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A B S T R A C T   

Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing 
a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from pa-
rietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for 
object identification and the fronto-parietal network would modulate the attentional resolution. Several studies 
highlighted the relevance of beta oscillations (15–25 Hz) in these areas for visual crowding and other connatural 
visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the 
parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with 
letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was 
delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state 
EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding 
was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was 
reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of 
individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and 
visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in 
visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these 
findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal 
crowding, such as dyslexia.   

1. Introduction 

Visual crowding is the primary bottleneck for visual object percep-
tion (Levi, 2008; Pelli, 2008). It refers to the difficulty in discriminating 
objects in the presence of neighbouring flankers. Crowding is clearly 
observable in peripheral vision and occurs both with simple objects such 
as gabor patches (Levi et al., 2002) and more complex configurations, 
such as faces (Sun and Balas, 2015), letters (Whitney and Levi, 2011), 
and natural scenes (Ringer et al., 2021). 

Two classic accounts have tried to explain crowding (Chakravarthi 
and Cavanagh, 2009). The bottom-up accounts posit that crowding 
stems from an incorrect integration of visual features following their 
detection (Parkes et al., 2001; Pelli et al., 2004). The top-down account, 
instead, explains crowding as a result of the limits of the attentional 

capacity at given locations (He et al., 1996; Intriligator and Cavanagh, 
2001). Accordingly, visual crowding involves both low and high asso-
ciative visual areas depending on object complexity (Freeman and 
Simoncelli, 2011; Pelli, 2008). 

Importantly, crowding does not seem to arise solely from the activity 
of visual areas. In particular, the magnocellular-dorsal (M-D) stream 
which connects the retina to occipital and parietal cortices (Maunsell 
and Newsome, 1987), traditionally involved in visual motion perception 
(Battelli et al., 2007; Braddick et al., 2003; Donner et al., 2007; Morrone 
et al., 2000), is also involved in visual crowding (Atilgan et al., 2020). 
The M-D stream has a central role for contour integration and segrega-
tion of visual stimuli in normal vision (Chakravarthi and Pelli, 2011), 
and consequently for complex visual tasks such as reading (Bertoni et al., 
2019; Zorzi et al., 2012). Specifically, fast bottom-up projections to the 
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M-D stream would provide low-frequency spatial representations facil-
itating attention-demanding slow identification in the ventral stream via 
recursive feedback from the parietal cortex (Levy et al., 2010; Vidya-
sagar and Pammer, 2010). This dorsal-to-ventral communication would 
promote the activation of receptive fields of appropriate size, resulting 
in an effective segregation of target and flanker objects (Lamme and 
Roelfsema, 2000). However, given the poor resolution of coarse repre-
sentations conveyed by the dorsal stream, the information coming from 
the parietal cortex may erroneously promote binding between target and 
flankers’ features (Chakravarthi and Pelli, 2011). 

The M-D stream also projects from early visual cortices to prefrontal 
cortices in primates (Goldman-Rakic and Porrino, 1985; Rempel-Clower 
and Barbas, 2000) and specifically to the inferior frontal gyrus in 
humans (Miller and Cohen, 2001). Low-level coarse visual representa-
tions are rapidly projected from early visual areas to the prefrontal 
cortex, which then conveys an initial guess of the image back to the 
ventral stream regions including the temporal cortex (Bar et al., 2001, 
2006). In addition, different studies provided evidence for the involve-
ment of the fronto-parietal network in visual attention (Boshra and 
Kastner, 2022; Corbetta et al., 2008; Corbetta and Shulman, 2002; 
Giesbrecht et al., 2003; Szczepanski et al., 2010), which could modulate 
many visual phenomena, including crowding (Albonico et al., 2018; 
Bacigalupo and Luck, 2015; Chen et al., 2014, 2014; Fortenbaugh et al., 
2015; Kewan-Khalayly et al., 2022). 

In general, bottom-up and top-down accounts posit that crowding 
depends on different, interacting, neural networks. Within this debate, 
electroencephalography (EEG) provided converging evidence using 
Vernier stimuli (Chicherov et al., 2014), letters (Peng et al., 2018) or 
letters-like Gabor configurations (Ronconi et al., 2016) that crowding 
induces a suppression of the N1 component (200–250 ms post-stimulus) 
across parietal and/or occipital sensors, compatible with an influence on 
later visual processing stages. Other EEG evidence (Han and Luo, 2019) 
isolated target- and flanker-specific EEG activity in a visual crowding 
task via a temporal response function, reporting an early-starting oc-
cipital component and a later-occurring fronto-parietal one. Only the 
latter was correlated with the behavioural performance in the crowding 
task and exerted causal influence on the occipital component, as 
assessed via a directed connectivity analysis. These results suggest that 
the activation of the fronto-parietal network reflects a top-down mod-
ulation during visual crowding. 

