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Abstract
Developmental dyslexia (DD) is a common neurodevelopmental disorder that af-
fects reading ability despite normal intelligence and education. In search of core 
deficits, previous evidence has linked DD with impairments in temporal aspects 
of perceptual processing, which might underlie phonological deficits as well as 
inefficient graphemic parsing during reading. However, electrophysiological evi-
dence for atypical temporal processing in DD is still scarce in the visual modality. 
Here, we investigated the efficiency of both temporal segregation and integration 
of visual information by means of event-related potentials (ERPs). We confirmed 
previous evidence of a selective segregation deficit in dyslexia for stimuli pre-
sented in rapid succession (<80 ms), despite unaffected integration performance. 
Importantly, we found a reduced N1 amplitude in DD, a component related to 
the allocation of attentional resources, which was independent of task demands 
(i.e., evident in both segregation and integration). In addition, the P3 amplitude, 
linked to working memory and processing load, was modulated by task demands 
in controls but not in individuals with DD. These results suggest that atypical 
attentional sampling in dyslexia might weaken the quality of information stored 
in visual working memory, leading to behavioral and electrophysiological sig-
natures of atypical temporal segregation. These results are consistent with some 
existing theories of dyslexia, such as the magnocellular theory and the “Sluggish 
Attentional Shifting” framework, and represent novel evidence for neural corre-
lates of decreased visual temporal resolution in DD.
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1   |   INTRODUCTION

Developmental dyslexia (DD) is a common neurodevel-
opmental disorder that manifests with slower reading 
speed, as well as errors in spelling, letter recognition, 
and, to a lesser degree, text comprehension (Peterson & 
Pennington,  2012; Siegel,  2006). Its high prevalence, re-
ported to range between 5 and 20% in the general pop-
ulation (Wagner et al.,  2020), as well as the benefits of 
early intervention, justify the sustained interest in the eti-
ology of the disorder, which remains a matter of debate 
(Shaywitz et al.,  2021). In search of core deficits of dys-
lexia, different theories have been proposed to explain the 
variety of its manifestations, ranging from impairments 
in phonological processing to low-level deficits in sensory 
and attentive processing. Phonological skills, defined as 
the ability to manipulate phonemes to process written and 
oral language, are essential skills in reading development 
(Melby-Lervåg et al., 2012). Although phonological defi-
cits are most commonly reported, there is evidence that 
impairments in phonological processing are not necessary 
or sufficient to account for dyslexia (Pennington,  2006; 
Snowling et al., 2020). Reading is a complex process that 
requires not only phonological skills but also precise se-
quencing of sounds and words, in turn dependent on 
accurate timing of auditory and visual stimuli, that is, 
temporal processing (Stein, 2019). Studies have reported 
atypical temporal processing in dyslexia using auditory 
(Ben-Yehudah et al., 2004; Cohen-Mimran & Sapir, 2007; 
Helenius et al., 1999; Hornickel & Kraus, 2013; Murphy 
& Schochat,  2009) and visual (McLean et al.,  2011; 
Ronconi et al., 2020) tasks (or a combination of the two, 
see, for example: Casini et al., 2018; Edwards et al., 2004; 
Gori et al.,  2020; Laasonen et al.,  2011; Van Ingelghem 
et al., 2001).

On the theoretical level, temporal processing deficits 
have been investigated in the auditory domain since the 
1980s, with the formulation of the “rapid temporal pro-
cessing deficit hypothesis” by Tallal (1980). According to 
the hypothesis, phonological deficits present in DD arise 
from low-level auditory deficits, where the inability to 
process the rapid succession of sounds prevents the cor-
rect identification of phonemes (Tallal,  1980). In the 
visual domain, the magnocellular theory has provided 
a neurobiological basis for temporal processing deficits 
observed in dyslexia (Stein, 2019; Stein & Talcott, 1999; 
Stein & Walsh, 1997). The magnocellular pathway, pro-
jecting mostly to the dorsal visual stream, has been 
implicated in the processing of rapidly changing vi-
sual stimuli and in oculomotor control, and has been 
found to be impaired in dyslexia in a number of stud-
ies showing increased thresholds in contrast sensitivity 
and coherent motion (Pammer & Wheatley, 2001), poor 

oculomotor adjustments while reading (Jainta & Ka-
poula, 2011), and reduced activation in area V5/MT for 
moving stimuli (Eden et al., 1996). Furthermore, dorsal 
stream sensitivity assessed in preschool years predicts 
early literacy skills (Kevan & Pammer, 2009). Magnocel-
lular deficits could be responsible for a cascade of effects 
at different processing levels, affecting both sensory and 
attentional processing (Hari & Renvall,  2001). Specifi-
cally, it has been hypothesized that dorsal magnocellu-
lar dysfunction could play a role in temporal and spatial 
aspects of attention, both necessary for the correct se-
lection and parsing of graphemic units during reading 
(Krause, 2015). According to the “Sluggish Attentional 
Shifting” (SAS) framework, a prolonged attentional 
dwell time is responsible for the slowdown in process-
ing rapidly presented sequences of stimuli (Hari & Ren-
vall, 2001). In other words, when faced with sequences 
of stimuli, the attentional system of dyslexic individuals 
fails to efficiently engage and disengage from one item to 
the next one, which might translate to reduced temporal 
resolution and temporal segregation deficits. Further-
more, reading requires rapid orienting of spatial atten-
tion to the target grapheme among distractors, possibly 
recruiting visuo-spatial attentional mechanisms de-
ployed in visual search tasks (Franceschini et al., 2012; 
Krause, 2015; Vidyasagar & Pammer, 2010). Despite its 
long history, the magnocellular theory of dyslexia has 
also been controversial (Handler et al., 2011). As mag-
nocellular neurons are thought to be preferentially ac-
tivated with low spatial and high temporal frequency 
(Ellemberg et al., 2001; Livingstone & Hubel, 1987), the 
presence of mixed results using stimuli with these char-
acteristics raises a number of questions (Skottun, 2000). 
Similarly, the use of higher-level perceptual tasks, such 
as the coherence motion task, in investigating magnocel-
lular function is not immune to criticism, since it is hard 
to isolate in these tasks the magnocellular functionality 
from other critical neural mechanisms, such as temporal 
integration and perceptual noise exclusion (Goodbourn 
et al., 2012; Skottun, 2015; Sperling et al., 2006).

