'fecvf_B0_original_firstorder_Energy' 0.0428 

'fecvf_B0_original_firstorder_MeanAbsoluteDeviation' 0.0428 

'fecvf_B0_original_firstorder_TotalEnergy' 0.0428 

'fecvf_B0_original_firstorder_Variance' 0.0428 

'odi_B0_original_glcm_Contrast' 0.0429 

'FA_B0_original_glcm_Correlation' 0.0430 

'odi_B0_original_glcm_Idmn' 0.0447 

'odi_B0_original_glrlm_RunEntropy' 0.0466 

'odi_B0_original_glrlm_LongRunLowGrayLevelEmphasis' 0.0473 

 

Table 5.5. Significant radiomic features discriminating MES vs non-MES GSC-derived 
xenografts. The first component of the feature indicates the diffusion map in which it was 
significant (FA, MD, fiso, fecv, ficv, odi), the second part which sequence mask was applied to 
the map (B0), the last part the actual radiomic feature. In bold are reported the features in 
common to parental human tumors (see Table 5.3). FA: fractional anisotropy (DTI), fecv: 
fraction of extraneurite volume (NODDI), ficv: fraction of intraneurite volume (NODDI), fiso: 
fraction of isotropic diffusion (NODDI), MD: mean diffusivity (DTI), odi: orientation dispersion 
index (NODDI). 

 

 

 

By comparing the significant features retrieved in the two datasets, three appear 

in GBMs from both patients and mice: informational measure of correlation (IMC)1 

and IMC2 of the GLCM class (grey-level-co-occurrence matrix, based on the 

probabilities of co-occurrence of pixel pairs with a given grey level) in the FA map of 

DTI, and the 90th percentile of the first-order class (i.e., based on the count of pixels 

in the ROI that possess a given grey-level value) in the fecv NODDI map (see features 

in bold in the above two tables). Figure 5.3 shows boxplots quantifying these radiomic 

features in MES vs non-MES tumors both in patients and mice. 
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Figure 5.3. Significant radiomic features discriminating MES (red) from non-MES 
(green) tumors, both in patients (blue) and xenografts (orange). A, GLCM-IMC1 on FA 
DTI map. B, GLCM-IMC2 on FA DTI map. C, first-order 90th percentile on fecv NODDI map. FA: 
fractional anisotropy, fecv: fraction of extraneurite volume, GLCM: grey level co-occurrence 
matrix, IMC1/2: informational measure of correlation, MES: mesenchymal, non-MES: non 
mesenchymal, Pts: patients, Xeno: xenografts. 
 

 

IMC1 and IMC2 assess the correlation between the probability distributions of grey 

levels in adjacent voxels, thus quantifying the complexity of the texture. In cases 

where the distributions are independent and there is no mutual information, these 

features will approach 0, indicating more heterogeneous textures. In case of uniform 

distribution with complete dependence and homogeneous textures, the same 

features will reach increasingly higher positive or negative values. Since IMC1 and 

IMC2 are significantly closer to 0 in MES than non-MES tumors, MES GBMs might be 

endowed with a more heterogeneous textural pattern than their CL or PN 

counterparts.  

The 90th percentile feature collects the upper decile grey values in each map. MES 

tumors have significantly higher upper-decile values in the NODDI fecv map than 

non-MES GBMs. As explained in the introduction, fecv map provides a measurement 

of anisotropic gaussian diffusion which, under pathological conditions, indicates 

infiltrative edema (i.e., edema due to local invasion of tumor cells, which separate 

axonal fibers, thus increasing the extraneurite component). This phenomenon 

differentiates from vasogenic, inflammatory edema, in which extreme derangement 

of vessel permeability leads to accumulation of water and inflammatory cells from 

the bloodstream, thus distorting brain texture to a much greater extent and 

increasing the isotropic component of the diffusion (fiso). Therefore, higher upper 

decile values in the fecv map in MES GBMs may indicate higher local tumoral 

infiltration in this subgroup, as opposed to PN and CL. 
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As a next step, we implemented a prediction model based on these three common 

radiomic features, using values detected in the xenograft dataset as reference for a 

k-nearest neighbor (KNN) model and for hyperparameter tuning. We then tried to 

predict transcriptional affiliation of patients’ dataset and measured model 

performance, as reported in Figure 5.4. Notably, all MES human GBMs were classified 

correctly, with a sensitivity of 1, and 24/32 non-MES tumors were classified 

accordingly (specificity of 0.75). ROC statistic was considerably high, scoring 0.88. 

Therefore, this model represents an interesting tool in differentiating MES from non-

MES GBMs, even though it may still be improved. 

 

 
Figure 5.4. K-nearest neighbor prediction model performance in differentiating MES 
from non-MES GBMs. Radiomic features were selected considering the significant ones 
common to xenograft and patient dataset. The model was tuned on feature values in the 
xenograft dataset and tested on patients. A, ROC curve of the model. B, confusion matrix of 
the model. C, performance of the model. KNN: k-nearest neighbor, MES: mesenchymal, non-
MES: non mesenchymal, ROC: receiver operating curve. 
 

 

 

5.1.5 Refinement of radiomic feature selection and prediction model. 

Given the disparity of MES and non-MES samples in our patients’ dataset, we used 

computational strategies to augment and balance our data. Hence, we applied Python 

SMOTE algorithm obtaining additional random-generated human samples from the 

same distribution of the original unbalanced data, so not to introduce any bias. We 

reached a total of 64 patients equally allocated between MES and non-MES subsets. 

We performed the same process also on xenograft data, to equally balance this 

dataset with 12 MES and 12 non-MES samples. 

Additionally, since radiomic features may reflect the same tumor characteristics, 

some of them may be redundant and might impair prediction model both in terms of 

overfitting to the specific study sample and by increasing computational costs with 
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no authentic prediction benefit. To address this question, we performed variance 

inflation factor (VIF) analysis and excluded radiomic features that would associate 

with other included features over a correlation coefficient threshold of 0.7. 

Consequently, we dropped 489 out of the 546 initial features for each sample mask.  

Next, we repeated the univariate feature selection in the VIF-reduced xenograft 

and patient datasets (see Tables 5.6, 5.7 and 5.8) and identified common significant 

discriminative radiomic features. Notably, features were reduced in xenograft dataset 

(11) and slightly different from the previous analysis. On the contrary, human 

features were increased (19 on 3D-FLAIR masks and 21 on post-Gd T1 masks). Once 

again, we focused only on human 3D-FLAIR sequences, which are comparable to 

mice B0, as described earlier. When compared to our previous analysis, GLCM-IMC2 

was ignored, as it was strongly correlated to GLCM-IMC1. When we considered 

significant features common to both human and murine datasets, we identified again 

the other 2 previously found features: GLCM-IMC1 on the FA map and the 90th 

percentile feature on the NODDI fecv map. Remarkably, both showed increased 

significance with respect to the previous analysis in humans (IMC1 p-value from 

0.0286 to 4.5E-08; 90th percentile p-value from 0.0296 to 5.0E-08) as well as in 

xenografts (IMC1 p-value from 0.0086 to 0.0012; 90th percentile p-value from 0.0050 

to 0.0019). Additionally, we selected 4 more common features, 3 pertaining to 

NODDI (fecvf_firstorder_10Percentile, odi_firstorder_Kurtosis and ficvf_ 

glszm_SizeZoneNonUniformityNormalized) and 1 to DTI (GLCM_Correlation). Figure 

5.5 shows boxplots for these 6 common features.  

Just as the 90th Percentile for the upper decile, the 10th Percentile indicates 

intensities in the lower decile. MES tumors show higher values than non-MES in the 

lower end of their distribution in NODDI fecv map, thus suggesting that MES GBMs 

are characterized by more local infiltrative edema than their PN or CL counterparts. 

Like IMC1, correlation ranges from 0 (uncorrelated) to 1 (perfectly correlated), 

representing the linear dependency of grey level values to their respective voxels in 

the grey level co-occurrence matrix (GLCM). In this sense, lower values in MES 

tumors substantiate MES ROI heterogeneity as opposed to non-MES GBMs.  

A Grey Level Size Zone (GLSZM) quantifies grey level zones in an image. A grey 

level zone is defined as the number of connected voxels that share the same grey 

level intensity. In this context, the Size Zone Non-Uniformity Normalized feature 

measures the variability of size zone volumes throughout the image, with a lower 

value indicating more homogeneity. Again, MES tumors result more heterogeneous 

in texture than non-MES, as they present higher values for this feature in the fraction 

of non-Gaussian anisotropic diffusion (ficv). 
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Kurtosis is a measure of the “peakedness” of the ROI value distribution. Higher 

kurtosis indicates a flatter distribution with more consistent representation of the 

tails, rather than a spike-like distribution around the mean. Higher values of NODDI 

orientation dispersion index kurtosis in MES GBMs once more imply more 

heterogeneous tumoral ROI when compared to non-MES lesions. 

 

 

 

 

 

Radiomic feature p-Value 

'FA_B0_original_glcm_Correlation' 0.0131 

 'FA_B0_original_glcm_Imc1' 0.0012 

 'fecvf_B0_original_firstorder_10Percentile' 0.0395 

 'fecvf_B0_original_firstorder_90Percentile' 0.0019 

 'ficvf_B0_original_glcm_Contrast' 0.0471 

'ficvf_B0_original_glszm_SizeZoneNonUniformityNormalized' 0.0208 

 'odi_B0_original_firstorder_Entropy' 0.0046 

 'odi_B0_original_firstorder_Kurtosis' 0.0104 

 'odi_B0_original_glcm_ClusterProminence' 0.0077 

 'odi_B0_original_glcm_Imc1' 0.0002 

 'odi_B0_original_glrlm_LongRunLowGrayLevelEmphasis' 0.0195 

 

Table 5.6. Significant radiomic features discriminating MES vs non-MES GSC-derived 
xenografts after data augmentation and VIF. The first component of the feature indicates 
the diffusion map in which it was significant (FA, MD, fiso, fecv, ficv, odi), the second part 
which sequence mask was applied to the map (B0), the last part the actual radiomic feature. 
In bold are reported the features in common to parental human tumors (see Table 5.7). FA: 
fractional anisotropy (DTI), fecv: fraction of extraneurite volume (NODDI), ficv: fraction of 
intraneurite volume (NODDI), fiso: fraction of isotropic diffusion (NODDI), MD: mean diffusivity 
(DTI), odi: orientation dispersion index (NODDI). 
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Radiomic feature p-Value 

'FA_FL_original_firstorder_Entropy' 0.0135 

 'FA_FL_original_glcm_Autocorrelation' 0.0276 

 'FA_FL_original_glcm_Correlation' 0.0467 

 'FA_FL_original_glcm_Imc1' 4.5E-08 

 'MD_FL_original_firstorder_Skewness' 0.0003 

 'MD_FL_original_glcm_ClusterProminence' 0.0287 

 'MD_FL_original_glcm_Imc1' 0.0021 

 'MD_FL_original_glszm_HighGrayLevelZoneEmphasis' 0.0037 

 'MD_FL_original_glszm_SizeZoneNonUniformityNormalized' 0.0014 

 'fecvf_FL_original_firstorder_10Percentile' 0.0010 

 'fecvf_FL_original_firstorder_90Percentile' 5.0E-08 

 'fecvf_FL_original_glcm_InverseVariance' 0.0121 

 'ficvf_FL_original_glszm_SizeZoneNonUniformityNormalized' 0.0225 

 'fiso_FL_original_firstorder_Entropy' 0.0138 

 'fiso_FL_original_glszm_LowGrayLevelZoneEmphasis' 1.4E-06 

 'odi_FL_original_firstorder_10Percentile' 3.6E-06 

 'odi_FL_original_firstorder_Kurtosis' 0.0404 

 'odi_FL_original_firstorder_Skewness', 0.0206 

 'odi_FL_original_ngtdm_Contrast' 0.0211 

 
Table 5.7. Significant radiomic features discriminating human MES vs non-MES GBMs 
after data augmentation and VIF (3D-FLAIR mask). The first component of the feature 
indicates the diffusion map in which it was significant (FA, MD, fiso, fecv, ficv, odi), the second 
part which sequence mask was applied to the map (FL), the last part the actual radiomic 
feature. In bold are reported the features in common to xenografts (see Table 5.6). FA: 
fractional anisotropy (DTI), fecv: fraction of extraneurite volume (NODDI), ficv: fraction of 
intraneurite volume (NODDI), fiso: fraction of isotropic diffusion (NODDI), FL: FLAIR, MD: 
mean diffusivity (DTI), odi: orientation dispersion index (NODDI). 
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Radiomic feature p-Value 

'FA_T1_original_glcm_ClusterProminence' 5.6E-07 

'FA_T1_original_glcm_Contrast' 0.0019 

'FA_T1_original_glcm_JointEnergy' 0.0209 

'FA_T1_original_glszm_SizeZoneNonUniformityNormalized' 0.0190 

'MD_T1_original_firstorder_Skewness' 0.0025 

'MD_T1_original_glcm_ClusterProminence' 5.4E-05 

'fecvf_T1_original_firstorder_10Percentile' 0.0100 

'fecvf_T1_original_firstorder_90Percentile' 5.3E-05 

'fecvf_T1_original_glcm_ClusterProminence' 0.0236 

'fecvf_T1_original_glcm_Contrast' 0.0461 

'fecvf_T1_original_glszm_LowGrayLevelZoneEmphasis' 0.0466 

'ficvf_T1_original_glszm_LowGrayLevelZoneEmphasis' 0,0024 

'fiso_T1_original_glcm_DifferenceVariance' 8.3E-06 

'fiso_T1_original_glcm_Imc1' 0.0159 

'fiso_T1_original_glcm_InverseVariance' 6.5E-08 

'fiso_T1_original_glszm_GrayLevelVariance' 1.0E-06 

'fiso_T1_original_glszm_LargeAreaHighGrayLevelEmphasis' 0.0003 

'fiso_T1_original_glszm_LowGrayLevelZoneEmphasis' 0.0207 

'fiso_T1_original_glszm_SizeZoneNonUniformityNormalized' 0.0014 

'odi_T1_original_firstorder_90Percentile' 0.0002 

'odi_T1_original_glszm_LargeAreaLowGrayLevelEmphasis' 0.0117 

 

Table 5.8. Significant radiomic features discriminating human MES vs non-MES GBMs 
after data augmentation and VIF (post-Gd T1 mask). The first component of the feature 
indicates the diffusion map in which it was significant (FA, MD, fiso, fecv, ficv, odi), the second 
part which sequence mask was applied to the map (T1), the last part the actual radiomic 
feature. FA: fractional anisotropy (DTI), fecv: fraction of extraneurite volume (NODDI), ficv: 
fraction of intraneurite volume (NODDI), fiso: fraction of isotropic diffusion (NODDI), MD: 
mean diffusivity (DTI), odi: orientation dispersion index (NODDI), T1: post-contrast T1. 
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Figure 5.5. Significant radiomic features discriminating MES (red) from non-MES 
(green) tumors, both in patients (blue) and xenografts (orange) as isolated from 
augmented datasets. A, GLCM-IMC1 on FA DTI map. B, first-order 90th percentile on fecv 
NODDI map. C, first-order 10th percentile on fecv NODDI map. D, GLCM-Correlation on FA DTI 
map. E, GLSZM-Size Zone Non-Uniformity Normalized on ficv NODDI map. F, first-order 
Kurtosis on odi NODDI map. FA: fractional anisotropy, fecv: fraction of extraneurite volume, 
ficv: fraction of intraneurite volume, GLCM: grey levels co-occurrence matrix, GLSZM: grey 
level size zone matrix, MES: mesenchymal, non-MES: non mesenchymal, odi: orientation 
dispersion index, Pts: patients, Xeno: xenografts. 
 
 

 

 

Lastly, we trained 4 different prediction models (Logistic Regression, Support 

Vector Machine, K-Nearest Neighbor, and Random Forest) with the selected six 

features and tuned parameters on xenograft dataset values. As a matter of fact, 

xenografts are more extremized than original tumors, and may provide more 

consistent thresholds for the model parameters. We then used the augmented patient 

dataset as a test and evaluated models’ performances. Table 5.9 reports the 

confusion matrix for each model, while Table 5.10 compares the four performances. 

Figure 5.6 shows ROC curves of the prediction models. We obtained a great 

improvement in the results compared to previous prediction model, with the best 

performance being reached with Random Forest. 
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Model  Predicted MES 
Predicted non-

MES 

LR 
MES 24 8 

non-MES 4 28 

SVM 
MES 24 8 

non-MES 7 25 

KNN 
MES 20 12 

non-MES 0 32 

RF 
MES 31 1 

non-MES 0 32 

 

Table 5.9. Confusion matrices for the 4 prediction models based on the 6 radiomic 
features identified. Models are tuned on augmented xenograft values (train dataset) and 
tested on augmented patients (test dataset). KNN: k-nearest neighbor, LR: linear regression, 
MES: mesenchymal, non-MES: non mesenchymal, RF: random forest, SVM: support vector 
machine. 
 

 

Model LR SVM KNN RF 

Sensitivity 0.750 0.750 0.625 0.969 

Specificity 0.875 0.781 1.00 1.00 

Accuracy 0.813 0.766 0.813 0.984 

Precision 0.778 0.756 0.727 0.970 

 
Table 5.10. Performances of the 4 prediction models based on the 6 radiomic features 
identified. Models are tuned on augmented xenograft values (train dataset) and tested on 
augmented patients (test dataset). KNN: k-nearest neighbor, LR: linear regression, RF: 
random forest, SVM: support vector machine. 
 

 

 
Figure 5.6. ROC curves for the 4 prediction models based on the 6 radiomic features 
identified on augmented datasets. KNN: k-nearest neighbor, LR: linear regression, RF: 
random forest, SVM: support vector machine. 
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5.2 Dynamics of transcriptional subgroup affiliation plasticity of 

GSCs and their derived xenografts. 

 

 

5.2.1 Investigation of transcriptional subtype drift from the original tissue 

to the in vitro stem cell line by GSEA. 

To identify whether in vitro culturing conditions could affect transcriptional 

subgroup affiliation, we subjected 9 pairs of original GBM tissues and their derivative 

GSCs to RNA Sequencing analysis and subsequent paired differential gene expression 

(DGE) analysis. GSEA analysis on the obtained ranked differential gene list, by using 

Verhaak’s GBM subtype transcriptional signatures (Verhaak et al, 2010), showed a 

statistically significant enrichment of the MES signature in tissues as compared to 

their GSCs, as shown in Figure 5.7. On the contrary, none of the three signatures 

was significantly enriched in GSCs, suggesting a loss of the mesenchymal features 

under NSA culturing conditions. 

 

 

 
 

Figure 5.7. Gene Set Enrichment Analysis of Verhaak’s transcriptional signatures in 
GBM tissues and their derivative GSCs. Panels A, B, C show enrichment plots of MES, PN 
and CL signatures, respectively. Panel D reports statistical parameters of each analysis. Only 
the MES signature is significantly enriched in Tissues. CL: Classical, FDR: false discovery rate, 
FWER: family-wise error rate, NA: not available, NaN: not a number, NES: Normalized 
enrichment score, MES: mesenchymal, PN: proneural. 
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5.2.2 GBM tissues and GSCs subgroup affiliation can be assessed by specific 

gene classifiers at the protein level. 

As previously stated, RNA Sequencing is a time consuming and expensive 

technique to monitor subgroup affiliation of GBM tissues and their derived GSCs. 

Therefore, based on literature evidence and previous work from our lab (Verhaak et 

al, 2010; Park et al, 2017; Narayanan et al, 2019), we selected three genes identified 

as GBM subgroup classifiers, to assign sample affiliation based on their relative 

protein expression. EGFR is an indicator for CL subtype, Achaete-scute homolog 1 

(ASCL1), a transcription factor related to neuronal differentiation and exit from cell 

cycle, for PN subclass, and N-Myc downstream-regulated gene 1 (NDRG1), an 

mTORC2-downstream member of the alpha/beta hydrolase superfamily negatively 

regulated by ASCL1, or its phosphorylated form (pNDRG1), for MES affiliation. 

To test whether this minimal gene signature could be reasonably reliable for 

subgroup determination, we performed in silico analysis on R2 platform by assigning 

each of the TCGA GBM samples for which the actual subgroup affiliation was known 

to one of 3 clusters identified with a k-means algorithm, based on expression levels 

of the three aforementioned genes. Figure 5.8 shows the resulting sample clusters. 

 

 
 

Figure 5.8. K-means clustering of TCGA GBM samples for which transcriptional 
subgroup was known, based on expression levels of minimal gene signature. Minimal 
gene signature consists of ASCL1 for PN (in purple), EGFR for CL (in blue) and NDRG1 for MES 
(in red). Minimal gene signature sensitivity and positive predictive value were respectively 
70.8% and 70.8% for PN GBMs, 76.5% and 54.2% for CL GBMs, and 66.7% and 90% for MES 
GBMs. CL: classical, MES: mesenchymal, PN: proneural, TCGA: the cancer genome atlas. 

 

 

The algorithm correctly reported 17/24 PN samples (sensitivity 70.8%, positive 

predictive value 70.8%), 13/17 CL samples (sensitivity 76.5%, positive predictive 
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value 54.2%), and 18/27 MES samples (sensitivity 66.7%, positive predictive value 

90%), for a total sensitivity of 70.6% (Fisher’s exact test p-value = 4.75e-9).  

We then performed WB analysis on original tissues and their derivative GSCs at 

progressive culturing passages under NSA conditions and assigned subgroup 

affiliation based on the relative protein expression levels of EGFR, NDRG1 and ASCL1. 

Remarkably, we demonstrated a variable drift of our GSC lines as some of them 

upregulate the PN marker ASCL1 together with a downregulation of the other markers 

(see Figure 5.9) as in a sort of “proneuralization” of the lines, while others maintained 

or even upregulated the MES marker NDRG1, suggesting the occurrence of a 

mesenchymal shift (see Figure 5.10). Notably, line 160704 shows concomitant 

upregulation of ASCL1 and NDRG1, indicating a mixed PN/MES affiliation at later 

passages. As ASCL1 is known to repress NDRG1, this may indicate a mixture of two 

cell subpopulations, one expressing ASCL1 and the other NDRG1, conferring the 

mixed affiliation to the whole GSC line, but each maintaining its own identity. 

 

 
 
Figure 5.9. Minimal gene signature western blot analysis of GBM tissues and derived 
GSCs showing upregulation of the PN marker. Upregulation of the PN marker ASCL1 in 
addition to downregulation of both EGFR and NDRG1 (A), or only the MES marker NDRG1 (B 
and C). C shows generation of 2 lines from a multi-sampled GBM. Of note, D shows initial 
upregulation of ASCL1 with repression of both EGFR and NDRG1, while at later in vitro 
passages it shows also strong expression of NDRG1, indicating mesenchymalization. Subgroup 
affiliation is shown with the color code: CL blue, MES red, PN purple. CL: classical, MES: 
mesenchymal, PN: proneural. 
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Figure 5.10. Minimal gene signature western blot analysis of GBM tissues and derived 
GSCs showing maintenance or upregulation of the MES marker. Panel A shows general 
maintenance of the MES marker NDRG1 in a GBM that underwent multiple sampling and 
generated 4 GSC lines with the same profile. Panel B shows progressive upregulation of NDRG1 
with repression of EGFR and ASCL1 in a different GSC line. Notably, Panel C shows initial 
repression followed by strong upregulation of NDRG1, indicating a degree of 
mesenchymalization, even in the presence of increasing levels of ASCL1 in another GSC line. 
Subgroup affiliation is shown with the color code: CL blue, MES red, PN purple. CL: classical, 
MES: mesenchymal, PN: proneural. 
 

Interestingly, in most cases (4 out of 6), the CL marker EGFR showed 

downregulation under NSA culturing conditions, likely due to the presence of high 

concentrations of EGF ligand in the culture medium (Figure 5.11). By means of WB, 

we were able to identify samples with the EGFRvIII mutation that induces the loss of 

exons 2-7 affecting the extracellular domain, rendering this variant constitutively 

active and independent of its ligand EGF. The presence of this variant was confirmed 

by immunohistochemistry in the original tumor samples. The presence of EGFRvIII 

led us to propend for a CL or mixed CL affiliation, weighing this component more than 

the other two, unless it showed a marked downregulation over the in vitro passages. 

Of note, in the majority of cases (3 out of 5), GSCs harboring EGFRvIII maintained 
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a very high level of the protein, at least in its mutated form. In the remaining cases, 

GSCs downregulated both the wild-type and mutated receptor, even though they did 

not completely turn off its expression (see Figure 5.12), therefore maintaining a CL 

component. Table 5.11 summarizes subgroup affiliations of the original tumors and 

their derived GSC lines based on WB analysis of minimal protein expression 

signature. 

 

 
Figure 5.11. Minimal gene signature western blot analysis of GBM tissues and derived 
GSCs showing regulation of CL marker. Panel A, B, C and D show general downregulation 
of the CL marker EGFR in 3 different GSC lines. Notably, downregulation of all markers in the 
GSC line in panel A does not allow us to assign a subtype to the generated GSC line. On the 
contrary, Panel E and F show constant EGFR expression even if an earlier in vitro passage in E 
represses the receptor in other two GSC lines. Subgroup affiliation is shown with the color 
code: CL blue, MES red, PN purple. CL: classical, MES: mesenchymal, PN: proneural. 
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Figure 5.12. Minimal gene signature western blot analysis of GBM tissues and derived 
GSCs showing regulation of CL marker in EGFRvIII positive samples. Panel A, B, and 
C show general maintenance of the CL marker EGFR at least in its mutated, truncated form. 
On the contrary, D and E show downregulation of both wild-type and mutated EGFR. Subgroup 
affiliation is shown with the color code: CL blue, MES red, PN purple. CL: classical, MES: 
mesenchymal, PN: proneural. 
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Patient Tumor WB GSC WB 
early 

GSC WB 
late 

160315 MES MES MES 

160526 CL PN/CL* PN/CL* 

160704 CL PN PN/MES 

160503 CL/MES MES MES 

160525 CL MES MES 

160622 CL PN/CL PN/CL 

161019 CL CL/MES* CL/MES* 

161205 MES PN PN 

170421 CL/MES CL* CL/MES* 

180420 CL CL/MES CL/MES 

180515 CL/MES MES CL/MES 

190125 CL nd nd 

190920 CL/MES PN/CL PN/CL 

191119 CL CL/MES . 

 
Table 5.11. Subgroup affiliation of original GBM tissue and derived GSC lines at early 
and intermediate/late in vitro passages under NSA conditions, based on minimal 
gene signature classification. GSC lines that maintain EGFRvIII are indicated with an 
asterisk (*). CL: classical, MES: mesenchymal, nd: not defined, PN: proneural. 
 

 

 

5.2.3 Comparison between IHC-based GBM subgroup definition and WB-

based minimal signature affiliation. 

As previously explained, for the subgroup affiliation of our patients’ GBM 

specimens, we relied on immunohistochemical (IHC) definition of GBM subgroup 

according to the algorithm published by our collaborators in the Pathology Unit of 

University of Brescia based on the 8-gene signature (Orzan et al, 2020). Both IHC- 

and WB-based classifications rely on protein expression, as a proxy for transcriptional 

subgroup affiliation. In particular, the 8-gene IHC panel also includes the proteins 

that we previously identified as master switches for the PN (ASCL1) and MES 

(NDRG1) subgroup (Narayanan et al, 2019) and selected for our 3-gene minimal 

signature. Notwithstanding the good performance of our 3-gene signatures in 

classifying GBM samples by K-means (see Fig. 5.8), our minimal signature is smaller 

than the 8-gene IHC panel and generally more qualitative than quantitative; 

moreover, WB analysis doesn’t let us distinguish between tumoral cells and 
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microenvironment contribution within the same GBM specimen, as would be easily 

carried out with a section staining. Additionally, WB analysis is performed on limited 

portions of the samples, which were not fully representative of the whole surgical 

samples. Conversely, IHC diagnosis was carried out on pathologist-reviewed 

representative sections of the gross tumor samples. Therefore, we used IHC 

subgroup diagnosis as a reference to which compare our WB panel. Table 5.12 

summarizes subgroup affiliations of original tumors as defined by IHC and WB 

minimal signature. 

 

Patient Tumor IHC Tumor WB 

160315 MES MES 

160526 CL CL 

160704 CL CL 

160503 CL CL/MES 

160525 PN CL 

160622 CL CL 

161019 MIX CL 

161205 PN/CL MES 

170421 CL CL/MES 

180420 MES CL 

180515 PN/CL CL/MES 

190125 PN/CL CL 

190920 CL CL/MES 

191119 PN/CL CL 

 

Table 5.12. Subgroup affiliation of original GBM tissue based on IHC panel and WB 
minimal gene signature classification. CL: classical, MES: mesenchymal, MIX: balanced 
mix of the 3 subtypes, PN: proneural. 
 

Remarkably, when comparing the two classifications, we had a perfect match in 

4/14 cases (1 MES and 3 CL), while we added a MES component to 3 CL tumors, 

defining 3 mixed CL/MES GBMs. This may be explained by a contribution of infiltrated 

normal white matter in the tumor microenvironment that stains positive for NDRG1, 

which cannot be discerned by WB in the lysate of the whole sample. Accordingly, 

quantification of pNDRG1 by IHC on tumor slices of the same tumors was null in two 

cases and very weak in the remainder. Overweighing of the MES component is 

evident also in other two cases, in which a PN/CL GBM was classified as MES and a 
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PN/CL as CL/MES. In the former case, WB analysis showed high NDRG1 and pNDRG1, 

which was null in IHC, EGFR showed low expression in both techniques, while ASCL1 

was consistently stronger in IHC and almost undetectable in WB. In the latter, IHC 

quantification of the three subgroups resulted in 54,8% PN, 42% CL and 3.2% MES, 

while WB revealed only high levels of EGFR and pNDRG1. Two PN/CL tumors were 

classified as CL by WB, as in case of GBM 190125 EGFR signal was extremely strong 

compared to NDRG1 and ASCL1, while IHC on the same patient revealed higher levels 

of ASCL1, in addition to positivity for Olig2 and PDGFRa. Tumor 191119 showed both 

extremely high levels of EGFR in addition to EGFRvIII mutation, therefore we did not 

consider the much lower signals of NDRG1 and ASCL1. On the other hand, in IHC 

ASCL1, Olig2 and PDGFRa all showed an intense signal, thus conferring a mixed 

PN/CL affiliation. This underestimation of the PN component by WB minimal signature 

may be due to a mixed effect of the known lower performance of ASCL1 antibody in 

WB, and of the smaller amount of tumoral material with respect to IHC. These effects 

would also explain the definition of 161019 as pure CL (high EGFR + EGFRvIII and 

low, yet detectable ASCL1) instead of a balanced mixture (32.4% PN, 20.8% MES, 

46.8% CL according to IHC), and of 160525 as CL (high EGFR, very low pNDRG1 and 

undetectable ASCL1) instead of PN according to IHC. 

 

 

 

 

5.3 Identification and testing of GSC-derived gene signatures for 

GBM transcriptional subgroup determination. 

 

 

5.3.1 RNA Sequencing, unsupervised clustering of GSCs and differential 

gene expression. 

In addition to paired comparison between tumor tissues and their derived GSCs 

(Fig. 5.7), we used RNA Sequencing data to perform unsupervised clustering of our 

cell lines and to compare the obtained clusters with the subgroup affiliation as 

determined by WB-based minimal signature. Figure 5.13A lists the GSC lines we 

analyzed with RNA Sequencing and their WB-based affiliation. We added a previously 

established GSC line (131210), deriving from a gliosarcoma, an extremely aggressive 

form of GBM, to implement our MES subset. Of note, GSC line 160704 was used at 

in vitro passage p9, when it expressed no MES marker and was therefore considered 
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as a pure PN line. Additionally, in case of mixed affiliation, prevalent subgroup was 

defined based on the relative levels of WB markers and their variation kinetics and 

tendency. 

As evident in Figure 5.13B, unsupervised clustering based on transcriptome 

profiling returned two main clusters (A and B), the former consisting of 3 pure MES 

lines, while the latter comprising all the PN, CL and other mixed MES lines. Notably, 

among the MES lines in cluster A, there is one derived from a gliosarcoma and 

another (160315) isolated from a giant cell GBM, i.e., two very aggressive tumors 

with marked mesenchymal features. However, some GSC lines that we classified as 

MES were classified as non-MES by RNAseq. Interestingly, Cluster A, is a subset of 

the WB-defined MES GSCs. 

 

 
Figure 5.13. Scheme of GSC lines studied with RNA Sequencing. Panel A, List of lines 
and their subgroup affiliation according to WB-minimal signature. Line 160704 was used at in 
vitro passage p9, when it expressed no MES marker and was therefore considered as a pure 
PN line. B, Unsupervised clustering of GSCs based on transcriptome profiling. Subgroup 
affiliation is shown with the color code: CL blue, MES red, PN purple. CL: classical, MES: 
mesenchymal, PN: proneural, WB: western blot. 
 

 

Notwithstanding the discrepancy with RNAseq based classification, to assess 

whether the 3-gene WB minimal signature was still consistent and predictive of 

transcriptional profiling of GSC lines, we performed differential gene expression on a 

supervised comparison, by opposing our WB-based MES lines to our WB-based PN, 

thus excluding the only CL line (170421). Next, we ran gene set enrichment with 

Verhaak’s transcriptional signatures (Figure 5.14), which showed statistically 

significant enrichment of the MES signature in our WB-based MES lines and, 

conversely, of PN and CL signatures in our WB-based PN lines. Interestingly, ASCL1, 
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which is also part of Verhaak’s PN signature, was the 11th differentially expressed 

proneural gene in our WB-defined PN lines compared to WB-defined MES GSCs. 

 

 

 

 
Figure 5.14. Gene set enrichment analysis on differential gene expression between 
WB-based MES and PN GSC lines. A, List of GSC lines in the analysis: the only classical one 
was left out for a cleaner comparison. Enrichment plots of Verhaak’s signatures (MES in B, PN 
in C, CL in D). E, statistical parameters of each analysis. Subgroup affiliation is shown with the 
color code: CL blue, MES red, PN purple. CL: classical, FDR: false discovery rate, FWER: family-
wise error rate, MES: mesenchymal, NES: normalized enrichment score, PN: proneural. 
 

 

 

Parallelly, we performed differential gene expression between the two 

unsupervised clusters resulting from RNA Sequencing and gene set enrichment with 

Verhaak’s signatures (see Figure 5.15). As expected, MES signature was significantly 

enriched in cluster A and, conversely, PN and CL signatures in cluster B. Even more 
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strikingly, ASCL1 resulted the very first gene of the PN signature being differentially 

expressed between the two clusters. On the other hand, EGFR, which is also one of 

the genes in Verhaak’s CL signature, was the 16th signature gene to be enriched in 

cluster B when compared to cluster A.  

 

 

 
Figure 5.15. Gene set enrichment analysis on differential gene expression between 
RNA Sequencing unsupervised clusters A and B. A, Unsupervised clustering based on 
transcriptional profile; we performed differential gene expression analysis on A (red square) 
vs B (blue square). Enrichment plots of Verhaak’s signatures (MES in B, PN in C, CL in D). E, 
statistical parameters of each analysis. Subgroup affiliation is shown with the color code: CL 
blue, MES red, PN purple. CL: classical, FDR: false discovery rate, FWER: family-wise error 
rate, MES: mesenchymal, NES: normalized enrichment score, PN: proneural. 
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5.3.2 Identification and validation of GSC-derived transcriptional 

signatures. 

Since both our comparisons clearly reflected the difference between MES and PN 

or, at least, MES and non-MES transcriptional subgroups, we set out to generate 

GSC-derived transcriptional signatures that could be useful in classifying unrelated 

GBMs. As Verhaak’s signatures consist of about 200 genes each, we wanted to 

propose possibly smaller but equally effective panels. 