Other EEG studies focused on the analysis of the oscillatory activity, 
reported that crowding and other connatural visual phenomena show a 
relationship with beta-band activity (15–25 Hz) (Di Dona and Ronconi, 
2023). Modulations of beta-band oscillations have been associated with 
perceptual reorganisation (Ehm et al., 2011; Kornmeier and Bach, 2012; 
Okazaki et al., 2008), for example during perceptual switch between 
global and local motion perception (and vice-versa) (Romei et al., 2011; 
Zaretskaya and Bartels, 2015). Importantly, in a visual crowding task 
employing letter stimuli, larger post-stimulus beta power reduction was 
observed in a strong crowding with respect to a weak crowding condi-
tion (Ronconi et al., 2016). In addition, a correct response in the same 
task was linked to stronger pre-stimulus beta power (Ronconi and Bel-
lacosa Marotti, 2017). The association of beta oscillations to visual 
crowding was further strengthened by Battaglini and colleagues (Bat-
taglini et al. 2020a), who applied transcranial Alternating Current 
Stimulation (tACS) on the right parietal cortex at frequencies within the 
beta (18 Hz) and alpha (10 Hz) bands, or in a sham (placebo) regime. 
Only beta-band tACS ameliorated performance in a visual crowding task 
in the contralateral hemifield and, moreover, increased post-tACS 
beta-band power in resting-state EEG (RS-EEG). Together, these re-
sults provide robust evidence about the central role of right parietal beta 
oscillations in visual crowding. Despite classical models suggested that 
the right is more specialised than the left hemisphere in the control of 
visual attention (Corbetta and Shulman, 2011), however, whether visual 
crowding itself is specifically associated to the activity of the right pa-
rietal or of both parietal areas has never been tested. 

At the same time, beta-band rhythmic communication within the 
right fronto-parietal network appears as having an evident role for visual 
perception and attention (Rogala et al., 2020; Yordanova et al., 2017), 
stimulating questions about its possible influence on visual crowding. 
For example, single-pulse TMS applied to frontal eye fields (FEF) triggers 
phase reset of beta oscillations at occipital sensors and modulates the 
accuracy of motion discrimination (Veniero et al., 2021). Consistently, 
rTMS at high beta frequency (30 Hz) applied to FEF resulted in higher 
inter-regional synchronisation in beta oscillations between FEF and 
bilateral parietal sensors and increased visual sensitivity in a visual 
detection task (Stengel et al., 2021). On the other hand, low beta rTMS 
(20 Hz) delivered to the right intraparietal sulcus or right FEF interfered 
with visual identification (Capotosto et al., 2009). 

In our previous study (Battaglini et al. 2020a), we tested the effects of 
both alpha and beta tACS (as compared to sham tACS), but only beta 
tACS yielded behavioural modulation of visual crowding and changes in 
post-stimulation oscillatory activity. These results provided an impor-
tant indication of frequency specificity. In the present study, we aimed at 
elucidating the different functional characterizations of beta oscillations 
in parietal cortices and in the right fronto-parietal network during visual 
crowding. Specifically, we investigated whether the improvements 
previously found by Battaglini and colleagues (Battaglini et al., 2020a) 
in reducing the impact of visual crowding with a right parietal stimu-
lation, and limited to the contralateral visual hemifield, could be 
extended to both visual hemifields. First, given that the parietal lobe is a 
crucial hub of the dorsal attention network, we hypothesised that by 
extending the electrical stimulation to both parietal cortices, the bene-
ficial effect on visual performance would be transferred to the entire 
visual field. However, given the well-established dominance of the right 
hemisphere for visuospatial attention (Heilman and Van Den Abell, 
1980, Corbetta et al., 2000, Mengotti et al., 2020, Gallotto et al., 2022) 
and based on recent evidence showing the involvement of beta oscilla-
tions within the fronto-parietal network during several visual perception 
and attention tasks (Di Dona and Ronconi, 2023; Veniero et al., 2021; 
Yordanova et al., 2017), we investigated whether simultaneously stim-
ulating the right parietal and frontal areas could similarly modulate 
visual crowding performance across the entire visual field. 

2. Materials and methods 

2.1. Participants 

Twenty-five healthy adults (14 F, Mean Age = 20.3, Age Range =
18–26) with normal or corrected to normal vision and normal hearing 
were recruited. All participants met the criteria for the application of 
transcranial Alternating Current Stimulation (tACS) (Antal et al., 2017). 
The study protocol was approved by the Ethical Committee of San 
Raffaele Hospital and performed in accordance with the Helsinki 
Declaration of Human Studies and all participants signed the informed 
consent prior to participating in the study. A power analysis was per-
formed in GPower (Erdfelder et al., 1996) software to estimate the 
minimum sample size to reach 0.80 power for a two-tailed paired sample 
t-test with an effect size of d = 0.6 drawn from a previous similar study 
(Battaglini et al., 2020a). Such analysis showed that 24 participants 
were needed. After excluding 3 participants (see section Behavioural data 
preprocessing and model fitting), a power of ~ 0.775 was estimated for 22 
participants. 