One way of investigating information processing 
with high temporal precision is by means of event-
related potentials (ERPs), where deviations from a 
typical waveform shed light on the nature and tempo-
ral locus of divergent processing (Duncan et al., 2009). 
Previous studies in DD reported atypical electrophysi-
ological signatures in response to basic perceptual pro-
cessing in the auditory and visual modality (for a review, 
see Schulte-Körne & Bruder, 2010). Specifically, dyslexic 
participants present a reduced mismatch negativity 
(MMN) component, a negative ERP deflection occur-
ring when a train of tone patterns presented rhythmi-
cally is interrupted by an infrequent “oddball” tone of 
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different duration and frequency (Corbera et al.,  2006; 
Kujala et al., 2000; Meng et al., 2005). N1, a prominent 
component related to auditory processing and attention, 
is reduced in response to brief stimuli presented at in-
terstimulus intervals (ISIs) of 100–200 ms in poor read-
ers, who perform worse in a temporal ordering task as 
compared to good readers (Nagarajan et al., 1999). In the 
visual domain, dyslexic participants show atypical ERP 
patterns in response to coherently moving dots (Schulte-
Körne et al.,  2004) as well as flickering checkerboards 
(Stein, 2021). Using an attentional-shifting task, Wijers 
et al. (2005) reported that, whereas normal readers pre-
sented a positive frontal activity (around 350 ms) later-
alized over the right hemisphere, dyslexic participants 
showed this effect over both hemispheres, suggesting a 
dysregulation of interhemispheric asymmetry. To our 
knowledge, only one study investigated electrophys-
iological correlates of temporal aspects of visual per-
ception in dyslexia. Lallier et al.  (2010) used a stream 
segregation task within an oddball paradigm where an 
alternating small dot appeared either above or below the 
central fixation point in rapid succession. By varying the 
ISI, they could manipulate the predicted percept to be 
either one or two streams of dots; in the case of longer 
ISIs (i.e., fast deviant tempo), the two alternating dots 
would be perceived as belonging to one stream moving 
up and down, whereas with shorter ISIs (i.e., standard 
tempo) the two dots would appear as simultaneous, thus 
belonging to two separate streams. Results showed that 
participants with DD had higher segregation thresholds 
as they perceived the two streams as simultaneous at in-
termediate deviant ISIs, whereas controls did not. Fur-
thermore, the difference in the P3b component elicited 
in response to intermediate versus fast deviant tempos 
was smaller in the DD group, suggesting that both the 
intermediate and the short ISI conditions were salient as 
they were perceived differently by participants with DD. 
With an analogous paradigm and results in the auditory 
modality, the authors suggest that limitations in amodal 
attentional resources compatible with the SAS frame-
work are responsible for the slowing down of rapid se-
quential processing.

To further investigate the nature of visual temporal 
processing deficits in DD, Ronconi et al.  (2020) tested 
an adult population with DD by means of the “SegInt” 
task, a modified version of the missing element task 
(Di Lollo,  1980). By keeping constant visual stimula-
tion while changing task instruction, the “SegInt” task 
allows us to investigate both temporal segregation and 
integration, the two complementary mechanisms at 
the basis of temporal processing. More specifically, 
temporal integration refers to the ability to combine 
sensory information over time so that it is perceived 

as belonging to the same, coherent percept. Temporal 
segregation, necessary to perceive rapid changes in the 
environment, refers to the ability to separate sensory in-
formation over time, thus providing a more or less fine-
grained temporal resolution to the perceptual system. In 
the “SegInt” task, two displays of stimuli separated by a 
varying ISI are flashed in rapid succession. Depending 
on the instruction, participants are asked to either inte-
grate or segregate visual stimuli over time. In the study, 
the authors found that participants with DD were spe-
cifically impaired in the temporal segregation of stimuli 
presented in rapid succession while performing equally 
to controls in the integration of visual input.

Taken together, evidence in the literature suggests 
that, across modalities, dyslexic participants show re-
duced temporal resolution, as indicated by increased 
thresholds for the perception of sequential stimuli pre-
sented at short ISIs. This result has been interpreted 
in light of either atypical perceptual or attentional 
processing, but neuroimaging evidence in support of 
these theoretical proposals is scarce when considering 
temporal processing in the visual modality. The aim 
of the current study is to investigate a specific deficit 
in visual temporal segregation, as reported by Ronconi 
et al.  (2020), by means of ERPs. In neurotypical popu-
lations, studies have shown that successful visual tem-
poral integration acts in early as well as late processing 
stages, as evidenced by the modulation of N1, N2, and 
P3 components (Akyürek, Schubö, & Hommel,  2010). 
Investigating these electrophysiological signatures of 
temporal processing might shed new light on the under-
lying mechanisms of impaired segmentation of visual 
information in DD.