Therefore, when considering the DGE between our WB-defined MES and PN lines, 

we selected only significantly up- and downregulated genes according to SeqC filter 

in DESeq2 R package, set a multiple test adjusted p-value threshold of 0.05 and 

identified a log2FC threshold of 3.32 (indicating a ten-fold change between the 

groups). By this strategy, we generated an 81-gene WB-MES signature and a 43-

gene WB-PN signature, as reported in Tables 5.13 and 5.14. 

 

 

WB-MES Signature 

CDKN2B MFAP2 IL6 LAMC2 PGF PLXDC2 

CDKN2A MYO1B GPR157 AMPD3 LINC00346 TMEFF2 

PLIN2 AIM1 MICAL2 IGFBP5 COL7A1 ALDH1A3 

COL6A3 CA9 PLEKHG4 PPL AKR1B10 LIF 

TGFBI P4HA2 RCN3 FBLN2 LOXL4 PKP3 

JAK3 DPT KRT18 S100A4 ADAMTSL1 FBN2 

MXRA5 SLC16A3 KRT8 KCNK3 GNA14 TUBA4A 

RP11-

152P17.2 
COL1A1 STAT6 IRX3 SPINT1 ERMN 

IGFBP3 ABI3BP WSCD2 PTPRB FAM46C ITPR1 

LOXL2 GJB2 NBL1 ELL2 ITGA11 C7orf57 

MCTP2 MYLK OLFML2A PLAUR KIAA1024 PCOLCE 

IL4R FER1L4 TMEM119 PCDHGA9 GNG11  

IER3 MT1L G0S2 TMEM45A SIRPB1  

TGM2 COL5A1 GFPT2 
RP3-

412A9.11 
PCDHGA11  

 
Table 5.13. 81-gene MES signature derived from WB-based MES vs PN GSC 
differential gene expression. Parameters: multiple test adjusted p-value threshold <=0.05, 
log2FC threshold >=3.32. 
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WB-PN Signature 

ATP1A2 EPHB1 OMG FRZB COL9A1 

ADAM23 KIF1A AC018647.3 MX1 ID3 

SLC4A10 EGFEM1P ERBB4 NOL4 AC068535.2 

MTRNR2L8 KCNJ6 ATP10B CA2 Z83851.1 

MPPED2 C1QTNF3 DLX6-AS1 PXDNL FAM171B 

CSMD1 SLITRK3 IFI27 SEPP1 CMPK2 

CXCL10 POU3F4 SALL3 PTPRT TNFSF13B 

AQP4 RSAD2 MTRNR2L1 GRIA4  

GABRQ TSPAN12 DUSP26 BRINP2  

 

Table 5.14. 43-gene PN signature derived from WB-based MES vs PN GSC differential 
gene expression. Parameters: multiple test adjusted p-value threshold <=0.05, log2FC 
threshold <=-3.32. 
 

 

In order to validate these signatures, we performed 10x10 rounds of k-means 

(Log2 Z-score transformation) on the TCGA GBM samples with known transcriptional 

affiliation that are available on the R2 platform, by dividing them into 3 clusters based 

on expression levels of the so defined 124 genes. We imposed 3 clusters based on 

the rationale that, by providing gene signatures for MES and PN, CL subgroup would 

be identified by exclusion. 

As evident in Figure 5.16A, one cluster consisted of only MES tumors (10/27, 

sensitivity 37%, positive predictive value 100%), one aggregated almost all PN GBMs 

(21/24, sensitivity 87.5%, positive predictive value 63.6%) and the last one a 

mixture of the remaining 17 MES tumors together with few PN and CL. Also, CL GBMs 

were not precisely identified and resulted equally distributed across two clusters. The 

last “mixed MES” cluster may collect those tumors with a mixed MES component, 

while the first “pure MES” cluster may consist of the most severe and less 

heterogeneous MES lesions. Notwithstanding the imperfect identification of the real 

transcriptional affiliation, this panel shows a significant correlation with GBM 

subgroups (Fisher’s exact test p-value = 9.9e-12). 

Since we generated this panel by comparing only MES and PN GSC lines, we 

decided to repeat the k-means clustering analysis but only on MES and PN tumors. 

We noticed an improvement in the accuracy and reliability of the test with still high 
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significance (Fisher’s exact test p-value = 1.56e-11, see Figure 5.16B), as all PN 

GBMs were clustered together (24/24, sensitivity 100%, positive predictive value 

88.9%), while 24/27 MES tumors were properly defined (sensitivity 88.9%, positive 

predictive value 100%). 

  

 

 

 

 
Figure 5.16. K-means clustering analysis of unrelated human GBMs, based on 
transcriptional signatures identified from the WB-MES vs WB-PN comparison. A, 3 
clusters with MES, PN and CL tumors; cluster 1 identifies 21/24 PN GBMs, cluster 3 10/27 MES 
GBMs, while cluster 2 17/27 MES with additional tumors of the other subtypes; CL GBMs are 
equally distributed across cluster 1 and 2. B, 2 clusters with MES and PN tumors; all PN GBMs 
cluster together (plus 3 MES), while 24/27 MES segregate in the other cluster. Subgroup 
affiliation is shown with the color code: CL blue, MES red, PN purple. CL: classical, MES: 
mesenchymal, PN: proneural. 
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Parallelly, we repeated the same procedure and considered the differential gene 

expression between unsupervised cluster A and B, selecting only significantly up- and 

downregulated genes according to SeqC filter. However, since in this comparison the 

differences between the two groups were much stronger, we could set a multiple test 

adjusted p-value threshold of 0.005 and a log2FC threshold of 5.64 (indicating a fifty-

fold change between the groups). Thus, we generated a 49-gene Cluster A (MES) 

signature and a 98-gene Cluster B (non-MES) signature, as reported in Tables 5.15 

and 5.16. 

 

 

 

 

 

Cluster A (MES) Signature 

STAT6 RP11-58E21.3 CSF3 LCP1 NDNF 

KCNK3 SLC16A6 IER3 AQP9 LAPTM5 

CA9 ATP8B4 SLC7A14 EDIL3 
RP11-

150O12.1 

IL6 GJB2 COL21A1 FCMR PCSK1 

FGF7 PTGS2 SPINT1 AQP1 MTUS2 

CCL26 TGM2 RP11-91K9.1 DPT CH25H 

GDF5 FOXS1 AKR1B15 RP11-47I22.3 GPRC5C 

MMP1 KRT8 MSC GS1-600G8.5 SRGN 

FGF5 
RP11-

213H15.3 
IL1B DMKN ALDH1A3 

PTGER4 POU2F2 ERMN RP11-352D3.2  

 

Table 5.15. 49 gene - Cluster A (MES) signature derived from RNA Sequencing 
unsupervised cluster A vs B GSC differential gene expression. Parameters: multiple test 
adjusted p-value threshold <=0.005, log2FC threshold >=5.64. 
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Cluster B (non-MES) Signature 

NLGN3 C1orf61 FAM181B DLL3 PLD5 DDX25 

S100B CCND2 HEPACAM DCC SLC6A1 ASIC4 

IGSF11 NXPH1 ADAMTS3 SALL3 CACNG8 LINGO1 

ATP1B2 BBOX1 LAMP5 ZDHHC22 ARHGAP25 COL20A1 

KCNJ10 PMP2 KIF1A TAGLN3 RPE65 
RP11-

449J21.5 

TTYH1 SLITRK2 SNTG1 AGAP2 CD200 ADGRA1 

NAT8L FLRT3 FAT3 ATP13A4 RPH3A SLITRK3 

OLIG1 B3GAT1 CACNG4 FAM19A5 ATCAY LRRTM3 

OLIG2 SLIT1 SCG3 HAPLN1 DUSP26 CHST9 

AIF1L SEZ6L GFAP PALM ADGRB1 ATP1A2 

WSCD1 FGFBP3 KCNJ16 ASCL1 IGLON5 CXXC4 

ZNF853 KIAA1456 GDPD2 LRRC4B COL9A1 COL2A1 

RP11-

161M6.2 
SOX8 ACTN2 ERBB3 CADM2 SCN3A 

BCAN C2orf80 DPP6 C2orf72 GSG1L RLBP1 

CACNG7 KCNJ8 FOXF2 HES5 KCNQ2  

BRSK2 MAL OMG CD74 NRSN1  

NCAN ICA1 MYT1 CDH10   

 

Table 5.16. 98 gene Cluster B (non-MES) signature derived from RNA Sequencing 
unsupervised cluster A vs B GSC differential gene expression. Parameters: multiple test 
adjusted p-value threshold <=0.005, log2FC threshold <=-5.64. 
 

 

As done for signatures generated from the supervised differential gene expression, 

we performed 10x10 rounds of k-means (Z-score transformation) on the TCGA GBM 

samples with known transcriptional affiliation and available on the R2 platform, 

generating 3 clusters based on expression levels of these 147 genes. Again, we relied 

on the rationale that, by providing gene signatures for MES and PN, CL subgroup 

would be identified by exclusion. As a matter of fact, even though cluster B also 

includes one MES line and two CL/MES mixtures (in each of which either subtype 

prevailed), thus indicating more of a non-MES profile, GSEA analyses showed a 

clearer PN profile (NES -2.397 and denser signature hits on cluster B extreme) than 
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CL (NES -1.889 and more widespread signature hits). Therefore, we assumed that 

profile A and B might be able to also discern CL subgroup. 

Figure 5.17 shows the clustering with correct identification of 25/27 MES tumors 

(sensitivity 92.6%, positive predictive value 92.6%), 20/24 PN GBMs (sensitivity 

83.3%, positive predictive value 95.2%) and 15/17 CL lesions (sensitivity 88.2%, 

positive predictive value 75%), for a total panel sensitivity of 88.2%. Therefore, this 

panel is actually able to discern all three subgroups with a very high performance 

also on CL samples (Fisher’s exact test p-value = 3.35e-21) and shows an extreme 

improvement with respect to the signatures identified from the supervised DGE as 

well as to the 3-gene panel used in WB. 

As done previously, if we repeat the k-means clustering (Log2 z-score 

transformation) only on MES and PN tumors, we obtain an 100% accuracy and 

reliability of the test (Fisher’s exact test p-value = 4.36e-15, see Figure 5.18A), as 

all PN and MES GBMs correctly clustered together. Notably, if we perform the k-

means clustering (Log2 z-score transformation) only on CL and PN tumors and only 

using Cluster B signature, we correctly classify 21/24 PN (sensitivity 87.5%, positive 

predictive value 95.5%) and 16/17 CL GBMs (sensitivity 94.1%, positive predictive 

value 84.2%), with a very high significance (Fisher’s exact test p-value = 4.36e-15, 

see Figure 5.18B). 
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Figure 5.17. K-means clustering analysis of unrelated human GBMs, based on 
transcriptional signatures identified from the RNA Sequencing Unsupervised Clusters 
A and B. 3 clusters with MES, PN and CL tumors; cluster 1 identifies 25/27 MES GBMs, cluster 
2 20/24 PN GBMs, cluster 3 15/17 CL GBMs. Subgroup affiliation is shown with the color code: 
CL blue, MES red, PN purple. CL: classical, MES: mesenchymal, PN: proneural. 
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Figure 5.18. K-means clustering analysis of unrelated human GBMs, based on 
transcriptional signatures identified from the RNA Sequencing Unsupervised Clusters 
A and B. A, 2 clusters with MES and PN tumors; all PN and MES GBMs cluster together in the 
two perfectly segregated groups. B, 2 clusters with CL and PN tumors segregated solely on the 
base of Cluster B signature; 21/24 PN and 16/17 CL tumors are correctly grouped together. 
Subgroup affiliation is shown with the color code: CL blue, MES red, PN purple. CL: classical, 
MES: mesenchymal, PN: proneural. 
 

 

We further validated our proposed signatures by gene set enrichment analyses 

(GSEA) performed on publicly available mRNA sequencing data of human samples. 

Briefly, we matched transcriptional affiliation of TCGA GBM samples from R2 platform 

with downloadable data from a cohort of the same patients, selecting only primary 

tumors, as described in the Methods section. We then performed pairwise differential 

gene expression analysis on the obtained 4 CL, 9 MES and 6 PN TCGA samples, and 

subsequent GSEA, interrogating the 3 contrasts with our signatures. Figures 5.19, 

5.20 and 5.21 report the relative enrichment plots and statistics. Our signatures were 
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significantly able to discern MES from CL and from PN tumors. Interestingly, our MES 

signatures (Cluster A and WB-MES) were significantly enriched in PN tumors when 

compared to CL GBMs. 

 

 
Figure 5.19. Enrichment plots and statistics of our transcriptional signatures in the 
TCGA CL vs PN GBMs. A, signatures derived from unsupervised clusters A and B. B, 
signatures derived from WB-panel defined PN and MES GSCs. Only MES signatures (UC-A and 
WB-MES) are enriched in PN vs CL tumors. CL: classical, FDR: false discovery rate, FWER: 
family-wise error rate MES: mesenchymal, NES: normalized enrichment score, PN: proneural, 
UC: unsupervised cluster, WB: western blot. 

 

 
Figure 5.20. Enrichment plots and statistics of our transcriptional signatures in the 
TCGA MES vs CL GBMs. A, signatures derived from unsupervised clusters A and B. B, 
signatures derived from WB-panel defined PN and MES GSCs. MES signatures (UC-A and WB-
MES) are enriched in MES vs CL tumors, while non-MES/PN signatures (UC-B and WB-PN) in 
CL. CL: classical, FDR: false discovery rate, FWER: family-wise error rate MES: mesenchymal, 
NES: normalized enrichment score, PN: proneural, UC: unsupervised cluster, WB: western 
blot. 
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Figure 5.21. Enrichment plots and statistics of our transcriptional signatures in the 
TCGA MES vs PN GBMs. A, signatures derived from unsupervised clusters A and B. B, 
signatures derived from WB-panel defined PN and MES GSCs. MES signatures (UC-A and WB-
MES) are enriched in MES vs PN tumors, while non-MES/PN signatures (UC-B and WB-PN) in 
PN. FDR: false discovery rate, FWER: family-wise error rate MES: mesenchymal, NES: 
normalized enrichment score, PN: proneural, UC: unsupervised cluster, WB: western blot. 
 

 

 

 

To assess whether the signatures we identified could be a novel addition to what 

is already described in the literature, we evaluated the extent to which the 3 MES 

and the 3 PN signatures overlapped with each other. Considering MES signatures, 

only STAT6 was common to Verhaak’s MES, WB-MES, and Cluster A Signatures. Table 

5.17 reports the genes common to the mesenchymal signatures. Jaccard Index was 

1.5% for Verhaak’s MES and Cluster A, 3.8% for Verhaak’s MES and WB-MES, 10.2% 

and for Cluster A and WB-MES, indicating general independence of the 3 signatures, 

with a slightly higher similarity between the two MES signatures that we proposed. 
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Common to # Genes 

Verhaak MES – Cluster A – WB 

MES 
1 STAT6 

Verhaak MES – Cluster A 4 LAPTM5, LCP1, PTGER4, STAT6 

Verhaak MES – WB MES 11 

IL4R, P4HA2, AIM1, S100A4, 

COL1A1, COL5A1, SLC16A3, TGFBI, 

PLAUR, AMPD3, STAT6 

Cluster A – WB MES 12 

DPT, ALDH1A3, IER3, KCNK3, ERMN 

KRT8, TGM2, CA9, GJB2, SPINT1, 

IL6, STAT6 

 

Table 5.17. Genes common to the three MES Signatures. MES: mesenchymal, WB: 
western blot, #: number of genes. 
 

 

 

Table 5.18 reports the genes that are found in common among the 3 proneural 

signatures. Only DUSP26 was common to all of them. Jaccard Index was 5.8% for 

Verhaak’s PN and Cluster B, 1.9% for Verhaak’s PN and WB-PN, and 5.2% for Cluster 

B and WB-PN, denoting independence of the signatures. Figure 5.22 reports 

quantitative Venn diagrams of the two sets of signatures. 

 

 

Common to # Genes 

Verhaak PN – Cluster B – WB PN 1 DUSP26 

Verhaak PN – Cluster B 15 

SCG3, SCN3A, DLL3, TTYH1, SEZ6L 

BCAN, CXXC4, C1orf61, ERBB3 

ASCL1, NLGN3, OLIG2, DPP6, MYT1 

DUSP26 

Verhaak PN – WB PN 4 MPPED2, NOL4, EPHB1, DUSP26 

Cluster B – WB PN 7 
KIF1A, COL9A1, ATP1A2, SLITRK3 

SALL3, OMG, DUSP26 

 

Table 5.18. Genes common to the three PN Signatures. Of note, ASCL1 is common to 
Verhaak’s PN and GSC Unsupervised Cluster B signatures. PN: proneural, WB: western blot, 
#: number of genes. 
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Figure 5.22. Venn diagrams showing the intersections between the MES (A) and PN 
(B) transcriptional signatures published by Verhaak and those identified from the 
RNA Sequencing of our GSCs. MES: mesenchymal, PN: proneural, WB: western blot. 
 

 

 

 

We performed the same overlap analyses with the reduced subgroup-specific 

signatures proposed in the subsequent work by Verhaak’s group, after removal of 

the NEU subtype (Wang et al, 2017). Considering MES signatures, only IER3 and IL6 

were common to Wang’s MES, WB-MES, and Cluster A Signatures. Table 5.19 reports 

the genes common to the mesenchymal signatures. Jaccard Index was 3.1% for 

Wang’s MES and Cluster A and 5.6% for Wang’s MES and WB-MES, confirming 

general independence of the 3 signatures. Table 5.20 reports the genes that are 

found in common among the 3 proneural signatures. Notably, no gene was common 

to all of them. Jaccard Index was 1.1% for Wang’s PN and Cluster B and 1.7% for 

Wang’s PN and WB-PN. Figure 5.23 reports quantitative Venn diagrams of the two 

sets of signatures. 
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Common to # Genes 

Wang MES – Cluster A – WB MES 2 IER3, IL6 

Wang MES – Cluster A 1 PTGS2 

Wang MES – WB MES 5 
COL5A1, P4HA2, TGFBI, PLAUR, 

COL1A1 

Cluster A – WB MES 10 

DPT, ALDH1A3, KCNK3, ERMN 

KRT8, TGM2, CA9, GJB2, SPINT1, 

STAT6 

 
Table 5.19. Genes common to the three MES Signatures. MES: mesenchymal, WB: 
western blot, #: number of genes. 
 

 

Common to # Genes 

Wang PN – Cluster B – WB PN 0  

Wang PN – Cluster B 2 MYT1, ERBB3 

Wang PN – WB PN 1 EPHB1 

Cluster B – WB PN 7 
KIF1A, COL9A1, ATP1A2, SLITRK3 

SALL3, OMG, DUSP26 

 

Table 5.20. Genes common to the three PN Signatures. PN: proneural, WB: western blot, 
#: number of genes. 
 

 

 
Figure 5.23. Venn diagrams showing the intersections between the MES (A) and PN 
(B) transcriptional signatures published by Wang and those identified from the RNA 
Sequencing of our GSCs. MES: mesenchymal, PN: proneural, WB: western blot. 
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5.4 Identification of subgroup-restricted altered pathways and 

phenotypes in MES and PN GSCs. 

 

By exploiting all significant differentially expressed genes between our GSCs, 

without imposing any cut-off we took advantage of EnrichR webtools to identify 

transcriptional pathways, molecular pathways, ontologies and cell or tissue 

phenotypes, potentially playing a key role in our subgroup specific GSC lines. Tables 

5.21, 5.22, 5.23 and 5.24 show the most relevant findings for both sides of each 

comparison between our GSCs. 

 

Feature ID OR Adj p-value 

Transcriptomic NFkB1 Activation 9.18 2.2e-31 

Transcriptomic HIF1A 7.30 2.8e-30 

Transcriptomic ASCL1 knock out 4.77 7.5e-18 

Transcriptomic YAP1 3.48 0.02232 

Transcriptomic cJUN 2.30 3.2e-13 

Pathway IL7R 3.95 0.00265 

Pathway PDGFRB 3.03 0.02403 

Pathway EGFR 2.17 0.00527 

Pathway Hypoxia 7.31 3.2e-18 

Pathway 
Epithelial-Mesenchymal 

Transition 
6.84 8.1e-17 

Pathway TNFa signaling via NFkB 5.96 9.6e-14 

Pathway Glycolysis 4.72 1.8e-9 

Pathway mTORC1 signaling 3.40 2.2e-5 

Pathway Inflammatory response 3.05 2.0e-4 

Pathway Reactive O2 Species 4.52 0.00653 

Pathway IL signaling 4.42 0.00235 

Pathway Integrin signaling 3.35 0.00235 

Pathway ECM organization 4.78 2.0e-11 

Pathway Collagen formation 8.50 6.3e-9 

Pathway Beta1 integrin 8.79 1.6e-7 

Pathway Beta3 integrin 10.59 1.8e-6 

Pathway HIF1A network 6.07 1.8e-4 

Cell types U87MG CNS 5.27 1.4e-28 
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Cell types U118MG CNS 3.53 3.0e-18 

Cell types Smooth muscle 9.53 2.9e-45 

Cell types Adipocyte 3.61 5.6e-5 

 

Table 5.21. Characterizing features of GSC Unsupervised cluster A with respect to B. 
Odds ratios (OR) and relative multiple tests-adjusted p-values are reported. CNS: central 
nervous system, ECM: extracellular matrix, IL: interleukin. 
 

 

Feature ID OR Adj p-value 

Transcriptomic ASCL1 8.18 4.2e-36 

Transcriptomic OLIG2 16.53 6.7e-82 

Transcriptomic OLIG1 16.04 8.9e-80 

Transcriptomic NFkB1 DOWN 15.07 3.1e-75 

Pathway Neural crest differentiation 5.94 4.0e-6 

Pathway 
Oligodendrocyte 

specification 
8.95 0.00102 

Pathway GBM signaling 4.31 0.00264 

Pathway Chemical synapses 3.65 4.7e-6 

Pathway Medulloblastoma 6.00 2.8e-7 

Pathway Ependymoma 8.10 0.00018 

Pathway Neuronal System 2.70 0.00083 

Pathway GBM PN 24.99 0.00072 

Pathway P53 pathway 4.97 0.00133 

Pathway Notch pathway 4.26 0.02845 

Pathway Hedgehog signaling 5.95 0.00473 

Pathway Rb DNA damage response 13.00 0.02430 

Disease Pilocytic astrocytoma 4.64 0.00022 

Disease Ependymoma 4.13 0.00117 

Disease Primary brain tumor 4.31 0.00661 

Disease Anaplastic astrocytoma 3.21 0.00662 

Disease Recurrent brain tumor 7.20 0.00662 

Disease Brainstem neoplasm 41.56 0.01864 

 

Table 5.22. Characterizing features of GSC Unsupervised cluster B with respect to A. 
Odds ratios (OR) and relative multiple tests-adjusted p-values are reported. GBM: 
glioblastoma, PN: proneural. 
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Feature ID OR Adj p-value 

Transcriptomic HIF1A 6.69 1.5e-6 

Transcriptomic cJUN 3.74 2.1e-9 

Transcriptomic SMAD2 & SMAD3 2.65 8.7e-5 

Transcriptomic YAP1 2.07 0.00396 

Pathway 
Epithelial-Mesenchymal 

Transition 
21.61 2.9e-23 

Pathway Hypoxia 16.52 3.9e-17 

Pathway Glycolysis 7.99 1.9e-5 

Pathway TNFa signaling via NFkB 7.24 0.00001 

Pathway Inflammatory response 4.40 0.00592 

Pathway Angiogenesis 6.97 0.08443 

Pathway ECM organization 9.39 1.7e-9 

Pathway ECM-receptor interaction 12.27 0.00008 

Pathway PI3K-Akt signaling 6.92 2.6e-7 

Pathway Focal adhesion 7.20 0.00008 

Pathway 
Fructose and mannose 

metabolism 
11.93 0.02983 

Disease 
Li-Fraumeni syndrome 

MES stem cells 
13.70 5.8e-26 

Cell types U87MG CNS 7.05 7.4e-12 

Cell types U118MG CNS 4.33 3.6e-7 

Cell types Smooth muscle 14.34 6.9e-23 

Cell types Adipocyte 8.05 8.0e-6 

 

Table 5.23. Characterizing features of WB-defined MES GSCs with respect to WB-
defined PN GSCs. Odds ratios (OR) and relative multiple tests-adjusted p-values are 
reported. CNS: central nervous system, ECM: extracellular matrix. 
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Feature ID OR Adj p-value 

Transcriptomic ASCL1 15.11 5.7e-6 

Transcriptomic ADAMTS19 13.26 0.00002 

Transcriptomic OLIG1 8.21 0.00205 

Pathway IFNa response 21.58 0.00013 

Pathway IFNgamma response 10.13 0.00199 

Pathway Spinal cord injury 13.64 0.01712 

Pathway CMP phosphorylation 41.02 0.05174 

Pathway 

Superpathway of 

pyrimidine ribonucleotides 

de novo biosynthesis 

28.39 0.05174 

Ontology Neuron projection 6.02 0.00954 

Ontology Dendrite 7.43 0.02108 

Cell types Cancer stem cells (skin) 25.59 0.00002 

Cell types Neuronal progenitors 25.59 0.00002 

Cell types Neural stem cells 20.46 0.00034 

Cell types Glial cells (brain) 17.11 0.00220 

Cell types Dorsal striatum 8.61 5.5e-12 

Cell types Prefrontal cortex 8.61 5.5e-12 

Cell types Cerebral cortex 7.44 1.4e-10 

Cell types Fetal brain 6.91 6.4e-10 

Cell types Oligodendrocyte 6.91 6.4e-10 

Cell types DAOY 3.90 0.00035 

Cell types ASCL1 UP 5.17 0.00009 

 

Table 5.24. Characterizing features of WB-defined PN GSCs with respect to WB-
defined MES GSCs. Odds ratios (OR) and relative multiple tests-adjusted p-values are 
reported. 

 

 

 

Consistently, the two MES clusters (Cluster A and WB-MES GSCs), show similar 

phenotypes, as both groups result related to classical glioma cell lines (U87MG and 

U118MG) and to other normal mesenchyme-derived lineages (adipocytes and smooth 

muscle cells). Notably, Cluster A, which, as previously stated, is a subset of the WB-
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MES GSCs, has much higher significance levels for these phenotypes with respect to 

WB-MES. On the other hand, epithelial to mesenchymal transition features are 

strikingly more significant in our WB-MES (OR 21.61 p-value 2.9e-23) than in Cluster 

A (OR 6.84 p-value 8.1e-17). This suggests that non-MES to MES transition is very 

similar to epithelial to mesenchymal transition and is a key process in GBM 

progression. Therefore, the classification of our MES lines in unsupervised Clusters A 

and B weakens the difference in these stigmata, while our WB-MES GSCs comprehend 

all cell lines with a significant degree of mesenchymalization.  

On the contrary, Cluster A groups only MES lines that are most highly divergent 

from cluster B. In line with this observation, hypoxic (WB-MES OR 16.52 p-value 

3.9e-17, Cluster A OR 7.31 p-value 3.2e-18), glycolytic (WB-MES OR 7.99 p-value 

1.9e-5, Cluster A OR 7.72 p-value 1.8e-9) and inflammatory response pathways 

(WB-MES OR 4.40 p-value 5.9e-3, Cluster A OR 3.05 p-value 2.0e-4), as well as 

important master genes related to these pathways such as HIF1a and NF-kB, are 

only present or generally more enriched in Cluster A than in WB-MES. 

Performing the same analysis on the two non-MES/PN clusters (Cluster B and WB-

PN), both groups show significant similarity to normal brain components (e.g., dorsal 

striatum and prefrontal cortex) and to less malignant glial tumors or even benign 

tumors such as pilocytic astrocytoma and ependymoma. Notably, the actual pathway 

stigmata typical of PN GBMs are recognized in Cluster B, in addition to neuronal 

tumors (medulloblastoma) and their derived cell lines (DAOY) in WB-PN GSCs. Both 

groups show enrichment for pathways involved in CNS developmental stages (e.g., 

neural crest differentiation, fetal brain, neuronal progenitors, neural stem cells) as 

well as in normal glial counterparts (glial cells in brain, oligodendrocyte, 

oligodendrocyte specification) and in healthy neuronal components (dendrite, neuron 

projection, chemical synapses). Also, both groups, but especially Cluster B, show 

enrichment of known PN master genes such as ASCL1 (OR 8.18 p-value 4.2e-36), 

OLIG1 (OR 16.04 p-value 8.9e-80) and OLIG2 (OR 16.53 p-value 6.7e-82). 

Therefore, MES GSCs are characterized by features of inflammatory response, 

epithelial to mesenchymal transition, hypoxia and glycolysis and show a more 

deranged and undifferentiated state, while non-MES/PN GSCs show features of 

differentiated glial or progenitor neural cells and of normal healthy components of 

neural cells. 
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5.5 Assessment of the in vivo abilities of MES and PN GSCs to model 

GBM subgroups. 

 

As our GSC lines showed a marked subgroup drift under NSA culturing conditions, 

as previously reported (Bhat et al, 2013; Nakano, 2015), we further proceeded to 

assess their in vivo potential to replicate reliably subgroup-specific features in 

preclinical in vivo GBM models. As a matter of fact, MES GSCs as well as GCLs induce 

tumors that grow as lowly infiltrative, compact, expansive, and sometimes 

intraventricular masses, which grossly distort brain parenchyma and may cause 

hydrocephalus. On the contrary, PN GSCs usually grow more infiltratively, spreading 

through myelin fiber-bundles and resembling lower grade gliomas (see Figure 5.24). 

 
Figure 5.24. In vivo growth pattern of established MES and PN GSCs. MES lines grow 
as more compact masses, easily detectable by H&E staining and may cause hydrocephalus. 
PN lines variably infiltrate mouse brain parenchyma and may be difficult to detect by H&E 
staining; thus, IHC for human EGFR is necessary to detect infiltrating cells along white matter 
tracts. MES lines give rise to tumors that resemble actual human high-grade gliomas, while 
PN lines more often form tumors that mimic lower grade gliomas. H&E: hematoxylin and eosin, 
IHC: immunohistochemistry, MES: mesenchymal, PN: proneural. 
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Therefore, we transplanted all the 14 GSC lines that we isolated from our patients 

in the striatum of immunocompromised mice and followed the development of 

tumoral masses by serial MRI and evaluation of mice health status. 

Nine out of the total 14 lines generated tumors that were detectable at MRI, while 

5 failed to give rise to xenografts, as also confirmed by hematoxylin and eosin 

sections. GSC lines that gave rise to xenografts took from a minimum of 2 months 

to a maximum of 6 to generate full-blown lesions. Lines that failed to produce tumors 

were followed for up to 6 months before sacrificing the mice and confirming the 

negative result by pathological analysis. Out of the 5 GSC lines that did not generate 

full blown xenografts, lines 180515 and 160622 gave rise to grafts comprising a few 

tumor cells as detected by H&E staining; however, they were too scant for warranting 

subsequent investigations.  

Based on MRI aspect of the tumors at T2-weighted, post-contrast T1 and 

diffusion/NODDI sequences and on the kinetics of tumor growth, we assigned a 

radiology-based subgroup pattern to the xenografts, as provided in Table 5.25. As a 

matter of fact, PN xenografts appear more infiltrating, do not take up contrast and 

grow more slowly, while MES xenografts are more compact, do not infiltrate, show 

contrast enhancement, and grow faster. CL tumors are variably infiltrating, with 

noticeable nodules and show variable enhancement. Figure 5.25 shows an example 

of radiologic PN and MES patterns. 
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Patient GSC WB 
early 

GSC WB 
late 

Time to 

full blown 

xenograft 

Xenograft MRI 

growth pattern 

Xenograft 

radiologic 

subgroup 

160315 MES MES 6 months 

Compact mass, 

contrast 

enhancement 

MES 

160526 PN/CL* PN/CL* 4-5 months 
Infiltrating mass, 

non-enhancing 
PN 

160704 PN PN/MES 2 months 
Compact mass, 

non-enhancing 
CL 

160503 MES MES No tumor No tumor No tumor 

160525 MES MES No tumor No tumor No tumor 

160622 CL/PN CL/PN No tumor No tumor No tumor 

161019 CL/MES* CL/MES* 2-3 months 
Variably infiltrating, 

variably enhancing 
PN/CL 

161205 PN/CL PN/CL 4 months 
Variably infiltrating, 

non-enhancing 
PN 

170421 CL* CL/MES* 2 months 
Variably infiltrating, 

lowly enhancing 
CL 

180420 CL/MES CL/MES 2-3 months 

Compact mass, 

non-enhancing, 

high T2 

MES 

180515 MES CL/MES No tumor No tumor No tumor 

190125 nd nd 4-5 months 
Compact mass, 

non-enhancing 
CL 

190920 PN/CL PN/CL 2 months 

Compact and 

infiltrating, lowly 

enhancing 

CL 

191119 CL/MES . No tumor No tumor No tumor 

 

Table 5.25. Radiological growth pattern of GSC-derived xenografts compared to WB 
classification of the same lines. 9/14 lines generated MRI-detectable lesions. Radiological 
subgroup was defined based on MRI aspect of the tumors (infiltrating vs compact lesions, 
contrast uptake) and kinetics of tumor growth. GSC lines that maintain EGFRvIII are indicated 
with an asterisk (*). CL: classical, MES: mesenchymal, nd: not defined, PN: proneural. 
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Figure 5.25. Radiological analysis of growth pattern of GSCs. GBM 160526 shows a very 
infiltrating lesion that is visible only in NODDI tricompartmental diffusion map and mean 
diffusivity map (red and white signals, respectively; white arrows), while T2 and post-contrast 
T1 sequences look unaffected. GBM 160315 generates a large compact mass that develops 
also intraventricularly causing hydrocephalus and showing gadolinium uptake. MD: mean 
diffusivity, MES: mesenchymal, PN: proneural, T1gd: T1+gadolinium. 

 

 

 

 

We then performed the same IHC panel analysis to determine the transcriptional 

subgroup affiliation of the xenografts, as done with the parental human tumors. 

Figure 5.26 shows IHC analysis of patient samples 180420 and 161205 and their 

derived xenografts. Table 5.26 summarizes the transcriptional subgroups of the 

original GBMs and of their relative xenografts, as determined by IHC. As it is evident, 

most of the times the affiliation of the xenografts perfectly matches that of the 

original human tumor, and, when a variation is observed, is generally minor. Table 

5.27 reports the percentage of each subgroup-specific cell component for the tumors 

that generated GSCs and for their derived xenografts. 
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Figure 5.26. IHC panel comparing the expression of subgroup-specific classifiers in 
the original human GBM samples and their corresponding GSC-derived xenografts. 
A, GBM 180420 is a MES tumor that gave rise to a MES GSC line that generated a MES 
xenograft. B, GBM 161205 is a PN/CL tumor that gave rise to a PN GSC line that in turn formed 
a PN xenograft. Intensity of staining signal is generally very similar between the human and 
the murine counterparts with very limited divergences (see EGFR in A and PDGFRa in B). H&E: 
hematoxylin end eosin, MES: mesenchymal, PN: proneural. 
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Patient Tumor IHC Xenograft IHC 

160315 MES MES 

160526 CL CL 

160704 CL PN/CL 

160503 CL No tumor 

160525 PN No tumor 

160622 CL Only few cells 

161019 MIX CL 

161205 PN/CL PN 

170421 CL CL 

180420 MES MES 

180515 PN/CL Only few cells 

190125 PN/CL PN/CL + MIX 

190920 CL CL 

191119 PN/CL No tumor 

Table 5.26. Transcriptional subgroup affiliation of parental human tumors and their 
GSC-derived xenografts as determined by IHC. 9/14 lines generated full-blown lesions, 2 
showed only few cells that were too scant for panel analysis, 3 did not show tumoral cells at 
all. CL: classical, MES: mesenchymal, MIX: balanced mix of the 3 subtypes, PN: proneural. 
 