2.2. Stimuli and procedure 

Stimuli for the crowding task consisted of letter-like configurations 
(H for flankers and T for the target) composed by Gabor patches and 
covering an area of 1.5 × 1.5 deg each. They were created using Psy-
chtoolbox in MATLAB (Brainard, 1997) and presented on a 20″ LCD Dell 
monitor (1600 × 900 pixels; 60 Hz refresh rate) with a grey background 
(40 cd/m2). For details about the stimuli composition see the 
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Supplementary Materials. 
The entire experimental procedure (task, EEG and tACS) was done in 

a dimly lit room. In each trial, a fixation point (2 s) anticipated the target 
letter T (50 ms), which appeared at 11 deg of eccentricity in the right or 
left visual hemifield with 4 equiprobable orientations (0◦, 90◦, 180◦, 
270◦). Target duration prevented saccades towards the target. Two 
flanker letters H were positioned above and under the target letter T and 
at 7 equiprobable distances (1.90, 2.27, 2.65, 3.02, 3.40, 3.78, or 4.15 
deg). A blank screen (2 s) followed the presentation of the letters’ array 
and anticipated the response display, in which participants were asked 
to report the letter T orientation using the keyboard. 1 s after the 
response was given, a subsequent trial started. 

Each participant repeated the task in three different non-consecutive 
days under three stimulation conditions, randomised across partici-
pants: 18 Hz stimulation with a Bilateral Parietal montage (BP-tACS), 18 
Hz stimulation with a Fronto-Parietal right montage (FP-tACS), and 
Sham. The precise stimulation frequency (18 Hz) was chosen based on 
our previous studies because it exhibited the maximum crowding- 
induced modulation (Battaglini et al., 2020a; Ronconi et al., 2016; 
Ronconi and Bellacosa Marotti, 2017). In each session, eyes-closed 
RS-EEG was acquired for 4 min before and after performing the task. 

Each session lasted 40 min. Participants were not aware of the spe-
cific stimulation protocol of each session (single blind); they completed 
on average 479 ± 35 trials per session (1st session: Mean = 464, SD =
32; 2nd session: Mean = 478, SD = 38; 3rd session: Mean = 494, SD =
28). After each session, participants filled a questionnaire to evaluate 
their sensations during the stimulation (Fertonani et al., 2015) (see 
Supplementary Materials). 

2.3. Behavioural data preprocessing and model fitting 

Correct responses were calculated separately for each participant 
and experimental conditions (i.e. left/right hemifield; Sham/BP-tACS/ 
FP-tACS stimulation) and modelled with a logistic function using the 
R package quickpsy (Linares and López i Moliner, 2016) to extract slope 
and threshold values (see Supplementary Materials). Three participants 
were excluded from behavioural data analyses as their fitted functions 
showed unexpected inverse patterns predicting higher accuracy for 
higher levels of visual crowding. Therefore, statistical analyses were 
performed on 22 participants. 

2.4. EEG recording, tACS stimulation and preprocessing 

We recorded RS-EEG with a StarStim system (Neuroelectrics, Inc.) 
using a neoprene cap to place the following 32 electrodes: Fp1, Fp2, F7, 
F3, Fz, F4, F8, FC5, Fc1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, 
CP6, P7, P3, Pz, P4, P8, PO7, PO3, PO4, PO8, O1, Oz, O2. We used 23 
Ag/AgCl EEG-only electrodes and 9 Ag/AgCl hybrid tACS/EEG elec-
trodes (1 cm radius). In the BP-tACS condition, stimulation electrodes 
were placed in P4 and P3, while return electrodes were placed in C4, P8, 
O2, Pz, C3, P7, O1. All the remaining electrodes were used only for EEG 
recording. This bi-focal high-definition montage optimally stimulated 
both the right and the left parietal cortices (Fig. 1). In the FP-tACS 
condition, stimulation electrodes were F4 and P4, while return elec-
trodes were Fp2, Fz, F8, C4, P8, O2, and Pz. All the remaining electrodes 
were used only for EEG. This bi-focal high-definition montage stimu-
lated the right fronto-parietal network (Fig. 1). In both stimulation 
conditions, the peak-to-baseline intensity of the stimulating electrodes 
was set at 0.8 mA with 0◦ phase, while the intensity of return electrodes 
was put to 0.228 mA with 180◦ phase. Stimulation intensity was chosen 
following the tACS safety guidelines (Antal et al., 2017). The total 
dosage of BP-tACS and FP-tACS protocols was 2749.2 mC (micro-
Coulomb) for 40 min of stimulation. In the sham protocol, 18 Hz tACS 
stimulation was delivered only for 30 s at the beginning and at the end of 
the task with ramped-up/down intensity. 

EEG signal was recorded at 500 Hz. Signal was referenced online to 

the right earlobe. For stimulation electrodes impedance was <10 kΩ. For 
EEG electrodes, the Quality Index2 computed by NIC2 software was kept 
between 0 and 0.5 (highest rank). 