2   |   METHOD

2.1  |  Participants

A total of 57 participants were recruited for the study (mean 
age = 22.2 years, age range: 18–30 years), 26 adults with a di-
agnosis of developmental dyslexia (9 females, 17 males), and 
31 normal readers (16 females, 15 males). Participants' level 
of education ranged between 11 and 21 years, with most of 
the participants (n = 54) being university students. Partici-
pants with DD were in possession of an official diagnosis 
certified by a clinical psychologist (mean age of most recent 
certification = 17 years, age range: 13–22 years) and were 
compensated for their participation, whereas control par-
ticipants could receive university credits, if interested. The 
research project was approved by the Ethical Committee of 
the University of Trento, and all participants gave informed 
consent for participation.
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2.2  |  Cognitive tests

Participants were administered cognitive tests to assess 
non-verbal intelligence and reading ability. Non-verbal in-
telligence was assessed with a shortened version of Raven's 
Advanced Progressive Matrices (APM; Raven et al., 1998), 
where participants are requested to make judgments on 
increasingly complex geometric designs with a missing ele-
ment. The number of correct responses is taken as a meas-
ure of general non-verbal intelligence. Reading ability was 
assessed by means of two tests. First, a text reading test re-
quired participants to read aloud the extract “Funghi in città” 
(Judica & De Luca, 2005). Second, participants were asked 
to read lists of words and pseudowords (extracted from Sar-
tori et al., 1995). Reading ability was assessed through three 
parameters: time, speed, and accuracy (as defined by Stella 
& Tintoni, 2007). Errors were counted following Cornoldi 
and Colpo (1981) guidelines.

2.3  |  Apparatus and stimuli

Stimuli were presented on a light gray background on a 
23.5″ EIZO monitor (vertical refresh rate 100 Hz, viewing 
distance of 57 cm) using the E-prime 3.0 software (Psy-
chology Software Tools, Pittsburgh, PA). Stimuli consisted 
of two target displays each containing 8 stimuli randomly 
positioned among 16 possible positions on an invisible 
4 × 4 quadratic grid. The stimuli subtended a 0.5-degree 
size and a 0.06-degree line width. The size of each location 
was 1 × 1 degree, and the invisible grid had a 0.5-degree 
space between grid locations. Seven random locations 
were filled with a full black annulus separated by a cen-
tral gap at different orientations (0°, 45°, 90°, or 135°), 
whereas one location was filled with an “odd stimulus,” a 
half annulus with mirrored orientation between displays 
(so that the two halves formed a full annulus if merged 
across displays). One location was left empty on both 
displays. The same stimuli were employed in previous 
studies with the “SegInt” paradigm (Freschl et al., 2019; 
Ronconi et al., 2018, 2020; Sharp et al., 2018, 2019; Wutz 
et al., 2016, 2018).

2.4  |  Procedure

Each trial of the “SegInt” task started with a fixation 
screen (1000 ms), followed by the presentation of two 
displays of stimuli presented for a duration of one 
refresh cycle (10 ms each), separated by a blank in-
terstimulus interval (ISI duration = 20, 50 or 80 ms). 
During the training phase, participants were instructed 
to perform the two separate tasks on different blocks. In 

segregation blocks, participants were instructed to find 
the “odd stimulus”, and this could be achieved only 
with correct temporal segregation of the two visual dis-
plays. If the two displays were integrated, the two half 
annuli would be merged in one complete annulus, iden-
tical to the others. In integration blocks, participants 
were instructed to find the empty grid location, which 
could be achieved only by integrating two sequential 
displays (see Figure 1a for a schematic representation 
of the stimuli and task). Changing task instructions 
prior to each block allowed us to test temporal segre-
gation and integration processes using the same visual 
stimulation. Once the stimuli disappeared, a response 
grid was presented, and participants were instructed 
to respond with a mouse click on the position on the 
screen corresponding to the target stimulus. Although 
we specified to participants that only accuracy mat-
tered, we set a temporal constraint of 10 s for providing 
a response. As the target stimulus appeared randomly 
among 16 possible locations, chance-level performance 
was equal to 1/16 (6.25%). The experiment consisted of 
six blocks in which participants were presented, in al-
ternation, with segregation and integration conditions. 
Each block lasted 10 minutes, and block order was 
counterbalanced across participants. Each combination 
of ISI and condition was presented for 150 trials, for a 
total of 900 trials.