 

Pts 
%PN 

Human 

%CL 

Human 

%MES 

Human 

Subtype 

Human 

%PN 

Xeno 

%CL 

Xeno 

%MES 

Xeno 

Subtype 

Xeno 

160315 9.2 1.4 89.4 MES 22 13 65 MES 

160526 18.2 81.8 0 CL 17.5 82.5 0 CL 

160704 21.8 77.8 0.4 CL 48 45 7 PN/CL 

161019 32.4 46.8 20.8 MIX 16.5 82.5 1 CL 

161205 53 44.6 2.4 PN/CL 68 30 2 PN 

170421 9 91 0 CL 20 70 10 CL 

180420 20.2 5.2 74.6 MES 16.5 8.5 75 MES 

190125 56.8 41.6 1.6 PN/CL 
51.6 46.2 2.2 PN/CL 

39.4 35 25.6 MIX 

190920 33.6 65.4 1 CL 26.7 72.6 0.7 CL 

Table 5.27. Percentage of transcriptional subgroup-specific components in parental 
human tumors and their GSC-derived xenografts as assessed by IHC (on tumors for 
which also xenografts were available). Of note, the line derived from patient 190125 generated 
two different types of xenografts, one PN/CL and a tumor that was a mixture of the 3 
subgroups. CL: classical, MES: mesenchymal, MIX: balanced mix of the 3 subtypes, PN: 
proneural, Pts: patients, Xeno: xenografts. 
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5.6 Summary of subgroup evolution from original human GBM to in 

vitro GSC line, to in vivo xenograft. 

 

Table 5.28 provides a comprehensive summary of the subgroup affiliation 

evolution from parental human GBM to in vitro GSCs, and finally to in vivo xenografts. 

By setting the IHC panel-based diagnosis as the standard reference for assessing the 

most reliable affiliation, we generated 1 stable MES GSC line from 1 MES tumor, while 

in the remaining 13 cases there was a variable shift from parental GBM to their 

derived cell lines. However, once transplanted in vivo, lines derived from 2 MES, 3 

CL and 1 PN/CL human GBMs gave rise to xenografts identical to the parental 

patients’ GBM specimen, while in 3 additional cases there was a slight change (from 

1 CL GBM to PN/CL xenograft, from 1 PN/CL GBM to PN xenograft and from 1 mixed 

affiliation human tumor to CL xenograft). The remaining 5 cases (all CL and PN/CL 

original tumors) failed to generate xenografts, with only scant tumoral cells 

detectable in case of patients 160622 and 180515.  

Taken together, this indicates a substantial reversion in vivo of the subgroup drift 

observed in vitro. As a matter of fact, all GSC lines showed a change in subgroup 

affiliation when transplanted into mice striatum, except for 1 MES, 1 PN and 1 CL 

(170421, with a very minor MES component) cell lines, which were derived 

respectively from a MES, a PN/CL and a CL tumor. Notably, the non-tumorigenic GSC 

lines were mostly MES, as out of five, 2 were purely MES, 2 balanced or MES-

prevalent CL/MES mixes and only one was PN/CL. 
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Patient 
Tumor 

IHC 

Tumor 

WB 
GSC WB 

early 
GSC WB 

late 

Xenograft 

radiologic 

subgroup 

Xenograft 

IHC 

160315 MES MES MES MES MES MES 

160526 CL CL PN/CL* PN/CL* PN CL 

160704 CL CL PN PN/MES CL PN/CL 

160503 CL CL/MES MES MES No tumor No tumor 

160525 PN CL MES MES No tumor No tumor 

160622 CL CL PN/CL PN/CL No tumor 
Only few 

cells 

161019 MIX CL CL/MES* CL/MES* PN/CL CL 

161205 PN/CL MES PN PN PN PN 

170421 CL CL/MES CL* CL/MES* CL CL 

180420 MES CL CL/MES CL/MES MES MES 

180515 PN/CL CL/MES MES CL/MES No tumor 
Only few 

cells 

190125 PN/CL CL nd nd CL 
PN/CL + 

MIX 

190920 CL CL/MES PN/CL PN/CL CL CL 

191119 PN/CL CL CL/MES . No tumor No tumor 

 
Table 5.28. Table summarizing the subgroup affiliation of the original GBM samples, 
their derived GSC lines at early and intermediate/late in vitro passages under NSA 
conditions, and of their corresponding xenografts. GSC lines that maintain EGFRvIII are 
indicated with an asterisk (*). CL: classical, MES: mesenchymal, nd: not defined, PN: 
proneural. 
 

 

 

5.7 Analysis of metabolic pathways differentiating MES and PN 

GSCs. 

 

We next took advantage of a collateral untargeted metabolomic analysis, 

performed on PN and MES xenografts generated from the transplantation of high-

passages PN GSC lines (previously isolated in our lab), recently established MES lines 

(160315, 131210) and GCLs (U87). This experiment was performed for another lab 

project, primarily focusing on metabolic pathways specific to PN and MES tumors 

(Pieri et al, 2022).  
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Briefly, we integrated differentially expressed genes and differentially enriched 

metabolites to specifically interrogate the metabolic pathways potentially involved in 

subgroup affiliation. By means of bioinformatic analysis we identified 23 significantly 

upregulated metabolites in PN xenografts and 237 in MES xenografts. We 

subsequently integrated these findings with only the genes pertaining to the 4 

signatures (respectively the 23 PN metabolites with Cluster B and WB-PN signatures, 

and the 237 MES metabolites with Cluster A and WB-MES signatures) by the 

MetaboAnalyst webtool. We identified Arginine and Proline metabolism (p-value 

0.006), pentose and glucuronate interconversions (p-value 0.010), pantothenate and 

coenzyme A biosynthesis (p-value 0.011) and nitrogen metabolism (p-value 0.048) 

for PN GSCs. However, they did not remain significant at FDR test correction. On the 

contrary, we identified aminoacyl-tRNA biosynthesis (p-value 6.3e-6), Valine, 

Leucine and Isoleucine biosynthesis (p-value 3.2e-5), pyrimidine metabolism (p-

value 5.4e-4), Lysine degradation (p-value 0.007), purine metabolism (p-value 

0.006), taurine and hypotaurine metabolism (p-value 0.017), Histidine metabolism 

(p-value 0.024), pantothenate and coenzyme A biosynthesis (p-value 0.030), 

Glycine, Serine and Threonine metabolism (p-value 0.031) and Phenylalanine 

metabolism (p-value 0.036) for MES GSCs. Out of these, only aminoacyl-tRNA 

biosynthesis (FDR p-value 5.2e-4), Valine, Leucine and Isoleucine biosynthesis (FDR 

p-value 0.001), pyrimidine metabolism (FDR p-value 0.015) retained their 

significance in multiple test correction. 

In order to be less stringent and possibly increase the number of significant 

metabolic pathways identified, we matched the metabolites with all the significant 

genes identified by RNA Sequencing analyses, without limiting them only to the top-

ranking genes used to determine the signatures but including all differentially 

expressed genes. Therefore, we included 922 genes for Cluster B, 716 for Cluster A, 

55 for WB-PN and 169 for WB-MES. 

By matching significant PN metabolites and PN genes (all Cluster B and WB-PN), 

we identified Arginine and Proline metabolism (p-value 0.006), pentose and 

glucuronate interconversions (p-value 0.010), pantothenate and coenzyme A 

biosynthesis (p-value 0.011), glycerolipid metabolism (p-value 0.002), Alanine, 

Aspartate and Glutamate metabolism (p-value 0.005), Nitrogen metabolism (p-value 

0.028), butanoate metabolism (p-value 0.042) and phosphatidylinositol signaling 

system (p-value 0.048), as being specific for PN GBMs. None of them, however, 

retained significance at multiple correction test. When we matched MES metabolites 

and MES genes (all Cluster A and WB-MES), we identified Valine, Leucine and 

Isoleucine metabolism (p-value 6.0e-5), aminoacyl-tRNA biosynthesis (p-value 2.5e-
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5), pyrimidine metabolism (p-value 4.5e-4), Lysine degradation (p-value 0.008), 

thiamine metabolism (p-value 0.008), purine metabolism (p-value 0.009), glycolysis 

or gluconeogenesis (p-value 0.009), nicotinate and nicotinamide metabolism (p-

value 0.011), taurine and hypotaurine metabolism (p-value 0.024), galactose 

metabolism (p-value 0.030), Histidine metabolism (p-value 0.037), pantothenate 

and coenzyme A biosynthesis (p-value 0.045), Phenylalanine metabolism (p-value 

0.049), riboflavin metabolism (p-value 0.050), and amino sugar and nucleotide sugar 

metabolism (p-value 0.013). Only Valine, Leucine and Isoleucine metabolism (FDR 

p-value 0.003), aminoacyl-tRNA biosynthesis (p-value 0.002) and pyrimidine 

metabolism (p-value 0.013) maintained significance at multiple test adjustment. 

 

 

 

5.8 Dynamics of transcriptional subgroup evolution of GBMs with 

respect to healthy tissue. 

 

 

5.8.1 Inferring a possible evolutionary model of GBM transcriptional 

subgroup composition. 

As we demonstrated a dynamic balance in the proportion and prevalence of the 

three subgroups promoted by various, reversible switches from the original tissue to 

in vitro culture to in vivo xenografts, we decided to investigate the relation between 

them and healthy tissue by exploiting transcriptional data of human tumors. 

We matched transcriptional affiliation of TCGA GBM samples from R2 platform with 

downloadable mRNA sequencing data from a cohort of TCGA GBMs as described in 

the Methods section. Transcriptional data were available for primary tumors and their 

recurrences. Due to the possible change in affiliation from primary GBM to 

recurrence, we discarded data from relapsed tumors. Table 5.29 reports the so-

obtained 4 CL, 9 MES, 6 PN and 5 Healthy TCGA samples. We then performed 

differential gene expression between each pathological state and the healthy 

counterparts and between each pathological state with the other two. Table 5.30 

shows the absolute and percentual numbers of genes for each comparison and 

demonstrates an increasing number of significantly differentially expressed genes 

respectively for PN, CL, and MES GBMs compared to healthy controls. Comparing 

pathological states, instead, an increasing divergence is noted from CL vs PN, to MES 

vs CL, to MES vs PN samples. 
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CL MES PN Healthy 

TCGA.06.0125.01 TCGA.02.0055.01 TCGA.02.0047.01 TCGA.06.0675.11 

TCGA.06.0125.02 TCGA.06.0130.01 TCGA.06.0129.01 TCGA.06.0678.11 

TCGA.06.0157.01 TCGA.06.0152.02 TCGA.06.0238.01 TCGA.06.0680.11 

TCGA.06.0158.01 TCGA.06.0168.01 TCGA.06.0646.01 TCGA.06.0681.11 

TCGA.06.0211.01 TCGA.06.0184.01 TCGA.12.0616.01 TCGA.06.AABW.11 

TCGA.06.0211.02 TCGA.06.0190.01 TCGA.12.0618.01  

 TCGA.06.0190.02   

 TCGA.06.0210.01   

 TCGA.06.0210.02   

 TCGA.06.0644.01   

 TCGA.06.0645.01   

 TCGA.12.0619.01   

Table 5.29. TCGA GBM samples for which both mRNA sequencing data and 
transcriptional affiliation were retrievable. The suffix indicates primary (.01) or recurrent 
(.02) tumor. Only primary tumors were retained for analyses. CL: classical, MES: 
mesenchymal, PN: proneural. 
 

 

Comparison # DEGs  
# Significant 

DEGs 

# Upregulated 

significant 

DEGs 

# Downregulated 

significant DEGs 

CL vs 

Healthy 
18048 9642 (53.4%) 4555 (25.2%) 5087 (28.2%) 

PN vs 

Healthy 
18195 8440 (46.4%) 4308 (23.7%) 4132 (22.7%) 

MES vs 

Healthy 
18106 10514 (58.1%) 5195 (28.7%) 5319 (29.4%) 

CL vs PN 17951 766 (4.3%) 285 (1.6%) 481 (2.7%) 

MES vs CL 17857 2876 (16.1%) 1856 (10.4%) 1020 (5.7%) 

MES vs PN 17981 3391 (18.9%) 1711 (9.5%) 1680 (9.4%) 

Table 5.30. Number of total and significant differentially expressed genes for each 
comparison between pathologic subgroups and healthy state or within subgroups. 
Significance defined as FDR adjusted p-Value <= 0.05. Comparing pathological and healthy 
states there is an increasing number of significant DEGs from PN vs healthy to CL vs Healthy, 
to MES vs Healthy. Comparing pathological states an increasing divergence is noted from CL 
vs PN to MES vs CL, to MES vs PN samples. CL: classical, DEGs: differentially expressed genes, 
FDR: false discovery rate, MES: mesenchymal, PN: proneural. 
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We then performed GSEA analysis interrogating each comparison with Verhaak’s 

transcriptional signatures. In particular we were interested in testing the subtype 

signatures’ behavior in contrast with healthy state, as the gene sets were determined 

only within the boundaries of the pathological states. (Verhaak et al, 2010) Figures 

5.27, 5.28 and 5.29 show enrichment plots and statistics for the 3 subtypes as 

opposed to basal healthy state. Remarkably, neural signature resulted constantly 

enriched in healthy controls for all three pathological states, as previously reported 

(Wang et al, 2017). On the other hand, PN signature was consistently enriched in PN 

subtype as opposed to normal counterpart, while an opposite trend (i.e., enrichment 

in healthy tissues) was seen when interrogating the MES vs healthy and CL vs healthy 

DEGs for the same signature. Interestingly, both CL and MES signatures were 

invariably enriched in all pathologic states compared to controls, even though only 

MES reached statistical significance in all cases, while CL signature retained 

significance only in CL vs healthy and MES vs healthy controls. 

 

 
Figure 5.27. Enrichment plots and statistics of Verhaak’s transcriptional signatures 
in the TCGA PN GBMs vs Healthy controls. A, MES, B, CL, C, PN, D, NEU signatures. E, 
table with enrichment statistics: CL signature is the only signature that does not reach 
significance. CL: classical, FDR: false discovery rate, FWER: family-wise error rate MES: 
mesenchymal, NES: normalized enrichment score, NEU: neural, PN: proneural. 
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Figure 5.28. Enrichment plots and statistics of Verhaak’s transcriptional signatures 
in the TCGA CL GBMs vs Healthy controls. A, MES, B, CL, C, PN, D, NEU signatures. E, 
table with enrichment statistics. CL: classical, FDR: false discovery rate, FWER: family-wise 
error rate MES: mesenchymal, NES: normalized enrichment score, NEU: neural, PN: proneural. 
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Figure 5.29. Enrichment plots and statistics of Verhaak’s transcriptional signatures 
in the TCGA MES GBMs vs Healthy controls. A, MES, B, CL, C, PN, D, NEU signatures. E, 
table with enrichment statistics. CL: classical, FDR: false discovery rate, FWER: family-wise 
error rate MES: mesenchymal, NES: normalized enrichment score, NEU: neural, PN: proneural. 
 

 

We also performed GSEA on the pairwise combinatorial contrasts between the 

three transcriptional subgroups of GBM: Figures 5.30, 5.31 and 5.32 show 

enrichment plots and statistics for these analyses. It is fundamental to notice that 

normalized enrichment score (NES) sign indicates only in which side of the contrast 

a particular gene set is enriched, while the actual entity of the enrichment is indicated 

by the absolute value of the NES itself. Notably, MES signature is enriched in MES vs 

PN and CL, and in CL vs PN, with increasing absolute value of NES from CL vs PN 

comparison to MES vs PN. Parallelly, CL signature is enriched in CL vs PN and MES, 

and in MES vs PN, with the lowest absolute value of NES in MES vs PN and the highest 

in CL vs PN comparison. The PN signature is consistently enriched in PN vs CL and 

MES, and in CL vs MES, with increasing NES absolute values from PN vs CL to CL vs 

MES, to PN vs MES. Lastly, neural signature is significantly enriched in PN vs CL and 



 137 

MES, while it did not reach statistical significance in the MES vs CL contrast. Table 

5.31 provides a summary of the enrichment statistics in the pairwise contrasts. 

 

 

 

 
Figure 5.30. Enrichment plots and statistics of Verhaak’s transcriptional signatures 
in the TCGA CL vs PN GBMs. A, MES, B, CL, C, PN, D, NEU signatures. E, table with 
enrichment statistics. CL: classical, FDR: false discovery rate, FWER: family-wise error rate 
MES: mesenchymal, NES: normalized enrichment score, NEU: neural, PN: proneural. 
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Figure 5.31. Enrichment plots and statistics of Verhaak’s transcriptional signatures 
in the TCGA MES vs CL GBMs. A, MES, B, CL, C, PN, D, NEU signatures. E, table with 
enrichment statistics. NEU signature did not reach statistical significance. CL: classical, FDR: 
false discovery rate, FWER: family-wise error rate MES: mesenchymal, NES: normalized 
enrichment score, NEU: neural, PN: proneural. 
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Figure 5.32. Enrichment plots and statistics of Verhaak’s transcriptional signatures 
in the TCGA MES vs PN GBMs. A, MES, B, CL, C, PN, D, NEU signatures. E, table with 
enrichment statistics. CL: classical, FDR: false discovery rate, FWER: family-wise error rate 
MES: mesenchymal, NES: normalized enrichment score, NEU: neural, PN: proneural. 
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MES Signature MES vs PN MES vs CL CL vs PN 

Upregulated in MES MES CL 

Absolute value of NES 3.45 2.53 1.07 

FDR p-Val < 0.01 < 0.01 < 0.01 

FWER p-Val < 0.01 < 0.01 < 0.01 

CL Signature MES vs PN MES vs CL CL vs PN 

Upregulated in MES CL CL 

Absolute value of NES 2.07 3.03 3.76 

FDR p-Val < 0.01 < 0.01 < 0.01 

FWER p-Val < 0.01 < 0.01 < 0.01 

PN Signature MES vs PN MES vs CL CL vs PN 

Upregulated in PN CL PN 

Absolute value of NES 3.17 3.05 1.97 

FDR p-Val < 0.01 < 0.01 < 0.01 

FWER p-Val < 0.01 < 0.01 < 0.01 

NEU Signature MES vs PN MES vs CL CL vs PN 

Upregulated in PN MES PN 

Absolute value of NES 1.81 0.97 1.55 

FDR p-Val < 0.01 0.53 < 0.01 

FWER p-Val < 0.01 0.51 < 0.01 

 
Table 5.31. Enrichment statistics of Verhaak’s transcriptional signatures in pairwise 
contrasts between the three pathological subtypes of TCGA GBMs. CL: classical, FDR: 
false discovery rate, FWER: family wise error rate, MES: mesenchymal, NES: normalized 
enrichment score, NEU: neural, PN: proneural. 
 

 

 

We also interrogated the differentially expressed genes between the pathological 

subtypes and the healthy controls with the signatures we derived from our GSCs, as 

shown in Table 5.32. Remarkably, the significance threshold was reached only for 

the WB-MES signature in all the comparisons, being enriched in the tumoral side of 

the contrast, in addition to Cluster A signature in MES tumors and Cluster B and WB-

PN gene sets in healthy controls when opposed to MES GBMs. Figure 5.33 shows 

enrichment plots and statistics for the MES tumors vs healthy controls contrast. These 

results suggest that MES tumors are the most divergent from the basal normal state, 

as the pathological signatures can satisfactorily discern the disease from the normal 

brain in this comparison, but not when the pathological term of the comparison are 
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CL or PN GBMs. Additionally, the fact that WB-MES signature is enriched in all GBM 

subtypes vs healthy brain seems to suggest that a certain degree of 

mesenchymalization is implicated in GBM initiation. On the contrary, enrichment 

pattern of Verhaak’s and our PN signatures may indicate the PN subtype as the 

ground state of GBM. 

 

 

PN vs Healthy Cluster A Cluster B WB MES WB PN 

Upregulated in PN PN PN PN 

NES 1.01 0.85 1.53 1.01 

FDR p-Val 0.75 0.81 0.03 0.61 

FWER p-Val 0.84 0.98 0.03 0.84 

CL vs Healthy Cluster A Cluster B WB MES WB PN 

Upregulated in Healthy Healthy CL Healthy 

NES -1.22 -0.91 1.28 -0.82 

FDR p-Val 0.22 0.83 0.08 0.82 

FWER p-Val 0.64 1.00 0.08 1.00 

MES vs Healthy Cluster A Cluster B WB MES WB PN 

Upregulated in MES Healthy MES Healthy 

NES 1.70 -2.36 2.44 -1.45 

FDR p-Val < 0.01 < 0.01 < 0.01 0.02 

FWER p-Val < 0.01 < 0.01 < 0.01 0.08 

 

Table 5.32. Enrichment statistics of GSC-derived transcriptional signatures in 
contrasts between the three pathological subtypes of TCGA GBMs and healthy 
controls. Statistical significance was reached for all signatures only in the MES vs healthy 
contrast. CL: classical, FDR: false discovery rate, FWER: family wise error rate, MES: 
mesenchymal, NES: normalized enrichment score, PN: proneural. 
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Figure 5.33. Enrichment plots and statistics of our transcriptional signatures in the 
TCGA MES GBMs vs Healthy controls. A, signatures derived from unsupervised clusters A 
and B. B, signatures derived from WB-panel defined PN and MES GSCs. MES signatures (UC-
A and WB-MES) are significantly enriched in MES tumors while non-MES/PN signatures (UC-B 
and WB-PN) in healthy controls. CL: classical, FDR: false discovery rate, FWER: family-wise 
error rate MES: mesenchymal, NES: normalized enrichment score, PN: proneural, UC: 
unsupervised cluster, WB: western blot. 

 

 

 

 

5.9 Identification of molecular pathways and phenotypes 

characterizing each GBM subgroup in contrast to healthy brain 

tissue. 

 

 

We next exploited the differential gene expression between the pathological states 

of GBM and healthy brain to perform an extended pathway analysis to identify 

characterizing features of each subgroup. The rationale was to denote which features 

would be common to all subtypes (thus, possibly inherent to GBM initiation) and 

which would differentiate the comparisons, suggesting progressive divergence from 

basal healthy state. Tables 5.33, 5.34 and 5.35 show the EnrichR results of the most 

significant characterizing features of PN, CL and MES tumors with respect to normal 

brain. 
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Feature ID OR Adj p-value 

Transcriptomic E2F4 3.97 1.4e-65 

Transcriptomic TP53 3.11 1.1e-9 

Transcriptomic MYCN 4.57 0.00003 

Transcriptomic NFkB1 2.17 5.4e-8 

Transcriptomic STAT3 2.54 9.3e-6 

Pathway Rb gene in cancer 8.19 1.7e-18 

Pathway DNA mismatch repair 10.36 6.3e-6 

Pathway E2F targets 7.60 6.1e-42 

Pathway IFNgamma response 5.04 3.2e-27 

Pathway 
Epithelial-Mesenchymal 

Transition 
3.42 7.8e-16 

Pathway Angiogenesis 4.08 0.00012 

Pathway Inflammatory response 2.11 3.2e-6 

Pathway mTORC1 signaling 1.89 0.00010 

Pathway p53 pathway 1.85 0.00017 

Pathway 
Superpathway of 

pyrimidine synthesis 
4.87 0.04448 

Pathway Integrin signaling 2.29 0.00009 

Cell types Microglia in cerebellum 3.46 6.5e-45 

Cell types Microglia in cerebrum 3.58 4.2e-37 

 

Table 5.33. Characterizing features of TCGA PN GBMs with respect to normal brain 
tissue. Odds ratios (OR) and relative multiple tests-adjusted p-values are reported. PN: 
proneural. 
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Feature ID OR Adj p-value 

Transcriptomic E2F4 3.51 2.8e-54 

Transcriptomic MYC 1.93 1.3e-11 

Transcriptomic SOX2 1.49 6.0e-6 

Transcriptomic KLF4 1.43 6.3e-6 

Transcriptomic NANOG 2.03 0.00075 

Pathway Rb gene in cancer 6.29 4.0e-14 

Pathway E2F targets 7.52 1.8e-41 

Pathway DNA mismatch repair 7.90 0.00009 

Pathway 
Epithelial-Mesenchymal 

Transition 
3.96 5.0e-20 

Pathway IFNgamma response 4.21 1.5e-21 

Pathway Angiogenesis 4.32 0.00006 

Pathway Inflammatory response 1.91 0.00006 

Pathway mTORC1 signaling 1.59 0.00471 

Pathway p53 pathway 1.71 0.00105 

Pathway 
Superpathway 

pyrimidine synthesis 
4.60 0.04036 

Pathway Integrin signaling 2.69 3.7e-7 

Ontology ECM organization 2.54 4.5e-11 

Ontology Focal adhesion 2.77 1.3e-18 

Cell types Microglia in cerebellum 3.46 6.5e-45 

Cell types Microglia in cerebrum 3.58 4.2e-37 

Cell types 
Vascular endothelial 

cells in cerebellum 
2.21 4.5e-17 

Cell types 
Vascular endothelial 

cells in cerebrum 
2.21 7.2e-16 

 
Table 5.34. Characterizing features of TCGA CL GBMs with respect to normal brain 
tissue. Odds ratios (OR) and relative multiple tests-adjusted p-values are reported. CL: 
classical, ECM: extracellular matrix. 
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Feature ID OR Adj p-value 

Transcriptomic E2F4 2.93 8.1e-41 

Transcriptomic MYC 2.22 3.8e-18 

Transcriptomic KLF4 1.53 7.0e-9 

Transcriptomic STAT3 1.55 2.1e-7 

Transcriptomic NFkB1 3.49 7.9e-24 

Transcriptomic HIF1A 3.40 1.3e-6 

Pathway 
TCR regulation of 

apoptosis 
3.32 1.1e-42 

Pathway IFNgamma response 8.11 1.9e-43 

Pathway 
Epithelial-Mesenchymal 

Transition 
6.05 1.3e-33 

Pathway E2F targets 5.52 7.2e-31 

Pathway IL6/JAK/STAT3 signaling 7.56 1.1e-18 

Pathway Inflammatory response 4.64 2.5e-25 

Pathway Hypoxia 3.07 3.3e-14 

Pathway Angiogenesis 5.72 8.8e-7 

Pathway Glycolysis 2.95 2.7e-13 

Pathway p53 pathway 2.45 2.1e-9 

Pathway mTORC1 signaling 2.17 3.2e-7 

Pathway Immune system 1.91 2.3e-27 

Pathway Integrin signaling 3.03 1.3e-9 

Pathway 
Chemokine/cytokine signal 

inflammation 
2.32 1.1e-6 

Pathway IL signaling 2.27 0.00258 

Pathway SLC2A4 2.32 3.1e-21 

Pathway IL7R 3.11 1.1e-8 

Cell types Microglia in cerebellum 4.98 7.7e-79 

Cell types Microglia in cerebrum 4.42 1.2e-52 

Cell types U118MG CNS 2.04 3.2e-19 

 

Table 5.35. Characterizing features of TCGA MES GBMs with respect to normal brain 
tissue. Odds ratios (OR) and relative multiple tests-adjusted p-values are reported. CNS: 
central nervous system, IL: interleukin, MES: mesenchymal, TCR: T-cell receptor. 
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As expected, many features were conserved in all the comparisons, as each 

contrast was carried out comparing a transcriptional subgroup of the same disease 

(i.e., GBM) with healthy tissue. Notably, however, significance values changed 

drastically from one comparison to the other. As a matter of fact, the enrichment in 

the transcription factor NF-kB1 had a p-value ranging from 5.4e-8 in PN tumors to 

7.9e-24 in MES GBMs. Additionally, enrichment for fundamental tumoral or tumor-

exploited dynamics such as epithelial to mesenchymal transition and angiogenesis 

consistently characterized all subtypes, with progressive increase in significance from 

PN to CL, to MES (p-values respectively 7.8e-16 to 5.0e-20, to 1.3e-33 for the former 

and 1.2e-4 to 6.0e-5, to 8.8e-7 for the latter). Conversely, E2F4 decreased its 

significance from 1.4e-65 in PN to 2.8e-54 in CL, to 8.1e-41 in MES, or E2F targets 

from 6.1e-42 in PN to 1.8e-41 in CL, to 7.2e-31 in MES tumors. 

Not surprisingly, enrichment for cell type profile of vascular endothelial cells in 

cerebellum (p-value 4.5e-17) and in cerebrum (p-value 7.2e-16) was peculiar of CL 

GBMs. As a matter of fact, even though angiogenesis was slightly more significant in 

MES than CL tumors, CL GBMs are known to be highly vascularized as part of the 

pleiotropic effect of EGFR, probably the most important master gene for the CL 

subgroup. Quite peculiar, instead, was the behavior of the profile of microglia in 

cerebrum and cerebellum, which reaches its nadir in CL tumors (p-value respectively 

1.3e-12 and 5.0e-17), an intermediate significance in PN (p-value 4.2e-37 and 6.5e-

45) and its zenith in MES GBMs (p-value 1.2e-52 and 7.7e-79). However, this very 

last observation was predictable and in line with other characterizing features of MES 

tumors, which present a high contribution of immune and inflammatory response 

(Hara et al, 2021; Gangoso et al, 2021). As a matter of fact, MES GBMs show a much 

higher activation of inflammatory and immune pathways, as shown by the general 

inflammatory response pathway enrichment, which is equally significant in PN and 

CL subgroups (p-value 3.2e-6 and 6.0e-5) but to a strikingly lower extent than in 

MES subtype (p-value 2.5e-25), which is extremely enriched also in interleukins and 

chemokines pathways.  

Additionally, we performed pathway enrichment analysis on the contrast between 

MES and PN GBMs, as reported in Tables 5.36 and 5.37. According to what found in 

the same studies conducted on PN and MES GSCs, human PN tumors show activation 

of ASCL1 and downregulation of NF-kB1, as well as activation of nervous system 

developmental processes and affinity to neuron-derived tumors. MES tumors, 

instead, show activation of genes related to metastasization, inflammation and 

immune response, and even higher significance in the enrichment for pathways 
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involved in epithelial to mesenchymal transition (p-value 7.3e-55) and inflammatory 

response (p-value 5.9e-31). Enrichment for hypoxic features maintain the same very 

high significance when compared to PN tumors or to healthy tissue (respectively p-

value 3.4e-13 and 3.3e-14). Interestingly, when compared to PN tumors, MES GBMs, 

besides showing high affinity to mesenchymal tissues such as muscle, fat, or blood, 

show significant activation of mannose metabolism and proteoglycans in cancer. 

 

 

Feature ID OR Adj p-value 

Transcriptomic NFkB1 downregulation 4.15 1.2e-18 

Transcriptomic 
ASCL1 knockout 

downregulation 
4.02 1.4e-10 

Transcriptomic DACH2 4.74 3.2e-24 

Transcriptomic ASCL1 4.36 4.2e-21 

Pathway Neural crest differentiation 4.18 0.00002 

Pathway Axon guidance 2.47 0.00001 

Pathway Developmental biology 2.19 0.00002 

Pathway Neuronal system 2.26 0.00047 

Pathway Hedgehog signaling 3.65 0.03815 

Pathway 
Ionotropic Glutamate 

receptors 
3.99 0.02187 

Ontology 
Nervous system 

development 
2.37 5.1e-7 

Ontology Synapse organization 3.61 0.00003 

Ontology Axon genesis regulation 5.50 0.00028 

Ontology Neuron generation 2.56 0.00073 

Disease Neuroblastoma 11.89 1.5e-27 

Disease DNET 3.05 0.03870 

Cell types Fetal brain 6.52 8.4e-43 

Cell types Oligodendrocyte precursor 12.33 0.00050 

 
Table 5.36. Characterizing pathway enrichment features of TCGA PN vs MES GBMs. 
Odds ratios (OR) and relative multiple tests-adjusted p-values are reported. DNET: 
dysembryoplastic neuroepithelial tumor, MES: mesenchymal, PN: proneural. 
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Feature ID OR Adj p-value 

Transcriptomic NFkB1 3.83 1.5e-16 

Transcriptomic STAT3 5.07 5.0e-13 

Transcriptomic TWIST2 6.04 0.00184 

Pathway 
Epithelial-Mesenchymal 

Transition 
12.01 7.3e-55 

Pathway Inflammatory response 7.11 5.9e-31 

Pathway 
TNFalpha signaling through 

NFkB1 
6.23 3.5e-26 

Pathway IL2 signaling 4.98 6.1e-19 

Pathway IL6 signaling 6.01 1.1e-11 

Pathway IFNgamma response 4.05 9.7e-14 

Pathway Complement 4.05 9.7e-14 

Pathway Hypoxia 3.95 3.4e-13 

Pathway Angiogenesis 6.08 0.00001 

Pathway Mannose metabolism 21.43 0.00944 

Pathway CK-CK receptor interaction 3.77 1.0e-15 

Pathway Proteoglycans in cancer 3.24 9.0e-9 

Pathway IL7R 3.06 0.00012 

Pathway IL signaling pathway 4.18 4.3e-6 

Ontology Immune system 3.97 7.8e-57 

Disease Metastasis 2.24 8.8e-42 

Cell types Smooth muscle 9.19 4.1e-73 

Cell types Adipocyte 4.92 7.1e-17 

Cell types CD14+ Monocytes 5.04 3.6e-35 

Cell types CD133+ Myeloid 3.26 2.0e-27 

Cell types U118MG CNS 4.05 7.3e-48 

Cell types U87MG CNS 3.63 2.0e-29 

 

Table 5.37. Characterizing pathway enrichment features of TCGA MES vs PN GBMs. 
Odds ratios (OR) and relative multiple tests-adjusted p-values are reported. IL: interleukins, 
MES: mesenchymal, PN: proneural. 
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5.10  Exploiting transcriptional analyses for pinpointing subgroup-

specific drug vulnerability. 

 

 

As a final step in the comparison between GBM subgroups and normal healthy 

brain tissue, we performed a preliminary study aimed at identifying potential drugs 

to be exploited for repurposing. Basically, putative effective molecules might be 

identified through an integrated transcriptomic analysis to narrow down the set of 

compounds to subsequently screen in “wet” experimental settings. The rationale is 

that, just as a pathological process induces the activation of a specific transcriptional 

profile, also exposure to selected compounds induces alterations in different cell 

populations’ transcriptome. By selecting those compounds that would induce a 

transcriptional modification opposite to the pathological process, we may identify 

putative useful drugs to revert the pathology. 

A publicly screenable database of compounds tested on different cell lineages is 

available at the Connectivity Map (cMap) consortium. As described in the Methods 

section, we selected the top 150 significant genes up- and downregulated in each 

GBM subgroup in relation to healthy tissue, and that were also included in the L1000 

gene panel used to infer transcriptional signatures of each compound. Next, we 

performed the query on cMap webtool and obtained a drug-sensitivity fingerprint for 

each subtype, as reported in Table 5.38. The more negative the enrichment score, 

the more the compound is capable to revert the pathological transcriptional 

signature, thus suggesting a potentially high efficacy of the drug. Interestingly, the 

three subgroups show variable sensitivity spectra that only partially overlap. As a 

matter of fact, PN GBMs show possible sensitivity to drug classes that are not 

apparently effective for CL and MES tumors; conversely CL tumors have peculiar 

weaknesses that are not shared with the other subtypes. On the other hand, MES 

GBMs, which are known to be more resistant to pharmacological treatment, appear 

sensitive to only 3 drug classes, all in common with PN and CL subgroups, and all 

with less negative enrichment scores, suggesting less efficacy. This trend is even 

more accentuated if we lower the opposing enrichment score threshold from <-90 to 

<-85; in this case we identify 97 possibly effective drugs for PN tumors, 85 for CL, 

and only 63 for MES. Of note, this prediction is carried out based on the mean 

transcriptional response to the screened compounds of 9 cell lines (i.e., skin cancer, 

2 lung cancers, liver cancer, colon cancer, breast cancer, 2 prostate cancers, and 
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normal kidney), none of which unfortunately derives from GBM cell lines that were 

not available in the Connectivity Map (cMap) database. 