RS-EEG data were preprocessed using EEGLAB (Delorme and 
Makeig, 2004), applying bandpass filtering (0.05 - 80 Hz), average 
re-reference, downsampling (250 Hz), and a notch filter (50 Hz). Signal 
was then divided into 1 s epochs. Epochs exceeding ± 100 μV amplitude 
in any of the channels were rejected. Noisy channels were interpolated. 
ICA was run on the signal using the Infomax algorithm (Bell and Sej-
nowski, 1995). Ocular artefacts were identified with ICLabel and 
removed (Pion-Tonachini et al., 2019). Epochs containing excessive 
noise were manually rejected. The FFT power spectrum between 1 and 
40 Hz was computed using a Hanning taper zero-padded to a length of 4 
s via FieldTrip toolbox (Oostenveld et al., 2011). The “Fitting Oscilla-
tions and One-Over-F’’ (FOOOF) (Donoghue et al., 2020) toolbox was 
used to distinguish between the “full” and the “periodic” (oscillatory) or 
“aperiodic” (1/f) power spectra. Next, power values in the alpha (8–12 
Hz) and beta (15–25 Hz) bands were extracted from the full and the 
periodic power spectra. Power values between 1 and 40 Hz were 
extracted from aperiodic power spectrum. One participant was excluded 
from EEG analyses as his/her data were corrupted; thus, statistical an-
alyses were performed on 24 participants. 

2.5. Statistical analysis 

2.5.1. Behavioural data analysis 
To evaluate the effect of tACS on visual crowding, thresholds and 

slope values were analysed via repeated-measures ANOVA with two 
within-subjects factors: Condition (Sham, BP-tACS, FP-tACS) and 
Hemifield (left, right). Post-hoc t-tests were performed to explore main 
effects or interactions and all p-values were then FDR corrected. 

2.5.2. EEG changes induced by tACS 
Power values extracted from the full and the periodic power spectra 

of the pre-stimulation RS-EEG were compared with the power values of 
the post-stimulation RS-EEG within each band (alpha, beta) across the 
whole scalp using non-parametric permutation tests with cluster-based 
correction for multiple comparisons (Maris and Oostenveld, 2007). 
Aperiodic power was analysed in the same way between 1 and 40 Hz. 
P-values were further FDR-corrected for each analysis. 

2.5.3. Exploring the nature of tACS-induced EEG aftereffects 
To understand whether tACS-induced EEG aftereffects could be 

attributable either to carry-over phenomena echoing online tACS effects 
(Helfrich et al., 2014b; Laczó et al., 2012; Strüber et al., 2014) or to 
tACS-induced synaptic plasticity emerging mostly offline (Veniero et al., 
2015; Vossen et al., 2015; Wischnewski and Schutter, 2017; Zaehle 
et al., 2010), a follow-up analysis was performed. Specifically, we 
investigated whether the strength of beta-band activity modulations in 
RS-EEG (before vs. after tACS stimulation), hereafter referred to as 
tACS-induced aftereffects, depends on: i) “individual beta frequency” 
(IBF), ii) stimulation frequency (SF) and iii) the difference between IBF 
and SF for the tACS conditions in which aftereffects emerged. 

Two separate linear models were implemented. For the first model, 
IBF was computed in each individual participant as the frequency with 
higher beta power from the power spectrum (FOOOF-corrected) of RS- 
EEG acquired before each tACS session (separately for each channel 
and condition, only considering channels in which an aftereffect was 
recorded). Then, power values of the difference between RS-EEG ac-
quired before and after each tACS session were extracted at ±2, ±1.5, 
±1, ± 0.5 and 0 Hz distance from IBF and also from SF in each individual 
participant. For the second model power values were extracted only at 

2 This index depends on line noise power at 50 Hz (µV2), main noise power of 
the standard EEG 1-40 Hz band (µV2), offset (mean value of the waveform). 
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IBF and the difference between IBF and SF (18 Hz) was computed. 
ANOVAs were run on each model. Post-hoc tests were run to explore 
possible interaction effects via the ‘emmeans’ package (Lenth et al., 
2018) and all p-values were then FDR corrected. 

2.5.4. Exploring the link between tACS-induced behavioural and 
neurophysiological effects 

To understand possible links between tACS-induced behavioural and 
neurophysiological modifications, several correlations were computed. 
In particular, Pearson’s ρ was computed within each condition between 
the behavioural threshold and alpha power, beta power, aperiodic 
exponent and offset recorded before and after the stimulation as well as 
their differential (i.e., post-pre). Alpha & beta power, as well as expo-
nent and offset values were computed from bilateral parieto-occipital 
channels (P3, Pz, P4, P7, P8, PO3, PO4, PO7, PO8, O1, Oz, O2) in 
which the majority of physiological effects found in the present work 
emerged and then averaged across channels. Importantly, exponent and 
offset parameters were used instead of aperiodic power as this last 
metric was computed only to check for possible modulations of aperi-
odic activity but has no functional meaning per se. All p-values were 
then FDR corrected. 