2.5  |  EEG recording and preprocessing

EEG data were recorded using eego™sports (ANT 
Neuro, Enschede, The Netherlands) from 64 electrode 
sites (extended international 10–20 system), with AFz 
electrode as ground electrode and CPz as online ref-
erence. Eye blinks were monitored with an electrode 
placed at the suborbital ridge of the left eye. Raw 
data were preprocessed using MATLAB R2020a (The 
MathWorks Inc., 2020) and the EEGLAB toolbox, ver-
sion 2021.1 (Delorme & Makeig,  2004). Electrode im-
pedance was kept below 20 kΩ. Originally sampled 
at 500 Hz, offline data were resampled at 250 Hz and 
re-referenced to an average reference. Afterward, high-
pass and low-pass filters (low cutoff 0.5 Hz, high cutoff 
80 Hz), as well as a notch filter at 50 Hz, were applied. 
Epochs of 2000 ms (−1000 ms to 1000 ms relative to the 
first display onset) were extracted from the continu-
ous data. Spherical interpolation was performed on 
noisy channels if necessary (average of interpolated 
channels = 2.5, SD = 2.07). User-based independent 
component analysis (ICA) was performed to iden-
tify and remove artifactual components; we removed 
components classified by the ICLabel plugin as “eye,” 
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“muscle,” “heart,” “line noise,” or “channel noise” with 
a probability higher than 90% and with zero probabil-
ity of being categorized as “brain” component. Follow-
ing ICA-based artifacts correction, visual inspection of 
the segmented EEG data was used to eliminate epochs 
where clear artifacts were still present. This procedure 
led, across participants, to the rejection of 3.6% of arti-
factual epochs (SD = 0.04%).

2.6  |  ERP analysis

To extract ERP data, MATLAB toolbox ERPLAB ver-
sion 8.30 was used (Lopez-Calderon & Luck,  2014). 
The ERP components selection was performed using a 
two-step method. First, potential components of inter-
ests and their latencies were identified from prior liter-
ature employing similar tasks (namely P1, N1, P2, and 
P3 components; identified based on Akyürek, Schubö, 
& Hommel, 2010, which used a missing element task; 
Ronconi, Pincham, et al.,  2016, which used an atten-
tional blink task; and Ronconi et al., 2017, which used 
a two-flash fusion task). Afterward, ERP components 
were identified in the present data set using the col-
lapsed localizer method (Kappenman & Luck,  2016), 
where data from all participants, conditions, and 
ISIs were averaged into a single grand-grand-average 

waveform (Figure S1). This method allows to determine 
time windows for ERP components while being blind 
to between-condition or between-group differences 
that could bias selection (Kappenman & Luck,  2016). 
The following components and time windows were 
selected: P1 (110–140 ms), N1 (180–220 ms), N2 (260–
300 ms), and P3 (350–500 ms). These components 
emerged and were analyzed over three posterior clus-
ters: posterior left (P7, P5, P3, PO7, and PO5), posterior 
midline (P1, Pz, P2, PO3, POz, PO4, O1, Oz, and O2), 
and posterior right (P4, P6, P8, PO6, and PO8) clus-
ters. A repeated-measures analysis of variance (RM-
ANOVA) was performed on mean amplitude values of 
correct trials for each identified component using JASP 
(version 0.16.1; JASP Team, 2022).

3   |   RESULTS

3.1  |  Reading and non-verbal IQ scores

As revealed by independent samples t tests, DD and con-
trol participants had a comparable non-verbal IQ score, 
t(55) = 1.215, p = 0.23, while they differed significantly in 
all reading measures (all ps < .05), indicating that DD di-
agnoses reflected slower and less accurate reading perfor-
mance (Table 1).

F I G U R E  1   (a) Schematic 
representation of the stimuli used to 
evaluate temporal segregation and 
integration. (b) Accuracy rates for 
“SegInt” task performance pooled for 
DD and control participants and plotted 
as a function of ISI. (c) Accuracy rates 
for the segregation and (d) integration 
conditions, plotted as a function of ISI and 
separated for group. Error bars represent 
standard error of the mean (SEM), and 
points represent individual participants' 
accuracy. The dashed gray line represents 
chance level (6.25%). *p < .05, **p < .01, 
***p < .001. DD, developmental dyslexia; 
ISI, interstimulus interval.
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3.2  |  Accuracy in the “SegInt” task

Segregation and integration performance were in-
vestigated by means of repeated-measures ANOVA 
with condition (segregation vs. integration) and 
ISI (20, 50 vs. 80) as repeated-measures factors and 
group (DD vs. controls) as a between-subject factor 
(Table  S1). Greenhouse–Geisser correction was ap-
plied when the assumption of sphericity was violated. 
A main effect of ISI (F(1.373,75.538) = 17.432, p < .001, 
�
2
p = 0.241) and an interaction between ISI and condi-

tion (F(1.729,95.087) = 1125.431, p < .001, �2p = 0.953) indi-
cated that task accuracy depended on ISI and condition. 
As shown in Figure 1b, the direction of the interaction 
was in accordance with previous results reporting an in-
crease in segregation performance for longer ISIs and 
an increase in integration performance for shorter ISIs, 
showing that the ISI manipulation proved successful 
(as in Ronconi et al., 2020). Importantly, an interaction 
between condition and group (F(1,55) = 5.072, p < .05, 
�
2
p = 0.084) emerged, with planned contrasts showing 

a significantly reduced accuracy in the DD group only 
in the segregation condition (t(106.147) = 2.969, p < .01; 
Figure  1c,d, Table  S2). A series of independent t tests 
(planned contrasts) were conducted to further analyze 
this effect, revealing that the two groups differed in 
the segregation condition at ISI 20 ms (t(146.749) = 2.369, 
p < .05), ISI 50 ms (t(146.749) = 2.914, p < .01), and ISI 80 ms 
(t(146.749) = 2.898, p < .01).