 

 

Drug class 
PN CL MES 

# ES # ES # ES 

IGF-1 inhibitor 3 -93.50     

Leucine-rich repeat 

kinase inhibitor 
3 -94.72 3 -95.72 3 -91.88 

DNA dependent 

protein kinase 

inhibitor 

4 -96.05     

HDAC inhibitor 20 -99.12 20 -99.39 20 -96.55 

Bromodomain 

inhibitor 
6 -99.55 6 -99.41 6 -99.00 

Proteasome 

inhibitor 
  3 -90.02   

HIF activator   4 -90.65   

Total 36  36  29  

 
Table 5.38. Summary of drugs putatively effective against each GBM subgroup based 
on cMap analyses. Averaged compound-induced transcriptional alterations analyzed on 9 cell 
lines (skin cancer, 2 lung cancers, liver cancer, colon cancer, breast cancer, 2 prostate cancers, 
and normal kidney) are tested against transcriptional modifications induced by the tumoral 
state. Opposing enrichment scores identify drugs that may revert tumor-induced alterations. 
CL: classical, ES: enrichment score, HDAC: histone deacetylase, MES: mesenchymal, PN: 
proneural #: number. 
 

 

 

 

 

 

 

 

 

 

 

 



 151 

5.11  Identification of GBM-related mutations in GSCs by whole 

exome sequencing (WES) analysis. 

 

 

To further study our GBM models, we submitted our GSC lines to whole exome 

sequencing as reported in the Methods section. The main aim of this analysis was to 

pinpoint GBM-associated mutations in our GSC lines. We performed our analyses on 

a subgroup of 8 GSC lines isolated from our patients, in addition to MES line 131210 

and 3 additional GSC lines (2 PN 0104 and 0605 and 1 CL 0627) previously 

established in our lab and cultured for years, obtaining a stable phenotype both in 

vitro and in vivo. As presented in Figure 5.34A, unsupervised clustering of GSC lines 

subjected to WES generated two main clusters, which consistently separated WB-

defined PN/CL and MES lines. Notably, unsupervised clustering of RNA Sequencing 

(Fig. 5.34B) does not perfectly match that of WES. However, the two analyses were 

not conducted on the same collection of GSCs, as lines 0605, 0104 and 0627 were 

not present in RNAseq and line 170421 was not sent for WES. Line 160704 was 

submitted to both WES and RNAseq at lower in vitro passages, thus with a WB-based 

PN affiliation, while at increasing passages it demonstrated a PN/MES affiliation as 

previously reported. Interestingly, in RNAseq analysis, this line clustered with mostly 

non-MES lines, even though was more similar to mixed MES/CL lines 161019 and 

170421, both showing a MES component, while in WES unsupervised clustering it 

was located in the MES subset. This might suggest that line 160704 might present 

from its establishment some stable exomic alterations (possibly still to be identified) 

that would induce a MES shift which, at early in vitro passages, are not yet reflected 

at a transcriptional (RNAseq) and protein (WB) level, rendering the MES shift evident 

only at later passages.  

However, all GSC lines pertaining to RNAseq unsupervised cluster A, i.e., those 

with a particularly striking MES profile, locate in the MES cluster of WES. 

Both main WES clusters are further subdivided in 5 total subsets of cell lines 

identified by 52 high-confidence somatic variants. Mutational analysis performed on 

the 5 subsets identified the presence of already known GBM-related mutations in all 

clusters, as reported in Table 5.39. 

Remarkably, the last subset, indicated with the letter E in Figure 5.34A, consists 

of the two MES GSC lines that grow in vitro as adherent monolayer even under NSA 

conditions, and fail to generate xenografts in immunocompromised mice. Mutational 

analysis identified the presence of already known GBM-related mutations also in 
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these two cell lines (Table 5.39), thus discarding the hypothesis that lines 160503 

and 160525 could be contaminating healthy mesenchymal cells isolated by chance 

from the relative patients and confirming that they consist of proper tumor cells. The 

same observation was made for line 160622, a PN/CL line that properly forms 

neurospheres in vitro but fails to generate tumors in vivo. 

 

 

 

 

 

 

 

 
Figure 5.34. Comparison between unsupervised clustering of GSC lines by means of 
whole exome sequencing (WES, A) and RNA sequencing analysis (RNAseq, B). Color 
code (CL blue, PN purple, MES red) indicates the WB-panel subgroup affiliation. The two 
analyses were conducted on partially overlapping collections of samples, as lines 0605, 0104 
and 0627 were present in WES but not in RNAseq and line 170421 was sent for RNAseq but 
not for WES. Line 160704 was submitted for both analyses at lower in vitro passages, thus 
with a WB-based PN affiliation, while at increasing passages it demonstrated a PN/MES 
affiliation. Interestingly, in RNAseq, this line clustered with non-MES lines, while in WES it was 
in the MES subset. WES cluster E consists of lines with identical in vitro growth pattern and 
unable to generate xenografts. CL: classical, MES: mesenchymal, PN: proneural Color code 
(CL blue, PN purple, MES red) indicates the WB-panel subgroup affiliation. 
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A B C D E 

MLH3 ATRX NF1 FUBP1 FGFR3 

PIK3CA EGFR PIK3CA LZTR1 NF1 

RB1 MSH2 PTEN PDGFRA PTEN 

 PIK3R1 RB1 PIK3R1 TP53 

 PTEN TP53 RB1  

 TP53  TP53  

 BRAF    

 LZTR1    

 NF1    

 POLD1    

 RB1    

 

Table 5.39. Known GBM-related mutations for each WES subcluster of GSC lines. 
Name of the clusters refers to those in Figure 5.34A. Notably, lines 160503 and 160525 (cluster 
E) are characterized by mutations know to be pathogenetic for GBM, thus confirming them as 
being true cancer cells even if they grow in vitro as adherent monolayers under NSA conditions 
and fail to generate xenografts. 
 

 

 

5.12  Identification and characterization of IL7R as a putative marker 

for GBMs. 

 

 

Reactome enriched pathway analysis conducted on exome investigation of non-

tumorigenic MES GSC lines pointed out the IL7 pathway as the first deranged 

signaling system. Notably, EnrichR queries carried on RNAseq cluster A (MES) vs 

cluster B (non-MES) indicated IL7R as significantly enriched hub protein in the MES 

subgroup (OR 3.95, adjusted p-value 2.7e-3), as well as in TCGA MES GBMs vs 

healthy brain (OR 3.11, adjusted p-value 1.1e-8) and vs PN GBMs (OR 3.06, adjusted 

p-value 1.2e-4). Parallelly, previous microarray data from our lab, performed by 

confronting MES GCLs with PN GSCs, identified IL7R as the 31st significantly 

upregulated gene in GCLs with respect to PN GSCs (log2FC 2.99, adjusted p-value 

0.002), as well as its ligand, IL7, ranking 101st (log2FC 2.08, adjusted p-value 9.5e-

3). These observations led us to investigate IL7R as a putative novel player in GBM 

pathogenesis and subgroup specification. 
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5.12.1  In silico preliminary analysis of IL7R correlation with GBMs and 

transcriptional subgroups. 

In silico analysis on TCGA GBM samples publicly available on the R2 platform 

showed a weak but significant positive correlation between levels of IL7R expression 

and those of our MES marker NDRG1 (Pearson’s R coefficient 0.26, p-value 1.4e-9) 

and a moderate negative correlation with our PN marker ASCL1 (Pearson’s R 

coefficient -0.40, p-value 1.0e-21). Overall survival was significantly lower in patients 

bearing tumors with higher levels of IL7R (Bonferroni correction of p-value 0.025). 

Progress-free survival was shorter in GBMs with higher expression of IL7R (raw p-

value 4.0e-3); however, the test was not significant after Bonferroni correction. 

Overall survival analysis based on IL7R expression in TCGA GBMs (carried out on the 

Human Protein Atlas) quantified the 3-year OS in the subset with high IL7R to be 

0%, as opposed to 16% in the subset with low IL7R (p-value 0.039). Considering 

expression levels across subgroups, MES GBMs showed significantly higher levels of 

IL7R (ANOVA p-value 4.2e-8 for gross comparison). Welch p-values for pairwise 

comparisons were 4.1e-7 for MES vs PN, 1.5e-3 for MES vs CL and non-significant 

for CL vs PN tumors. Figure 5.35 summarize in silico evidence for IL7R in TCGA GBMs. 

Further investigation on IL7R cancer and cancer stem cells specificity was 

conducted on TCGA collection using the Human Protein Atlas webtool. Figure 5.36A 

reports IL7R expression levels across tumors of different origins present in the 

dataset. Besides showing no particular cancer specificity, IL7R scores generally low 

in the glioma subset. Figure 5.36B instead depicts gene transcript quantification 

across cancer cell lines deriving from a variety of tumors. Consistently, there is 

generally low expression of the gene except for cancerous lymphoid cell lines. 

Notably, high levels of the transcript are detected in mesenchymal cancer cell lines 

of non-lymphoid origin, and low, but constantly detectable levels in lines derived from 

gliomas. 
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Figure 5.35. In silico analysis of IL7R expression in TCGA GBMs. A, significant moderate 
negative correlation between PN marker ASCL1 and IL7R in human GBMs (Pearson’s coefficient 
-0.40). B, significant weak positive correlation between MES marker NDRG1 and IL7R in human 
GBMs (Pearson’s coefficient 0.26). C, Kaplan Meier curve for OS in IL7R-high (blue) and low 
(red) tumors, showing significant lower OS in high expression patients. D, IL7R expression in 
GBM transcriptional subgroups, depicting significantly higher levels in MES. CL: classical, MES: 
mesenchymal, Neu: neural, OS: overall survival, PN: proneural. 
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Figure 5.36. In silico analysis of IL7R expression in TCGA cancers and in cancer cell 
lines. A, low cancer specificity of IL7R transcript quantification; low levels are detected also 
in gliomas. B, IL7R transcript levels in cancer cell lines: highest levels detected in lymphoid 
cells (grey) as expected due to the normal activity of IL7R in the lymphoid compartment. 
Notably, very high levels of the transcript are detected also in mesenchymal cancer cell lines 
of non-lymphoid origin, or in transformed/immortalized mesenchyme-derived cell lineages. 
The third group of cell lines with consistently detectable transcript levels is that of glioma-
derived cancer cells. 
 

 

 

5.12.2  Transcriptional analysis of interleukin-receptors and IL7 pathway. 

Given the evidence collected from in silico query on IL7R, we decided to 

interrogate the differentially expressed genes obtained by comparing TCGA GBM 

subgroups against healthy controls with module signatures for multiple IL-receptors 

and, more specifically, for IL7 pathway. 
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The comprehensive interleukin receptors module was significantly enriched in all 

comparisons with the healthy tissue (in PN with NES 2.03, FDR and FWER adjusted 

p-value < 0.01, in CL with NES 2.12, FDR and FWER adjusted p-value < 0.01, in MES 

with NES 2.37, FDR and FWER adjusted p-value < 0.01) and in MES against PN GBMs 

(NES 2.30, FDR and FWER adjusted p-value < 0.01). Interestingly, as reported in 

Table 5.40, IL7R was differentially expressed in all the aforementioned contrasts and 

was in the core enriched gene subsets with increasing ranking for PN vs normal brain 

(11th gene of the gene set, 2405th in the DEG list), MES vs normal brain (5th gene of 

the gene set, 697th in the DEG list) and MES vs PN tumors (3rd gene of the gene set, 

414th in the DEG list). On the contrary, it was not in the core enrichment genes for 

the CL vs healthy brain comparison (19th gene of the gene set, 5114th in the DEG 

list). Figure 5.37 shows enrichment plot for this gene set in the comparisons on the 

TCGA.  

 

 

 

 

Comparison Rank in gene set Rank in DEG list Core enrichment 

PN vs Healthy 11 2405 Yes 

CL vs Healthy 19 5114 No 

MES vs Healthy 5 697 Yes 

MES vs PN 3 414 Yes 

 

Table 5.40. IL7R ranking and core enrichment status for gene set enrichment 
analysis on differentially expressed genes of TCGA GBMs and healthy controls with 
comprehensive interleukin receptor gene set. IL7R is always differentially expressed and 
in the significant core enrichment except for the comparison of CL tumors against healthy brain 
tissue. CL: classical, DEG: differentially expressed genes, MES: mesenchymal, PN: proneural. 
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Figure 5.37. Comprehensive Interleukin receptors gene set enrichment analysis on 
TCGA GBM samples and healthy tissues. A, PN vs healthy brain tissue. B, CL vs healthy 
brain tissue. C, MES vs healthy brain tissue. D, MES vs PN GBMs. The IL receptors module is 
significantly enriched in all comparisons against healthy tissue and in MES tumors compared 
to PN GBMs. CL: classical, MES: mesenchymal, PN: proneural.  
 

 

Next, we performed the same analysis with the signature genes of IL7 pathway. 

Parallelly to what observed for the previous analysis, IL7 pathway was enriched in all 

pathological subtypes compared to healthy controls and in MES GBMs vs PN tumors. 

However, statistical significance was reached only for the MES vs normal brain 

comparison (NES 1.44, FDR-adjusted p-value 0.07, FWER-adjusted p-value 0.03) 

and only approached significance in the CL vs normal brain (NES 1.19, FWER-

adjusted p-value 0.06), MES vs PN tumors (NES 1.24, FWER-adjusted p-value 0.09), 

and PN vs normal brain DGEs (NES 1.19, FWER-adjusted p-value 0.12). 

Nevertheless, interesting qualitative indications could be inferred. As a matter of fact, 

IL7R behaved in the same manner as in the above analysis, being in the core 

enrichment of PN vs healthy brain, MES vs healthy brain and MES vs PN tumors, with 

increasing ranking in the gene set (respectively 5th, 2nd, and 1st), while it was not 

present in the core enrichment of the CL vs normal brain contrast (7th gene in the 

gene set). Notably, IL7 was differentially expressed in all comparisons and was 

always part of the core enrichment genes, even in CL tumors. Table 5.41 shows the 

rankings of IL7 in the analyses. Remarkably, IL7 was more predominant than IL7R 
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in PN and CL tumors, while it was the opposite in MES GBMs. Figure 5.38 shows 

enrichment plot for IL7 pathway gene set in the comparisons on the TCGA. 

 

Comparison 
Rank in 

gene set 

Rank in DEG 

list 

Core 

enrichment 

IL7R rank 

in gene 

set 

PN vs Healthy 1 1131 Yes 5 

CL vs Healthy 1 688 Yes 7 

MES vs 

Healthy 
3 841 Yes 2 

MES vs PN 4 2023 Yes 1 

 

Table 5.41. IL7 ranking and core enrichment status for gene set enrichment analysis 
on differentially expressed genes of TCGA GBMs and healthy controls with IL7 
pathway gene set. IL7 is always differentially expressed and in the significant core 
enrichment genes. Notably, it is predominant onto IL7R in CL and PN tumors, while it comes 
after its receptor in MES GBMs. CL: classical, DEG: differentially expressed genes, MES: 
mesenchymal, PN: proneural. 
 

 
Figure 5.38. IL7 pathway gene set enrichment analysis on TCGA GBM samples and 
healthy tissues. A, PN vs healthy brain tissue. B, CL vs healthy brain tissue. C, MES vs healthy 
brain tissue. D, MES vs PN GBMs. The IL7 pathway module is significantly enriched only in MES 
GBMs vs healthy brain comparison, while only approaching significance in the other contrasts. 
CL: classical, MES: mesenchymal, PN: proneural.  
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As a following step, we carried out both analyses also on the differentially 

expressed genes between our MES and PN GSCs. Interestingly, the comprehensive 

interleukin receptors module was significantly enriched by GSEA in our MES GSCs 

(either identified by RNA Sequencing unsupervised clustering, i.e., Cluster A, or 

based on our WB panel) when compared to non-MES/PN cell lines (Cluster B and WB-

PN), as reported in Figure 5.39. However, IL7R was not differentially expressed 

between these GSC subsets. We then performed differential gene expression analysis 

between the two non-tumorigenic MES GSC lines (160503 and 160525) and the other 

tumorigenic MES GSCs (160315, 161019 and 131210) and run another gene set 

enrichment analysis for interleukin receptors. Quite remarkably, this module resulted 

enriched in the tumorigenic MES lines, even though it missed statistical significance. 

However, even more strikingly, IL7R was now differentially expressed between the 

two subsets and was the 1st gene of the gene set to be enriched in the tumorigenic 

cells, and the 14815th out of 15013 total genes in the DEG list, thus being the 198th 

gene from the tumorigenic MES side of the comparison. 

The same analysis conducted with the IL7 pathway gene set returned consistent 

results, in which IL7 was differentially expressed in Cluster A vs Cluster B and WB-

MES vs WB-PN GSC lines but not in the core enrichment. This analysis, however, 

failed to reach statistical significance. When the DEGs between non-tumorigenic and 

tumorigenic MES GSCs was interrogated with IL7 pathway gene set, IL7R was the 1st 

gene of the gene set to be enriched in the tumorigenic cells, and IL7 the 4th in the 

same side of the comparison, even though it did not reach statistical significance.  
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Figure 5.39. Comprehensive Interleukin receptors gene set enrichment analysis on 
GSCs. A, RNA Sequencing unsupervised Cluster A (MES) vs Cluster B (non-MES). B, WB-panel 
defined MES vs PN. C, WB-panel defined non tumorigenic MES (160503 and 160525) vs WB-
panel defined tumorigenic MES (160315, 161019 and 131210). Significant enrichment only in 
the first two comparisons. MES: mesenchymal, PN: proneural, Tumorig: tumorigenic.  
 

 

We also measured IL7R transcripts in our GSC lines by means of RT-qPCR. As 

reported in Figure 5.40, the transcript resulted much higher in tumorigenic MES GSCs 

than in non-tumorigenic MES or non-MES GSCs, even though not statistically 

significant, probably due to the limited number of samples per group. Quite 

remarkably, when we performed RT-qPCR on parental tumor lysates, highest levels 

of IL7R transcripts were detected in tumors generating non tumorigenic MES GSC 

lines. 
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Figure 5.40. RT-qPCR analysis of IL7R in GSCs (A and B) and their parental human 
tumors (C and D). GSC lines showed higher levels of IL7R mRNA in the tumorigenic MES 
(red) with respect to non-tumorigenic MES (orange) and non-MES (purple) lines. Parental 
human GBMs showed instead an opposite trend, with higher levels in those generating non-
tumorigenic MES lines. 
 

 

 

5.12.3  Protein expression analysis of IL7R in vitro. 

As a further step, we investigated the accumulation of IL7R protein in our GSC 

lines. We first performed WB analysis and relative quantification on 2 of our MES 

GSCs and GCLs vs 3 previously established PN lines (Figure 5.41A and B). 

Significantly higher levels of IL7R were detected in MES lines as opposed to PN (p-

value 0.021). We then repeated the experiment and quantifications on our MES and 

on more recently established non-MES GSC lines. As delineated in Figure 5.41C and 

D, the difference was not significant anymore, even though a trend for IL7R being 

higher in MES relative to non-MES GSC lines was still present. Notably, we included 

GSC lines 161019 and 180420 to the MES group of GSCs, as both showed much 

higher NDRG1 than EGFR, thus being CL/MES mixtures with a higher MES component. 
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On the contrary, line 170421, still being a CL/MES mix, had higher EGFR and 

EGFRvIII levels, being more of a CL subtype, and thus being included in the non-MES 

GSC subset. 

 

 
Figure 5.41. Western blot quantification of IL7R in MES and PN/non-MES cell lines. 
A, WB panel comparing IL7R protein expression in MES (160315 = ZL) and long-term cultured 
PN GSCs. HeLa cells were used as a IL7R positive control as this was the first assay for IL7R 
detection. B, quantification of IL7R relative to the housekeeping protein GAPDH for A. There is 
a significantly higher IL7R expression in MES cells (in red) than in PN cells (purple). C, WB 
panel comparing IL7R protein expression in MES and more recently established non-MES GSCs. 
Among the MES lines we included 161019 (SS) and 180420 (PM), as both showed much higher 
expression of the mesenchymal marker NDRG1 than EGFR, thus being considered more MES. 
On the contrary, line 170421 (FA), still a CL/MES mix, had higher EGFR and EGFRvIII levels, 
pertaining to CL subtype, and thus included in the non-MES GSC subset. D, quantification of 
IL7R relative to the housekeeping protein GAPDH for C. Despite showing a trend for higher 
IL7R expression in MES cells (in red) than in non-MES cells (green), statistical significance is 
not reached anymore. CL: classical, MES: mesenchymal, non-MES: non mesenchymal, PN: 
proneural. 
 

 

These findings might be explained by regulation of IL7R expression during the 

initial stages of GSC line establishment, as observed for subgroup markers EGFR, 

NDRG1 and ASCL1. As a matter of fact, Figure 5.42 shows variable levels of the 

protein at varying culturing passages of the same cell line. Therefore, differences 

among transcriptional subgroups may be initially inconstant and become increasingly 

divergent as the cell line is progressively cultured in vitro. Additionally, as 

demonstrated earlier, GSC lines tend to have mixed affiliations at least up until 

intermediate culturing passages. 
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Figure 5.42. IL7R protein expression modulation at progressive culturing passages 
in each GSC line. Transcriptional subgroup affiliation is indicated by color code: CL blue, PN 
purple, MES red. Passage 40 of 160622 showed scant detection of the 3 subgroup markers 
and was then set to gray to distinguish it. CL: classical, MES: mesenchymal, PN: proneural. 
 

 

To further assess the entity of IL7R expression in our GSCs, we performed flow 

cytometry analysis on our MES lines, particularly considering tumorigenic vs non-

tumorigenic cell lines. According to what observed in western blot assays, line 131210 

showed high IL7R signal, found in circa 80% of the cells. On the contrary, line 

160503, which was investigated at earlier passages, was almost negative, while line 

160525 demonstrated intermediate signal; both findings are in concordance with WB 

analysis on the same lines. Quite peculiarly, the tumorigenic MES line 160315 showed 

very low signal, as opposed to what detected by western blot. 
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Figure 5.43. IL7R protein expression in tumorigenic and non-tumorigenic MES GSC 
lines as measured by flow cytometry. A, non-tumorigenic MES GSCs (160525 top, 160503 
bottom), left unstained, right with IL7R staining. B, tumorigenic MES GSCs (131210 top, 
160315 bottom), left unstained, right with IL7R staining. MES: mesenchymal. 
 

 

 

5.12.4  Protein expression analysis of IL7R in vivo. 

As a final step in our validation of IL7R as a putative new player in MES GBM 

pathology, we studied its expression in vivo. We performed western blot analysis on 

lysates of xenografts derived from transplantation of GSCs and GCL in the striatum 

of immunocompromised mice. Notably, as reported in Figure 5.44, IL7R was detected 

in all cases, even in a PN GSC xenograft. As a positive control we used cultured cells 

of the MES line 131210, whose xenograft showed slightly lower signal, suggesting 

remodulation of the expression in vivo. Next, we performed immunohistochemical 

assessment on the very same xenografts, by optimizing staining protocol on human 

tonsils as a positive control (see Figure 5.44). Quite remarkably, the xenografts 

resulted negative for the staining, even though they resulted positive at western blot. 
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Figure 5.44. IL7R protein expression in GSC and GCL-derived orthotopic xenografts 
in immunocompromised mice. Western blot detects IL7R in MES and PN xenografts, even 
if with a lower signal than what seen for GSCs. IHC staining was optimized on human tonsils 
as positive control; however, MES GSC (131210) and GCL (U87) xenografts stained negative. 
ctrl: control, MES: mesenchymal, PN: proneural. 
 

 

 

 

We thus performed IL7R staining on primary human GBM specimen, as shown in 

Figure 5.45. Notably, tumors of each subgroup presented variable expression of IL7R, 

with a generally stronger signal in MES tumors and variably low to negative signal in 

PN and CL GBMs. Even more remarkably, IL7R was able to discern a MES component 

(identifiable also by fusiform cell morphology) in the context of a prevalent PN tumor 

(Figure 5.46). 
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Figure 5.45. IL7R IHC on human GBMs of different transcriptional subgroup: PN 
(top), CL (middle), and MES (bottom). On the left lower magnification (20x); on the right, 
higher magnification (40x) of the same sample. CL: classical, MES: mesenchymal, PN: 
proneural. 
 

 

 
Figure 5.46. IL7R IHC on a human PN GBM with a MES component. The MES component 
is morphologically recognizable on the 20x image on the left as the strain of fusiform cells. On 
the right, higher magnification (40x) on the MES component, with strong granular signal. MES: 
mesenchymal, PN: proneural. 
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Given the evidence in human tumors and in in vitro cultured cells, the negativity 

of GSC-derived xenografts was striking. Since IL7R is a protein implicated in adaptive 

immunity, we wondered whether the absence of adaptive immune response in NSG 

mice could impair IL7R expression in our xenografts. To investigate this hypothesis, 

we set out to transplant a murine glioma cell line (GL261) into immunocompetent 

mice. Western blot analysis showed comparable IL7R levels in this cell line and our 

MES GSCs (180420-PM and 131210), as reported in Figure 5.47A. We then 

orthotopically transplanted GL261 cells both into immunodeficient NSG and 

syngeneic immunocompetent C57bl/6 mice and monitored them with MRI to detect 

tumor formation. Upon sacrifice of the mice, we performed IL7R IHC staining. As 

shown in Figure 5.47B, tumors that originated in immunocompromised mice were 

IL7R-negative, as opposed to tumors that engrafted in immunocompetent mice. 

Therefore, expression of IL7R on tumor cells may require a functioning immune 

system and may be mediated by the tumor-microenvironment crosstalk, which will 

be the subject of further investigation. 
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Figure 5.47. IL7R expression in the GL261 murine glioma cell line and in tumors 
derived from its implantation. A, GL261 cells express IL7R levels comparable to our human 
MES GSCs (GSC line 180420-PM, and GSC line 131210) by western blot assay. B, Upon 
transplantation of GL261 in the striatum of either immunocompromised (NSG) or 
immunocompetent (C57bl/6) mice, tumors are formed. However, IL7R is expressed in tumor 
developing in immunocompetent (on the left) but staining is negative in those forming in 
immunodeficient mice (on the right), indicating the requirement of normal immune system 
and tumor-microenvironment interaction for proper IL7R expression in tumor cells. 
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6 DISCUSSION 

 

 

 

 

 

As explained in the aim section, this is a modular work where, starting from a 

principal research flow (i.e., radiogenomic study of GBM transcriptional subtypes), 

we took advantage of our GBM modeling tools (i.e., GSCs) to better characterize their 

dynamic profile and perform additional studies. Therefore, the whole work can be 

subdivided into 4 concatenated research flows stemming from each other by 

exploitation of data or analyses shared between them.  

 

 

 

6.1 Radiogenomic analysis of GBM transcriptional subtypes. 

 

Current progress in imaging and nuclear medicine techniques made available a 

huge number of quantitative parameters that cannot be captured visually but can 

still provide useful information for diagnosis and treatment management. Radiomics 

and radiogenomics currently represent an extremely hot topic in neurooncology. In 

particular, radiogenomics correlates radiomic features with genetic anomalies, 

configuring a potential virtual biopsy. Therefore, the contribution deriving from 

radiomics and artificial intelligence will likely increase in neurooncology practice in 

the near future (Galldiks et al, 2020). Basic radiological and advanced radiomic 

features can be extracted from a variety of MRI protocols. 

The primary project that we focused on is the investigation of radiomic features 

correlating to transcriptional subtypes of GBMs. Therefore, we prospectively enrolled 

56 CNS WHO grade 4 gliomas to have a consistent representation of PN, CL and MES 

lesions, based on the inferred prevalence of the transcriptional subtypes (Huse et al, 

2011; Lin et al, 2014). However, due to a recent revision of CNS tumor taxonomy, 

GBMs have been restricted to only IDHwt tumors. Thus, we discarded 6 IDH-mutant 

lesions, now defined as grade 4 astrocytomas, maintaining only 50 IDHwt GBMs. Of 

these, advanced MRI studies were available for 36 cases, on which we performed the 

radiogenomic analyses. Transcriptional affiliation was defined by an IHC panel of gene 
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classifiers as published by our collaborators (Orzan et al, 2020). Notably, contrary to 

what reported in the literature, our cohort contained only 4 MES lesions (5 if 

considering also tumors for which advanced diffusion MRI were not available). Such 

a discordance may be partially explained by using IHC as a surrogate for 

transcriptomic classification. However, as reported by Orzan et al., concordance 

between IHC and transcriptional classifications reached its highest for MES tumors 

(Orzan et al, 2020). In concordance with the literature (Bhat et al, 2013; Kim et al, 

2021; Wang et al, 2017), survival analysis demonstrated MES GBMs as having the 

worst prognosis among all subtypes, even though it did not reach significance, 

probably due to the scarcity of MES samples as opposed to others (Figure 5.2). Since 

the study population consisted in 4 MES, 13 CL, 11 PN, 6 PN/CL and 2 balanced mixes 

of the three subtypes, we decided to dichotomize the patients in MES vs non-MES 

tumors, as the numbers were too small to infer reliable data on all the affiliations. 

Thus, we focused on the MES subtype, as it is generally associated with shortest 

survival and increased treatment resistance. Tumor ROIs were delineated on FLAIR 

and post-contrast T1 sequences and coregistered to diffusion (DTI) and advanced 

diffusion (NODDI) studies to extract radiomic features. Significant features 

distinguishing the MES from the non-MES cohort were identified with a univariate 

filter method (Tables 5.3 and 5.4). 

To further select radiomic significant discriminating features and build a predictive 

model, we generated xenografts from patient derived GSCs of different affiliations 

and confirmed their molecular subgroup by means of the same IHC panel used in 

patients. As a matter of fact, xenografts tend to show more extremized features than 

human tumors. Moreover, xenograft cohorts were more balanced, with 9 MES and 

12 non-MES tumors. Therefore, we hypothesized that features identified as 

discriminating also the murine models would strongly associate with molecular 

affiliation. Notably, contrast uptake was not detectable in all xenografts, especially in 

non-MES tumors, and a few MES lesions only showed a modest uptake. 

Consequently, xenografts’ ROIs were constantly delineable only on B0 sequences 

(Table 5.5), making them comparable to the FLAIR ROIs in humans.  

 By comparing the significant discriminating features between humans and mice, 

we selected 3 common features, two of which (IMC1 and IMC2) derived from DTI and 

one (90th percentile) from NODDI. IMC1 and IMC2 provide an indication on texture 

complexity, with values approaching to 0 indicating more heterogeneous textures 

and increasingly positive or negative values signifying more homogeneous qualities. 

Both IMC1 and IMC2 are significantly closer to 0 in MES than non-MES tumors, 

suggesting MES as more heterogeneous than CL or PN tumors. Parallelly, higher 90th 
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percentile values in the NODDI fecv map indicates that MES lesions portend higher 

local tumoral infiltration, since, under pathological conditions, the anisotropic 

gaussian diffusion expressed by the fecv map provides an approximation of 

infiltrative edema. 

Subsequent generation of a simplified prediction model with the identified three 

features, with hyperparameters tuned on the xenografts’ values, allowed a quite 

accurate classification of the human samples.  

A major limitation of this model is the extreme imbalance between the MES and 

non-MES cohorts. Additionally, both IMC1 and IMC2 provide essentially equivalent 

information, possibly rendering the prediction computationally expensive with no 

substantial contribute. To circumvent this, we reapplied the same pipeline after data 

augmentation and correction for codependency of the radiomic features. Basically, 

by applying SMOTE algorithm, we created fictitious human and murine MRI studies 

to balance the two cohorts (64 human, 32 MES and 32 non-MES) and 24 xenografts 

(12 MES and 12 non-MES) with the same value distributions of the original 

populations. Correction for codependence was then applied after feature extraction 

by discarding elements with a correlation coefficient higher than 0.7 with other 

retained features (Tables 5.6, 5.7 and 5.8). When compared to the initial analysis, 

IMC2 was correctly ignored, as fundamentally overlapping to IMC1. On the contrary, 

the 2 previously found features (IMC1 on the FA map and the 90th percentile on the 

NODDI fecv map) even showed increased significance. Notably, we identified 4 more 

features, 3 coming from NODDI (fecvf_firstorder_10Percentile, 

odi_firstorder_Kurtosis and ficvf_glszm_SizeZoneNonUniformityNormalized) and 1 

from DTI (GLCM_Correlation). 

Remarkably, these additional features corroborate our previous inference, as 

higher values in the 10th percentile of extraneurite diffusion in MES tumors seem to 

suggest that they are more locally infiltrative than non-MES lesions. Of note, at least 

for xenografts, which are more extreme than their human counterparts, MES lesions 

appear more circumscribed while CL and especially PN lesions tend to be more 

widespread along white matter tracts. This might appear in contrast with our 

observation. However, higher values in the 10th and 90th percentile of extraneurite 

diffusion compartment only describe the immediate vicinity to the core nodule, where 

important FLAIR/T2 anomalies might be due to either cell infiltration or vasogenic 

edema, with no indications on what happens farther away. Therefore, MES lesions 

might be locally more invasive due to higher cell proliferation in the proximity of the 

necrotic nodule, or due to stagnation of malignant cells in the tumor surroundings, 

with a progressively smaller difference in this trend the more distant from the core. 
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This occurrence would also be in line with what is reported by some authors, who 

demonstrated that distinct GBM cell subpopulations have distinct proliferative or 

infiltrative profiles, participating in a cooperative model of tumor progression that, 

once more, synergistically relies on tumor heterogeneity (Tari et al, 2022; Vinci et 

al, 2018). Therefore, MES GBMs may have an overrepresentation of fast proliferating, 

slow migrating, and less invasive cells. Notably, we extracted radiomic features from 

the entire FLAIR altered signal region. However, some authors suggest that features 

extracted from the very first centimeter around the contrast-enhancing nodule 

correlate better with cancer invasion than features extracted from the whole 

edematous region (Liu et al, 2022). Another possible explanation is that MES GBMs 

overproduce components of extracellular matrix, which accumulate and orient 

themselves, thereby reducing isotropy. Similar findings were reported in 

differentiating GBMs from brain metastases (Mao et al, 2020). Additionally, reports 

showed that both the isotropic (fiso) and the hindered (fecv) water diffusion are 

significantly higher in the tumoral regions respect to normal brain, due to vasogenic 

and infiltrative edema. Parallelly, the restricted (ficv) component is decreased due to 

edema and neuronal loss. As the NODDI deconvolutes the voxel unitary diffusion into 

the three compartments, if one of them prevails, the influence of the remainder is 

overpowered (Kadota et al, 2020). Therefore, in the perinodular area in the context 

of FLAIR alterations, the influence of the hindered fraction is likely stronger than that 

of isotropic or restricted components. 
Parallelly, like IMC1, correlation ranges from 0 (uncorrelated) to 1 (perfectly 

correlated). The Size Zone Non-Uniformity Normalized feature measures the 

variability of zonal volumes throughout the image, with lower values indicating 

homogeneity. Lastly, higher kurtosis indicates a flatter distribution of the grey values 

with more consistent representation of the tails. Profile of these latter features in 

MES tumors indicate them as having a more heterogeneous texture than non-MES 

lesions. While at first sight these findings seem to corroborate our previous inference, 

we must note that they are obtained from a modification of the original datasets that 

does not introduce any bias. However, the correspondence between the initial and 

final value distributions might have affected the scope of characteristics identified as 

significant at both analyses. 
As a final step, we trained a predictive model with the six features identified, 

tuning the hyperparameters on the xenografts’ augmented dataset and testing it on 

the augmented patients’ dataset. Accuracy was globally increased, reaching the 

highest performance with the random forest model. 
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Notably, proper validation of both models (obtained from analyses on original and 

augmented datasets) should be carried out on human datasets not implicated in 

generation of the models themselves. This could be achieved either by acquiring more 

diffusion studies on new patients to following classify them as MES or non-MES, or 

by testing the model on public datasets used for other studies. Unfortunately, 

however, NODDI sequences are not yet routinely used in clinics, and radiomic studies 

on NODDI are still extremely few, with no published reports correlating both DTI and 

NODDI to GBM transcriptional subgroups to our knowledge. 

