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A Fully Automatic Method to Segment
Choroid Plexuses in Multiple Sclerosis
Using Conventional MRI Sequences
Loredana Storelli, PhD,1 Elisabetta Pagani, MSc,1 Martina Rubin, MD,1,2

Monica Margoni, MD, PhD,1,2 Massimo Filippi, MD,1,2,3,4,5 and Maria A. Rocca, MD1,2,5*

Background: Choroid plexus (CP) volume has been recently proposed as a proxy for brain neuroinflammation in multiple
sclerosis (MS).
Purpose: To develop and validate a fast automatic method to segment CP using routinely acquired brain T1-weighted
and FLAIR MRI.
Study Type: Retrospective.
Population: Fifty-five MS patients (33 relapsing–remitting, 22 progressive; mean age = 46.8 � 10.2 years; 31 women) and
60 healthy controls (HC; mean age = 36.1 � 12.6 years, 33 women).
Field Strength/Sequence: 3D T2-weighted FLAIR and 3D T1-weighted gradient echo sequences at 3.0 T.
Assessment: Brain tissues were segmented on T1-weighted sequences and a Gaussian Mixture Model (GMM) was fitted
to FLAIR image intensities obtained from the ventricle masks of the SIENAX. A second GMM was then applied on the
thresholded and filtered ventricle mask. CP volumes were automatically determined and compared with those from man-
ual segmentation by two raters (with 3 and 10 years’ experience; reference standard). CP volumes from previously publi-
shed automatic segmentation methods (freely available Freesurfer [FS] and FS-GMM) were also compared with reference
standard. Expanded Disability Status Scale (EDSS) score was assessed within 3 days of MRI. Computational time was
assessed for each automatic technique and manual segmentation.
Statistical Tests: Comparisons of CP volumes with reference standard were evaluated with Bland Altman analysis. Dice
similarity coefficients (DSC) were computed to assess automatic CP segmentations. Volume differences between MS and
HC for each method were assessed with t-tests and correlations of CP volumes with EDSS were assessed with Pearson’s
correlation coefficients (R). A P value <0.05 was considered statistically significant.
Results: Compared to manual segmentation, the proposed method had the highest segmentation accuracy (mean
DSC = 0.65 � 0.06) compared to FS (mean DSC = 0.37 � 0.08) and FS-GMM (0.58 � 0.06). The percentage CP volume
differences relative to manual segmentation were �0.1% � 0.23, 4.6% � 2.5, and �0.48% � 2 for the proposed method,
FS, and FS-GMM, respectively. The Pearson’s correlations between automatically obtained CP volumes and the manually
obtained volumes were 0.70, 0.54, and 0.56 for the proposed method, FS, and FS-GMM, respectively. A significant corre-
lation between CP volume and EDSS was found for the proposed automatic pipeline (R = 0.2), for FS-GMM (R = 0.3) and
for manual segmentation (R = 0.4). Computational time for the proposed method (32 � 2 minutes) was similar to the man-
ual segmentation (20 � 5 minutes) but <25% of the FS (120 � 15 minutes) and FS-GMM (125 � 15 minutes) methods.
Data Conclusion: This study developed an accurate and easily implementable method for automatic CP segmentation in
MS using T1-weighted and FLAIR MRI.
Evidence Level: 1
Technical Efficacy: Stage 4
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Choroid plexuses (CPs) are highly vascularized brain struc-
tures located inside the ventricular system, which are

essential for the development, maintenance, and normal func-
tion of the brain and which contribute to the regulation of
central nervous system (CNS) immunosurveillance.1,2 They are
responsible for cerebrospinal fluid (CSF) production, brain
waste clearance pathways, including the glymphatic transport
of CSF along the periarterial spaces, and for the migration of
inflammatory cells within the CNS.3,4

CP involvement has been recently described in several
neurological conditions, including multiple sclerosis (MS),3,5–8

Alzheimer’s disease,9–11 and ischemic stroke.12

In MS, post-mortem studies have shown inflammatory
changes within CPs, such as more antigen-presenting cells in
stroma, an infiltration of peripheral leucocytes, a disruption
of tight junctions in the epithelium and an endothelial over-
expression of adhesion molecules involved in lymphocyte
migration.8,13,14 Notably, in experimental models, inflamma-
tion in the CPs has been observed to precede the formation
of brain perivascular inflammatory infiltrates and the develop-
ment of demyelinating white matter (WM) lesions.15

Similarly, in vivo MRI studies have demonstrated that
CPs are inflamed on pseudo-T2 mapping16 and enlarged not
only in adult,3,6,7,17 but also in pediatric18 and pres-
ymptomatic MS patients,19 suggesting their early involvement
in the pathophysiology of the disease.