3.3  |  ERP results

To unveil the temporal dynamics of the segregation defi-
cit in DD, we tested possible between-group differences 
in the mean amplitude of early and late ERP compo-
nents by means of RM-ANOVAs, with condition (seg-
regation vs. integration), channels cluster (left, midline 

vs. right posterior cluster), and ISI (20, 50 vs. 80 ms) as 
within-subject factors, and group (controls vs. DD) as 
a between-subject factor. Greenhouse–Geisser correc-
tion was applied when the assumption of sphericity was 
violated. See Table  2 for ERP mean amplitude values. 
Figures 2a-c and 3 show, respectively, ERP waveforms 
and topographic maps averaged over ISI levels (see 
Figure  S2 for waveforms separated for ISI level). Con-
cerning P1 mean amplitude, the ANOVA showed only 
a main effect of channel cluster (F(1.715,94.331) = 18.287, 
p < .001, �2p = 0.25). No interactions were found (all 
ps > .056; see Table  S3). Investigating N1 mean ampli-
tude, main effects of ISI (F(1.747,96.091) = 11.069, p < .001, 
�
2
p = 0.168), channels cluster (F(1.4,76.994) = 21.398, 

p < .001, �2p = 0.28), and group (F(1,55) = 4.095, p < .05, 
�
2
p = 0.069) emerged, with the DD group having a re-

duced N1 mean amplitude as compared to controls (Fig-
ure 2b). An interaction between ISI and channel cluster 
emerged (F(1.788,98.336) = 3.589, p < .05, �

2
p = 0.061; see 

Table S4). When considering N2 mean amplitude, main 
effects of ISI (F(1.562,85.888) = 12.647, p < .001, �2p = 0.187), 
channel cluster (F(1.447,79.589) = 7.211, p < .01, �2p = 0.116), 
and condition (F(1,55) = 4.097, p < .05, �2p = 0.069) were 
found, with the integration condition being linked 
to a reduced N2 mean amplitude as compared to 
the segregation condition. Furthermore, an interac-
tion between channel cluster and condition emerged 
(F(1.278,70.294) = 18.949, p < .001, �2p = 0.256; see Table S5). 
Regarding P3 mean amplitude, main effects of ISI 
(F(1.541,84.732) = 6.591, p < .01, �2p = 0.107), channel cluster 
(F(1.583,87.073) = 16.013, p < .001, �2p = 0.225), and condi-
tion (F(1,55) = 37.556, p < .001, �2p = 0.406) were present, 
with lower amplitude for the integration condition. 
Interactions among condition, ISI, and channel clus-
ter (F(3.06,168.323) = 3.979, p < .01, �2p = 0.067) and, impor-
tantly to our hypothesis, among condition, group, and 
channel cluster (F(1.353,74.394) = 4.208, p < .05, �2p = 0.071) 
were present (see Table  S6). To analyze this effect, an 

T A B L E  1   Results from reading and non-verbal IQ tests in participants with developmental dyslexia and controls.

Controls (n = 31) 
mean (SD)

DD (n = 26) 
mean (SD) T-test type t value df p

Raven's AMP matrices 7.968 (2.168) 7.192 (2.654) Student 1.215 55.000 .230

Text reading speed 0.042 (0.770) −3.419 (3.895) Welch 4.459 26.642 <.001

Text reading accuracy 0.777 (0.585) −0.916 (1.609) Welch 5.089 30.535 <.001

Words reading speed 0.764 (1.121) −1.080 (1.046) Student 6.376 55.000 <.001

Words reading accuracy 0.083 (0.630) −0.722 (1.604) Welch 2.406 31.446 .022

Pseudowords reading speed 0.863 (1.414) −1.237 (0.937) Student 6.469 55.000 <.001

Pseudowords reading accuracy 0.626 (0.548) −0.328 (1.414) Welch 3.242 31.280 .003

Note: All reading measures are reported in z scores. Welch's t tests were applied when Levene's test of significance suggested a violation of the equal variance 
assumption.
Abbreviations: APM, advanced progressive matrices; DD, developmental dyslexia.
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      |  7 of 15SANTONI et al.

T A B L E  2   Mean amplitude values (μV) for P1 (110–140 ms), N1 (180–220 ms), N2 (260–300 ms), and P3 (350–500) components.

Group Segregation Integration

ISI (ms) 20 mean (SD) 50 mean (SD) 80 mean (SD) 20 mean (SD) 50 mean (SD) 80 mean (SD)

Controls

P1 1.344 (1.723) 1.315 (1.545) 1.455 (1.777) 1.741 (1.704) 1.460 (1.553) 1.410 (1.635)

N1 −5.448 (−3.922) −5.183 (3.480) −4.951 (3.612) −5.308 (3.813) −5.263 (3.569) −5.001 (3.684)

N2 −2.278 (3.943) −2.022 (3.956) −1.639 (3.724) −2.788 (3.918) −2.256 (3.729) −2.053 (3.898)

P3 1.682 (2.967) 2.150 (3.634) 2.014 (3.632) 1.270 (3.009) 1.025 (3.149) 0.646 (3.555)

DD

P1 1.399 (1.454) 1.318 (1.256) 1.246 (1) 1.354 (1.115) 1.206 (1.078) 1.301 (0.898)

N1 −3.801 (2.344) −3.418 (2.265) −3.281 (2.219) −3.729 (2.125) −3.443 (2.156) −3.484 (2.297)

N2 −2.327 (2.837) −2.156 (2.542) −2.042 (2.472) −2.520 (2.632) −2.325 (2.455) −2.015 (2.501)

P3 1.198 (1.943) 1.585 (2.226) 1.161 (2.130) 0.770 (1.746) 0.769 (1.893) 0.383 (1.850)

Abbreviations: DD, developmental dyslexia; ISI, interstimulus interval.