3. Results 

3.1. Behavioural results 

The RM-ANOVA on thresholds values showed a main effect of 

Condition (F2,42 = 4.33, p = .019, η2 = 0.013). Post-hoc t-tests (FDR- 
corrected) revealed a lower threshold in the BP-tACS condition with 
respect to Sham (t21 = − 2.30, pFDR = 0.046, d = 0.28) and FP-tACS (t21 =

− 2.67, pFDR = 0.042, d = 0.26). The main effect of Hemifield (F1,21 =

0.15, p = .69) and the interaction between Hemifield and Condition 
(F2,42 = 0.46, p = .63) did not yield significant results. The RM-ANOVA 
on slope values showed no significant effects. Behavioural results are 
depicted in Fig. 2. 

3.2. EEG results 

3.2.1. Selective tACS-induced modulations of beta-band activity in bilateral 
parietal areas 

When analyzing the full power spectrum, permutation tests between 
power values recorded before and after the stimulation in the beta band 
(15–25 Hz) revealed the presence of a significant negative cluster 
topographically distributed on bilateral parietal sensors both in the 
sham (pFDR = 0.003, 15–19.75 Hz) and in the BP-tACS condition (pFDR 
= 0.002, 15–25 Hz). No significant clusters were found for the FP-tACS 
condition (all psFDR > 0.06). The same test operated on the periodic 
power spectrum (FOOOF-corrected) showed a significant negative 
cluster on bilateral parietal sensors (pFDR = 0.049, 15–17.5 Hz) only in 
the BP-tACS condition (Fig. 3c& 3f). No significant clusters were found 
for the sham and the FP-tACS conditions (all psFDR > 0.08). This in-
dicates that aperiodic-adjusted (1/f-free) beta-band power was reduced 
in bilateral parietal sensors only for the BP-tACS condition. 

The results of the same analysis on alpha activity are available on 

Fig. 1. a) Trial structure and levels of visual crowding of the Letter Orientation Discrimination Task. b) Experimental design and tACS protocols.  
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Supplementary Materials and depicted in Figs. 3. 

3.2.2. Modulations of aperiodic activity is both task- and tACS- dependent 
Permutation tests between power values recorded before and after 

the stimulation on the whole aperiodic spectrum (1–40 Hz) revealed the 
presence of a negative cluster in the sham (pFDR = 0.010, 1–15.75 Hz), 
in the BP-tACS (pFDR = 0.009, 2.75–40 Hz) and in the FP-tACS (pFDR =
0.014, 1.5–35.5 Hz) conditions (Fig. 3e). Thus, all conditions were 
characterised by a power reduction of aperiodic (1/f) activity but in a 
narrower band for the sham condition with respect to BP-tACS and FP- 
tACS conditions. 

3.2.3. tACS-induced EEG aftereffects partially support spike timing 
dependent plasticity 

The linear model Power ~ Distance + Measure + Distance*Measure 
was fitted to RS-EEG data only in the BP-tACS condition, with Distance 
as continuous predictor (±2, ±1.5, ±1, ± 0.5 and 0 Hz from IBF or SF), 
and Measure as a categorical predictor (IBF, SF). Power was averaged 
across the channels of the significant cluster (PO4, O1, PO7, P3, P7) in 
BP-tACS condition. The model revealed an interaction effect between 
Distance and Measure (F1,428 = 11.38, p < .001). Post-hoc tests showed a 
significant difference in the slope of Distance between IBF and SF (t428 =

3.37, p < .001), revealing a significant positive slope for IBF (t428 = 4.60, 
p < .001) and a non-significant slope for SF (p = .87). These comparisons 
revealed that the aftereffects recorded in RS-EEG in the BP-tACS con-
dition grew higher at frequencies lower than IBF (Fig. 4). A main effect 
of Distance (F1,428 = 9.88, p = .001) and a main effect of Measure (F1,428 
= 16.14, p < .001) were found, but were not further analysed consid-
ering their involvement in the interaction explored above. 

The linear model Power ~ Difference(IBF-SF) was fitted to RS-EEG 
data only in the BP-tACS condition with Difference(IBF-SF) as 

continuous predictor expressing the difference between IBF and SF. The 
model did not show a significant effect of the difference between IBF and 
SF (p = .54). 

3.3. Correlation analyses 

The correlation analyses performed between behavioural perfor-
mance and neurophysiological modulations did not yield any significant 
effect (all ps > 0.07). The complete table of the results is available in 
Supplementary Materials (Supplementary Table 5). 

4. Discussion 

4.1. Bilateral parietal beta tACS reduces the effects of visual crowding 

The present study aimed at elucidating possible different functional 
characterisation of beta oscillations in parietal cortex and fronto- 
parietal networks via precise bifocal tACS. 