Several findings support the clinical relevance of CP
enlargement in MS: higher CP volume has been shown to be
significantly associated with higher Expanded Disability Sta-
tus Scale (EDSS) score20 and relapse rate, as well as with
worsening of clinical disability over 5-years.16 Enlarged CP
volumes have also been correlated with several MRI measures
of inflammation, including the presence of gadolinium-
enhancing lesions and the number and volume of brain
T2-hyperintense WM lesions.6,7,20 More recently, CP
enlargement has been correlated with the expansion of MS
periventricular chronic lesions21 and remyelination failure in
periventricular areas, quantified using diffusion MRI.22 How-
ever, the role of CP in the pathophysiology and evolution of
MS needs further exploration.5 There is growing interest in
developing automatic methods for CP segmentation, to be
used not only in research setting, but also in clinical trials
and, ideally, in a clinic setting.5

Although manual segmentation is considered the refer-
ence standard for CP segmentation, it is time-consuming and
prone to intra- and inter-rater variability.23 Thus, the develop-
ment of accurate automatic segmentation methods is important
for studying these structures in large cohorts of subjects. The
freely available and well-known software Freesurfer (FS) has
been applied for this purpose24 but it has proved to be inaccu-
rate.25,26 Recently, another automatic approach based on a
Gaussian Mixture Model (GMM) has been proposed. Starting
from FS brain tissue segmentation, this method evaluates

clusters of voxel intensities in order to separate CP from CSF
and ventricular wall inside the lateral ventricles.25 This FS-
GMM method has demonstrated promising results25 on the
Alzheimer’s Disease Neuroimaging Initiative dataset, albeit
including FS segmentation as a starting point (with a demand-
ing requirement in terms of computational time) but studies in
MS patients are lacking. Artificial intelligence segmentation
techniques, especially those based on deep learning algorithms,
have gained popularity in the MRI field for their very high per-
formance in several tasks.27 A recent study applying artificial
intelligence to CP segmentation showed competitive results
compared to other previously proposed deep-learning
models.28 However, this method was validated on a small
cohort of patients and required a training phase on a large
amount of data.

The aims of this study were to: 1) develop and validate
an easily implementable fully automatic method to segment
CP based on both 3D T1-weighted and 3D FLAIR brain
MRI sequences, using GMM but not requiring FS segmenta-
tion as a starting point (FLAIR + T1 GMM method); and 2)
to compare this approach to reference standard manual seg-
mentation as well as to FS and its recently proposed improve-
ment (FS-GMM method).

Materials and Methods
Ethics Committee Approval
Approval was received from the local ethical standards committee on
human experimentation, and written informed consent was obtained
from all subjects before MRI acquisition.

Subjects
In this retrospective study, 55 MS patients (33 relapsing–remitting and
22 progressive MS) were analyzed. To be included, patients had to have
a diagnosis of MS according to the 2017 revised McDonald criteria,29

be relapse- and steroid-free for at least 1 month prior to MRI scan, have
no other relevant neurological (other than MS) or psychiatric conditions
and a stable treatment for MS for at least 6 months. Sixty sex-matched
healthy control (HC) subjects, without neurologic diseases or systemic
disorders potentially affecting the CNS, and with a completely normal
neurologic examination, were also included. Within 3 days from MRI
acquisition, neurological examination, with EDSS score rating,30 was
performed by a neurologist (M.M. with 10 years’ experience) blinded to
the MRI findings in MS patients. Table 1 summarizes the main demo-
graphic, clinical and MRI characteristics of the study groups. Compared
to HC, MS patients were significantly older.