F I G U R E  2   (a) ERP waveforms for group and condition averaged for ISI level and over three posterior channel clusters. (b) Mean 
amplitude (μV) averaged over ISI levels for P1 (110–140 ms), N1 (180–220 ms), and N2 (260–300 ms) components. Main results from RM-
ANOVA are reported as follows: A main effect of group in N1 mean amplitude and a main effect of condition in N2 mean amplitude. (c-d) 
P3 (350–500 ms) mean amplitude was significantly different between conditions in the control, but not in the DD group. The effect was only 
found over left posterior channels. Error bars represent SEM, *p < .05, **p < .01. DD, developmental dyslexia; int, integration condition; ISI, 
interstimulus interval; seg, segregation condition.
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8 of 15  |      SANTONI et al.

RM-ANOVA was conducted separately on each poste-
rior cluster, revealing an interaction between group and 
condition in the posterior left cluster (F(1,55) = 4.170, 
p < .05, �2p = 0.07), but not in the midline (F(1,55) = 1.083, 
p = .303) or right (F(1,55) = 0.013, p = .909) clusters (Fig-
ure 2d). Holm–Bonferroni corrected post hoc compari-
sons revealed that neurotypical participants presented 
higher P3 in the segregation condition as opposed to 
the integration condition in the posterior left cluster 
(t(57) = 3.858, pHolm < .01, d = 0.283). Importantly, this ef-
fect was absent in the DD group (t(57) = 0.764, pHolm = 1) 
as shown in Figure  2d. Post hoc comparisons did not 
reveal significant differences between controls and 
DD groups neither in the segregation (t(57) = −0.962, 
pHolm = 1) nor in the integration (t(57) = −0.116, pHolm = 1) 
conditions.

4   |   DISCUSSION

The current findings replicate a specific deficit in tem-
poral segregation abilities in adults with DD, as previ-
ously reported by Ronconi et al.  (2020), suggesting that 
dyslexic individuals have a reduced temporal resolution 
of the visual system. We extend this previous evidence 
by showing that impaired visual temporal segregation in 
the DD group was accompanied by different stimulus-
evoked electrophysiological signatures. Investigating the 
post-stimulus period by means of ERPs, we found no dif-
ference between dyslexic and neurotypical individuals in 
the P1 component (110–140 ms after the appearance of 
the first stimulus) but a reduction in N1 mean amplitude 
(180–220 ms) in the DD group for both integration and 

segregation conditions. Furthermore, we found a task-
specific modulation of P3 mean amplitude (350–500 ms) 
which was present in neurotypical participants but absent 
in the DD group.

The first positive deflection of the ERP waveform, 
the P1 component, is modulated by stimulus parame-
ters and selective attention and reflects early cortical ac-
tivation (Luck, 2005). Interestingly, P1 has been linked 
to magnocellular function, as it is primarily activated 
by stimulus manipulation eliciting magnocellular neu-
rons (Ellemberg et al.,  2001), and its generators have 
been found along the dorsal visual stream (Di Russo 
et al., 2002). Reduced P1 amplitudes have been reported 
in the literature in populations presenting putative 
magnocellular deficits, such as schizophrenia (Doniger 
et al., 2002; Foxe et al., 2001; Schechter et al., 2005), al-
though criticisms regarding interpretation and method-
ology remain (see, for example, Skottun & Skoyles, 2007). 
In a previous study using forward masking, the evoked 
MEG response was found to differ between masked and 
detected stimuli already in this early component (Wutz 
et al.,  2014). A MEG study comparing integration and 
segregation, however, did not find any task-related dif-
ference (reduced evoked response for integration trials) 
until a period of around 160–290 ms after display 2 onset 
(Wutz et al., 2016).

Regarding dyslexia, evidence reporting P1 modula-
tions is mixed (Kubová et al.,  2015; Meng et al.,  2022; 
Sayeur et al.,  2013). As the current study does not test 
magnocellular function directly, the absence of a P1 
reduction cannot be used as evidence against a magno-
cellular deficit in dyslexia. However, it suggests that the 
observed segregation deficit is not related to early visual 

F I G U R E  3   Topographic maps of ERPs, averaged over ISI level and divided for segregation and integration conditions. DD, 
developmental dyslexia; int, integration; ISI, interstimulus interval; Seg, segregation.
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processing and that this processing stage seems unim-
paired in dyslexia.

Differently from P1, the between-group differences 
in N1 could possibly relate to segregation deficits. As the 
N1 component has been linked to the deployment of at-
tentional resources (Luck et al., 1994; Ozernov-Palchik & 
Gaab, 2016; Vogel & Luck, 2000), its reduced activation in 
DD might reflect a deficit in the correct allocation of at-
tentional resources to task-relevant stimulus information. 
This hypothesis falls within the SAS framework, according 
to which DD deficits arise from the inability to shift tempo-
ral attention from one item to the next one rapidly enough 
(Hari & Renvall,  2001). In support of this hypothesis, 
previous studies investigating dyslexic children reported 
inadequate engagement and disengagement of temporal 
attention in the attentional blink task (Facoetti et al., 2008; 
Visser et al., 2004), as well as impairments in a temporal 
attention task that requires the identification of forward 
and backward masked objects (Ruffino et al.,  2014). As 
temporal shifts of attention are necessary to disengage 
processing resources from the current object onto the next 
one, deficits in temporal attention might translate into an 
impaired temporal segregation performance, where rap-
idly succeeding stimuli have to be distinguished, but not 
necessarily impact temporal integration processes, where 
a fast attentional disengagement from the first appearing 
stimulus is not required to complete the task. This possi-
ble scenario might explain why, in the present study, we 
observe a specific behavioral deficit in the segregation 
condition but a suppression of the N1 component regard-
less of task instruction in the DD group.