As a matter of fact, the few studies in the literature to adopt both diffusion 

techniques (DTI and NODDI) to characterize brain tumors did not apply radiomic 

pipelines and focused on different tasks. Kadota et al. utilized diffusion metrics to 

differentiate GBMs from metastases. They reported a significantly higher signal in the 

NODDI extraneurite component of diffusion in the perinodular area of GBMs, while 

the isotropic component was increased in metastases, though not statistically 

significant. Notably, ADC and FA may aid in the diagnosis, but the fecv fraction proved 

to be stronger, making NODDI more sensitive (Kadota et al, 2020). In a similar study, 

Mao et al. described parallel findings, though the isotropic component of the diffusion 

showed the greatest discriminative power in the peritumoral surroundings (Mao et 

al, 2020). Figini et al. compared DTI and NODDI performances in characterizing grade 

2, 3 and 4 gliomas. They found that IDHwt grade 2 and 3 gliomas had significantly 

lower minimum MD values, and maximal FA and NODDI restricted diffusion 

component compared to IDH-mutant counterparts. They demonstrated a significant 

correlation between DTI parameters and IDH mutations in grade 2 and 3 gliomas. 

However, NODDI did not significantly improved diagnostic accuracy, thus not 

justifying the additional computational costs (Figini et al, 2018). Notably, higher 

NODDI odi values indicate more dispersed fibers in IDHwt gliomas, whereas increased 

extracellular water in IDH-mutant lesions may reduce their FA signal (Figini et al, 

2018). Parallelly, Zhao et al. found no differences in NODDI metrics pertaining IDH 

status. However, they reported that gliomas with high restricted component (ficv) in 

the tumor parenchyma and low restricted diffusion in the surrounding periphery were 

more likely to be high-grade, as opposed to lower grade gliomas which showed a 

significant opposite trend (Zhao et al, 2018). As a matter of fact, fiber disruption and 

tumor isotropic tissue lead to a general reduction of the intracellular diffusivity and 

increased odi signal. Higher-grade gliomas show increased cellularity and nuclear 

pleomorphism, endothelial and vascular proliferation, all concurring in destroying the 

fiber tracts architecture to a greater extent than lower-grade gliomas (Zhao et al, 
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2018). Further studies investigated NODDI and DTI ability to distinguish normal 

tissue, edematous white matter and tumor nodule (Masjoodi et al, 2018). 

The likely rationale explaining the outperformance of NODDI with respect to other 

diffusion techniques is that brain and tumor microarchitecture affects water molecule 

diffusion into a non-Gaussian probability distribution. Therefore, non-Gaussian 

diffusion models may better approximate this complex tissue microenvironment than 

Gaussian diffusion models (Mao et al, 2020). 

On the contrary, many studies applied the radiomic pipeline to conventional, 

routine MRI acquisitions to study brain tumors. By exploiting a radiomic-based model, 

Cluceru et al. provided an accurate and simultaneous prediction of IDH and 1p/19q 

codeletion status in 147 patients (Cluceru et al, 2021). Liu et al. correlated the 

immune cell infiltrate profile of GBMs to radiomic features. In particular, they 

elaborated an efficacious 11-feature model able to predict high immune infiltrate 

scores, which correlate with worse prognosis and higher expression of 

immunosuppressive molecules, limiting therapies acting against immune checkpoint 

inhibitors (Liu et al, 2022). Le et al. applied radiomic analyses to conventional post-

contrast T1 and T2/FLAIR sequences, extracting features from enhancing nodule, 

non-enhancing tumor core, and peripheral edema. They identified 13 features with 

which they built a model predicting transcriptional affiliation with reported accuracy 

of 70.9%, 73.3%, and 88.4% for CL, MES, and PN tumors respectively (Le et al, 

2021). Parallel findings following similar analyses on conventional MRI have been 

reported by others (Rathore et al, 2019). However, both groups did not include 

diffusion-weighted sequences, neither DTI, nor the more advanced NODDI. Additional 

works demonstrated how prediction models based on radiomic features derived from 

MRI or combined PET/MRI acquisitions could determine proliferation index, tumor 

grades, and molecular markers (e.g., IDH, MGMT, ATRX, 1p/19q codeletion, EGFR, 

PTEN, RB1, TP53, TERT) and correlate with prognosis in gliomas, besides 

differentiating tumor recurrences from radionecrosis and predicting response to 

immunotherapy (Lohmann et al, 2021; Liu et al, 2021; Moassefi et al, 2022; Beig et 

al, 2020). 

Despite encouraging initial applications of radiomics and deep learning in brain 

tumor patients, most prediction models have not yet become integral to clinical 

practice. One of the main motivations is the general lack of method standardization, 

which hampers replicability of the findings and prevents the widespread diffusion of 

radiomic models to different institutions. (Galldiks et al, 2020) Radiomics features 

are affected by many factors, from the quality of acquisitions to differences in 

contrast, voxel resolution and slice thickness, to magnetic field strengths, up to image 
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pre- and postprocessing. First-order features, which correspond to image histograms, 

are more reproducible than higher-order shape and textural features (Lohmann et al, 

2021). Also, tumor segmentation is a major concern. On one hand, manual 

techniques are labor intensive and suffer from inter-observer variability. On the other 

hand, automatic or semiautomatic segmentation may be imperfect and over- or 

underestimate tumor burden, thereby impacting on the subsequent analyses (Beig 

et al, 2020). Their interpretability is an additional issue that may prevent radiomics 

from becoming routinely adopted in clinical practice, as features and their derived 

models are still perceived as too abstract. 

 

 

6.1.1 Limitations and conclusions 

As outlined before, the main limitation of our study is the small number of patients 

investigated, which is further impaired by the scarcity of MES samples. Many radiomic 

and radiogenomic studies base their findings on much greater numbers, as allowed 

also by increasing potential of computational and deep learning approaches. 

However, such studies generally rely on image acquisitions systematically integrated 

in clinical routine and, sometimes, on merging datasets from different institutions. 

To our knowledge, we were the first to apply the radiogenomic pipeline to an 

advanced diffusion MRI technique (NODDI) and correlate resulting features to GBM 

transcriptional subgroups. Therefore, our numbers, though limited, provide 

interesting preliminary results, suitable for a cutting-edge single-center study. Still, 

such results need to be confirmed by more advanced analyses relying on conspicuous 

numbers, permitting to properly delineate ab initio a training, validation, and test 

populations. Further limitations of this study are the use only of diffusion-weighed 

images. Perfusion MRI might catch other crucial differences among the three 

subgroups, but its inclusion in the pipeline was prevented by too variable contrast 

uptake by xenografts and inconstant acquisitions on patients. The scant 

enhancement of xenografts also made us discard any analyses on the simple T1 

contrast-enhancing lesions, limiting the study to FLAIR anomalies, which suit better 

the perinodular area than the proper nodule. Lastly, the definition of the 

transcriptional subgroup affiliation was determined by an IHC surrogate, which, even 

if demonstrated to be very accurate, was far from reaching perfect statistics. 

In the end, by applying the radiomic pipeline to advanced diffusion MRI 

techniques, we identified novel features that proved to correlate and possibly predict 

mesenchymal affiliation of GBMs and provide insight into pathologic characteristics 

of transcriptional subtypes. Still, radiomics should not be used as a stand-alone 
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technique but should implement other clinical and pathological information allowing 

additional low cost, automated data evaluation (Lohmann et al, 2021). Improvement 

of these critical aspects will render radiomics and radiogenomics more acceptable, 

aiding precision medicine and patient-tailored treatment strategies (Liu et al, 2021). 

 

 

 

6.2 GSC evolution and model reliability. 

 

As previously reported (Bhat et al, 2013; Stringer et al, 2019), culturing conditions 

may affect transcriptional affiliation of GSC lines propagated over a high number of 

passages. Therefore, primary cultures may better reflect the parental tumors at early 

or intermediate in vitro passages, although these cultures may be composed not only 

by stem cells but also by short-term proliferating progenitors that are still responsive 

to mitogen stimuli. On the contrary, when performed for many subculturing 

passages, the NSA allows for bona fide isolation of cells endowed with stem 

properties, with the more committed progenitors exhausting their replication and 

being selected away. As a matter of fact, NSA is a very efficient functional assay for 

establishing GSC lines. Additionally, stabilized GSC lines are essential for 

reproducibility and subsequent replication of experimental results and thus cannot 

be used only at early passages.  

Given this, a systematic investigation of GSC lines’ dynamic transcriptional drift or 

stability is of particular interest. To date, very few proper studies have addressed this 

question, while most of others concentrated on the sole comparison between tumor 

tissues and derived stable lines or on the spatial and temporal heterogeneity of the 

tumor (Nakano, 2015; Cusulin et al, 2015; Stringer et al, 2019; Neftel et al, 2019). 

Since for our radiogenomic investigation we established new primary cultures from 

enrolled patients, we decided to parallelly screen them for their molecular profile 

under progressive in vitro passages. We were able to isolate 14 new GSC lines from 

a total of 48 GBM samples, all of which were cultured up to at least intermediate 

(around p20) or intermediate-late (around p40) passages. In fact, at these passages 

we considered our lines to be fully established, though other authors consider them 

already stabilized at passages between 8 and 15 (Stringer et al, 2019). Notably, we 

subjected 9 pairs of parental tissues and derived GSC line to RNAseq. GSEA analysis 

with Verhaak’s transcriptional signatures confirmed that parental tissues were 
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significantly more mesenchymal than their matched derived lines, suggesting an 

actual drift in culture toward non-MES phenotypes.  
Transcriptional classification relies on expensive methods that would be unrealistic 

to perform multiple times for longitudinal screening on several samples; in addition, 

transcriptional differences are not always maintained at the protein level. Therefore, 

we proposed a cost-effective, protein-based surrogate for our classification. We 

selected 3 genes that were demonstrated by our and other groups to regulate 

transcriptional affiliation (EGFR for CL, ASCL1 for PN and NDRG1 for MES) (Verhaak 

et al, 2010; Park et al, 2017; Narayanan et al, 2019), whose expression levels can 

easily be detected by simple western blot assay.  

We first evaluated the reliability of this minimal signature by clustering TCGA GBMs 

based on transcript levels of these genes (Figure 5.8), showing an acceptable 

accuracy (70.6%) and reaching up to 90% of positive predictive value for MES 

samples. Parental tumor and GSCs at progressive passages were subjected to this 

WB panel and affiliation was determined based on relative expression of the 3 

proteins and their modulation in culture (Figures 5.9-5.12). Remarkably, we also 

compared our WB-based to IHC-based tumor classification, both of which exploit 

EGFR, ASCL1 and NDRG1 as classifiers (Table 5.12). Interestingly, the classifications 

perfectly matched in 4/14 cases (1 MES and 3 CL), while 3 CL tumors showed a MES 

component at WB, defining 3 mixed CL/MES GBMs. This may be due to contaminating 

normal white matter which is NDRG1-positive, and is not discernible by WB, as 

opposed to IHC. This overweighing of the MES component affected also two PN/CL 

tumors that resulted as MES and CL/MES at WB. Additionally, Two IHC-based PN/CL 

tumors were classified as CL by WB. This underestimation of the PN component by 

WB may be due to a mixed effect of the lower performance of ASCL1 antibody in WB, 

and of the smaller amount of tumoral material with respect to IHC, that may be 

insufficient to catch the total spatial tumor heterogeneity. Given these differences 

and the accuracy of IHC (Orzan et al, 2020) and WB classifications (both protein 

surrogates of transcriptional classification), we selected IHC as our reference, but 

also maintained WB affiliation for consistent comparison in the context of the analysis 

upon progressive in vitro subculturing of GSCs. 

Intriguingly, minimal signature analysis at increasing culturing passages showed 

different scenarios. On one hand, some lines demonstrated increasing signal of the 

PN marker, generally coupled with decreased intensity of CL and MES markers, 

consistent with GSEA findings that tumor tissues are more mesenchymal than their 

matched lines. On the contrary, in a few lines, the MES marker remained expressed 

at high levels or even progressively increased its expression, indicating stabilization 
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of a MES profile. As for the CL marker, most lines showed extreme downregulation 

or even abolition of its signal, inducing an extreme underrepresentation of the CL 

component, which is generally maintained only in the presence of EGFRvIII. This 

might be due to presence of EGF in the medium, which modulates its receptor through 

negative feedback (Mazzoleni et al, 2010; Stringer et al, 2019). This is concordant 

with the disappearance of wild-type EGFR and the retention of EGFRvIII, which is 

ligand-independent and therefore not modulable. However, loss of the truncated form 

of EGFR in at least two cases (GBM 160622 and GBM 191119) seems to indicate that 

other mechanisms may take place in reducing the classical component, which is not 

simply explained by a biased inference, where the CL counterpart is defined solely by 

a master regulator (although being the strongest for this affiliation) that is necessarily 

downregulated by high concentrations of its ligand. Such evidence have also been 

reported in previous works showing in vitro downregulation of EGFRvIII (De Bacco et 

al, 2016).  

Notably, we also performed multiple sampling from the same tumor and managed 

to establish cell lines from multiple areas in 2 cases. Both times, lines generated from 

the same tumor showed same affiliation, which was identical to the original tumor in 

1 case (a MES line from a MES tumor) and showed a “proneuralization” in the latter 

(a PN/CL line from a CL tumor). This is similar to what demonstrated by Laks et al., 

who generated lines from multiply sampled tumors in 4 cases. In 3 of them affiliation 

was the same for each line established and equivalent to the parental tumor (MES), 

while in the remainder they had a drift from CL to MES profile (Laks et al, 2016). 

Remarkably, one GSC line (GBM 190125) was not assigned to any affiliation, as 

WB panel showed a general downregulation of all 3 protein markers, hence 

representing a flaw of this method. One of the most notable evolutions, instead, was 

that of GBM 160704. Though starting from a CL tumor, as assessed both by WB and 

IHC, early passages of the established line showed a proneuralization with increased 

ASCL1 and decreased EGFR. At intermediate passages, the same GSC line showed 

even stronger ASCL1 signal, but surprisingly also a very strong NDRG1 signal, thus 

delineating a mixed PN/MES line. This is very intriguing as at p18 contamination by 

normal white matter can be ruled out and our group demonstrated that NDRG1 is 

transcriptionally repressed by ASCL1 (Narayanan et al, 2019), thus suggesting the 

development of two subclones of this line, one more PN and one more MES.  

This complex picture seems to be in line with many reports in the literature. Laks 

et al. reported a stable, though weak correlation between GSCs and their original 

tumors in 60% of their lines, especially for TCGA classification. Samples that changed 

affiliation did not show a peculiar trend in switching subgroup (Laks et al, 2016). On 
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one hand, some other authors suggest a general “proneuralization” of the cancer 

cells in culture, as the NSA was designed to isolate normal neural stem cells, whose 

profile is more similar to PN profile (Verhaak et al, 2010; Bhat et al, 2013; Xie et al, 

2015). On the other hand, other authors report establishment of a consistent number 

of MES lines in addition to PN (Nakano, 2015; Stringer et al, 2019; Mack et al, 2019). 

Lastly, some authors describe virtual absence of CL cell lines (Nakano, 2015; Stringer 

et al, 2019). Whether such affiliation drift is the result of thriving pre-existing clones 

or due to inherent single cell plasticity is still to be fully understood. While human 

GBMs are proven to harbor cells of differing subtypes that can be variably selected 

in culture, in vivo evidence suggests that some cells may shape their phenotype 

according to signals from the microenvironment (Stringer et al, 2019; Li et al, 2022). 

As explained previously, we performed RNAseq on 9 GSC lines (4 MES, 1 CL and 

4 PN) whose affiliation was determined by WB minimal signature, to which we added 

a previously established line known to bear an extreme mesenchymal profile 

(deriving from a gliosarcoma, as described also by other authors (Laks et al, 2016)), 

to perfectly balance MES and non-MES cohorts. Unsupervised clustering 

discriminated two main groups, one consisting of 3 WB-defined MES lines and the 

other containing all the PN, CL and the remaining 2 MES lines. Consistently, GSEA 

showed significant enrichment of MES profile in the first cluster and of CL and PN 

profile in the second one (Figure 5.15). Of note, we investigated our cell lines also 

by means of whole exome sequencing, which returned two unsupervised clusters 

which perfectly distinguished MES lines from PN and CL ones (Figure 5.34). These 

findings are further corroborated by other authors, who showed that transcriptome-

based clustering divides GSCs into a MES and a non-MES group, the latter comprising 

PN and CL lines (Cusulin et al, 2015; Laks et al, 2016). 

We also performed a supervised transcriptional analysis by comparing our WB-

defined PN and MES GSC lines (Figure 5.14). Remarkably, MES profile was very 

significantly enriched in our MES lines just as the PN profile in our PN GSCs. Also, CL 

profile was significantly enriched in our WB-defined PN GSCs, though consistently to 

a lesser extent than PN signature. This is an extremely interesting finding as it 

confirms our minimal protein signature in a proper transcriptional setting, which, 

together with what reported for IHC by other groups (Conroy et al, 2014) and our 

collaborators (Orzan et al, 2020), suggests that a classification based on protein 

expression might have a comparable impact to that based on transcript levels. This 

is reasonable since the proper molecular effectors are usually the products of 

transcript translation, therefore actual proteins, even though molecular functions 

(beside translation regulation) have been recently identified for RNA fragments. 
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Evidence of affiliation drift from parental tumor to GSC lines since the very earliest 

culturing passages raises the question whether these divergences might render these 

cells an unreliable tool for modeling GBM transcriptional heterogeneity. To address 

this issue, we exploited differential gene expression between our WB-defined PN and 

MES lines to obtain defining gene signatures for each affiliation. By selecting stringent 

log2FC and multiple test adjusted p-value thresholds, we identified an 81-gene 

signature for MES subgroup and a 43-gene signature for PN (Tables 5.13 and 5.14). 

We then performed k-means clustering of TCGA human GBMs based on the 

expression of these signatures and obtained an almost perfect accuracy in assigning 

each sample to the correct affiliation (Figure 5.16). Notably, this diagnostic power 

further improved when we derived signatures from the comparison of our 

unsupervised clusters, where Cluster A retained probably the most divergent MES 

lines, while Cluster B grouped all the non-MES and, likely, two less extremized MES 

lines. As a matter of fact, with this comparison, we were able to render log2FC and 

p-value thresholds even more stringent, identifying 49 characterizing genes for 

Cluster A/MES and 98 for Cluster B/non-MES (Tables 5.15 and 5.16). By performing 

k-means on human unrelated TCGA GBMs, these signatures separated MES from PN 

tumors with a 100% accuracy (Figure 5.18). Most notably, if we also included CL 

samples and imposed to cluster tumors in 3 groups these signatures managed to 

correctly identify the transcriptional affiliation with an accuracy of 88.2% (Figure 

5.17), and the sole Cluster B signature was able to accurately discern PN from CL 

tumors (Figure 5.18). These findings were also confirmed by performing differential 

gene expression on available raw transcriptomic data of TCGA human GBMs. 

Basically, we isolated RNAseq data of known-affiliation tumors from a publicly 

available repository and performed pairwise comparison between MES and PN, MES 

and CL, and CL and PN tumors. We then interrogated the 3 resulting gene lists with 

our GSC-derived signatures by means of GSEA (Figures 5.19-5.21) and 

demonstrated correct enrichment of our genesets. This suggests that, even though 

GSC lines start drifting away from the molecular profile of their parental tumor from 

the very first culturing passages, their transcriptional affiliations still approximate 

very well the corresponding affiliations of unrelated human full-blown GBMs and may 

reliably be used to model GBM heterogeneity. 

Notably, our signatures do not significantly overlap with each other, nor with the 

more conspicuous signatures deposited by Verhaak et al. (Verhaak et al, 2010) 

(Tables 5.17 and 5.18) or subsequently by Wang et al. (Wang et al, 2017) (Tables 

5.19 and 5.20). Thus, the genes included in our signatures may provide interesting 

insights in identifying novel signaling and metabolic pathways that concur in driving 
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different subgroups’ behavior and that may be underrepresented when considering 

GBM tumor samples as a whole. Remarkably, other authors exploited machine 

learning strategies to propose an even more condensed transcriptional signature, 

consisting of only 5 genes, able to predict the 3 GBM subtypes with a reported 

accuracy of 80.12%, therefore amenable to be used also by qRT-PCR (Tang et al, 

2021). However, caution should be paid with classifications relying on too small 

transcriptional genesets. As a matter of fact, Stringer et al. reported that using the 

reduced subgroup-specific signatures published by Wang et al. (Wang et al, 2017) to 

subtype IDHwt GBMs, tumors often obtained non-significant enrichment scores. 

Consequently, it still may be better to rely on the original, larger Verhaak’s signatures 

(Stringer et al, 2019). Accordingly, we chose Verhaak’s genesets as our standard 

reference. Moreover, condensed transcriptional signatures have been proposed by 

other groups and correlated to GBM prognosis (Johnson et al, 2020). 

To better delineate our MES and PN GSC profiles, we utilized the significantly 

upregulated genes in each group to identify molecular pathways, cell phenotypes and 

gene ontologies potentially playing subgroup-specific key roles. In particular, gene 

ontologies are a basilar component of computational biology, based on genes 

functionally interconnected in defined biological and developmental processes (Beig 

et al, 2020). The two MES clusters (Cluster A and WB-MES GSCs) showed similar 

phenotypes, resembling other mesenchymal lineages. Known mesenchymal players 

(Lv et al, 2022; Behnan et al, 2019), as well as stigmata of hypoxia, ECM deposition 

and inflammation were detected, with generally higher significance scores in Cluster 

A. As a matter of fact, Unsupervised Cluster A is a subset of the WB-MES GSCs and 

likely collects the most extreme mesenchymal lines. Notably, however, epithelial to 

mesenchymal transition (EMT) was strikingly more significant in WB-defined MES 

GSCs. This suggests that a mesenchymal transition very similar to EMT might be a 

common, basal process in GBM progression. Therefore, comparing only the 3 most 

MES lines against all others diminishes such difference, which is better detected by 

collecting altogether the lines with a significant (though maybe not prominent) MES 

component. Remarkably, our MES lines had significant enrichment of fructose and 

mannose metabolism, a metabolic pathway that our group very recently identified as 

crucial for MES GBMs (Pieri et al, 2022). Parallelly, the two non-MES/PN clusters 

(Cluster B and WB-PN GSCs) shared profiles reminding of differentiated glial or 

progenitor neural cells, normal brain compartments and less malignant or benign glial 

tumors. Notably, recent evidence showed how gliomas hijack neuronal signaling by 

forming synapses with healthy neurons to drive and promote invasion 

(Venkataramani et al, 2022, 2019). Enrichment in ontologies linked to 



 183 

synaptogenesis and synaptic transmission in PN GBMs and GSCs is therefore 

consistent with their more invasive nature than MES tumors and cell lines. Also, our 

non-MES/PN clusters shared pathways typical of neuronal tumors like 

medulloblastoma. 

As previously described, we orthotopically transplanted our GSCs in murine 

recipients to generate xenografts for our radiogenomic pipeline. We took advantage 

of these transplants to assess the tumorigenic potentials of the lines established, 

which is an integral part of the functional definition of cancer stem cells. Notably, 

high passages GSC lines of different affiliations tend to stably extremize different 

aspects of human GBMs, i.e., invasion for the PN and nodular mass and angiogenesis 

for the MES. Remarkably, very few CL lines have been stably established over the 

years, as described above. 

Given the mixed and dynamic transcriptional affiliation of our freshly established 

lines, we postulated that their derived xenografts would reproduce more closely the 

heterogeneous phenotype of human lesions both at MRI and at histopathology. Nine 

out of the total 14 lines generated tumors that were detectable at MRI, while 5 

apparently failed to give rise to xenografts. Of the 5 GSC lines that did not generate 

full blown xenografts, two demonstrated a few tumor cells at H&E staining, without 

forming full-blown tumors. As hypothesized, qualitative MRI evaluation of T2, post-

contrast T1 and diffusion/NODDI sequences allowed us to assign a radiological-based 

subgroup pattern to the xenografts (Table 5.25) that comprised all the subgroups. 

Nonetheless, radiological phenotypes were already assuming the extreme features of 

long-established lines, although showing more heterogeneity. 

Upon IHC analysis of GSC-derived xenografts, by adopting the same panel used 

for human tumors, we surprisingly noticed that most of the times xenografts perfectly 

matched the affiliation of the original GBM from which they were derived, 

independent of the drift demonstrated in vitro by the corresponding GSC line (Figure 

5.26 and Table 5.26). When a variation was observed, this was generally minor. 

Surely, a possible confounding factor is the determination of transcriptional affiliation 

by WB minimal signature for GSCs and by IHC for human and murine tumors. 

Nevertheless, EGFR, ASCL1 and NDRG1 are present in both classifications, making 

them somehow comparable and not completely disjointed. Interestingly, other 

authors recently reported a similar behavior of their GSC lines, which generated 

xenografts of the same transcriptional affiliation as the parental human tumor, while 

showing a different subgroup in vitro (Stringer et al, 2019). In particular, Stringer et 

al. reported only two cases for which transcriptional subgroup was the same in the 

human tumor, its derived GSC line and subsequent xenograft. The two cases, in fact, 



 184 

were respectively MES and CL (Stringer et al, 2019). In line with this, we found 

perfect correspondence between original GBM, GSC line and xenografts in 1 MES case 

(GBM 160315) out of the 14 total new lines, plus the previously isolated line 131210, 

derived from a gliosarcoma. Both these GSC lines belong to the abovementioned 

Cluster A. This indicates that extreme MES profile is the most stable and resistant to 

influence of the microenvironment and of the culture conditions. 

Lastly, the absence of tumor formation should incline towards a “non-cancer stem” 

profile of the failing cell lines. Particularly, the 2 MES lines 160503 and 160525 

displayed a peculiar growth pattern in vitro. In fact, they replicated fast but grew as 

single fusiform cells in adherent monolayers, even under NSA conditions. However, 

also other authors reported generation of GSC lines that displayed peculiar cell 

morphologies and inability to form neurospheres (Stringer et al, 2019). Additionally, 

whole exome sequencing analyses of 3 of our 5 non-tumorigenic cell lines (the latter 

2 were not established yet) demonstrated that they all bore known GBM-related 

mutations. Moreover, unsupervised clustering grouped these cell lines together with 

other tumorigenic GSC lines both in exomic and transcriptomic analyses, suggesting 

they are actual cancer stem cells (Figure 5.34 and Table 5.39). As a matter of fact, 

if such lines constituted healthy stem cells (which indefinitely propagate in culture, 

but do not generate tumors upon transplantation) we would expect them to cluster 

away from tumor cells in a very early tree-branch. Most notably, other authors 

reported that not all GSC lines are tumorigenic in vivo, with a higher incidence of 

failure in MES lines (Xie et al, 2015). In line with this observation, 2 of our non-

tumorigenic lines were purely MES and other 2 had a very well represented MES 

component admixed to CL. 

 

 

6.2.1 Limitations and conclusions 

As for the limitation of this study, the small number of GSC lines established is a 

concern. Our findings should be replicated on a more conspicuous group of possibly 

balanced PN, CL and MES lines. Also, transcriptional profiling should be carried out 

on all samples and at various stages (parental human tumors, early, intermediate, 

and late in vitro passages, and xenografts) to better compare the protein-based 

classifications. Parallelly, for proper insight to be inferred from transcriptomic and 

exomic studies, both should be carried on the same samples. Our RNAseq and WES 

analyses only partially overlapped, as we included in WES 3 historical GSC lines (2 

PN and 1 CL) and did not include line 170421 (which had not been isolated yet). 

Besides, protein surrogates adopted for transcriptional affiliation were not univocally 
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tested by the same methodologies, as GSCs were analyzed only by WB and 

xenografts only by IHC, with the two methods not perfectly superimposable. 

Furthermore, accuracy of WB minimal signature is quite high, but still far from 

perfection. 

In conclusion, GSC lines are a powerful tool that can be exploited to model GBM 

heterogeneity notwithstanding an almost unavoidable in vitro drift in transcriptional 

affiliation from the parental tumor. As a whole, however, PN lines efficiently model 

biological aspects of PN GBMs, as do MES GSCs for MES GBMs. Additionally, lines at 

early and intermediate passages are efficacious in modeling human GBM 

heterogeneity with a dynamic balance of each subgroup inside the same line. 

Moreover, the molecular affiliation drift observed in vitro is completely or partially 

reversed in vivo, proving to be a reliable model for in vivo testing. A final interesting 

finding is the evidence that much less expensive and labor-intensive protein-based 

categorizations effectively approximate transcriptional classifications that need more 

dispendious techniques. This also suggests that protein profile may be more 

important than transcriptional counterpart. Therefore, if consistent resources must 

be allocated, they should probably be more indicated for single cell proteomic than 

single cell transcriptomic. Given all this evidence, GSC use as a modeling tool is 

extensively supported, though many questions still need to be answered. 

 

 

 

6.3 GBM transcriptional subtype evolution model. 

 

GBM evolution and plasticity has been the subject of several studies on multiple 

levels, from genomic to transcriptomic. Körber et al. reconstructed the evolutionary 

processes of matched pairs of primary and recurrent IDHwt GBMs based on deep 

whole-genome-sequencing data. Tumor initiation was demonstrated to likely happen 

up to 7 years before diagnosis, following an early common tumorigenic path, 

involving chromosome 7 gain, 9p loss, or 10 loss. At this stage, the neoplasm likely 

remains clinically silent and MRI undetectable. Subsequent stabilizing mutations, 

such as those in TERT promoter, occur later and are necessary for accelerated 

expansive growth. (Körber et al, 2019) 

Additionally, while some studies reported only few mutations common to primary 

and recurrent GBMs, suggesting selection of clones that branched off early during 

tumorigenesis (Kim et al, 2015), other studies demonstrated a much higher genetic 
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concordance between primary and relapsing lesions (Körber et al, 2019). However, 

interestingly, both observations might hold true, the former characterizing more 

frequently distant tumor relapses, while the latter being more typical of local 

recurrences (Körber et al, 2019). 

Also for GBMs, an integral role in tumor plasticity is played by epithelial-

mesenchymal transition (EMT), which is a well-recognized phenotypic progression of 

solid tumors and predicts dismal prognosis and treatment resistance (Lv et al, 2022). 

EMT allows a differentiated epithelial cell to assume a mesenchymal state by reducing 

cellular adhesion and increasing ECM proteases production and cytoskeletal activity. 

Such modifications induce migratory and invasive capabilities. Also, mesenchymal 

features have been associated with the gain of a stem cell program in gliomas 

(Ortensi et al, 2013), suggesting an invasive tumor front of migrating GSCs which is 

further corroborated by reports in the literature (Li et al, 2022). Remarkably, the 

mechanisms of EMT are driven by transcription factors such as SNAI, TWIST, and 

ZEB, which are altered in GBMs and are differently involved in the regulation of their 

proliferation, invasion and migration (Ortensi et al, 2013). 

As EMT is a multiple-level process, reminiscent features influencing the phenotype 

transition can be detected at genomic, as well as transcriptomic, proteomic and 

metabolomic level. On a transcriptional level, PN GBMs have been demonstrated to 

become treatment-resistant and more aggressive, and to attain angiogenic and 

hypoxic potential by transitioning to MES affiliation. Therefore, from a transcriptional 

point of view, EMT may be analogously declined as “PN to MES transition”, especially 

at recurrence after chemoradiation (Kim et al, 2021). Notably, although this 

phenomenon was initially described as frequent (Wood et al, 2016), other authors 

recently reported that 55% of IDHwt GBM retained their original transcriptional 

subtype at recurrence and transition towards a MES profile was not significantly 

higher than that towards PN or CL subtypes (Wang et al, 2017). This may be 

explained by the fact that transcriptional profile is naturally variable to finely tune 

the final phenotype and, thus, far from being crystallized in a single direction. 

Therefore, as far from being an invariantly proven dynamics, transcriptional evolution 

of GBMs may still offer interesting insights to be eviscerated.  

As described above, we utilized transcriptional data of human TCGA GBMs from a 

publicly available repository to validate our GSC-derived gene signatures. Notably, 

such repository also contained data from healthy brains, giving us the chance to 

derive transcriptional profiles peculiar for each subgroup with respect to normal 

tissue. This is very interesting in light of the fact that the reference molecular profiles 

described by Verhaak and Wang were derived from transcriptional comparison 
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between each subgroup and all the others, thus considering only pathological states 

(Verhaak et al, 2010; Wang et al, 2017). By comparing only samples of a specific 

affiliation with healthy tissue and singularly with the other subtypes, we hypothesized 

to derive insights into a likely transcriptional evolution of the bulk pathological states, 

where increasing divergence from healthy tissue could act as a metrics to build a 

potential evolutionary tree. 

We subjected RNAseq data from 4 CL, 9 MES, 6 PN and 5 Healthy TCGA samples 

to paired differential gene expression (Table 5.30). Though the absolute number of 

genes differentially expressed (DEGs) was almost equivalent for each combinatorial 

comparison, we found an increasing number of significant DEGs respectively for PN, 

CL, and MES GBMs compared to healthy controls. Considering paired comparisons 

between the pathological states, the significant DEGs were consistently lower than 

comparisons with healthy tissue, and increasing divergence was detected for CL vs 

PN, to MES vs CL, to finally MES vs PN GBMs. 

Upon GSEA analysis with Verhaak’s transcriptional signatures (Figures 5.27, 5.28 

and 5.29) NEU profile was constantly enriched in healthy controls, consistent with 

the notion that NEU samples were predominantly healthy tissue infiltrated by tumor 

leading edge (Wang et al, 2017). Interestingly, as expected, PN profile was enriched 

in PN subtype opposed to normal tissue. However, in the comparison of MES and CL 

tumors with normal tissue, it was enriched on the healthy side. On the contrary, both 

CL and MES signatures were invariably enriched in all pathologic states compared to 

controls. Together with these findings, enrichment profile of Verhaak’s signatures in 

pairwise combinatorial contrasts between the three transcriptional subgroups 

(Figures 5.30, 5.31 and 5.32, and Table 5.31) seems to suggest that MES tumors are 

the most divergent from the basal normal state, while the PN subtype is the ground 

state of GBM. Consequently, our results seem to propend towards a more pronounced 

PN to MES transition, as it looks quite unlikely that progression of a deranged 

condition like a malignant tumor may become increasingly more similar to normal 

healthy tissue. The CL phenotype seems to locate instead in between the two 

extremes, much closer either to PN profile as indicated by overall number of DEGs 

(Table 5.30), or to MES as suggested by GSEA enrichment of CL signature. 

Notably, these profiles correspond to bulk transcriptomic signal, with recent works 

unveiling correlations between cellular states and bulk RNAseq profiles. As a matter 

of fact, Neftel et al. reported different frequencies of cellular states combinations, 

with some more frequent patterns and others virtually absent (Neftel et al, 2019). 

AC-like state (determining a CL affiliation) is recurrently detected together with 

MES1/2-like states, likely inducing a mixed CL/MES affiliation that can lean towards 
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extremized CL or MES profiles in a dynamic change of the two states percentual 

representations. However, other authors have reported how the MES profile is 

generally stably maintained once developed and selected for (Bhat et al, 2013; 

Gangoso et al, 2021). This propends more for an additional drift as a further evolution 

step in transcriptional profile, rather than a bidirectional balance between CL and 

MES features. Overall, the extreme complexity of transcriptional characterization of 

such a heterogeneous pathology may locate the truth somewhere in between these 

two distinct scenarios. 