MRI Acquisitions
Brain MRI scans were obtained using a 3.0 Tesla Philips Ingenia CX
scanner (Philips Medical Systems, Best, The Netherlands) with stan-
dardized procedures for subjects positioning. The following pulse
sequences were acquired (receiver Coil = dS-Head-32): sagittal 3D
fluid attenuation inversion recovery (FLAIR), field of view (FOV)
= 256 � 256 mm2, pixel size = 1 � 1 mm2, 192 slices, 1 mm slice
thickness, matrix = 256 � 256, repetition time (TR) = 4800 msec, echo
time (TE) = 270 msec, inversion time (TI) = 1650 msec, echo train
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length (ETL) = 167, acquisition time (TA) = 6.15 minutes; sagittal 3D
T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE),
FOV = 256 � 256 mm2, pixel size = 1 � 1 mm2, 204 slices, 1 mm
slice thickness, matrix = 256 � 256, TR = 7 msec, TE = 3.2 msec,
TI = 1000 msec, flip angle = 8�, TA = 8.53 minutes.

MRI Pre-Processing
All sagittal acquisitions were reoriented to the axial plane and the
portion of the neck extending below the cerebellum was cropped for
both FLAIR and 3D T1-weighted sequences. Focal brain
T2-hyperintense WM lesions were identified and segmented by a
fully automated deep-learning approach using co-registered 3D
FLAIR and 3D T1-weighted images as inputs.31 Then, brain
T2-hyperintense WM lesion volume (LV) was obtained for each par-
ticipant from their lesion masks.

Brain tissues were automatically segmented on 3D
T1-weighted sequences, after lesion-filling,32 to obtain gray matter
(GM), WM, and CSF masks using FSL-SIENAX toolbox, and their
associated normalized brain, GM and WM volumes were
measured.33

Manual Choroid Plexuses Segmentation
For all subjects, CPs of the lateral ventricles were manually seg-
mented in the sagittal, axial, and coronal planes of the 3D
T1-weighted sequence using a local thresholding segmentation tech-
nique (Jim 8.0, Xinapse Systems Ltd, Colchester, UK) by two raters
(M.M. and M.R. with 10- and 3-years’ experience). The CPs of the
third and fourth ventricles were not included in the segmentation,
given their variable visualization.34 First, to evaluate intra-observer
and inter-observer reproducibility, CPs of 10 randomly selected

subjects (5 HC and 5 patients with MS) were segmented by both
raters twice, with an interval of at least 15 days between the two
assessments. Intraclass correlation coefficient (ICC) was used to esti-
mate reliability, using a two-way mixed model for the inter-rater reli-
ability and a one-way random model for the intra-rater reliability
(first operator intra-rater ICC = 0.962; second operator intra-rater
ICC = 0.988; inter-rater ICC = 0.923; all significant). Subse-
quently, the two raters performed CP segmentation separately.

Manual segmentation was considered the reference standard to
compare all the automatic methods presented in this study. All the
obtained CP volumes were multiplied by V scaling (derived from
the FSL-SIENAX toolbox, as a measure of head size) to obtain the
corresponding normalized values.7

Automatic Choroid Plexuses Segmentation
The proposed fully automatic method to segment CPs started from
the brain tissue segmentation obtained from the FSL-SIENAX tool-
box (as described in the previous paragraph). In particular, the mask
of the lateral ventricle in the standard MNI-152 atlas space35 was
affinely registered into the subject space and subsequently eroded,
with a dimension of the filter = 1 mm to clean the mask without
erasing relevant part of brain tissue. The co-registered mask of the
lateral ventricle was then used as a template to separate peripheral
from ventricular CSF for each subject on the global CSF segmenta-
tion. Then, we removed on the previously obtained lateral ventricle
binary mask of each subject those voxels with a high probability
(>50%) to belong to other tissues (GM, WM, or T2-hyperintense
lesions), as indicated from the SIENAX segmentation. Thus, we
reduced the numbers of possible outliers on the lateral ventricle
masks that could have image intensities similar to those of the CPs

TABLE 1. Main Demographic, Clinical, and MRI Features of Healthy Controls and Multiple Sclerosis Patients

HC (N = 60) MS (N = 55) P

Age, mean (SD)
[years]