The central behavioural finding of the present study is a lower 
threshold for letter orientation discrimination when 18 Hz tACS is 
applied to bilateral parietal cortices (BP-tACS condition) with respect to 
when the same stimulation is applied to the right fronto-parietal 
network (FP-tACS condition) and when no stimulation is applied 
(Figure 2). Given that we found a generalisation of the behavioural 
enhancement in the resolution of visual crowding to both visual hemi-
fields only during the BP-tACS stimulation, it might be that the FP-tACS 
applied with 0 phase lag (in-phase) was not optimal to favour fronto- 
parietal communication, which may require an optimal amount of 
temporal delay. Based on previous evidence, one possibility is to 
investigate whether anti-phase stimulation (see Salamanca-Giron et al., 
2021 & Yaple and Vakhrushev, 2018), or other optimal inter-stimulation 

Fig. 2. Behavioural Results of the Letter Orientation Discrimination Task. a) Psychometric fits (curves) with SEM (shaded areas) obtained from the mean proportions 
of correct responses in the three conditions (red = sham, green = BP-tACS, blue = FP-tACS). Round dots represent the mean proportion of correct responses in 
function of target-flanker distance (x-axis) averaged across participants. Squared dots indicate behavioural thresholds (0.625 accuracy). Vertical lines indicate the 
projection of the threshold points onto the x-axis. b) Histograms represent threshold data averaged across participants with SEM bars and superimposed individual 
thresholds (round dots) for each condition (red = sham, green = BP-tACS, blue = FP-tACS) . * indicates p < .05 (FDR corrected). 
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intervals, might promote efficient fronto-parietal communication 
inducing plastic changes in oscillatory activity and ameliorating per-
formance in visual perception tasks. Moreover, frontal and parietal areas 
involved in visuo-spatial attention have been shown to be characterised 
by different natural frequencies within the beta band (Capilla et al., 
2022; Di Dona and Ronconi, 2023). Therefore, it is possible that 18 hertz 
was a suboptimal frequency for targeting the frontal cortex and inducing 
significant neurophysiological and behavioural changes. However, since 
only correlational studies have been conducted, empirical studies are 
needed to better clarify these aspects from a causal perspective through 

the use of neuromodulation. 
Interestingly, this behavioural result was accompanied by a reduc-

tion of FOOOF-corrected beta power after BP-tACS stimulation, but not 
after sham or FP-tACS stimulation, as revealed by the analysis of “pure” 
oscillatory activity (Fig. 3f). These results argue for a functional pre-
dominance of beta oscillations over parietal cortices, in line with pre-
vious studies framing beta as the "natural" rhythm of parietal areas 
(Cabral-Calderin and Wilke, 2020; Capilla et al., 2022; Samaha et al., 
2017). Moreover, they corroborate previous findings about the funda-
mental role of parietal beta oscillations for visual crowding (Battaglini 

Fig. 3. EEG Results of the Resting State EEG (1st row). a) Stimulation layouts of the three conditions (sham, BP-tACS and FP-tACS). Stimulation electrodes are 
represented by red dots while return electrodes are represented by blue dots. Topographies represent power in the b) alpha band (8–12 Hz) and c) beta band (15–25 
Hz) extracted from the FFT power spectrum recorded before (“Pre”, 1st column) and after the task (“Post”, 2nd column) as well as the difference (3rd column) 
between the two (calculated by subtracting power of the “Pre” session from the one recorded in the “Post” session). Channels that were included in the clusters are 
represented by white asterisk marks; the frequency bands in which significant clusters emerged are represented below the topographies. EEG Results of the Resting 
State EEG decomposed in aperiodic and periodic activity (2nd row). d) Stimulation layouts of the three conditions (sham, BP-tACS and FP-tACS). Stimulation 
electrodes are represented by red dots while return electrodes are represented by blue dots. e) Topographies (1st column) represent the power differences in the 
aperiodic activity of the RS-EEG recorded before and after the behavioural task in the frequency band in which significant clusters emerged (reported below each 
topography). Channels that were included in the clusters are represented by white asterisk marks. FFT power spectra (2nd column) of the aperiodic activity recorded 
before (“Pre”, orange line) and after (“Post”, violet line) the behavioural task averaged across P7, P3, Pz, P4, P8, PO7, PO3, PO4, PO8, O1, Oz, O2 channels expressed 
in log10μV2 (for illustrative purposes). Shaded coloured areas represent SEM while shaded grey areas represent the frequency bands in which significant clusters 
emerged. f) Topographies represent the power differences in the periodic activity of the RS-EEG recorded before and after the behavioural task in the alpha (8–12 Hz, 
1st column) and beta (15–25 Hz, 3rd column) bands. Channels that were included in the clusters are represented by white asterisk marks; the frequency bands in 
which significant clusters emerged are represented below the topographies. FFT power spectra of the periodic activity within alpha (2nd column) and beta (3rd 
column) bands recorded before (“Pre”, orange line) and after (“Post”, violet line) the behavioural task averaged across P7, P3, Pz, P4, P8, PO7, PO3, PO4, PO8, O1, 
Oz, O2 channels (for illustrative purposes). Shaded coloured areas represent SEM while shaded grey areas represent the frequency bands in which significant 
clusters emerged. 
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et al., 2020a; Ronconi et al., 2016; Ronconi and Bellacosa Marotti, 
2017), and visual perception more generally (Costa et al., 2017; Zar-
etskaya and Bartels, 2015). These results are also consistent with the 
notion that crowding depends on an incorrect integration of target and 
flanker features (Parkes et al., 2001; Pelli, 2008) supported by a 
dorsal-to-ventral projection originating in parietal areas. 