We found a task/condition difference in evoked re-
sponses in the P3 component (350–500 ms), consistent with 
previous findings of a difference in evoked responses for 
integration and segregation (with MEG) in the 300–450 ms 
period (Wutz et al.,  2016), but this was only present for 
the neurotypical group. Following the facilitation of target 
processing by attentional resources, task-relevant infor-
mation is transferred into visual working memory, where 
it is maintained for further processing (Awh et al., 2006). 
The functional role of P3 has been linked to stimulus up-
dating (Donchin & Coles,  1988; Duncan-Johnson,  1981; 
Kok, 2001) and/or maintenance in working memory, with 
P3 amplitude reflecting working memory load (Akyürek, 
Leszczyński, & Schubö, 2010; Brouwer et al.,  2012; Kor-
pela & Huotilainen, 2011). Studies employing the atten-
tional blink task found a reduced P3 amplitude when the 
second target in a rapid serial visual presentation stream 
is missed, thus advancing P3 amplitude to be an index 
of successful transmission of stimulus information and 
allocation in working memory (Kranczioch et al.,  2003; 
Sergent et al., 2005; Ronconi, Pincham, et al., 2016; for a 
review, see Zivony & Lamy, 2022). Using a visual temporal 

segregation task similar to the one used in the present 
study, Akyürek et al. (2017) found that the P3 component 
was modulated as a function of the perceptual outcome, 
with higher P3 amplitudes for temporally segregated stim-
uli, and lower amplitudes for two integrated stimuli (see 
also Wutz et al., 2016, for a similar finding). In the pres-
ent study, we report the same pattern of results in neuro-
typical individuals, who presented higher P3 amplitudes 
in segregation trials, where visual information within 
the two displays should be kept separate to perceive the 
“odd element,” as opposed to integration trials, where vi-
sual information is expected to be combined between the 
two displays to find the empty location. Taken together, 
these results suggest that a greater P3 amplitude reflects 
the processing effort necessary to maintain more informa-
tion units, since temporal integration allows the stimuli to 
be condensed into fewer units of information. We suggest 
that in DD participants, possibly due to an excessive atten-
tional engagement to the first display, information from 
the first display was still available when the second display 
appeared, resulting in involuntary integration. As a result, 
incoming stimuli for working memory maintenance and 
processing would mostly be one information unit regard-
less of task instruction. In this scenario, the absence of a 
P3 increase for segregation trials might be interpreted as a 
consequence of inefficient attentional allocation in time, 
rather than inefficient working memory processing itself.

Another possible explanation for the lack of P3 mod-
ulation in dyslexic participants could be inefficient stim-
ulus updating in working memory, as described by a 
large number of studies investigating working memory 
capacity in DD. Previous research has reported reduced 
P3 amplitude and behavioral accuracy in DD popula-
tions in response to visual working memory tasks (Lofti 
et al., 2022). Furthermore, training in working memory 
tasks resulted in improvements in working memory ca-
pacity and reading ability in DD participants, reflected 
by increased P3 amplitude (Shiran & Breznitz,  2011). 
However, we should stress that we did not find signifi-
cant differences in P3 amplitudes between dyslexic and 
control participants, but a significant difference among 
conditions in the control group, which was absent in the 
DD group. Given the absence of a generally reduced P3 
amplitude in participants with DD, we interpret the re-
sult as an index of the impoverished processing load on 
working memory rather than a consequence of ineffi-
cient working memory processing in dyslexia. Further-
more, P3 modulation was only significant over posterior 
left scalp channels, possibly indicating the involvement 
of left-lateralized ventral stream areas that are special-
ized for processing letter stimuli (Dehaene et al., 2005; 
Ronconi, Bertoni, & Bellacosa Marotti,  2016; Vinckier 
et al.,  2007), and thus could be similarly specialized 
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to process letter-like stimuli such as the half annuli of 
the “SegInt” task. Finally, we would like to pinpoint 
that while we labeled this late positive inflection in the 
ERP waveform as P3, there might be a certain overlap 
with the late positive component (LPC), a component 
thought to be mostly related to memory maintenance 
and memory trace strength in visual recognition para-
digms (Finnigan et al., 2002; Yang et al., 2019). Similar 
to the modulation of the P3 component in missing ele-
ment and attentional blink tasks (Akyürek, Leszczyński, 
& Schubö,  2010; Akyürek, Schubö, & Hommel,  2010; 
Sergent et al.,  2005), the LPC appears to be modu-
lated by the amount of information retrieved (Vilberg 
et al., 2006). Interestingly, previous accounts found that 
the effect of the LPC is also left lateralized (Finnigan 
et al., 2002). These common aspects between the P3 and 
LPC modulation based on memory maintenance suggest 
that these two components might partially reflect simi-
lar processes.