36.1 (12.6) 46.8 (10.2) <0.001

Females/Males 33/27 31/24 0.07

Clinical phenotype (RRMS/PMS) - 33/22 -

Disease duration, median (IQR) [years] - 13.9 (6.0–23.0) -

EDSS, median (IQR)
[years]

- 2.5 (1.0–6.0) -

T2-hyperintense WM lesion volume, median (IQR) [mL] 0 (0.0–0.13) 2.6 (0.93–6.6) <0.001

NBV, mean (SD) [mL] 1570 (37) 1514 (53) <0.001

NGMV, mean (SD) [mL] 887 (34) 848 (44) <0.001

NWMV, mean (SD) [mL] 684 (29) 665 (28) <0.001

NvCSFV, mean (SD) [mL] 32 (11) 45 (17) <0.001

Note: Bold indicates significant values p < 0.001.
EDSS = Expanded Disability Status Scale; HC = healthy controls; IQR = inter-quartile range; MS = multiple sclerosis;
NBV = normalized brain volume; NGMV = normalized gray matter volume; NvCSFV = normalized ventricular cerebrospinal fluid vol-
ume; NWMV = normalized white matter volume; P = progressive; RR = relapsing–remitting; SD = standard deviation.
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on the FLAIR images. The resulting “cleaned” ventricle mask was
registered into the FLAIR space and the corresponding image inten-
sities were extracted. Since CPs appear hyperintense on FLAIR
images and the signal of the CSF is suppressed, a GMM with
2 Gaussian distributions was fitted to data using the iterative
Expectation–Maximization algorithm.36 The voxels belonging to the
Gaussian distribution with lower image intensities (CSF) were dis-
carded. A mean image filtering was applied on the previously
obtained binary mask to enhance the differences between voxels
belonging to the CPs and spurious boundary voxels. A second
GMM, again with two Gaussian distributions, was applied on the
filtered binary mask and residual clusters of voxels with a dimension
<3 mm in all three dimensions were removed. The resulting mask
was the final CP segmentation. The segmentation algorithm was
implemented in Matlab (R2017a, Mathworks) and is schematically
represented in Fig. 1.

The proposed method was compared with automatic CP seg-
mentation from FS24 and with a recently published algorithm for
automatic CP segmentation that starts from FS segmentation (freely
available for download on github at https://github.com/

EhsanTadayon/choroid-plexus-segmentation).25 Pre-processed 3D
T1-weighted sequences were used as input for both methods.

Statistical Analysis
Demographic, clinical, and MRI measures were compared between
groups (HC and MS) using Pearson’s χ2 test for categorical variables
and Mann–Whitney or t-test for continuous variables (after assessing
normality of the distributions).

For all subjects, segmentation accuracy of the three automatic
pipelines was evaluated using the Dice similarity coefficient (DSC)
and compared using paired t-tests. Dice coefficients will be defined
as low (0.00–0.19), low-moderate (0.20–0.39), moderate (0.40–
0.59), moderate-high (0.60–0.79) or high (0.80–1.00). Automatic
CP volume differences and Pearson’s correlations (coefficient R) with
the manually obtained CP volumes were used to assess and compare
the performance of the three automatic methods.

Between-group differences (HC vs. MS) in CP volumes for
the different segmentation pipelines were also assessed in com-
parison to the between-group difference for the manually
extracted CP volumes. For MS patients, Spearman’s partial

FIGURE 1: A schematic overview of the implemented method for the automatic segmentation of choroid plexuses.
CSF = cerebrospinal fluid.
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correlations (age-adjusted) of normalized CP volumes with brain
T2-hyperintense WM LV and EDSS were calculated. We also
analyzed the time required for CP segmentation from the three
automated methods.

False discovery rate (Benjamini–Hochberg procedure) correc-
tion was applied for multiple comparisons. A P-value <0.05 was con-
sidered significant. R software (version 4.0.5) and Matlab (R2017a,
Mathworks) were used for statistical analysis.

Data and Code Availability Statement
The code will be made available upon reasonable request to the
corresponding author.

Results
Clinical and MRI Findings
Compared to HC, MS patients had significantly higher brain
T2-hyperintense WM LV and larger ventricular CSF volume,
and significantly lower normalized brain, GM and WM
volumes.

Segmentation Accuracy
Figure 2 shows an example of segmentation with the auto-
matic methods tested.