We next interrogated the DEGs between each pathological states and healthy brain 

to identify characterizing ontologies of each subgroup. The rationale was to denote 

which features would be common to all subtypes (thus, possibly inherent to GBM 

initiation) and which peculiar to single subtypes, suggesting progressive divergence 

from basal healthy state (Tables 5.33, 5.34 and 5.35). As expected, several features 

were detected in all the comparisons, though with dramatic changes in significance 

values. For instance, processes necessary for tumor progression such as EMT and 

angiogenesis showed progressively increasing significance from PN to CL, to MES 

tumors. Conversely, the enrichment for E2F4 (a transcription factor expressed in 

quiescent cells to promote G0-phase) decreased its significance from PN to CL, to 

MES, suggesting a possible effect on rising proliferation from PN to MES tumors. 

Vascular endothelium profile was peculiar of CL GBMs. This is consistent with the 

fact that, even though angiogenesis was slightly more significant in MES tumors, CL 

GBMs are highly vascularized due to the pleiotropic effect of EGFR. Microglia profile 

scored the highest in MES GBMs, together with inflammatory and immune pathways 

and interleukins and chemokines pathways, in line with a high contribution to this 

subtype of immune and inflammatory response (Hara et al, 2021; Gangoso et al, 

2021; Kim et al, 2021). Notably, features of hypoxia and glycolytic pathway were 

significantly expressed in MES lesions, indicating a more aggressive course of the 

disease and in line with other authors reporting a stronger correlation between MES 

profile and glycolytic metabolism (Neftel et al, 2019; Garofano et al, 2021). On their 

turn, hypoxic cells activate pro-angiogenic factors and induce the recruitment of 

inflammatory cells in addition to prompt PN to MES transition. Additionally, upon 

oxygen restriction, healthy astrocytes release cytokines that upregulate HIF1α, 

helping GBM cells to adapt to hypoxia (Kim et al, 2021). 

Ontology enrichment analysis on the contrast between MES and PN GBMs (Tables 

5.36 and 5.37) showed that ASCL1 pathway was significantly enriched in PN tumors, 

further corroborating our previously described minimal signature, together with 

activation of nervous system developmental processes and affinity to neuron-derived 
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tumors. MES tumors, instead, showed once more stigmata of metastasization, 

inflammatory and immune response, and EMT. Remarkably, as previously reported, 

gliomas have been demonstrated to establish functional synapses with healthy 

neurons and to hijack neurotransmitter signals to drive invasion (Venkataramani et 

al, 2019; Venkatesh et al, 2019; Venkataramani et al, 2022). Considering this, actual 

GBM infiltration may be characterized by two very different processes. A first 

mechanism would be exploited by the PN compartment, infiltrating along the paths 

indicated by neurochemical signals (and very evident in our murine PN xenografts). 

A second mechanism would be adopted by the MES compartment, more linked to 

canonical types of invasion, marked by EMT and metastasization ontologies. 

Additionally, MES subtype showed also features of extracellular matrix deposition, 

reorganization, and interaction with it (Tables 5.21 and 5.23). This suggests an 

invasive profile more similar to metastases, which would also explain findings of our 

radiogenomic study, where increased hindered diffusion (fecv) signal of MES lesions 

could be related to more local, less widespread cellularity, as well as to deposition of 

oriented matrix fibers. Interestingly, when compared to PN tumors, MES GBMs, show 

significant activation of mannose metabolism and proteoglycans in cancer, in 

accordance with what recently demonstrated by our group (Pieri et al, 2022). 

Transcriptional affiliation gained much attention due to the observation of MES 

GBMs as more aggressive than other subtypes, though significant survival difference 

was observed only in case of low transcriptional heterogeneity. Additionally, 

intratumoral heterogeneity raises a critical treatment concern. In fact, different 

subtypes might have different sensitivities and eradication of cells with a certain 

affiliation may favor the progression of other phenotypes (Kim et al, 2021). 

Therefore, identification of drugs with possible differential efficacy according to 

transcriptional subtype is paramount. 

Drug repositioning allows to expand therapeutic indications of approved drugs by 

identifying novel usages for other diseases. Such process is faster and more 

advantageous than novel drug discovery since both the pharmacokinetics and safety 

have already been profiled. The rationale relies on the ability of small molecules to 

target distinct proteins by exploiting off-target effects, which is basically opposed to 

the traditional goal of one drug-one target. Various computational techniques allow 

identification of candidate drugs. In particular, systemic perturbation signatures can 

be used to repurpose molecules, relying on -omics profiles. (Tan et al, 2018).  

Therefore, as a last step in our analysis, we took advantage of the DEG analyses 

on GBM subgroups against healthy brain tissue to computationally identify potential 

drug sensitivities. One of the most comprehensive datasets is the LINCS Connectivity 
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Map (cMap) (Subramanian et al, 2017), which collects data in a highly standardized 

fashion. Basically, different cell lines are exposed to different molecules, which 

perturb their transcriptional landscape and allow to infer an average transcriptional 

response to that specific perturbagen. Based on this, drugs inducing a transcriptional 

alteration specular to that detected by comparing a pathological state to its normal 

counterpart might be efficacious against the disease itself. We screened our subgroup 

specific DEGs vs healthy tissue against a publicly available cMap database of 

compounds (Table 5.38). The more negative the enrichment score, the more the 

compound is specular to the pathological profile, hence suggesting a potential efficacy 

of the drug. Notably, GBM subgroups show only partially overlapping sensitivity 

spectra, with some putative drug responses restricted to either PN or CL subtype. As 

extensively reported in the literature, the MES subtype has been linked to treatment 

resistance and favored by selective pressure of therapeutic regimens. For instance, 

anti-angiogenic agents cause excessive pruning of new vessels, exacerbating hypoxia 

and subsequent inflammation. TMZ-induced hypermutator phenotype is associated 

with increased CD8 T-cells, which is typical of MES GBMs. Lastly, radiotherapy leads 

to activation of NF-kB pathway and increased immune infiltrate due to augmented 

vascular permeability. All these effects together strongly favor the development of a 

MES profile (Kim et al, 2021). In line with this, also in our computational analysis, 

MES subgroup proved to be the most resistant to treatment with a limited sensitivity 

spectrum that consists only of drugs shared with both the other subtypes. 

Additionally, the putatively effective drugs show less negative enrichment scores in 

MES subtype, advocating less efficacy against it.  

A recent study using solely transcriptional GBM and perturbagen profiles identified 

14 drug candidates that were preliminarily tested in vitro for efficacy. Eight of them 

demonstrated significant anti-proliferative activity and growth inhibition at useful 

concentrations. However, the authors did not differentiate GBM transcriptional 

subtypes. Notably, none of the perturbagen profiles were generated using glioma cell 

lines, thus confirming the in silico prediction as valid across different cancer types, 

probably as a pondered result of averaged consensus signatures (Lee et al, 2016). 

Even more sophisticatedly, Stathias et al. developed a novel platform to pinpoint 

synergistic drug combinations against GBMs. Preliminary wet experiments 

demonstrated actual efficacy of the predicted drug combinations in reverting the 

disease phenotype, suggesting the integration of LINCS and TCGA transcriptional 

data as very promising (Stathias et al, 2018). Once again, however, they did not 

differentiate GBMs according to transcriptional affiliation. Notably, Stathias et al. 

reported that several molecule classes clustered independently as effective drugs 
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(Stathias et al, 2018). Among them, histone deacetylase (HDAC) inhibitors were also 

detected by our subtype-stratified analysis as the only drug class (in addition to 

bromodomain inhibitors) to be efficacious against all 3 subtypes. 

This combined evidence underlines the utility of data-driven transcriptional 

analyses to find potentially useful drugs against GBMs. Although single repurposed 

compounds may play important roles, much more promising strategies likely rely on 

combinations of drugs, possibly selecting them based on non-overlapping 

mechanisms of action (Tan et al, 2018). 

 

 

6.3.1 Limitations and conclusions 

Several limitations affect our analysis. First, the small number of TCGA samples 

used, due to a scarce overlap between samples with downloadable transcriptomic 

raw data and samples with known affiliation. TCGA data have been used for several 

years and by many research groups. Therefore, data and metadata can be scattered 

and partially retrievable from different repositories, depending on the specific aim of 

each study that re-elaborated TCGA data. Integration of different repositories and 

several studies, matched with deeper bioinformatics scoping techniques, might 

implement more acceptable study cohorts. Additionally, healthy controls used for our 

analyses, despite being downloaded from TCGA, were unmatched to pathological 

specimens, thus introducing potential biases. Still, averaged transcriptional 

alterations can significantly be deduced. Also, due to the infiltrative nature of gliomas, 

it is very difficult to certainly exclude a biasing cancerous infiltration of apparently 

normal white matter and brain specimens from actual healthy people are obviously 

very difficult to obtain. 

Secondly, putative drug sensitivity prediction was carried out by means of a 

webtool that is currently based on the mean perturbagen-induced transcriptional 

response of 9 cell lines, none of which derives from GBMs. Notably, the cMap 

consortium has recently updated its library with several additional cell lines, a number 

of which are actually derived from gliomas. Unfortunately, the webtool has not yet 

been fully updated and deeper bioinformatics skills are required to access the library, 

scavenge it, select, and download the correct data and then locally perform an 

equivalent, lineage-restricted analysis. 

In conclusion, GBM transcriptional profile is extremely variable with possible, 

apparently contrasting findings and opposing dynamics. Still, various cell-intrinsic, 

microenvironmental and treatment cues seem to induce a PN to MES transition, 

according to the contingent selective pressure that dynamically reshapes the 
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neoplasm in a fitter version. The CL phenotype positions itself in between the two PN 

and MES extremes. MES GBMs are characterized by a more hypoxic and angiogenetic 

milieu and show overrepresentation of ECM metabolism and interaction with it. On 

the contrary, PN tumors exploit neuronal ontologies, possibly to establish functional 

synapses with healthy neurons. This may distinguish two different invasive 

processes: one typically proneural, following neurochemical signals along white 

matter tracts, and the other typically mesenchymal, linked to more canonical 

processes involving ECM. Remarkably, computational analyses confirmed divergent 

potential GBM drug sensitivity according to transcriptional affiliation, with MES 

subgroup consistently more resistant than the others. 

 

 

 

6.4 Identification of novel putative players in determining GBM 

transcriptional subtypes. 

 

As a very final step in our analysis, we applied a multistep approach to identify 

novel putative, functionally relevant targets for future research and possible therapy. 

As GSC cultures consist of pure tumor cells with no contaminant stroma, we 

hypothesized that new candidate players inferred from recurring evidence derived 

from such cultures, once confirmed also in human samples, might have a high degree 

of functional significance. We also assumed that alterations detected on an exomic 

level would be more stable and less subject to modulation, thus representing a 

reliable starting point. 

Considering WES findings on our GSC lines, clustering of lines 160503 and 160525 

was quite interesting. As a matter of fact, as explained above, these two lines grew 

as adherent, fusiform, single-cell monolayers even in non-adhesive NSA conditions 

and failed to generate xenografts in immunocompromised recipients. However, they 

demonstrated to harbor proper GBM-related mutations and clustered together with 

other MES GSC lines (Figure 5.34 and Table 5.39) indicating them as true GSCs. 

Additionally, line 160503 grouped in unsupervised Cluster A at RNAseq, i.e., that 

containing cells with a marked MES profile. Consequently, we addressed these two 

GSC lines as “non-tumorigenic MES” lines. WES-based reactome enrichment pathway 

analysis carried out on them identified the IL7 pathway as the first deranged signaling 

system. Additionally, transcriptional queries carried on RNAseq-derived GSC cluster 

A (MES) vs cluster B (non-MES) indicated IL7R as a significant hub protein in the MES 
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subgroup. These data were also confirmed by pivotal transcriptional analyses on 

proper human tumors, where IL7R proved to be significantly more expressed in TCGA 

MES GBMs than in PN tumors and healthy brain. Lastly, previous microarray data 

from our lab, performed by confronting MES GCLs with PN GSCs, identified both IL7R 

and IL7 as high rankings in the MES side of the DEG list, suggesting a possible 

autocrine/paracrine effect.  

Most remarkably, as a surface protein, IL7R might represent an ideal GBM 

biomarker. Hence, we decided to investigate IL7R as a putative novel player in GBM 

pathogenesis and subgroup specification. 

IL7R is an important molecule of the innate and adaptive immune responses, 

which is critical in a variety of T cells processes (e.g., cell development, survival, 

homeostasis, establishment of memory cells, and differentiation). It promotes B cell 

development through JAK/STAT and PI3K/AKT downstream signaling and may induce 

thymic progenitor cells to differentiate into dendritic cells or macrophages (Kim et al, 

2020; Barata et al, 2019). Splice variants of IL7R were documented in developing 

human brains and in normal human neuronal progenitor cells. Such isoforms were 

shown to influence neural progenitor differentiation by inducing differential gene 

expression and altering neurodevelopmental pathways and glia formation (Moors et 

al, 2010). Peculiarly, IL7R seems not to be circumscribed to neural progenitor cells, 

as it was detected also in mature neurons and astrocytes, with downstream activation 

of JAK/STAT driving to astrogliogenesis and playing a role in reactive gliosis (Moors 

et al, 2010). 

Sound evidence of IL7R tumor initiating role in hematologic malignancies has been 

reported (Almeida et al, 2021). Increased IL7R expression was linked with CNS 

involvement in pediatric B cell acute lymphoblastic leukemia (Mohme et al, 2020). 

Additionally, IL7 proved to sustain growth of breast cancer derived cells in culture 

(Vitiello et al, 2018). Multiple evidence shows how epithelial cancers aberrantly 

express IL7R and IL7 in a likely relevant activation loop. Neoplasms may in fact derive 

benefit from their induced chronic activation of immune and inflammatory response, 

inducing pro-tumoral effects. High expression of IL7 and IL7R has been detected in 

lung, pancreatic, and esophageal cancers. Increased IL7/IL7R levels have been 

correlated to metastases in colon, breast, and lung tumors, and to poor prognosis in 

breast, lung, and prostate carcinomas (Barata et al, 2019). However, expression 

patterns and roles in solid tumors remain to be fully elucidated, even though multiple 

evidence is being collected for its active role in tumor cell proliferation, migration, 

epithelial to mesenchymal transition, resistance to chemotherapy, 

lymphangiogenesis, maintenance of stem properties, and osteoclastogenesis and 
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bone metastasization (Vitiello et al, 2018; Jian et al, 2019; Kim et al, 2018; Barata 

et al, 2019).  

Our work revealed that patients harboring IL7R-high GBMs have a significantly 

worse prognosis than those with low IL7R expression and that there is a significant 

association between the MES subgroup and IL7R levels in TCGA patients (Figure 

5.35). Notably, transcriptional analysis carried on multiple tumor and cell lines 

showed no specificity for solid cancers, with generally low levels in gliomas (Figure 

5.36). GSEA analyses for comprehensive interleukin receptors and IL7 pathway 

conducted on DGE data obtained from human TCGA samples showed significant 

expression of IL7R with increasing ranking from PN vs Healthy contrast to MES vs 

Healthy, and MES vs PN GBMs (Table 5.40). In addition, also IL7 was significantly 

identified in all contrasts (Table 5.41), but interestingly to a lesser extent than its 

receptor in the MES subtype. However, these findings might be contaminated by the 

expression in the tumor immune microenvironment.  

To better discern the situation, we investigated IL7R expression in our GSCs. 

Interestingly, upon GSEA analysis, the comprehensive interleukin receptors module 

was significantly enriched in MES GSCs with respect to non-MES/PN lines; however, 

IL7R was not detected as differentially expressed (Figure 5.39). Most remarkably, 

when comparing the two non-tumorigenic MES GSC lines to the other tumorigenic 

MES GSCs, IL7R was detected as differentially expressed, ranking very high on the 

tumorigenic MES side of the comparison. WB quantifications of IL7R demonstrated a 

significant difference between MES GSCs and GCLs vs PN lines (Figure 5.41). 

Intriguingly, such difference became a nonsignificant trend when the compared lines 

were at intermediate passages since their stabilization, when they still showed 

variably heterogeneous transcriptional affiliation and modulation of defining markers. 

Also, dynamic IL7R regulation during the early and intermediate stages of GSC line 

establishment cannot be excluded (Figure 5.42). Therefore, differences among 

transcriptional subgroups may be initially inconstant and become increasingly 

divergent as the cell line is progressively cultured. 

Parallelly, we performed immunostaining on human specimens of each GBM 

subgroup, with the evidence of stronger signal in MES samples (Figure 5.45). Also, 

the protein was clearly expressed by tumoral cells, discarding the hypothesis that 

such difference was mostly due to immune infiltrate. Peculiarly, IL7R staining starkly 

demarcated the MES component in a mixed PN-MES tumor (Figure 5.46), suggesting 

a possible role as a diagnostic marker for identifying the most aggressive component 

in this pathology. Most remarkably, when we analyzed rodent xenografts generated 

by implanting IL7R-positive GSCs in immunocompromised mice, we could not detect 
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any signal (Figure 5.44). However, since IL7R is a protein implicated in adaptive 

immunity, we wondered whether the absence of adaptive immune response (and 

more specifically of T-cells) in NSG mice could impair IL7R expression in our 

orthotopic xenografts. To investigate this hypothesis, we selected the murine glioma 

cell line GL261, which proved to harbor IL7R at WB assay, and transplanted it in 

immunocompetent and immunocompromised mice (Figure 5.47). Xenografts 

generated in the former resulted IL7R-positive, while those in the latter were IL7R-

negative. Therefore, expression of IL7R on tumoral cells may require a functioning 

immune system and may represent a tumor-microenvironment crosstalk which is 

worth further investigation. 

Further insight into IL7R mechanism of action provides the rationale by which it 

may favor a MES affiliation. As a matter of fact, one of its downstream effectors is 

STAT3, which has been demonstrated to reprogram neural stem cells along a 

mesenchymal lineage (Ortensi et al, 2013). Most notably, there is evidence in the 

literature of a hybrid interleukin-7/hepatocyte growth factor (IL7/HGF) which can 

signal though both IL7R and c-Met. In fact, IL7R has been demonstrated to 

heterodimerize with c-Met in B-cell precursors (Lai et al, 2006). This is quite 

interesting, as c-Met is the product of the gene MET, which plays a fundamental role 

in MES GBMs (De Bacco et al, 2012; Boccaccio & Comoglio, 2013). Therefore, a 

similar interaction with IL7R might play a part also in gliomas. 

Remarkably, there are no systematic previous reports of IL7R in GBMs. Up to now, 

very few studies only utilized IL7 in an antitumoral setting, either to improve efficacy 

and safety of CAR T-cell treatments against GBMs (Shum et al, 2017; Huang et al, 

2021), or to modulate the immunosuppressive microenvironment through locally 

delivered mesenchymal stem cells expressing IL7 (Mohme et al, 2020). To our 

knowledge, the only published pivotal work to relate GBMs and IL7R is an in vitro 

study performed on canonical GCLs that demonstrated how addition of IL7 to 

culturing medium increases cell resistance to the chemotherapeutic agent cisplatin. 

(Cui et al, 2012) However, the work by Cui et al. is flawed on multiple levels. First, 

it is performed on canonical cell lines that were used in the past as GBM models, but 

are no more considered reliable, as they more liken sarcomatous metastases than 

actual GBMs. Therefore, nowadays patient-derived GSCs are considered the proper 

modeling tool for the parental pathology. Second, the assays were performed only in 

vitro, with no actual in vivo validation, and by testing a chemotherapeutic agent that 

is not commonly used for GBMs in clinical routine. 
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6.4.1 Limitations and conclusions 

Some limitations affect our study. First, most of the evidence is derived by in silico 

analyses and the in vitro and in vivo findings, though quite indicative, are drawn from 

very small sample subsets, thus conferring only a preliminary profile to our study. In 

vitro and especially in vivo assays should be replicated on larger cohorts. Besides, 

additional functional experiments should be performed, for instance trying 

supplementing GSC culture media with human recombinant IL7 and see if an actual 

mesenchymalization is observed. Overexpression or RNA-interference induced 

silencing of IL7R should be carried out, assessing proliferation, tumorigenic potential, 

or resistance to temozolomide as read outs. Interestingly, IL7 pathway rescue in non-

tumorigenic MES lines would prove of particular value if it restored their ability to 

engraft in rodent brains. Remarkably, in this setting, simple overexpression of IL7R 

may not suffice, as no mutations in either IL7 or IL7R were detected by WES and the 

pathway may be affected by modifications in downstream effectors. Lastly, the 

interplay between host immune system and IL7R-expressing GSCs should be better 

evaluated before inferring dependence of IL7R tumoral expression on immune 

system. In this sense, though complex, xenotransplantation of GSCs into 

immunocompromised and humanized mice (i.e., replaced for a functioning human 

immune system) may be clarifying.  

In conclusion, to our knowledge, we are the first to describe the role of IL7R in 

GBMs, though only preliminarily. In our investigation of transcriptional subgroups, 

we identified IL7R as an interesting candidate for characterizing and addressing the 

most malignant MES affiliation. We also provided evidence for this protein to be a 

link in the crosstalk between the immune microenvironment and tumoral cells. If 

confirmed by further studies, IL7R may be used as a marker to distinguish the 

aggressive, MES component in this protean pathology. Additionally, due to its nature 

of surface signaling protein, it may also represent an exploitable therapeutic target 

for GBM treatment. 
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7 MATERIALS AND METHODS 

 

 

 

 

 

7.1 Patient enrollment 

 
Over the 5-year period from March 1st 2016 to February 28th 2020, before the 

COVID 19 outbreak, all the patients accessing the Neurosurgical Department of San 

Raffaele Hospital for suspected high grade intra-axial primary lesions, either on 

elective or emergency basis, were prospectively screened. 

Patients were considered eligible for protocol enrollment when they had no 

previous oncological history. 

Informed consent to participate was regularly collected from all patients, according 

to the protocol 01CSC07, which was revised and approved by IRCCS San Raffaele 

Hospital Ethical Committee. A copy of the consent, describing the rationale of the 

study, was given to each patient. The signed copies collected from all patients were 

stored and secured in a safe place in our laboratory, inaccessible to third parties. 

Conventional preoperative MRI studies were conducted on all patients, while 

advanced imaging for research intent was organized whenever possible, without 

postponing the surgery date, for the patients’ sake.   

Basal, preoperative advanced MR imaging consisting of both diffusion and 

perfusion-weighted acquisitions or, at least, diffusion studies were deemed necessary 

inclusion criteria. Therefore, patients for whom such MRI were not available were 

excluded from the study, unless they presented clinical features suggesting 

particularly aggressive disease behavior or evolution from lower-grade gliomas. In 

such cases surgical samples were collected anyway to isolate GSCs, even if the 

parental tumor would have not been included in the radiogenomic evaluation. 

Patients whose lesion resulted to be a metastasis or a glial tumor other than 

Glioblastoma or CNS WHO grade IV Astrocytoma were excluded from the study. 

Data regarding clinical presentation, neurological evaluation on admission and 

surgical procedure were collected for each patient enrolled. 
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7.2 Patients’ MRI acquisition 

 
Datasets were acquired on a 3T Ingenia CX scanner (Philips Healthcare, Best, The 

Netherlands), using a 32-channel head coil.  

MRI acquisitions were carried out as described by Pieri et al. and here following 

reported: conventional MRI protocol included an axial 3D fluid attenuated inversion 

recovery (3D-FLAIR) (TR/TE/TI 9,000/290/2,500 ms; flip angle, 40; 204 slices; 

thickness, 0.7/−0.5 mm gap; matrix, 204 × 197; SENSE reduction factor R = 2; 

acquisition time 7 min 30 s) that was used to manually segment the tumor 

considering hyperintense regions. 

NODDI protocol consisted in a two-shell acquisition based on axial single-shot 

spin-echo echo planar imaging with an anterior–posterior phase-encoding direction 

that included:  

• HARDI acquisition: 60 diffusion-weighted volumes (diffusion gradients were 

applied along 60 noncollinear directions; b-value, 3,000 s/mm2).  

• DTI acquisition: 35 diffusion-weighted volumes (diffusion gradients were applied 

along 35 noncollinear directions; b-value, 711 s/mm2).  

• 11 “B0” volumes without diffusion-weighting (b-value, 0 s/mm2), whose 

acquisition was placed in between the diffusion-weighted volumes.  

Finally, a “reverse B0” volume without diffusion-weighting was acquired (b-value, 

0 s/mm2), which shared with the NODDI sequence all the geometrical features but 

the phase-encoding direction, that was posterior–anterior, to allow for the 

subsequent correction of susceptibility artifacts (Pieri et al, 2021). 

Manual segmentation of tumoral lesions was performed with the software ITK-

SNAP (v.3.8.0) on the FLAIR and post-contrast T1 images. 

 

 

7.3 Surgical sample collection 

 
Surgical sample was collected either directly in the operating theater at the time 

of surgical excision of tumor mass, or in the Anatomopathological lab where it was 

sent in sterile saline solution. Fragment allocation was decided by an expert 

pathologist so to represent the whole heterogeneity of the sample, including more 

peripheral as well as more central tissue. The extent of the sample allocated for 

research purposes was always evaluated in order not to subtract necessary material 

for proper histological and molecular diagnosis for clinical routine and subsequent 

patient management. 
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In case the surgical sample was not considered enough for research allocation, the 

whole specimen was paraffin-embedded for clinical routine. White sections were then 

requested from the Pathology department for immunohistochemical molecular 

subgroup classification. 

 

 

7.4 GBM specimen processing 

 
Patients’ GBM samples were minced with a scalpel and tissue fragments were 

stored as following: 1) partly in 4% PFA overnight at 4°C; 2) partly as “dry” pellet at 

-80°C for Western Blot; 3) partly in RNA-Later stabilizing buffer for 24 hours at 4°C 

and then shifted to -80°C; 4) partly in 90% FBS/10% DMSO and transferred at -80°C 

for long term storage. 

A fifth part of the fragments was digested at 37°C for 60 minutes in EBSS 

containing 16 U/ml of papain (Worthington, Lakewood, NJ), 0.2 mg/ml of cysteine 

and EDTA and 1% DNase. After incubation, tumor tissues were mechanically 

dissociated and purified from debris by means of differential centrifugation, as 

described by Galli et al. (Galli et al, 2004) 

The so-obtained single cells suspension was plated in complete stem cell medium 

(DMEM-F12 supplemented with hormone mix, EGF and FGF2). 

 

 

7.5 GSCs culture propagation 

 
GSC lines were cultured using DMEM-F12 (Invitrogen) supplemented with 2% 

Glutamax (Invitrogen), penicillin/streptomycin (100 units/ml penicillin, 100 μg/ml 

streptomycin - Invitrogen), glucose 0.6% (Sigma-Aldrich), HEPES 5 mM (Invitrogen), 

NaHCO3 0.11% (Invitrogen), Bovine Serum Albumin 2 mg/ml (BSA - Sigma-Aldrich) 

Hormone Mix (B27 analogue, homemade), Heparin 0.2% (Sigma-Aldrich), EGF 20 

ng/ml (Peprotech), FGF2 10 ng/ml (Peprotech).  

Hormone mix is constituted by DMEM-F12, glucose 0.6% (Sigma-Aldrich), HEPES 

5 mM (Invitrogen), NaHCO3 0.11% (Invitrogen), 77.2 mg/ml putrescine (Sigma-

Aldrich), 0.5 mg/ml insulin (Sigma-Aldrich), 100 mg/ml apo-transferrin (Sigma-

Aldrich), sodium selenite 3 mM (Sigma-Aldrich), progesterone 2 mM (Sigma-Aldrich). 

Upon GSC neurosphere formation, they were harvested and centrifuged, and the 

pellet mechanically dissociated to obtain single cell suspension that was again plated 

in complete culture medium to allow for cell lines propagation. 
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7.6 Orthotopic implantation of GSCs 

 
GSC tumorigenicity was assessed by orthotopically injecting the distinct cell 

preparations in either nu/nu, NSG or C57bl/6 mice striatum. Either 300.000 or 

400.000 cells, as appropriate for in vitro growth kinetics, resuspended respectively 

in 3 or 4 μL of DMEM supplemented with 1:500 DNase (Sigma-Aldrich) was loaded 

into a HPLC micro-syringe (Hamilton) and delivered into the right striatum (0.5 

μL/min) by stereotactic injection. Mice were anesthetized by means of Avertin® and 

fixed on the stereotaxis instrument (Kopf) using two ear bars. After accurate 

disinfection, a cut was done on the animal head by means of sterile scalpel to make 

the skull visible, and the coordinates were fixed from bregma (antero-posterior: 0; 

medio-lateral: 2.5 mm; dorso-ventral: 3 mm). A burr hole was performed with an 

automatic drill, the syringe was gradually inserted and let sit for a minute to allow 

for parenchyma adjustment, then starting with cell injection (0.5 μL/min). After 

surgical procedure the skin was again disinfected and stitched up with 5-0 non 

resorbable nylon suture. Mice were then kept on warm pad and wrapped in clean 

paper foil to prevent hypothermia. 

 

 

7.7 Xenograft MRI acquisition 

 
Xenograft MRI acquisitions were carried out, as thoroughly reported by Esposito 

et al., on a 7 Tesla preclinical magnetic resonance scanner (Bruker, BioSpec 30/70 

USR, Paravision 5.1, Germany) at OSR Experimental Imaging Center (EIC), equipped 

with 450/675 mT/m gradients (slew-rate: 3400-4500T/m/s; rise-time: 140ms). A 

phased-array mouse-head coil with four internal preamplifiers was used as receiver, 

coupled with a 72 mm linear-volume coil as transmitter (Esposito et al, 2013). 

 Mice were anaesthetized as described by Visigalli et al. with Sevoflurane® (5% 

for induction and 2% for maintenance), in a 95-98% O2 mixture. During acquisition, 

mice were positioned prone on a dedicated temperature control apparatus to prevent 

hypothermia (Visigalli et al, 2009). 

The same imaging protocol used for patients, adapted for small animals, was 

applied. Manual segmentation of tumoral lesions was performed with the software 

ITK-SNAP (v.3.8.0) on the DWI B0 image to avoid coregistration errors. 
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7.8 MRI image preprocessing 

 
This step was conducted in collaboration with Dr. Antonella Castellano and Ing. 

Nicolo Pecco from the Department of Neuroradiology, San Raffaele Scientific 

Institute, Milan, Italy and as thoroughly described by Pieri et al. and here following 

reported. All NODDI volumes were corrected for movement and eddy-current 

distortions, using the “eddy” tool of FMRIB Software Library (FSL, University of 

Oxford, https://fsl.fmrib.ox.ac.uk/fsl/). Once preprocessing was completed, the 

Watson-NODDI model was fitted to the two-shell dMRI datasets (NODDI acquisition: 

60 directions at b-value 3,000 s/mm2, 35 directions at b-value 711 s/mm2, 11 B0 

volumes) using the MATLAB NODDI toolbox 

(http://mig.cs.ucl.ac.uk/Tutorial.NODDImatlab) to extract the following NODDI 

maps: voxel fraction of Gaussian anisotropic diffusion (extracellular volume fraction 

[fecv]), voxel fraction of non-Gaussian anisotropic diffusion (intraneurite volume 

fraction [ficv]), voxel fraction of isotropic Gaussian diffusion (fiso), and orientation 

dispersion index (odi) maps (Pieri et al, 2021). More in detail, the NODDI toolbox 

outputs the isotropic and intraneurite compartments of each voxel, as well as the odi 

map, which quantifies angular variation of neurite orientation: the more coherently 

oriented are the fibers, the lower is the odi value. Then, the output compartments 

were reparameterized to derive the extraneurite compartment, so that the sum of 

ficv, fecv, and fiso equaled 1 in each voxel (Caverzasi et al, 2016; Pieri et al, 2021). 

NODDI compartment maps were also combined into a single 4D RGB image (red 

for fecv, green for ficv, and blue for fiso) for visualization and quality-check purposes. 

FSL built-in “dtifit” tool was separately applied to DTI shell (DTI: 35 directions at 

b-value 711 s/mm2) to estimate the diffusion tensor, and to generate FA and MD 

tensorial maps (Pieri et al, 2021). 

FSL Brain Extraction Tool (bet) was used to skull-strip the 3D-Flair image as well 

as the DWI b=0 image. Skull-stripped 3D-Flair and DWI b=0 images were 

coregistered through an affine transformation. Output transformation matrix was 

then applied to the 3D-Flair segmentation-mask to achieve the best overlap between 

the DWI tumor lesion and the 3D-Flair segmentation-mask (Pieri et al, 2021). 

 
 
 
 
 

https://fsl.fmrib.ox.ac.uk/fsl/
http://mig.cs.ucl.ac.uk/Tutorial.NODDImatlab
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7.9 Radiomic features extraction 

 
This step was conducted in collaboration with Dr. Antonella Castellano and Ing. 

Nicolo Pecco from the Department of Neuroradiology, San Raffaele Scientific 

Institute, Milan, Italy. 

Image pre-processing steps except segmentation are not a requirement for 3-

dimensional texture analysis but help enhancing texture features and maintain 

uniformity and standardization. Image spatial resolution is one of the most influential 

parameters in texture analysis and images interpolation can be a way to obtain higher 

resolution. It is well known that second order features could be affected by image 

characteristics such as image contrast or brightness (Schad, 2004). Hence, a grey-

level normalization procedure, ± 3SD normalization (Collewet et al, 2004), was 

implemented to increase robustness and reproducibility of the texture features so 

that gray-levels located outside the range [μ-3SD, μ+3SD] were excluded from the 

analysis. Finally, quantization of gray levels was performed by decreasing the number 

of gray-levels to 6 bits/pixel meaning 64 levels of gray for the calculation of GLCM 

and GLRLM features (Larroza et al, 2016).     

Patients were analyzed and interpolation was applied to same-type images to 

obtain the closest isotropic voxel. DWI scans average in-plane voxel resolution was 

1.95×1.95 mm2 while average slice thickness was 2.16 mm. The smallest voxel 

spacing over same-type images was used to obtain isotropic voxels (Depeursinge et 

al, 2014), therefore all NODDI and DTI-derived maps were resampled to 2×2×2 mm3 

to enhance reproducibility and standardize the texture analysis in all 3 directions. 

This way, texture features will not be affected by uneven voxel size. Differently, mice 

image acquisition DWI scans in-plane voxel resolution was 0.11×0.11 mm2 while 

slice thickness was 0.75 mm. We assume that oversampling of axial plane resolution, 

which contain relevant information for molecular class, could lead to loss of this 

information. Therefore, mice maps were resampled to isotropic voxels of dimension 

0.11 mm3.  

Texture features were extracted from each diffusion map by using the 3D-FLAIR 

and post-Gd T1 masks in patients and the B0 image in mice. However, we 

concentrated on human 3D-FLAIR masks (comparable to mice B0) as post-contrast 

T1 was not available in most mice, due to lack in contrast uptake by some xenografts. 

Radiomic features were extracted using Pyradiomics software (v2.2.0, 

http://www.radiomics.io/pyradiomics.htm) from the original image and customizing 

the extraction (Van Griethuysen et al, 2017). 

http://www.radiomics.io/pyradiomics.htm
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A total of 91 features were extracted for each map, leading to 546 features for 

each mask: 2 masks for patients (3D-FLAIR and post-Gd T1) and 1 for mice (B0). In 

particular, (I) 18 histogram features, based on the count of pixels in the ROI that 

possess a given grey-level value, (II) 22 grey-level-co-occurrence matrix (GLCM), 

contain probabilities of co-occurrence of pixel pairs with given grey levels, (III) 16 

grey-level-run-length matrix (GLRLM), represent runs of pixels having the same 

grey-level value, (IV) 16 size zone matrix, characterize pixels zones in the images, 

(V) 14 grey-level-dependence matrix (GLDM), quantify the level of dependency in an 

image and finally (VI) 5 neighboring-grey-tone difference matrix (NGTDM), 

explaining the difference between a grey value and its neighbors. Shape-based 

features were not calculated due to different dimension of ROIs and manual lesions 

segmentation. 