Taken together, the present results provide further 
evidence for domain-general temporal processing 
anomalies in DD that are not limited to linguistic or 
auditory stimuli (Facoetti et al.,  2008, 2010; McLean 
et al., 2011; Stanley & Hall, 1973). A reduced temporal 
resolution in response to rapid sequences of stimuli, as 
indicated by an impaired temporal segregation perfor-
mance, might be explained by attentional mechanisms 
responsible for the sampling or parsing of visual infor-
mation. On this account, temporal resolution deficits 
fit both with the magnocellular theory of dyslexia as 
well as with the SAS framework. As magnocellular 
neurons are hypothesized to be primarily activated 
in response to fast (in the time range of 100 ms) and 
transient stimuli given their rapid conduction rates 
(Derrington & Lennie,  1984; Legge,  1978; Maunsell 
et al.,  1999), previous accounts have linked temporal 
parsing deficits to magnocellular dorsal impairments 
(see, e.g., evidence in relation to coherence motion 
and attentional blink tasks; Hari et al.,  1999; Pammer 
& Wheatley, 2001; Schulte-Körne et al., 2004). Accord-
ing to this framework, weaker magnocellular responses 
could be responsible for reduced visual sampling rates, 
while at the same time representing the neural basis 
of higher-level deficits, such as an inefficient engage-
ment and disengagement of visual attention (Steinman 
et al., 1997). In line with the current finding, this sce-
nario would translate to a temporal segregation deficit 
across all ISI levels where segmentation of visual input 
is required on a rapid timeframe (< 80 ms). Contrarily, 
temporal integration performance would remain un-
affected, or might even benefit, from a more sluggish 
activation of the magnocellular dorsal system. These 
impaired mechanisms could contribute to inefficiency 

in reading, which is essentially a demanding temporal 
and spatial order acquisition task where graphemes are 
sequentially processed between one fixation and the 
other (Laycock & Crewther, 2008). The influential dual-
route model of reading predicts that reading acquisi-
tion, in particular, requires fine graphemic parsing, as 
the correct identification of individual sub-lexical units 
precedes learning to map grapheme onto correspond-
ing phonemes (Coltheart,  1978; Coltheart et al.,  2001; 
Ruffino et al.,  2014; Vidyasagar & Pammer,  2010). 
Moreover, an important aspect of reading is the abil-
ity to shift attention to the upcoming (parafoveal) word 
(for a review, see Schotter et al.,  2012; Huber-Huber 
et al., 2021). Slow or inefficient shifts in attention and 
in updating in working memory could result in reduced 
parafoveal preview benefits and slower reading times.

Despite some effort in bridging magnocellular function 
and higher-level temporal processing tasks (Nieuwenhuis 
et al.,  2008; Omtzigt & Hendriks,  2004), conclusions re-
garding the involvement of magnocellular mechanisms 
should be drawn with caution. As the task used here em-
ploys supra-threshold, letter-like stimuli in the temporal-
processing domain, it might also relate to higher-level 
processing impairments (see Skottun,  2015, 2016, for 
critical reviews). A potential role of the magnocellular 
stream in rapid temporal segregation in the current study 
is also called into question by the lack of between-group 
differences in the P1 component, previously linked to 
magnocellular response (Di Russo et al., 2002; Ellemberg 
et al., 2001). Designing a task that requires high temporal 
resolution while at the same time employing stimuli that 
selectively stimulate the magnocellular stream would help 
disambiguate this critical aspect. In this direction, a study 
by Peters et al. (2020) manipulated temporal frequency in 
a flicker fusion task to selectively assess magnocellular 
function, finding that only a subgroup of DD participants 
presented impaired magnocellular-temporal processing 
thresholds. They also reported that reading abilities and 
flicker fusion thresholds correlated differently in the two 
DD subgroups.

Moreover, the link among graphemic parsing, atten-
tion, and magnocellular function has been supported 
by results from Omtzigt and Hendriks  (2004; see also 
Omtzigt et al., 2002), who presented normal readers with 
single (e.g., a) or flanked (e.g., xax) letters. By changing 
physical attributes of the stimuli, letters could either se-
lectively target magnocellular or parvocellular function. 
Those authors reported that, when attentional processing 
was loaded with flanked stimuli, only the perception of 
magnocellular-activating letters would be impaired. Fur-
thermore, this effect was absent when attention was cued 
to the target location, thus implicating that the role of the 
magnocellular system in identifying flanked letters is in 
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the spatial allocation of attention for target letters. Future 
contributions should aim at designing tasks that sensibly 
disambiguate between magno- and parvo-cellular con-
tributions to improve the characterization of DD in sub-
groups and to help reconcile inconsistencies reported in 
the literature.

In conclusion, the present study provided further ev-
idence for a deficit in rapid segmentation of visual in-
formation in DD, as well as atypical electrophysiological 
signatures of temporal processing. Specifically, a suppres-
sion of the N1 component in dyslexic participants regard-
less of task instruction (i.e., segregation and integration) 
is compatible with a general impairment of attentional 
sampling that might translate into temporal segregation 
deficits, as temporal segregation relies heavily on the fast 
deployment of attentional resources. Furthermore, the 
absence of P3 modulation for temporal segregation in 
dyslexic participants would reflect weakened stimulus 
representations in visual working memory. These findings 
provide new evidence of electrophysiological correlates of 
visual temporal processing deficits in DD while providing 
support to theories of dyslexia focusing on perceptual and 
attentional processing, such as the magnocellular theory 
of dyslexia as well as the “Sluggish Attentional Shifting” 
framework.
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