Compared to manual segmentation, the FLAIR + T1
GMM method showed moderate-high segmentation accuracy
with a mean DSC score of 0.66 (�0.04) for HC and 0.63
(�0.08) for MS patients. Significantly lower DSC were found
for both FS (low-moderate DSC = 0.37 � 0.07 for HC and
DSC = 0.37 � 0.08 for MS) and FS-GMM methods

(moderate DSC = 0.60 � 0.05 for HC and
DSC = 0.56 � 0.06 for MS) in comparison to FLAIR + T1
GMM method, as shown in Fig. 3.

The CP volumes estimated with the FLAIR + T1
GMM method were not significantly different to the manu-
ally estimated volumes (�0.1% � 0.23%, P = 0.32) (Fig. 4).
The mean percentage differences between CP volumes
obtained by FS and FS-GMM methods compared to manu-
ally extracted volumes (Fig. 4) were statistically significant
(4.6% � 2.5 and �0.48 � 2, respectively).

Pearson’s correlations between automatically obtained
CP volumes and those obtained from the manual segmenta-
tion were 0.70, 0.54, and 0.56 (all significant) for the pro-
posed method, FS, and FS-GMM, respectively (Fig. 5).

There was significantly higher CP volume in MS patients
(1.46 � 0.31 mL) than HC (1.39 � 0.30 mL) from manual
segmentation. For the automatic pipelines, there were significant
differences between HC and MS CP volumes for the proposed
method (HC = 1.28 � 0.32 mL, MS = 1.50 � 0.42 mL), for
FS (HC = 0.74 � 0.23 mL, MS = 1.38 � 0.42 mL) and for
FS-GMM (HC = 1.24 � 0.25 mL, MS = 1.80 � 0.42 mL)
(Table 2).

Correlations With MRI and Clinical Measures
Table 3 summarizes results of analysis of correlations.

No significant correlation was observed between nor-
malized CP volumes and brain T2-hyperintense WM LV in
MS patients for both manual segmentation (P = 0.53) and
our proposed method (P = 0.62). Conversely, a significant
association between the normalized CP volumes and brain

FIGURE 2: Examples of choroid plexus segmentation. In the first
row, an axial slice from a FLAIR sequence obtained from a
multiple sclerosis patient with manual choroid segmentation
(in green). In the second row, the three automatic segmentation
masks with different colors: Freesurfer (FS) in blue, the recently
published FS extension in magenta (FS-GMM) and the proposed
method in red (FLAIR + T1 GMM). FS = Freesurfer; GMM =

Gaussian Mixture Model.

FIGURE 3: Boxplot of Dice similarity coefficients obtained for
the three automatic methods for all subjects’ choroid plexus
segmentations (FS, FS-GMM, FLAIR + T1 GMM). Significant
differences between the methods were highlighted (*P < 0.05;
**P < 0.001). DSC = dice similarity coefficient; FS = Freesurfer;
GMM = Gaussian Mixture Model.
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T2-hyperintense WM LV in MS patients was found for both
FS (R = 0.3) and FS-GMM (R = 0.6) methods.

In MS patients, a significant correlation between CP
volumes and EDSS was observed for manual segmentation
(R = 0.4), FLAIR + T1 GMM pipeline (R = 0.2) and FS-
GMM methods (R = 0.3). CP volumes obtained from FS
segmentation did not show a significant association with
EDSS score (P = 0.71).

The proposed automated method was the fastest auto-
matic CP segmentation method (approximately 2 minutes
+ 30 minutes for SIENAX brain tissues segmentation per

subject) with a 75% analysis time reduction compared to FS
(around 2 hours per subject) and FS-GMM (around
5 minutes + 2 hours for FS tissues segmentation per sub-
ject) methods, running on a computer with an Intel Xeon
12 core processor (Intel, Santa Clara, California; USA),
16Gb RAM and a Quadro K600 GPU (NVIDIA, Santa
Clara, California; USA), with CentOS Linux 7. Mean com-
putational time for the manual segmentation was
20 � 5 minutes, 32 � 2 minutes for the proposed method,
120 � 15 minutes for FS, and 125 � 15 minutes for
FS-GMM method.