 

 

7.10  Radiomic analysis and feature selection 

 
This step was conducted in collaboration with Dr. Antonella Castellano and Ing. 

Nicolo Pecco from the Department of Neuroradiology, San Raffaele Scientific 

Institute, Milan, Italy. 

Consecutive feature selection and dimension reduction was performed on both the 

mice and patient datasets throughout a Univariate feature selection approach. 

Statistical analyses were conducted with MATLAB2021. Testing for group differences 

was performed using Wilcoxon sum-rank test or Unpaired T-test after testing for 

normality of data distribution with the Shapiro-Wilks test. A two-tailed p-Value < 

0.05 was considered statistically significant.  

Significative radiomic features common to patients and mice and with the highest 

discrimination ability among the MES and non-MES sets were used to train a K-

Nearest Neighbor (KNN) algorithm. Mice dataset was selected as the train set due to 

the balanced numbers of the MES and non-MES samples, and their extremized tumor 

characteristics. This dataset was equally divided into train and validation subsets for 

hyperparameters tuning. KNN algorithm parameters were set to default except the 

number of neighbors (K: from 1 to 8, with resulting best value as 3) and the metric 

used to compute the distance between samples (euclidean, manhattan, chebyshev 

and minkowski, with chebyshev resulting best metric). 

All features were then normalized through standard score normalization in Python. 

Patient dataset was used as the test set. The algorithm performance was described 

by means of accuracy, precision, recall, F1-score as well as sensitivity and specificity. 
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7.11  Radiomic analysis and feature selection with data augmentation 

 
This step was conducted in collaboration with Dr. Antonella Castellano and Ing. 

Nicolo Pecco from the Department of Neuroradiology, San Raffaele Scientific 

Institute, Milan, Italy. 

Patient and mice data augmentation for class balances was performed with the 

Synthetic Minority Oversampling Technique (SMOTE) tool. As thoroughly described 

on https://machinelearningmastery.com/smote-oversampling-for-imbalanced-

classification/?cv=1, SMOTE selects examples that are close in the feature space, 

drawing a line between the examples in the feature space and drawing a new sample 

along that line. Specifically, a random example from the minority class is first chosen. 

Then k of the nearest neighbors for that example are found (k=4). A randomly 

selected neighbor is chosen, and a synthetic example is created at a randomly 

selected point between the two examples in feature space. 

Consecutive feature selection and dimension reduction was performed on both 

mice and patient datasets to select common features with the most discriminative 

power between the two classes. Dimensionality reduction was achieved by using VIF 

(Variance Inflation Factor) algorithm to drop features explaining the same amount of 

information with a correlation coefficient higher than 0.7.  

Univariate feature selection was achieved using statistical algorithm (ANOVA-

ScikitLearn Fclassif) providing most important features in discriminating the two 

classes and common to patients and mice. Significative features found by the 

statistical algorithm were then normalized (Z-score normalization) and used as an 

input for model evaluations. 

Different machine learning approaches such as logistic regression, K-nearest-

neighbor, support vector machines and random forest classifiers were tested. We 

trained each classifier in Leave-One-Out cross validation (LOO) to achieve balanced 

trade-off between performance and robustness. A further nested 4-fold cross-

validation was performed during hyperparameter tuning. We used mice dataset as 

training and patient dataset as test. 

Accuracy, precision, recall, F1-score, Area under the curve (AUC) as well as 

sensitivity and specificity were used as metrics to describe the algorithm 

performances. Statistical analyses were carried out with ScikitLearn Fclassif 

algorithm that performs a test for group differences. A two-tailed p-value of < 0.05 

was regarded as statistically significant. 

 

 

https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/?cv=1
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/?cv=1
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7.12  RNA Sequencing (RNAseq) analysis of GBM tissues and GSCs 

 
Total RNA from GBM tumor specimens and from GSC lines was extracted using 

the RNeasy Mini kit (Qiagen, Chatsworth, CA, USA) according to the manufacturer’s 

protocol and sent to San Raffaele Scientific Institute -Omics facility for subsequent 

processing. 

As we proceeded in a previous work, the cDNA was synthesized starting from total 

RNA by QuantSeq 3′ mRNA-Seq Library Prep Kits (Lexogen). After barcoding, the 

RNA libraries were pooled, denatured, and diluted to 2.4 pM final concentration. 

RNAseq was performed using NextSeq 550 (Illumina) with SMART-Seq protocol, 

yielding an average of 15x106 clusters for each sample (Conti et al, 2021). 

Sequences were trimmed with trimmomatic tool and subsequently aligned using 

STAR (version 2.5.3a) on the reference genome hg19; association between reads 

and genes was performed by featureCounts, using GENCODE (version M13) basic 

annotation as reference. Normalization and analysis of count data was performed 

using the R package DESeq2 (version 1.0.19) (differential gene expression analysis 

based on the negative binomial distribution of counts data). The independent filtering 

of genes with low counts was set to a mean of 9 raw counts between all samples. 

The cutoff imposed for differential gene expression was the one suggested by the 

Sequencing Quality Control Consortium, which defines a gene as differentially 

expressed when it has an associated FDR value lower than 0.1 (adjusted p-value < 

0.1, Benjamini and Hochberg correction) and, at the same time, the absolute value 

of its log2 fold change is greater than 1 (log2FC >1 or log2FC <-1) (Conti et al, 

2021). 

 

 

7.13  Differentially Expressed Genes (DEG) in TCGA dataset  

 
TCGA GBM mRNA normalized (Level 3) raw data publicly available at 

http://firebrowse.org/?cohort=GBM were downloaded and prepped for further 

analyses with the R script 1_Raw_counts_prep.R (see Appendix). Transcriptional 

subgroup affiliation of the available samples was obtained by cross-matching sample 

IDs on R2 platform (https://hgserver1.amc.nl/cgi-bin/r2/main.cgi). 

Samples data for subsequent steps were cut down to subsets with R script 

2a_Subsetting_raw_counts.R (see Appendix). Recurrent samples were removed from 

the analysis. Raw counts were prefiltered for genes with extremely low counts (< 

total samples) and rounded to the nearest integer. Differentially expressed genes 

http://firebrowse.org/?cohort=GBM
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
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analysis was conducted by means of DESeq command in the Bioconductor - DESeq2 

R package (see Appendix – R Scripts: 3a_DGE.R). The automatic independent 

filtering was based on mean normalized counts for each gene. FDR cutoff alpha was 

set to 0.05 and an adjusted p-value < 0.05 was considered for significance of DEGs. 

Analyses were executed with R (v4.1.2), RStudio (Ghost Orchid release 

v2021.09.01) and appropriate R packages. 

 

 

7.14  Gene Set Enrichment Analysis (GSEA) 

 
Differentially expressed genes (DEGs) either provided by the San Raffaele 

Scientific Institute -Omics Facility or obtained from in silico analyses of TCGA GBM 

samples raw data, were filtered to eliminate transcripts with adjusted p-value NA. 

Gene transcripts were reordered in a ranked list for descending Log2FC and saved as 

.rnk file (0_Getting_preranked_no_NA.R, 4_xlsx_to_rnk_no_NA.R). 

Gene signatures were either downloaded from publicly available repositories 

(https://www.gsea-msigdb.org/gsea/index.jsp), as done for Verhaak’s GBM subtype 

signatures and predefined molecular pathways, or transformed to .gmx files with ad 

hoc R script (0_Signatures_to_gmx.R). 

R conversions were executed with R (v4.1.2), RStudio (Ghost Orchid release 

v2021.09.01) and appropriate R packages (see Appendix – R Scripts). 

GSEA analysis was performed with the Broad institute application GSEA (v4.1.0), 

downloadable at https://www.gsea-msigdb.org/gsea/index.jsp, by importing 

preranked gene lists and gene signatures. Analyses parameters were as follows: 

1000 permutations, No_collapse (use dataset as it is), exclude signature genesets 

larger than 500 and smaller than 5. The remaining parameters were set as default 

for the function Run_GSEA_preranked. 

Enrichment plot, Normalized Enrichment Score (NES), False discovery rate (FDR)-

adjusted p-value and Family-wise error rate (FWER)-adjusted p-value were 

considered for each comparison. 

 

 

7.15  Western blot analysis (WB) 

 
Lysates from GBM tissues, GSCs and GCLs were prepared using RIPA buffer 

supplemented with protease and phosphatase inhibitors (Roche). Loading dye 4X 

containing -mercaptoethanol were then added to the volume of lysates 

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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corresponding to the quantity of protein desired and all were denatured for 5 minutes 

at 95°C. Lysates were then loaded on a 10% Stain-Free FastCast Acrylamide gel cast 

(BioRAD) and then transferred on nitrocellulose by means of electroblotting (7 

minutes at 2.5A, 25V using BioRAD TransBlot Turbo transfer system v1.02). After 

protein transfer, the membrane was blocked with TBS (140 mM sodium chloride, 20 

mM Tris-HCl pH 7.6) supplemented with 5% of milk for 1 hour. The primary antibody 

was then added, diluted at the appropriate concentration in 0.1% of TBS Tween-20 

(TBS-T) supplemented with either 5% of milk or 3% BSA and incubated overnight 

under gentle shaking.  

Primary antibodies used were: 1:1000 rabbit anti-EGFR (Cell Signaling, Beverly, 

MA, USA), 1:1000 rabbit anti-NDRG1 (Cell Signaling, Beverly, MA, USA), 1:1000 

rabbit anti-phosphoNDRG1 (Cell Signaling, Beverly, MA, USA), 1:250 mouse anti-

ASCL1 (anti-MASH1, BD Pharmingen, San Diego, CA, USA), 1:1000 rabbit anti-MET 

(Cell Signaling, Beverly, MA, USA), and 1:1000 rabbit anti-IL7R (Abcam, Cambridge, 

UK). As loading control, a 1:3000 rabbit anti-Calnexin (Genetex, Irvine, CA, USA) or 

a 1:5000 mouse anti-GADPH antibody was used (Sigma-Aldrich, St Louis, MO, USA). 

Membranes were then washed three times with TBS-T (15 minutes each wash) 

and incubated with secondary antibodies (1:3000; BioRAD) for 1 hour at room 

temperature. After incubation, membrane was washed for two times with TBS-T and 

one time with TBS (10 minutes each wash). Peroxidase activity was detected using 

Clarity Western ECL assay (BioRAD) and Alliance Mini HD9 development (Uvitec, 

Cambridge, UK). 

Quantifications of bands relative to reporter protein was performed with ImageJ 

v1.8.0_172 and R script QuantoPlot.R (see Appendix – R Scripts). 

 

 

7.16  k-Means Clustering analysis based on transcriptional profile 

 
Human GBM samples clustering analysis was performed in silico on the publicly 

available R2 platform (https://hgserver1.amc.nl/cgi-bin/r2/main.cgi) by selecting 

samples for which the transcriptional affiliation was known in the TCGA-540-MAS5.0-

u133a dataset. The software was requested to identify either 2 or 3 sample clusters 

as appropriate, based on the transcript levels of user-defined gene lists. The total 

rounds for which the computation was repeated, and number of passes were set to 

10, the transformation applied was set to Z-score or Log2(Z-score) as appropriate 

for consistent, reproducible, best-fitting results. 

 

https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
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7.17  Immunohistochemical (IHC) analysis and subgroup affiliation 

 
Bright field immunohistochemical analyses were performed by Prof. Pietro Luigi 

Poliani and Dr. Manuela Cominelli from the Pathology Unit, Department of Molecular 

and Translational Medicine, University of Brescia, Italy, and by Ilaria Pagano in our 

laboratory. 

For immunohistochemical staining we proceeded as described in (Cominelli et al, 

2015): 2 µm sections were cut from paraffin blocks, deparaffinized and rehydrated. 

The endogenous peroxidase activity was blocked with 0.3% H2O2 in methanol for 20 

minutes. Antigen retrieval was performed using a 0,05% protease type XIV (Sigma-

Aldrich) solution at 37°C for 20 minutes or a microwave-oven or a thermostatic bath 

in either 1.0 mM EDTA buffer (pH 8.0) or 1mM Citrate buffer (pH 6.0). Then slides 

were washed in TBS (pH 7.4) and incubated for an hour or overnight in the specific 

primary antibody diluted in TBS 1% Bovine Serum Albumin (BSA) or in Antibody 

Diluent with Background Reducing Components (DAKO). Then sections were washed 

in TBS and signal revealed using Envision+System-HRP Labelled Polymer Anti-mouse 

or Anti-Rabbit (DAKO) or NovolinkTM Polymer Detection System (NovocastraTM) or 

Rabbit specific HRP/DAB Detection IHC Detection Kit-Micro-polymer (abcam), 

followed by Diaminobenzydine (DAB) as chromogen and Hematoxylin as 

counterstain. 
Images were acquired with a Nikon DS-Ri2 camera (4908x3264 full-pixel) 

mounted on a Nikon Eclipse 50i microscope equipped with Nikon Plan lenses 

(x10/0.25; x20/0.40; x40/0.65; x100/1.25) using NIS-Elements 4.3 imaging 

software (Nikon Corporation). 
Primary antibodies used for the staining were: mouse anti-EGFR (clone E30) 

#M7239 (Dako, Glostrup, Denmark, USA 1:20, 1 hour),  0,05% protease type XIV 

(Sigma-Aldrich) solution at 37°C for 20 minutes, Envision+System-HRP Labelled 

Polymer Anti-Mouse (DAKO); mouse anti-p53 Ab-5 (clone DO-7) #MS-186-P 

(Thermo Scientific, Waltham, MA, USA 1:2, 1 hour), thermostatic bath in EDTA, 

Envision+System-HRP Labelled Polymer Anti-Mouse (DAKO); rabbit anti-PDGFRA 

#PA5-16742 (Thermo Scientific, Waltham, MA, USA 1:50, 1 hour), thermostatic bath 

in EDTA, Envision+System-HRP Labelled Polymer Anti-Rabbit (DAKO); rabbit anti-

Olig2 #AB9610 (Chemicon, Darmstadt, Germany 1:600), thermostatic bath in EDTA, 

Envision+System-HRP Labelled Polymer Anti-Rabbit (DAKO); mouse anti-ASCL1 

(clone 24B72D11.1) #556604  (BD Biosciences, Franklin Lakes, NJ, USA 1:50 

overnight), thermostatic bath in EDTA, NovolinkTM Polymer Detection System 

(NovocastraTM); rabbit anti-pNDRG1 (Thr346) (clone D98G11) #5482 (Cell Signaling, 
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Beverly, MA, USA 1:100 overnight), thermostatic bath in EDTA, Envision+System-

HRP Labelled Polymer Anti-Rabbit (DAKO); rabbit anti-YKL40 #4815 (Quidel, San 

Diego, CA, USA 1:100 overnight), microwave-oven in EDTA, Envision+System-HRP 

Labelled Polymer Anti-Rabbit (DAKO); rabbit anti-MET (C-12) #sc-10 (Santa Cruz 

Biotechnology, Dallas, Texan, USA 1:50 overnight), thermostatic bath in Citrate, 

NovolinkTM Polymer Detection System (NovocastraTM); rabbit anti-CD127 (IL7R, 

EPR2955(2)) (Abcam, Cambridge, UK 1:100 overnight), thermostatic bath in EDTA, 

Envision+System-HRP Labelled Polymer Anti-Rabbit (DAKO). 
Transcriptional subgroup affiliation of human GBM samples and GSC-derived 

xenografts was determined according to the protocol published by our collaborators 

in Brescia (Orzan et al, 2020). Briefly, expression levels of EGFR, PDGFRA, OLIG2, 

ASCL1, pNDRG1, YKL40, MET, and TP53 were assigned a score to calculate 

respectively the CL, PN, and MES percentual component of the sample. A clear 

subgroup affiliation was defined if the prevalent component would exceed the second-

prevalent by > 20%, otherwise it would be defined as a mixture of the two highest 

components over the third, or even mixed if all the three subgroups were equally 

represented as ~33-33-33%. 

 

 

7.18  Determination of GSC-derived subtype signatures 

 
To identify putative GSC-derived specific subtype signatures, DEG lists obtained 

from different supervised and unsupervised clusters comparisons performed by the 

San Raffaele Scientific Institute -Omics Facility were individually screened. Only 

significantly up- and downregulated genes according to the SeqC filter were retained 

for each comparison. Appropriate significance (adjusted p-value) and log2FC 

thresholds were selected for each DEG list so to provide a final geneset of at least 40 

either up- or down-regulated genes that were considered characterizing for the GSCs 

pertaining to each side of the comparisons. 

Analyses were executed with R (v4.1.2), RStudio (Ghost Orchid release 

v2021.09.01) and appropriate R packages (see Appendix – R Scripts: 

Getting_signature.R). 

Similarity of the various MES and PN signatures was investigated by visualizing 

Venn diagrams for intersections between them 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). 

 

 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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7.19  Analysis of enriched pathways in GSCs clusters 

 
DEGs provided by San Raffaele Scientific Institute -Omics Facility and those 

obtained from TCGA GBM subtypes and Healthy controls analyses were subdivided 

into significantly upregulated genes for each side of the comparison by means of R 

(v4.1.2), RStudio (Ghost Orchid release v2021.09.01) and appropriate R packages 

(see Appendix – R Scripts: Upregulated_genes.R). 

The obtained gene lists were singularly uploaded into EnrichR platform 

(https://maayanlab.cloud/Enrichr/) to identify enriched transcriptional and molecular 

pathways, and ontology similarity in each GSC subset. Odds ratios (OR) and adjusted 

p-values for multiple tests were reported for the considered pathways and ontologies. 

 

 

7.20  Metabolomic-transcriptomic integrated analyses 

 
Determination of differentially enriched metabolites between MES and PN 

xenografts was performed with R (v4.1.2), RStudio (Ghost Orchid release 

v2021.09.01) and appropriate R packages.  

PN and MES GSC-derived xenografts (n=4 GCLs/GSCs, n=3-4 biological replicates 

for each condition) were subjected to untargeted metabolomics (Metabolon, 

Morrisville, NC, USA). Samples were prepared using the automated MicroLab STAR® 

system from Hamilton Company.  The resulting extract was analyzed by reverse 

phase (RP)/UPLC-MS/MS methods with either positive or negative ion mode 

electrospray ionization (ESI). Raw data were extracted, peak-identified and quality-

control processed using Metabolon’s hardware and software (Pieri et al, 2022). After 

mass-normalization and missing values imputation, raw metabolite counts were 

rescaled by multiplying by 1000 and rounded to nearest integer. Differential 

metabolite enrichment was carried out with omu::omu_summary function and non-

parametric Mann Whitney U test (see Appendix – R Scripts: 

3_Differential_metabolites_MannWhitney.R). 

Significant metabolites were selected below a nominal p-value threshold of 0.05 

and were divided in subsets enriched in PN or in MES xenografts. 

Lists of significantly upregulated transcripts in each term of GSCs RNAseq 

comparisons or GSCs derived signatures (see Appendix – R Scripts: 

Upregulated_genes.R and Getting_signature.R) were then uploaded with consistent 

differentially enriched metabolites in xenografts on the MetaboAnalyst platform 

https://maayanlab.cloud/Enrichr/
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(https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml) to perform joint 

metabolic pathway analysis. 

Metabolic pathway nominal p-value, FDR-adjusted p-value and impact coefficient 

were reported for each query. 

 

 

7.21  Transcriptional identification of drug sensitivity 

 
Once obtained DEGs between pathological GBM subtypes and healthy controls 

from TCGA data, only significantly up- or downregulated genes (adjusted p-value < 

0.05) were retained for each comparison (see Appendix – R Scripts: 

5_Get_significant_sig_for_DrugRepo.R). 

Gene lists were filtered so to keep only those present in the transcriptomic L1000 

platform (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL20573) 

(Subramanian, 2017), which was used to implement perturbagen screening in the 

Connectivity Map project (https://clue.io) (Lamb et al, 2006). After rearranging 

entries for decreasing significance, the top 150 up- and downregulated L1000 genes 

for each comparison were retained (see Appendix – R Scripts: 

6b_Get_Genes_for_CMAP.R). 

The Connectivity Map webtool (https://clue.io) was interrogated with the so-

obtained lists to generate a set of compounds that would induce an opposite L1000 

transcriptional signature. Enrichment Scores either < -90 or < -85 were considered 

significantly opposing to the pathological state. 

 

 

7.22  Whole Exome Sequencing (WES) analysis of GSCs 

 
Total DNA from GSCs was extracted using the DNeasy Blood & Tissue kit (Qiagen, 

Chatsworth, CA, USA) and sent to University of Padova for subsequent processing in 

collaboration with Dr. Alessandra Gasperini and Dr. Stefano Indraccolo, Basic and 

Translational Oncology Unit, Veneto Institute of Oncology IOV, Padova, Italy, in the 

context of GBM taskforce – Alliance Against Cancer. 

WES analysis was performed with NextSeq. Sequences reads (FASTQ) were 

aligned to the reference human genome (hg19). Aligned BAM files were preprocessed 

with MarkDuplicated, IndelRealigner, BaseQualityScoreRecalibrarion to limit 

alignment errors. Following, variant calling was carried out with Mutect2 (GATK4.6), 

by comparing tumoral samples and a panel of normal individuals provided by another 

https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL20573
https://clue.io/
https://clue.io/
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institution and a germline variant set (provided by GATK website) to exclude healthy 

variants. 

Variants were then filtered with FilterMutectCalls and annotated with ANNOVAR. 

Considered annotations were refGene (FASTA sequences for all annotated transcripts 

in RefSeq Gene), avsnp150 (dbSNP150 with allelic splitting and left-normalization), 

gnomad_genome (gnomAD allelic frequencies), genomicSuperDups (duplications of 

> 1000 Bases of Non-RepeatMasked Sequence, so >90 percent similar), 

clinvar_20170130 (CLINVAR database with Variant Clinical Significance such as 

unknown, untested, non-pathogenic, probable-non-pathogenic, probable-

pathogenic, pathogenic, drug-response, histocompatibility, other, and Variant 

disease name), cosmic70 (COSMIC known variants), dbnsfp33a (pathogenic variant 

prediction), ICGC (International Cancer Genome Consortium annotation). 

Subsequent analyses considered only exonic functional or splicing variants with 

VAF (variant allele frequency) > 5% and alternative allele depth ≥ 5, therefore 

excluding frequent SNPs (found in dbSNP and gnomAD) and synonymous variants. 

Variants were further filtered according to the following GBM-relevant gene lists: 

driver genes (Frattini et al, 2013), MMR genes (Wang et al, 2016), IRCCS genes 

(genes selected for Alliance Against Cancer – GBM gene panel design) and IRCCS 

SNPs (included in the abovementioned panel) (Dubbink et al, 2016). 

 

 

7.23  In silico IL7R analysis 

 
In silico scavenging analysis of IL7R was performed with two-gene correlation, 

view gene across samples and survival study tools on R2 platform 

(https://hgserver1.amc.nl/cgi-bin/r2/main.cgi) and survival study and transcript 

quantification tools in human tumors and cancer stem cells on the Human Protein 

Atlas (https://www.proteinatlas.org). 

 

 

7.24  Quantitative real time PCR (qRT-PCR) 

 
Total RNA was isolated from GSCs by means of the RNeasy Mini kit (Qiagen, 

Chatsworth, CA, USA); 1μg of total RNA was reverse-transcribed to cDNA with first 

strand synthesis kit Superscript III RNaseH-Reverse Transcriptase (Invitrogen, 

Carlsbad, CA) and OligodT primers. Each cDNA was diluted 1:3 and 1μl was used for 

each real-time PCR. 

https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://www.proteinatlas.org/


 213 

Quantitative RT-PCR was carried out with IQ SybrGreen (Biorad, Hercules, CA, 

USA) according to manufacturer’s instructions. All cDNAs were normalized to ß-actin 

levels. Human-specific primers for IL7R were obtained from Sigma (KiCqStartTM 

Primers). Real-time PCR runs were performed on the Stratagene MX3000P thermal 

cycler. 

ΔCt of the gene was calculated matched to its ß-actin. Data were analyzed by the 

ΔΔCt method. 

 

 

7.25  Flow cytometry 

 
Neurospheres were harvested and mechanically dissociated to obtain single cells, 

which were re-suspended in blocking solution (PBS supplemented with BSA 5 mg/ml 

and EDTA pH 8 2 mM) and put on ice for 20 minutes. The blocking solution was 

removed, and the PeCy7-anti-CD127 (IL7R) antibody (Invitrogen) was added after 

1:50 dilution in the blocking solution. The antibody was incubated for 10 minutes at 

room temperature as the manufacturer’s instructions suggested. The cells were 

washed with blocking solution and the acquisition was performed on BD FACS 

CANTO™ II instrument. Acquired data were analyzed with FCS Express 6.0 software. 

 

 

7.26  Statistical analyses 

 
Statistical analyses were conducted with R (v4.1.2), RStudio (Ghost Orchid release 

v2021.09.01) and appropriate R packages. 
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9 APPENDIX: R Scripts 

 

1_Raw_counts_prep.R 

#load libraries 

library(dplyr) 

library(stringr) 

library(readxl) 

 

#download TCGA GBM mRNA gene expression data from 

https://gdac.broadinstitute.org 

#select mRNASeq_genes_raw_counts 

#read database 

raw_counts <- 

read.delim('./A_gdac.broadinstitute.org_GBM.mRNAseq_Preprocess.Level_3.20160

12800.0.0/GBM.uncv2.mRNAseq_raw_counts.txt') 

#check dimensions for consistency 

dim(raw_counts) 

 

#look for names of columns to select lines you need 

write.csv(colnames(raw_counts),'samples.txt') 

 

#read file with correspondence sample-subtype 

sample_subtype <- read.delim('sample_subtypes.txt', header = F) 

 

#backup di raw_counts 

raw_counts_backup <- raw_counts 

 

#get entries for gene.id 

gene_id <- as.vector(raw_counts$HYBRIDIZATION.R) 

 

#keep only gene.id (remove portion of the entry with '|' and after it) 

gene_id_correct <- t(as.data.frame(strsplit(gene_id, '[{|}]'))) 

gene_id <- as.data.frame(gene_id_correct[,1]) 

 

#substitute gene.id column with correct gene.id 

raw_counts$HYBRIDIZATION.R <- gene_id$`gene_id_correct[, 1]` 
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#name it accordingly 

names(raw_counts)[names(raw_counts) == 'HYBRIDIZATION.R'] <- 'Gene.ID' 

 

#save the database 

write.csv(raw_counts,'raw_counts_dataset.txt') 

 

2a_Subsetting_raw_counts.R 

library(dplyr) 

library(stringr) 

 

#Get raw_counts_db by importing it, or by result of script 1 

#Get sample subtype by importing it, or by result of script 1 

raw_counts_backup <- raw_counts 

 

#summary of samples 

table(sample_subtype$V2) 

 

#Remove recurrent samples 

sample_subtype <- sample_subtype[-c(4,7,13,15,17),] 

 

#select samples of each subtype 

MES <- filter(sample_subtype, sample_subtype$V2 == 'MES') 

PN <- filter(sample_subtype, sample_subtype$V2 == 'PN') 

CL <- filter(sample_subtype, sample_subtype$V2 == 'CL') 

Healthy <- filter(sample_subtype, sample_subtype$V2 == 'Healthy') 

 

 

#remove gene_id '?' 

raw_counts <- filter(raw_counts, Gene.ID != '?') 

 

#assign names to rows 

row.names(raw_counts) <- raw_counts$Gene.ID 

#duplicate entry for SLC35E2 --> identify them 

duplicate <- base::grep('SLC35E2', raw_counts$Gene.ID) 

#mean exp for columns in the upper row 

mean_value <- colMeans(raw_counts[duplicate,2:length(raw_counts)])  
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raw_counts[duplicate[1],2:length(raw_counts)] <- mean_value 

#eliminate lower row of the duplicate 

raw_counts <- raw_counts[-duplicate[2],] 

 

#assign names to rows 

row.names(raw_counts) <- raw_counts$Gene.ID 

 

#remove duplicate Gene.ID column 

raw_counts <- raw_counts[,-1] 

 

#select cases to extract for each DEG by binding rows 

MES_Healthy <- bind_rows(MES,Healthy) 

PN_Healthy <- bind_rows(PN,Healthy) 

CL_Healthy <- bind_rows(CL,Healthy) 

MES_PN <- bind_rows(MES,PN) 

CL_PN <- bind_rows(CL,PN) 

MES_CL <- bind_rows(MES,CL) 

 

 

#subset expression_db with only the cases needed for each DEG 

Cts_DEG_MES_Healthy <- select(raw_counts, MES_Healthy$V1) 

Cts_DEG_PN_Healthy <- select(raw_counts, PN_Healthy$V1) 

Cts_DEG_CL_Healthy <- select(raw_counts, CL_Healthy$V1) 

Cts_DEG_MES_PN <- select(raw_counts, MES_PN$V1) 

Cts_DEG_CL_PN <- select(raw_counts, CL_PN$V1) 

Cts_DEG_MES_CL <- select(raw_counts, MES_CL$V1) 
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3a_DGE.R 

library(DESeq2) 

library(dplyr) 

library(pheatmap) 

library(xlsx) 

 

#check class of entries for samples 

class(Cts_DEG_MES_Healthy$TCGA.02.0055.01) 

 

#transform into numeric 

#length(colnames(cts)) 

#i <- 1 

#for (i in 1:length(colnames(cts))) { 

#      cts[,i] <- as.integer(cts[,i])  

#} 

 

 

#CLASSICAL 

 

#transform into matrix 

cts <- as.matrix(Cts_DEG_CL_Healthy) 

 

#round values to nearest integer 

i <- 1 

j <- 1 

for (i in 1:nrow(cts)) { 

      for (j in 1:ncol(cts)) { 

            cts[i,j] <- round(cts[i,j]) 

      } 

} 

 

#assign condition to samples 

coldata <- CL_Healthy 

 

#adjust column names 

names(coldata) <- c('sample','subtype') 
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#make as factor, relevel on Healthy subtype 

coldata$subtype <- factor(coldata$subtype, levels = c('Healthy', 'CL')) 

 

#check if correct 

table(coldata$subtype) 

class(coldata$subtype) 

base::colnames(cts) == coldata$sample 

 

#construct a DESeqDataSet 

dds_CL_Healthy <- DESeqDataSetFromMatrix(countData = cts, 

                              colData = coldata, 

                              design = ~ subtype) 

 

 

#Prefilter genes with counts < number of samples (arbitrarily chosen) 

keep <- rowSums(counts(dds_CL_Healthy)) >= 9 

dds_CL_Healthy <- dds_CL_Healthy[keep,] 

 

 

#Differential Gene Expression Analysis 

dds_CL_Healthy <- DESeq(dds_CL_Healthy) 

dds_CL_Healthy 

 

#results function automatically performs independent filtering based on the mean  

#of normalized counts for each gene, optimizing the number of genes which will  

#have an adjusted p value below a given FDR cutoff, alpha. By default the 

argument  

#alpha is set to 0.1 

res_CL_Healthy <- results(dds_CL_Healthy, alpha = 0.05) 

summary(res_CL_Healthy) 

res_CL_Healthy 

sum(res_CL_Healthy$padj<0.05, na.rm = T) 

 

#Order according to decreasing Log2FC 

resOrdered_LFC <- as.data.frame(res_CL_Healthy) 

resOrdered_LFC <- arrange(resOrdered_LFC, desc(log2FoldChange)) 

summary(resOrdered_LFC) 
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resOrdered_LFC 

 

#select only log2FC and adjusted p-value 

resOrdered_LFC <- resOrdered_LFC[,c(2,6)] 

 

#write xlsx ranked DEG list (including also non-significant p-values) for GSEA 

#keep only Gene.ID, Log2FC, adjusted p-values 

write.xlsx(resOrdered_LFC, 'DEG_TCGA_CL_vs_Healthy_no_recurrent.xlsx', 

sheetName = "Sheet1", 

           col.names = TRUE, row.names = TRUE, append = FALSE) 

 

 

 

#PRONEURAL 

 

#transform into matrix 

cts <- as.matrix(Cts_DEG_PN_Healthy) 

 

#round values to nearest integer 

i <- 1 

j <- 1 

for (i in 1:nrow(cts)) { 

      for (j in 1:ncol(cts)) { 

            cts[i,j] <- round(cts[i,j]) 

      } 

} 

 

#assign condition to samples 

coldata <- PN_Healthy 

 

#adjust column names 

names(coldata) <- c('sample','subtype') 

 

#make as factor, relevel on Healthy subtype 

coldata$subtype <- factor(coldata$subtype, levels = c('Healthy', 'PN')) 

 

#check if correct 
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table(coldata$subtype) 

class(coldata$subtype) 

base::colnames(cts) == coldata$sample 

 

#construct a DESeqDataSet 

dds_PN_Healthy <- DESeqDataSetFromMatrix(countData = cts, 

                                         colData = coldata, 

                                         design = ~ subtype) 

 

 

#Prefilter genes with counts < number of samples (arbitrarily chosen) 

keep <- rowSums(counts(dds_PN_Healthy)) >= 11 

dds_PN_Healthy <- dds_PN_Healthy[keep,] 

 

 

#Differential Gene Expression Analysis 

dds_PN_Healthy <- DESeq(dds_PN_Healthy) 

dds_PN_Healthy 

 

#results function automatically performs independent filtering based on the mean  

#of normalized counts for each gene, optimizing the number of genes which will  

#have an adjusted p value below a given FDR cutoff, alpha. By default the 

argument  

#alpha is set to 0.1 

res_PN_Healthy <- results(dds_PN_Healthy, alpha = 0.05) 

summary(res_PN_Healthy) 

res_PN_Healthy 

sum(res_PN_Healthy$padj<0.05, na.rm = T) 

 

#Order according to decreasing Log2FC 

resOrdered_LFC <- as.data.frame(res_PN_Healthy) 

resOrdered_LFC <- arrange(resOrdered_LFC, desc(log2FoldChange)) 

summary(resOrdered_LFC) 

resOrdered_LFC 

 

#select only log2FC and adjusted p-value 

resOrdered_LFC <- resOrdered_LFC[,c(2,6)] 
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#write xlsx ranked DEG list (including also non-significant p-values) for GSEA 

#keep only Gene.ID, Log2FC, adjusted p-values 

write.xlsx(resOrdered_LFC, 'DEG_TCGA_PN_vs_Healthy_no_recurrent.xlsx', 

sheetName = "Sheet1", 

           col.names = TRUE, row.names = TRUE, append = FALSE) 

 

 

 

#MESENCHYMAL 

 

#transform into matrix 

cts <- as.matrix(Cts_DEG_MES_Healthy) 

 

#round values to nearest integer 

i <- 1 

j <- 1 

for (i in 1:nrow(cts)) { 

      for (j in 1:ncol(cts)) { 

            cts[i,j] <- round(cts[i,j]) 

      } 

} 

 

#assign condition to samples 

coldata <- MES_Healthy 

 

#adjust column names 

names(coldata) <- c('sample','subtype') 

 

#make as factor, relevel on Healthy subtype 

coldata$subtype <- factor(coldata$subtype, levels = c('Healthy', 'MES')) 

 

#check if correct 

table(coldata$subtype) 

class(coldata$subtype) 

base::colnames(cts) == coldata$sample 
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#construct a DESeqDataSet 

dds_MES_Healthy <- DESeqDataSetFromMatrix(countData = cts, 

                                         colData = coldata, 

                                         design = ~ subtype) 

 

 

#Prefilter genes with counts < number of samples (arbitrarily chosen) 

keep <- rowSums(counts(dds_MES_Healthy)) >= 14 

dds_MES_Healthy <- dds_MES_Healthy[keep,] 