4.2. RS-EEG aftereffects of bilateral parietal 18 Hz tACS 

Previous studies employing RS-EEG before and after behavioural 
tasks coupled with tACS showed contrastive results for power modula-
tions within theta (Kleinert et al., 2017; Pahor and Jaušovec, 2018), 
alpha (Aktürk et al., 2022; Battaglini et al. 2020b; Wang et al., 2022) and 
beta (Battaglini et al., 2020a; Berger et al., 2018; Moliadze et al., 2019; 
Wischnewski et al., 2020) frequency bands, reporting either higher 
power in the stimulated band after tACS or no effects. Generating hy-
potheses about the presence and/or direction of tACS aftereffects in RS 
EEG is not straightforward. In a previous study, with an identical task 
and very similar experimental design to the present one employing a 
monolateral right parietal montage in which 18 Hz tACS was applied at 
0.8 mA peak-to-baseline intensity, we found an increased beta power 
after the stimulation (Battaglini et al., 2020a). In the present study the 
same stimulation was applied in-phase in two locations (P3 and P4), 
with a peak-to-baseline intensity of 0.8 mA for each site for a total 
amount of 1.6 mA applied current. Differently, we found a decrease in 
beta-band power (Fig. 3f). 

Only few studies showed that the magnitude of alpha tACS afteref-
fects can be modulated by tACS intensity, but none of them reported 
power reduction in the alpha band (De Koninck et al., 2021; Neuling 
et al., 2015; Wang et al., 2022) and no study at all investigated the 
possible modulations of RS-EEG induced by beta tACS at different in-
tensities. Considering the possible impact that tACS at different 

intensities might have on behavioural performance, it is reasonable to 
think that it might differentially impact EEG aftereffects too. Another 
important difference between the present study and (Battaglini et al., 
2020a) concerns the bilaterality of tACS montage (vs unilaterality), 
which resulted in an evident behavioural enhancement in both visual 
hemifields. However, bilateral high-definition tACS protocols might 
impact endogenous neural oscillations differently as compared to uni-
lateral protocols, for example by modulating connectivity between the 
stimulated sites (Helfrich et al., 2014a; Salamanca-Giron et al., 2021; 
Schwab et al., 2019). 

It is important to acknowledge that in the present study a control 
stimulation frequency was not included. This choice was motivated by 
the fact that in our previous study (Battaglini et al. 2020b) we showed no 
effects of right parietal alpha (10 Hz) tACS in modulating threshold in an 
identical task or post-tACS oscillatory activity, while right parietal beta 
(18 Hz) tACS did so. Therefore including a condition employing alpha, 
or other frequencies, as control stimulations would have possibly 
complicated the experimental design and enlarged the required sample 
size. In addition, it is not infrequent that tACS, rTMS or otDCS (oscil-
latory tDCS) applied at a specific frequency results in modulations of 
oscillatory activity in frequency bands other than the stimulated one 
(Veniero et al., 2015). In fact, as in the case of nested oscillations 
(Wischnewski et al., 2023), specific cognitive functions underlying a 
variety of tasks might depend on the interaction of multiple frequency 
bands. 

4.3. Individual differences in RS-EEG aftereffects 

One crucial aspect to determine direction and magnitude of tACS- 
induced EEG aftereffects is state-dependence, which refers to the rela-
tionship of the stimulation parameters and the “state” of the brain 
during the stimulation, as well as the related individual differences 

Fig. 4. EEG aftereffects calculated as the difference in beta power between RS-EEG recorded before and after 18 Hz bilateral parietal tACS over PO4, O1, PO7, P3, P7 
electrodes. a) Hollow circles represent beta power calculated at ±2, ±1.5, ±1, ± 0.5 and 0 Hz distance from individual beta frequency (IBF) averaged across 
participants and electrodes, calculated as the frequency with higher beta power in each individual subject at each electrode. The solid line and the shaded area 
represent the prediction and confidence intervals of the associated linear model. Hollow triangles represent beta power calculated at ±2, ±1.5, ±1, ± 0.5 and 0 Hz 
distance from stimulation frequency (SF, 18 Hz) averaged across participants and electrodes. The dashed line and the shaded area represent the prediction and 
confidence intervals of the associated linear model. The asterisks indicate the level of significance p < .001 for the comparison between the slopes of the linear model. 
b) Full circles represent EEG aftereffects of individual participants calculated at individual beta frequency (IBF) and plotted in function of the difference between 
individual beta frequency and stimulation frequency (SF, 18 Hz). The solid line and the shaded area represents the prediction and confidence intervals of the 
associated linear model. 
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(Alagapan et al., 2016; Feurra et al., 2019; Lefebvre et al., 2017; Pariz 
et al., 2023). Previous studies suggested that the “natural frequency” of 
parietal cortices is the beta band (Capilla et al., 2022; Samaha et al., 
2017), but to generate accurate predictions about magnitude and di-
rection of the EEG aftereffects it is necessary to tap into the two main 
approaches for modelling offline tACS impact: i) neuronal entrainment 
and ii) spike timing dependent plasticity (STDP). 