FIGURE 4: Bland–Altman plots of the volume percentage differences obtained from the automatic choroid plexus segmentation
methods compared to manually obtained volumes, for all the enrolled subjects. FS = Freesurfer; GMM = Gaussian Mixture Model;
mL = milliliter.
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Discussion
In this study, we proposed a fully automatic method for CP
segmentation and volume estimation for MS patients using

two conventionally acquired MRI sequences (3D T1-weighted
and FLAIR images). The method implemented resulted in
CP volumes with small percentage differences compared to
reference standard manual segmentation, and high Dice
scores. The performance of the proposed FLAIR + T1
GMM method was better than FS and a recently proposed
automatic toolbox that includes FS segmentation of brain tis-
sues (FS-GMM) methods.25

There is growing interest in studying CP in MS patients
as a possible biomarker of brain inflammation.8,13–15 How-
ever, manual segmentation of this structure on MRI is time-
consuming and prone to intra- and inter-observer variability,
thus discouraging its study on large samples of patients. Previ-
ous imaging studies have used FS, a freely available toolbox,
for automatic segmentation of the CPs.25,26,37 However, from
a quality control of the results and consistent with previous
studies,25,26 FS is inaccurate for this specific brain structure.
In particular, it often missed the majority of the CP within
right lateral ventricle (as in Fig. 2) and mislabelled CSF voxels
as CP voxels. A potential cause of the lack of good segmenta-
tion accuracy for FS could be due to the fixed constraints
imposed by the atlas-based segmentation and to possible mor-
phometric distortions due to registration inaccuracies. For this

FIGURE 5: Scatter plots with correlations between automatically obtained choroid plexuses volumes and those obtained from the
manual segmentation. Pearson’s correlations results (R) were also highlighted in red. CP = choroid plexus; FS = Freesurfer;
GMM = Gaussian Mixture Model.

TABLE 2. Normalized Choroid Plexus Volume in Healthy Controls and Multiple Sclerosis Patients With the
Application of Different Methods

HC (N = 60) MS (N = 55) P

Manual segmentation, mean (SD) 1.39 (0.30) 1.46 (0.31) <0.05

In-house method, mean (SD) 1.28 (0.32) 1.50 (0.42) <0.001

FS, mean (SD) 0.74 (0.23) 1.38 (0.42) <0.001

FS-GMM, mean (SD) 1.24 (0.25) 1.80 (0.42) <0.001

HC = healthy controls; FS = FreeSurfer; GMM = Gaussian mixture model; MS = multiple sclerosis; SD = standard deviation.

TABLE 3. Spearman’s Partial Correlations
(Age-Adjusted) of Normalized CP Volumes With Brain
T2-Hyperintense WM Lesion Volume and EDSS in MS
Patients, for All the Segmentation Methods.

Spearman’s Partial
Correlations, R (p)

Brain
T2-Hyperintense

WM Lesion
Volume EDSS

Manual segmentation 0.2 (0.09) 0.4 (0.007)

FS 0.3 (0.05) 0.2 (0.18)

FS + GMM 0.6 (<0.001) 0.3 (0.01)

FLAIR + T1 GMM 0.2 (0.07) 0.2 (0.03)

Bold text is for significant correlations. CP = choroid plexus;
EDSS = Expanded Disability Status Scale; FS = FreeSurfer;
GMM = Gaussian mixture model; MS = multiple sclerosis;
WM = white matter.
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reason, a new automatic tool that improves FS segmentation
of CPs using GMM has been recently proposed and validated
(FS-GMM).25 New segmentation algorithms using artificial
intelligence techniques, such as deep learning, have also recently
gained popularity for their high performance,27 with several
being developed for automatic CP segmentation.26,28,38

However, these techniques require large amounts of labeled data
for training and high computational performance with dedicated
hardware,39 making them ungeneralizable and difficult to apply
in clinical practice.

We implemented an automatic method for CP segmen-
tation in MS, based on two conventional MRI sequences
(3D T1-weighted and 3D FLAIR) which did not involve a
training step (as in deep-learning algorithms), nor a demand-
ing brain tissue segmentation step as a starting point for the
algorithm (as for FS-GMM method).