 

 

#Differential Gene Expression Analysis 

dds_MES_Healthy <- DESeq(dds_MES_Healthy) 

dds_MES_Healthy 

 

#results function automatically performs independent filtering based on the mean  

#of normalized counts for each gene, optimizing the number of genes which will  

#have an adjusted p value below a given FDR cutoff, alpha. By default the 

argument  

#alpha is set to 0.1 

res_MES_Healthy <- results(dds_MES_Healthy, alpha = 0.05) 

summary(res_MES_Healthy) 

res_MES_Healthy 

sum(res_MES_Healthy$padj<0.05, na.rm = T) 

 

#Order according to decreasing Log2FC 

resOrdered_LFC <- as.data.frame(res_MES_Healthy) 

resOrdered_LFC <- arrange(resOrdered_LFC, desc(log2FoldChange)) 

summary(resOrdered_LFC) 

resOrdered_LFC 

 

#select only log2FC and adjusted p-value 

resOrdered_LFC <- resOrdered_LFC[,c(2,6)] 

 

#write xlsx ranked DEG list (including also non-significant p-values) for GSEA 

#keep only Gene.ID, Log2FC, adjusted p-values 
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write.xlsx(resOrdered_LFC, 'DEG_TCGA_MES_vs_Healthy_no_recurrent.xlsx', 

sheetName = "Sheet1", 

           col.names = TRUE, row.names = TRUE, append = FALSE) 

 

 

 

#MESENCHYMAL vs PRONEURAL 

 

#transform into matrix 

cts <- as.matrix(Cts_DEG_MES_PN) 

 

#round values to nearest integer 

i <- 1 

j <- 1 

for (i in 1:nrow(cts)) { 

      for (j in 1:ncol(cts)) { 

            cts[i,j] <- round(cts[i,j]) 

      } 

} 

 

#assign condition to samples 

coldata <- MES_PN 

 

#adjust column names 

names(coldata) <- c('sample','subtype') 

 

#make as factor, relevel on Healthy subtype 

coldata$subtype <- factor(coldata$subtype, levels = c('PN', 'MES')) 

 

#check if correct 

table(coldata$subtype) 

class(coldata$subtype) 

base::colnames(cts) == coldata$sample 

 

#construct a DESeqDataSet 

dds_MES_PN <- DESeqDataSetFromMatrix(countData = cts, 

                                          colData = coldata, 
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                                          design = ~ subtype) 

 

 

#Prefilter genes with counts < number of samples (arbitrarily chosen) 

keep <- rowSums(counts(dds_MES_PN)) >= 15 

dds_MES_PN <- dds_MES_PN[keep,] 

 

 

#Differential Gene Expression Analysis 

dds_MES_PN <- DESeq(dds_MES_PN) 

dds_MES_PN 

 

#results function automatically performs independent filtering based on the mean  

#of normalized counts for each gene, optimizing the number of genes which will  

#have an adjusted p value below a given FDR cutoff, alpha. By default the 

argument  

#alpha is set to 0.1 

res_MES_PN <- results(dds_MES_PN, alpha = 0.05) 

summary(res_MES_PN) 

res_MES_PN 

sum(res_MES_PN$padj<0.05, na.rm = T) 

 

#Order according to decreasing Log2FC 

resOrdered_LFC <- as.data.frame(res_MES_PN) 

resOrdered_LFC <- arrange(resOrdered_LFC, desc(log2FoldChange)) 

summary(resOrdered_LFC) 

resOrdered_LFC 

 

#select only log2FC and adjusted p-value 

resOrdered_LFC <- resOrdered_LFC[,c(2,6)] 

 

#write xlsx ranked DEG list (including also non-significant p-values) for GSEA 

#keep only Gene.ID, Log2FC, adjusted p-values 

write.xlsx(resOrdered_LFC, 'DEG_TCGA_MES_vs_PN_no_recurrent.xlsx', 

sheetName = "Sheet1", 

           col.names = TRUE, row.names = TRUE, append = FALSE) 
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#CLASSICAL vs PRONEURAL 

 

#transform into matrix 

cts <- as.matrix(Cts_DEG_CL_PN) 

 

#round values to nearest integer 

i <- 1 

j <- 1 

for (i in 1:nrow(cts)) { 

   for (j in 1:ncol(cts)) { 

      cts[i,j] <- round(cts[i,j]) 

   } 

} 

 

#assign condition to samples 

coldata <- CL_PN 

 

#adjust column names 

names(coldata) <- c('sample','subtype') 

 

#make as factor, relevel on Healthy subtype 

coldata$subtype <- factor(coldata$subtype, levels = c('PN', 'CL')) 

 

#check if correct 

table(coldata$subtype) 

class(coldata$subtype) 

base::colnames(cts) == coldata$sample 

 

#construct a DESeqDataSet 

dds_CL_PN <- DESeqDataSetFromMatrix(countData = cts, 

                                     colData = coldata, 

                                     design = ~ subtype) 

 

 

#Prefilter genes with counts < number of samples (arbitrarily chosen) 



 258 

keep <- rowSums(counts(dds_CL_PN)) >= 10 

dds_CL_PN <- dds_CL_PN[keep,] 

 

 

#Differential Gene Expression Analysis 

dds_CL_PN <- DESeq(dds_CL_PN) 

dds_CL_PN 

 

#results function automatically performs independent filtering based on the mean  

#of normalized counts for each gene, optimizing the number of genes which will  

#have an adjusted p value below a given FDR cutoff, alpha. By default the 

argument  

#alpha is set to 0.1 

res_CL_PN <- results(dds_CL_PN, alpha = 0.05) 

summary(res_CL_PN) 

res_CL_PN 

sum(res_CL_PN$padj<0.05, na.rm = T) 

 

#Order according to decreasing Log2FC 

resOrdered_LFC <- as.data.frame(res_CL_PN) 

resOrdered_LFC <- arrange(resOrdered_LFC, desc(log2FoldChange)) 

summary(resOrdered_LFC) 

resOrdered_LFC 

 

#select only log2FC and adjusted p-value 

resOrdered_LFC <- resOrdered_LFC[,c(2,6)] 

 

#write xlsx ranked DEG list (including also non-significant p-values) for GSEA 

#keep only Gene.ID, Log2FC, adjusted p-values 

write.xlsx(resOrdered_LFC, 'DEG_TCGA_CL_vs_PN_no_recurrent.xlsx', sheetName 

= "Sheet1", 

           col.names = TRUE, row.names = TRUE, append = FALSE) 

 

#MESENCHYMAL vs CLASSICAL 

 

#transform into matrix 

cts <- as.matrix(Cts_DEG_MES_CL) 
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#round values to nearest integer 

i <- 1 

j <- 1 

for (i in 1:nrow(cts)) { 

   for (j in 1:ncol(cts)) { 

      cts[i,j] <- round(cts[i,j]) 

   } 

} 

 

#assign condition to samples 

coldata <- MES_CL 

 

#adjust column names 

names(coldata) <- c('sample','subtype') 

 

#make as factor, relevel on Healthy subtype 

coldata$subtype <- factor(coldata$subtype, levels = c('CL', 'MES')) 

 

#check if correct 

table(coldata$subtype) 

class(coldata$subtype) 

base::colnames(cts) == coldata$sample 

 

#construct a DESeqDataSet 

dds_MES_CL <- DESeqDataSetFromMatrix(countData = cts, 

                                     colData = coldata, 

                                     design = ~ subtype) 

 

 

#Prefilter genes with counts < number of samples (arbitrarily chosen) 

keep <- rowSums(counts(dds_MES_CL)) >= 13 

dds_MES_CL <- dds_MES_CL[keep,] 

 

 

#Differential Gene Expression Analysis 

dds_MES_CL <- DESeq(dds_MES_CL) 
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dds_MES_CL 

 

#results function automatically performs independent filtering based on the mean  

#of normalized counts for each gene, optimizing the number of genes which will  

#have an adjusted p value below a given FDR cutoff, alpha. By default the 

argument  

#alpha is set to 0.1 

res_MES_CL <- results(dds_MES_CL, alpha = 0.05) 

summary(res_MES_CL) 

res_MES_CL 

sum(res_MES_CL$padj<0.05, na.rm = T) 

 

#Order according to decreasing Log2FC 

resOrdered_LFC <- as.data.frame(res_MES_CL) 

resOrdered_LFC <- arrange(resOrdered_LFC, desc(log2FoldChange)) 

summary(resOrdered_LFC) 

resOrdered_LFC 

 

#select only log2FC and adjusted p-value 

resOrdered_LFC <- resOrdered_LFC[,c(2,6)] 

 

#write xlsx ranked DEG list (including also non-significant p-values) for GSEA 

#keep only Gene.ID, Log2FC, adjusted p-values 

write.xlsx(resOrdered_LFC, 'DEG_TCGA_MES_vs_CL_no_recurrent.xlsx', 

sheetName = "Sheet1", 

           col.names = TRUE, row.names = TRUE, append = FALSE) 

 

 

4_xlsx_to_rnk_no_NA.R 

library(readxl) 

 

gene_list <- read_xlsx('./2_Datasets/No_recurrent/DEG_TCGA_XXX.xlsx', 

col_names = T) 

gene_list <- as.data.frame(gene_list) 

 

#filter for adjusted p-values NA 
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sum(is.na(gene_list$padj)) 

keep_rows <- !is.na(gene_list$padj) 

gene_list <- gene_list[keep_rows,] 

 

#keep only LogFC and arrange it in descending order 

gene_list <- gene_list[,c(1,2)] 

gene_list <- arrange(gene_list, desc(log2FoldChange)) 

 

write.table(gene_list, file = 

'./preranked_DEG_TCGA_MES_vs_PN_no_recurrent.rnk', sep = '\t', 

            quote = F, col.names = T, row.names = F) 

 

 

0_Getting_preranked_no_NA.R 

library(readxl) 

library(dplyr) 

 

gene_list <- read_xls('./XXXXXX.xls', col_names = T) 

gene_list <- as.data.frame(gene_list) 

 

#filter for adjusted p-values NA 

sum(is.na(gene_list$padj)) 

keep_rows <- !is.na(gene_list$padj) 

gene_list <- gene_list[keep_rows,] 

 

#keep only LogFC and arrange it in descending order 

gene_list <- gene_list[,c(1,2)] 

 

#to invert order of comparison 

#gene_list$log2FoldChange <- gene_list$log2FoldChange * (-1)  

 

gene_list <- arrange(gene_list, desc(log2FoldChange)) 

 

write.table(gene_list, file = './preranked_DEG_XXXXXXX.rnk', sep = '\t', 

            quote = F, col.names = T, row.names = F) 
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0_Signatures_to_gmx.R 

library(readxl) 

 

Sig <- read_xls('./XXXXXXXXXXX.xls', col_names = T) 

Sig <- as.data.frame(Sig) 

 

write.table(Sig, file = './XXXXX_signature.gmx', sep = '\t', 

            quote = F, col.names = T, row.names = F) 

 

 

QuantoPlot.R 

library(xlsx) 

library(tidyverse) 

library(ggplot2) 

 

#read quantification xlsx 

quant <- read.xlsx('./1_Quantifications_xlsx/26_Test_IL7R.xlsx', sheetIndex = 1) 

quant$Sample <- as.factor(quant$Sample) 

 

#perform relative expression to housekeeping protein 

quant$Relative_Expression <- quant$IL7R/quant$GAPDH 

 

#add sample subgroup 

subgroup <- c('MES', 'MES', 'MES', 'PN', 'PN', 'PN', 'CTRL', 'CTRL') 

quant$Subgroup <- factor(subgroup, levels = c('CTRL', 'PN', 'MES')) 

 

#plot relative expression 

quantoplot <- ggplot(quant, aes(Sample, Relative_Expression)) + 

      geom_col(aes(fill = Subgroup)) + xlab('Sample') + ylab('IL7R/GAPDH') + 

      scale_fill_manual(values = c('dark green', 'purple', 'red')) 

 

quantoplot 

 

#boxplot relative expression relative to subgroup 

 

quantobox <- ggplot(quant, aes(Subgroup, Relative_Expression)) + 
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      geom_boxplot(aes(fill = Subgroup)) + xlab('Subgroup') + ylab('IL7R/GAPDH') 

+ 

      scale_fill_manual(values = c('dark green', 'purple', 'red')) + 

      theme(legend.position = 'none') 

 

quantobox 

 

 

#look for statistical differences 

#subset dataset 

quant_stat <- filter(quant, quant$Subgroup != 'CTRL') 

#perform t.test or Wilcox.test 

t.test(quant_stat$Relative_Expression~quant_stat$Subgroup) 

 

 

Getting_signature.R 

library(tidyverse) 

library(readxl) 

setwd('./1-DGE/') 

 

##PN vs MES GLANCE 

Sig <- read_xls('./DGE_GLANCE_PN_vs_MES_CSC.xls') 

Sig <- as.data.frame(Sig) 

 

##Ordina variabili per Adjusted p-Value e controlla non ci siano significatività 

##SeqC NA o 0 e tieni solo i +1 (significativamente up) e -1 

##(significativamente down) 

Sig <- arrange(Sig, Sig$padj) 

table(Sig$significance_SEQC) 

Sig_rank <- filter(Sig, Sig$significance_SEQC!=0) 

 

##Seleziona solo le colonne che ti interessano (ID, Adj_pVal, LogFC) 

Sig_rank <- Sig_rank[,c(1,2,4)] 

 

##Seleziona solo le entries upregolate in PN (essendo log2, scelgo soglia per 

##livelli almeno 10 volte -> log2(10) = 3.32, adj_pVal<=0.05) 

Sig_PN <- filter(Sig_rank, Sig_rank$log2FoldChange>=(3.32)) 
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Sig_PN <- filter(Sig_PN, Sig_PN$padj<=0.05) 

nrow(Sig_PN) 

 

##Seleziona solo le entries upregolate in MES (essendo log2, scelgo soglia per 

##livelli almeno 10 volte -> log2(10) = 3.32, adj_pVal<=0.05) 

Sig_MES <- filter(Sig_rank, Sig_rank$log2FoldChange<=(-3.32)) 

Sig_MES <- filter(Sig_MES, Sig_MES$padj<=0.05) 

nrow(Sig_MES) 

 

##Salva file geni per firma 

write.table(Sig_PN, file = './PN_signature_logFC3.32.xls', sep = '\t', 

            quote = F, col.names = T, row.names = F) 

write.table(Sig_MES, file = './MES_signature_logFC3.32.xls', sep = '\t', 

            quote = F, col.names = T, row.names = F) 

 

 

 

##MC,MB (MES) vs PN GLANCE 

Sig <- read_xls('./DGE_GLANCE_MC-MB_vs_PN_CSC.xls') 

Sig <- as.data.frame(Sig) 

 

##Ordina variabili per Adjusted p-Value e controlla non ci siano significatività 

##SeqC NA o 0 e tieni solo i +1 (significativamente up) e -1 

##(significativamente down) 

Sig <- arrange(Sig, Sig$padj) 

table(Sig$significance_SEQC) 

Sig_rank <- filter(Sig, Sig$significance_SEQC!=0) 

 

##Seleziona solo le colonne che ti interessano (ID, Adj_pVal, LogFC) 

Sig_rank <- Sig_rank[,c(1,2,4)] 

 

##Seleziona solo le entries upregolate in PN (essendo log2, scelgo soglia per 

##livelli almeno 10 volte -> log2(10) = 3.32, adj_pVal<=0.005) 

Sig_PN <- filter(Sig_rank, Sig_rank$log2FoldChange<=(-3.32)) 

Sig_PN <- filter(Sig_PN, Sig_PN$padj<=0.005) 

nrow(Sig_PN) 

 



 265 

##Seleziona solo le entries upregolate in MES (essendo log2, scelgo soglia per 

##livelli almeno 10 volte -> log2(10) = 3.32, adj_pVal<=0.005) 

Sig_MES <- filter(Sig_rank, Sig_rank$log2FoldChange>=(3.32)) 

Sig_MES <- filter(Sig_MES, Sig_MES$padj<=0.005) 

nrow(Sig_MES) 

 

##Salva file geni per firma 

write.table(Sig_PN, file = './PN_vs_MC-MB_signature_logFC3.32.xls', sep = '\t', 

            quote = F, col.names = T, row.names = F) 

write.table(Sig_MES, file = './MC-MB_signature_logFC3.32.xls', sep = '\t', 

            quote = F, col.names = T, row.names = F) 

 

 

 

 

##RNA-Seq Unsupervised Clustering A (MES) vs B (non-MES/other MES) GLANCE 

Sig <- read_xls('./DGE_GLANCE_RNASeq_UC_A_vs_B.xls') 

Sig <- as.data.frame(Sig) 

 

##Ordina variabili per Adjusted p-Value e controlla non ci siano significatività 

##SeqC NA o 0 e tieni solo i +1 (significativamente up) e -1 

##(significativamente down) 

Sig <- arrange(Sig, Sig$padj) 

table(Sig$significance_SEQC) 

Sig_rank <- filter(Sig, Sig$significance_SEQC!=0) 

 

##Seleziona solo le colonne che ti interessano (ID, Adj_pVal, LogFC) 

Sig_rank <- Sig_rank[,c(1,2,4)] 

 

##Seleziona solo le entries upregolate in B (essendo log2, scelgo soglia per 

##livelli almeno 10 volte -> log2(50) = 5.64, adj_pVal<=0.005) 

Sig_PN <- filter(Sig_rank, Sig_rank$log2FoldChange<=(-5.64)) 

Sig_PN <- filter(Sig_PN, Sig_PN$padj<=0.005) 

nrow(Sig_PN) 

 

##Seleziona solo le entries upregolate in A (essendo log2, scelgo soglia per 

##livelli almeno 10 volte -> log2(50) = 5.64, adj_pVal<=0.005) 
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Sig_MES <- filter(Sig_rank, Sig_rank$log2FoldChange>=(5.64)) 

Sig_MES <- filter(Sig_MES, Sig_MES$padj<=0.005) 

nrow(Sig_MES) 

 

##Salva file geni per firma 

write.table(Sig_PN, file = './B(other)_vs_A(MES)_signature_logFC5.64.xls',  

sep = '\t', quote = F, col.names = T, row.names = F) 

write.table(Sig_MES, file = './A(MES)_signature_logFC5.64.xls', sep = '\t', 

           quote = F, col.names = T, row.names = F) 

 

 

 

Upregulated_genes.R 

getwd() 

setwd('./Desktop/Lab/4- RNASeq/GLANCE - RNASeq/Upregulated for Enrichr/') 

 

library(readxl) 

library(dplyr) 

 

DEG <- read_xls('./XXXXX.xls') 

DEG <- as.data.frame(DEG) 

DEG <- filter(DEG, padj < 0.05) 

DEG <- DEG[,c(1,2,4)] 

DEG_up <- filter(DEG, log2FoldChange > 0) 

DEG_down <- filter(DEG, log2FoldChange < 0) 

 

 

write.table(DEG_up, file = './PN_vs_MES_upregulated.xls', sep = '\t', 

            quote = F, col.names = T, row.names = F) 

write.table(DEG_down, file = './MES_vs_PN_upregulated.xls', sep = '\t', 

            quote = F, col.names = T, row.names = F) 
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3_Differential_metabolites_MannWhitney.R 

library(dplyr) 

library(readxl) 

library(xlsx) 

library(omu) 

library(pheatmap) 

library(RColorBrewer) 

library(seriation) 

library(dendextend) 

 

 

#read database 

metabo_raw <- read_xlsx('./1_Db/SRSI-01-20MD DATA TABLES.XLSX', 

                        sheet = 'Mass_extracted-norm Data') 

metabo_raw <- as.data.frame(metabo_raw) 

 

rownames(metabo_raw) <- metabo_raw$PARENT_SAMPLE_NAME 

metabo_raw <- metabo_raw[,-1] 

 

 

#most of the data are between 0 and 1; therefore, apply transformation by 

multiplying 

# for 1000 and then round to nearest integer 

i <- 1 

j <- 1 

for (i in 1:nrow(metabo_raw)) { 

      for (j in 1:ncol(metabo_raw)) { 

            metabo_raw[i,j] <- round(metabo_raw[i,j]*1000) 

      } 

} 

 

i <- 1 

for (i in 1:ncol(metabo_raw)) { 

      metabo_raw[,i] <- as.integer(metabo_raw[,i]) 

} 
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#read file for correspondence to samples 

metabo_metadata <- read_xlsx('./1_Db/SRSI-01-20MD DATA TABLES.XLSX', 

                             sheet = 'Sample Meta Data') 

metabo_metadata <- as.data.frame(metabo_metadata) 

 

#read file for correspondence to metabolites 

metabo_ID <- read_xlsx('./1_Db/SRSI-01-20MD DATA TABLES.XLSX', 

                       sheet = 'Chemical Annotation') 

metabo_ID <- as.data.frame(metabo_ID) 

 

#prepare for sample and metabolite name substitution 

metabo_samples <- metabo_metadata[,c(1,9)] 

rownames(metabo_samples) <- metabo_samples$PARENT_SAMPLE_NAME 

 

metabo_metabolites <- metabo_ID[,c(1,11,16,15)] 

rownames(metabo_metabolites) <- metabo_metabolites$CHEM_ID 

 

#substitute with corresponding names 

i <- 1 

for (i in (1:nrow(metabo_raw))) { 

      rownames(metabo_raw)[i] <- ifelse(rownames(metabo_raw)[i] %in% 

rownames(metabo_samples)[i], 

                                        metabo_samples[i,2], rownames(metabo_raw)[i]) 

} 

 

#transpose dataset, so that metabolites are in rows and samples in columns 

metabo_raw <- t(metabo_raw) 

metabo_raw <- as.data.frame(metabo_raw) 

colnames(metabo_raw) <- gsub(' ','_',colnames(metabo_raw)) 

 

 

#insert columns for metabolite name and KEGG and reorder 

metabo_raw$Metabolite <- NA 

metabo_raw$KEGG <- NA 

metabo_raw$HMDB <- NA 

metabo_raw <- metabo_raw[,c(37:39,1:36)] 
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#insert corresponding metabolite name, KEGG ID and HMBD ID 

i <- 1 

for (i in (1:nrow(metabo_raw))) { 

      metabo_raw[i,1] <- ifelse(rownames(metabo_raw)[i] %in% 

rownames(metabo_metabolites)[i], 

                                metabo_metabolites[i,2]) 

} 

 

i <- 1 

for (i in (1:nrow(metabo_raw))) { 

      metabo_raw[i,2] <- ifelse(rownames(metabo_raw)[i] %in% 

rownames(metabo_metabolites)[i], 

                                metabo_metabolites[i,3]) 

} 

 

i <- 1 

for (i in (1:nrow(metabo_raw))) { 

   metabo_raw[i,3] <- ifelse(rownames(metabo_raw)[i] %in% 

rownames(metabo_metabolites)[i], 

                             metabo_metabolites[i,4]) 

} 

 

 

i <- 1 

for (i in (1:nrow(metabo_raw))) {rownames(metabo_raw)[i] <- i} 

 

#save database as csv to reimport it with omu::read.metabo (as dataframe and 

cpd) 

write.csv(metabo_raw, file = './1_Db/metabo_counts.csv', row.names = FALSE) 

 

#reimport db with read.metabo 

metabo_raw <- read_metabo('./1_Db/metabo_counts.csv') 

metabo_raw$Metabolite <- as.factor(metabo_raw$Metabolite) 

metabo_raw$KEGG <- as.factor(metabo_raw$KEGG) 
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#create annotation metadata 

subtypes <- c('PN', 'MES', 'HN', 'HW', 'MYC') 

metabo_samples$Group <- 'CTRL' 

 

i <- 1 

j <- 1 

for (i in (1:nrow(metabo_samples))) { 

      for (j in (1:length(subtypes))) { 

            metabo_samples$Group[i] <- ifelse(grepl(subtypes[j], 

metabo_samples$CLIENT_SAMPLE_ID[i]), 

                                              subtypes[j], metabo_samples$Group[i]) 

      } 

}  

 

sample_metadata <- metabo_samples[,c(2,3)] 

colnames(sample_metadata) <- c('Sample','Group') 

 

sample_metadata$Sample <- gsub(' ','_',sample_metadata$Sample) 

 

sample_metadata$Group <- as.factor(sample_metadata$Group) 

sample_metadata$Sample <- as.factor(sample_metadata$Sample) 

 

#keep only samples you need for differential metabolite enrichment 

tokeep <- c('Metabolite', 'KEGG', 'HMDB', 'PN_0605_n1', 'PN_0605_n2', 

'PN_0605_n3', 

            'PN_0512_n1', 'PN_0512_n2', 'PN_0512_n3', 'PN_0801_n1', 'PN_0801_n2', 

            'MES_U87_n1', 'MES_1312_n1', 

'MES_1312_n2','MES_1312_n3','MES_1312_n4', 

            'MES_ZL_n1', 'MES_ZL_n2') 

 

 

 

sample_metadata <- filter(sample_metadata, sample_metadata$Sample %in% 

tokeep) 

 

metabo_raw <- metabo_raw[,tokeep] 
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i <- 1 

for (i in (1:nrow(sample_metadata))) {rownames(sample_metadata)[i] <- i} 

 

#perform differential metabolite enrichment (Welch and Student's t-test gives error 

#for too low variance in group, try with non-parametric Mann Whitney U test) 

 

metabo_stats <- omu_summary(count_data = metabo_raw, metadata = 

sample_metadata,  

                            numerator = 'MES', denominator = 'PN',  

                            response_variable = 'Metabolite', Factor = 'Group',  

                            log_transform = TRUE, p_adjust = 'BH', test_type = 'mwu') 

 

metabo_res <- metabo_stats[,c(1,13,14,6,7,9,11,12,15:29)] 

 

 

#write csv file 

write.csv(metabo_res, file = './1_Db/Metabo_diff_MES_vs_PN_all', row.names = 

FALSE) 

 

#read csv file 

metabo_res_01 <- read.csv('./1_Db/Metabo_diff_MES_vs_PN_all') 

 

#write xlsx file 

write.xlsx(metabo_res_01, file = './1_Db/Metabo_diff_MES_vs_PN.xlsx', row.names 

= FALSE) 

 

#keep only metabolites with pval < 0.1 

metabo_res_01 <- filter(metabo_res_01, metabo_res_01$pval<0.1) 

 

#write xlsx file 

write.xlsx(metabo_res_01, file = './1_Db/Metabo_diff_MES_vs_PN_signif<0.1.xlsx', 

row.names = FALSE) 
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5_Get_significant_sig_for_DrugRepo.R 

#Classical vs Healthy 

res_CL_Healthy_df <- as.data.frame(res_CL_Healthy) 

res_CL_Healthy_DrugRepo <- tibble::rownames_to_column(res_CL_Healthy_df) 

res_CL_Healthy_DrugRepo <- filter(res_CL_Healthy_DrugRepo, padj <= 0.05) 

res_CL_Healthy_DrugRepo <- res_CL_Healthy_DrugRepo[,c(1,3)] 

base::colnames(res_CL_Healthy_DrugRepo) <- c('Genes','log2FoldChange') 

write.table(res_CL_Healthy_DrugRepo, 'CL_Healthy_sig.txt', row.names = F, sep = 

'\t') 

 

#PN vs Healthy 

res_PN_Healthy_df <- as.data.frame(res_PN_Healthy) 

res_PN_Healthy_DrugRepo <- tibble::rownames_to_column(res_PN_Healthy_df) 

res_PN_Healthy_DrugRepo <- filter(res_PN_Healthy_DrugRepo, padj <= 0.05) 

res_PN_Healthy_DrugRepo <- res_PN_Healthy_DrugRepo[,c(1,3)] 

base::colnames(res_PN_Healthy_DrugRepo) <- c('Genes','log2FoldChange') 

write.table(res_PN_Healthy_DrugRepo, 'PN_Healthy_sig.txt', row.names = F, sep = 

'\t') 

 

#MES vs Healthy 

res_MES_Healthy_df <- as.data.frame(res_MES_Healthy) 

res_MES_Healthy_DrugRepo <- tibble::rownames_to_column(res_MES_Healthy_df) 

res_MES_Healthy_DrugRepo <- filter(res_MES_Healthy_DrugRepo, padj <= 0.05) 

res_MES_Healthy_DrugRepo <- res_MES_Healthy_DrugRepo[,c(1,3)] 

base::colnames(res_MES_Healthy_DrugRepo) <- c('Genes','log2FoldChange') 

write.table(res_MES_Healthy_DrugRepo, 'MES_Healthy_sig.txt', row.names = F, 

sep = '\t') 

 

#MES vs PN 

res_MES_PN_df <- as.data.frame(res_MES_PN) 

res_MES_PN_DrugRepo <- tibble::rownames_to_column(res_MES_PN_df) 

res_MES_PN_DrugRepo <- filter(res_MES_PN_DrugRepo, padj <= 0.05) 

res_MES_PN_DrugRepo <- res_MES_PN_DrugRepo[,c(1,3)] 

base::colnames(res_MES_PN_DrugRepo) <- c('Genes','log2FoldChange') 

write.table(res_MES_PN_DrugRepo, 'MES_PN_sig.txt', row.names = F, sep = '\t') 
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6b_Get_Genes_for_CMAP.R 

library(dplyr) 

 

#read L1000 genes 

L1000 <- read.delim('./4_Genes_for_CMAP/L1000.txt') 

L1000 <- L1000$pr_gene_symbol 

 

#Up CL vs Healthy 

top_up_CL <- as.data.frame(res_CL_Healthy) 

top_up_CL <- tibble::rownames_to_column(top_up_CL) 

top_up_CL <- filter(top_up_CL, padj <= 0.05) 

top_up_CL <- filter(top_up_CL, log2FoldChange > 0) 

top_up_CL <- arrange(top_up_CL, padj) 

tokeep <- top_up_CL$rowname %in% L1000 

top_up_CL <- top_up_CL[tokeep,c(1,3)] 

#if more than 150 

top_up_CL <- top_up_CL[c(1:150),] 

base::colnames(top_up_CL) <- c('Genes','log2FoldChange') 

write.table(top_up_CL, 'CL_Healthy_UP_150_L1000.txt', row.names = F, sep = '\t') 

 

#Down CL vs Healthy 

top_down_CL <- as.data.frame(res_CL_Healthy) 

top_down_CL <- tibble::rownames_to_column(top_down_CL) 

top_down_CL <- filter(top_down_CL, padj <= 0.05) 

top_down_CL <- filter(top_down_CL, log2FoldChange < 0) 

top_down_CL <- arrange(top_down_CL, padj) 

tokeep <- top_down_CL$rowname %in% L1000 

top_down_CL <- top_down_CL[tokeep,c(1,3)] 

#if more than 150 

top_down_CL <- top_down_CL[c(1:150),] 

base::colnames(top_down_CL) <- c('Genes','log2FoldChange') 

write.table(top_down_CL, 'CL_Healthy_DOWN_150_L1000.txt', row.names = F, sep 

= '\t') 

 

 

#Up MES vs Healthy 

top_up_MES <- as.data.frame(res_MES_Healthy) 
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top_up_MES <- tibble::rownames_to_column(top_up_MES) 

top_up_MES <- filter(top_up_MES, padj <= 0.05) 

top_up_MES <- filter(top_up_MES, log2FoldChange > 0) 

top_up_MES <- arrange(top_up_MES, padj) 

tokeep <- top_up_MES$rowname %in% L1000 

top_up_MES <- top_up_MES[tokeep,c(1,3)] 

#if more than 150 

top_up_MES <- top_up_MES[c(1:150),] 

base::colnames(top_up_MES) <- c('Genes','log2FoldChange') 

write.table(top_up_MES, 'MES_Healthy_UP_150_L1000.txt', row.names = F, sep = 

'\t') 

 

#Down MES vs Healthy 

top_down_MES <- as.data.frame(res_MES_Healthy) 

top_down_MES <- tibble::rownames_to_column(top_down_MES) 

top_down_MES <- filter(top_down_MES, padj <= 0.05) 

top_down_MES <- filter(top_down_MES, log2FoldChange < 0) 

top_down_MES <- arrange(top_down_MES, padj) 

tokeep <- top_down_MES$rowname %in% L1000 

top_down_MES <- top_down_MES[tokeep,c(1,3)] 

#if more than 150 

top_down_MES <- top_down_MES[c(1:150),] 

base::colnames(top_down_MES) <- c('Genes','log2FoldChange') 

write.table(top_down_MES, 'MES_Healthy_DOWN_150_L1000.txt', row.names = F, 

sep = '\t') 

 

 

#Up PN vs Healthy 

top_up_PN <- as.data.frame(res_PN_Healthy) 

top_up_PN <- tibble::rownames_to_column(top_up_PN) 

top_up_PN <- filter(top_up_PN, padj <= 0.05) 

top_up_PN <- filter(top_up_PN, log2FoldChange > 0) 

top_up_PN <- arrange(top_up_PN, padj) 

tokeep <- top_up_PN$rowname %in% L1000 

top_up_PN <- top_up_PN[tokeep,c(1,3)] 

#if more than 150 

top_up_PN <- top_up_PN[c(1:150),] 
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base::colnames(top_up_PN) <- c('Genes','log2FoldChange') 

write.table(top_up_PN, 'PN_Healthy_UP_150_L1000.txt', row.names = F, sep = 

'\t') 

 

#Down PN vs Healthy 

top_down_PN <- as.data.frame(res_PN_Healthy) 

top_down_PN <- tibble::rownames_to_column(top_down_PN) 

top_down_PN <- filter(top_down_PN, padj <= 0.05) 

top_down_PN <- filter(top_down_PN, log2FoldChange < 0) 

top_down_PN <- arrange(top_down_PN, padj) 

tokeep <- top_down_PN$rowname %in% L1000 

top_down_PN <- top_down_PN[tokeep,c(1,3)] 

#if more than 150 

top_down_PN <- top_down_PN[c(1:150),] 

base::colnames(top_down_PN) <- c('Genes','log2FoldChange') 

write.table(top_down_PN, 'PN_Healthy_DOWN_150_L1000.txt', row.names = F, 

sep = '\t') 

 

 

#Up MES vs PN 

top_up_MES_PN <- as.data.frame(res_MES_PN) 

top_up_MES_PN <- tibble::rownames_to_column(top_up_MES_PN) 

top_up_MES_PN <- filter(top_up_MES_PN, padj <= 0.05) 

top_up_MES_PN <- filter(top_up_MES_PN, log2FoldChange > 0) 

top_up_MES_PN <- arrange(top_up_MES_PN, padj) 

tokeep <- top_up_MES_PN$rowname %in% L1000 

top_up_MES_PN <- top_up_MES_PN[tokeep,c(1,3)] 

#if more than 150 

top_up_MES_PN <- top_up_MES_PN[c(1:150),] 

base::colnames(top_up_MES_PN) <- c('Genes','log2FoldChange') 

write.table(top_up_MES_PN, 'MES_PN_UP_150_L1000.txt', row.names = F, sep = 

'\t') 

 

#Down MES vs PN 

top_down_MES_PN <- as.data.frame(res_MES_PN) 

top_down_MES_PN <- tibble::rownames_to_column(top_down_MES_PN) 

top_down_MES_PN <- filter(top_down_MES_PN, padj <= 0.05) 
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top_down_MES_PN <- filter(top_down_MES_PN, log2FoldChange < 0) 

top_down_MES_PN <- arrange(top_down_MES_PN, padj) 

tokeep <- top_down_MES_PN$rowname %in% L1000 

top_down_MES_PN <- top_down_MES_PN[tokeep,c(1,3)] 

#if more than 150 

top_down_MES_PN <- top_down_MES_PN[c(1:150),] 

base::colnames(top_down_MES_PN) <- c('Genes','log2FoldChange') 

write.table(top_down_MES_PN, 'MES_PN_DOWN_150_1000.txt', row.names = F, 

sep = '\t') 
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