We compared the performance of our method with
manual segmentation performed by two raters and with the
two available automatic algorithms for CP segmentation
(FS and FS-GMM). In the comparison with manual segmen-
tation, our method showed highest segmentation accuracy in
terms of spatial overlap (DSC) between the two segmentation
masks and volumetric similarity, with slightly better perfor-
mance in HC than in MS patients. Conversely, in line with
the literature, FS segmentation of CPs showed the lowest
similarity with manual segmentation, which improved when
using the recently proposed FS-GMM method. In this com-
parison, our method also significantly outperformed
FS-GMM in terms of segmentation accuracy (DSC) and
volume similarity (as shown by the Pearson’s correlations),
even though both methods are based on GMM and intensity
outliers’ detection. This could be due to the fact that the FS-
GMM method, even if it improves CP segmentation in com-
parison to the original FS method, still includes as a first step
the brain tissue masks produced by FS. Thus, if there are
inaccuracies in the segmentation of brain tissue structures (for
example the ventricle mask) these will be present in the
starting point masks for FS-GMM.

Consistent with previous studies,6–8,17,18 all pipelines
showed a significant enlargement of CP volume in MS
patients compared to HC. However, the FLAIR + T1 GMM
method showed the closest agreement with the results of
manual segmentation both in HC and MS patients. The larg-
est difference between HC and MS CP volumes was observed
with FS segmentations, followed by FS-GMM method, con-
firming a less accurate performance compared to manual seg-
mentation. The larger group differences found with the
Freesurfer-based methods could be due to disease-specific fea-
tures of MS patients. Indeed, FS method included an atlas-
based segmentation that preserves anatomical commonalities
across subjects in the expense of losing peculiarities for each
subject.25 Thus, by imposing a fixed constraint, a larger lat-
eral ventricle due to the pathological brain atrophy occurring

in these patients could reduce the level of FS segmentation
accuracy.

Finally, we assessed the performance of our method by
evaluating the association between CP volumes and clinical
measures, considering the results obtained from the manual
segmentation method as a reference. Similarly to the manual
segmentation, but differently from FS and FS-GMM, our
approach showed no significant association between CP vol-
ume and brain T2-hyperintense WM LV. When considering
the association between CP volumes and EDSS score, both
our algorithm and the FS-GMM method showed a significant
positive correlation, as for the results obtained from the man-
ual segmentation by raters (our reference standard).

These findings support the use of our novel approach as
a reliable method to evaluate the clinical relevance of CP vol-
ume, promoting its application in larger MS studies. It has
the important benefit of reducing processing time compared
to FS-GMM (by approximately 75%), since there is no need
for prior FS segmentation, is easy to implement and does not
involve an initial training phase on large amounts of labeled
data. It is therefore generalizable and is a simple tool that
may potentially be integrated in a clinical setting.

Limitations
Although this study has a cross-sectional design, different stud-
ies have demonstrated a good intra- and inter-rater reproduc-
ibility in the manual segmentation of CPs.7 However, future
longitudinal studies are needed to prove the robustness and
reliability of the proposed CP segmentation algorithm on serial
MRI visits and to explore the dynamic abnormalities of these
structures over time. Second, the Dice coefficients obtained
with the proposed CP segmentation are in the moderate range.
However, this is what we expect by using Dice metric to assess
segmentation performance on small structures. In these cases,
Dice coefficient may not be the appropriate metric, since a
single-pixel difference between two predictions can have a large
impact on the metric values. Nevertheless, this is the most
commonly used metric in literature to evaluate image segmen-
tation performance. Finally, the segmentation results may
depend on the image quality. The acquisition of 3D data is
therefore desirable in terms of higher signal-to-noise ratio and
tissue contrast, in order to obtain a good model of the Gauss-
ian distributions of the image intensities of the structures to
separate (lateral ventricle and CP). The method is therefore
based on 3D sequences usually acquired in a clinical setting
(T1-weighted and FLAIR), since the consensus recommenda-
tions on the use of MRI in MS are encouraging the acquisition
of high-resolution images.40

Conclusions
We developed an accurate and easily implementable method
for fully automatic CP segmentation in MS patients using
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3D T1-weighted and FLAIR brain MRI sequences. This
algorithm allows a rapid quantification of CP volume, a possi-
ble clinically relevant measure of brain inflammation in MS
patients.
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