Neuronal entrainment refers to the imposition of phase resets by an 
external periodic (sensory or electrical) stimulation on brain oscilla-
tions, which results in phase coupling between the two (Fröhlich and 
McCormick, 2010; Lakatos et al., 2019). Several studies provided evi-
dence for neuronal entrainment via behavioural (Helfrich et al., 2014b; 
Laczó et al., 2012; Strüber et al., 2014) and electrophysiological mea-
sures (Helfrich et al., 2014b). Neuronal entrainment would ultimately 
lead to enhanced power at the stimulation frequency during its appli-
cation (i.e., online) (Ali et al., 2013; Pikovsky et al., 2001), which could 
also last for several minutes afterwards (i.e., offline) (Kasten et al., 
2016). 

STDP instead, refers to the dependency between the outcome of 
synaptic changes from the exact timing of their input: when the stimu-
lation frequency is lower than the natural frequency of the addressed 
network, then pre-synaptic potentials temporally precede post-synaptic 
potentials, leading to long term potentiation, while the opposite occurs 
when the stimulation frequency is higher than the natural frequency 
(Veniero et al., 2015; Vossen et al., 2015; Wischnewski and Schutter, 
2017; Zaehle et al., 2010). If such plastic changes are achieved, greater 
power modulations should be observed at the “natural frequency” and 
the larger the distance between the natural and the stimulation fre-
quency the larger the power modulations. 

Our results showed a linear relationship between the magnitude (i.e. 
power differences in beta between pre- and post tACS recordings) of the 
tACS-induced aftereffects in RS-EEG of the BP-tACS condition and the 
distance from individual beta frequency (IBF): i.e. aftereffects magni-
tude was larger for beta frequencies lower than IBF while it became 
smaller for frequencies higher than IBF. Contrarily, no relation was 
found between aftereffects magnitude and the distance from stimulation 
frequency (SF) or the difference between IBF and SF (Fig. 4). Further-
more, these results did not show any peak within the beta-band in af-
tereffects magnitude neither at SF, as predicted by the entrainment 
account, nor at IBF, as predicted by STDP. The STPD account also pre-
dicts a linear relationship between aftereffects magnitude and the dis-
tance between IBF and SF, which was not found. Overall, this analysis on 
individual differences suggest that the stimulation aftereffects reported 
here can be at least partially attributed to tACS-induced plastic changes 
across parietal cortices. 

4.4. The importance of correcting for aperiodic activity in the study of 
tACS-induced changes in neural oscillations 

We found that aperiodic activity was decreased in the sham condi-
tion between 1 and ~16 Hz, which partly overlaps with the reduction of 
beta band activity (15- ~20 Hz) in the same condition. Thus, the power 
reduction observed in the “raw” spectrum (before FOOOF-correction) 
may be partly due to a reduction of aperiodic activity. Similar reduc-
tion of power in the “aperiodic spectrum” was found also for the active 
stimulations, covering the whole power spectrum (Fig. 3e). Importantly, 
correcting for aperiodic changes allowed us to show clear aftereffects in 
RS-EEG beta activity in the BP-tACS condition (Fig. 3f). 

Alterations of the aperiodic component of the power spectrum have 
been associated with changes in the ratio between excitatory and 
inhibitory currents in the brain (Chini et al., 2021; Gao et al., 2017), 
which might play a role in different cognitive processes (Thuwal et al., 
2021; Waschke et al., 2021) and neurodevelopmental disorders 
(Manyukhina et al., 2022; Robertson et al., 2019; Turri et al., 2023). Our 
findings are informative for the investigations on tACS-induced after-
effects, showing that taking into account aperiodic changes can reveal 

modulation of periodic activity that would remain otherwise undetected 
or that could be wrongly interpreted. 

4.5. Limitations 

It is important to acknowledge two considerable limitations of the 
present study. First, the EEG results we found do not fully support the 
current theoretical frameworks of tACS-induced after-effects. Infact, the 
neuronal entrainment theoretical account suggests that power should be 
higher when recorded at the specific stimulation frequency. Instead, the 
STDP theoretical account predicts greater power modulations at the 
“natural frequency” and also that a larger distance between the natural 
and the stimulation frequency should predict a larger power modula-
tion. We did not observe peaks in beta power nor at the stimulation 
frequency (18 Hz), as predicted by the entrainment account, nor at the 
individual beta frequency (IBF), as predicted by the STDP. However, we 
observed that the magnitude of the aftereffects has a relation with the 
distance from IBF, being larger at frequencies smaller than IBF, still 
suggesting the possible presence of plastic changes. Therefore, it is still 
crucial to precisely understand the neurophysiological effects of tES as 
well as the impact of different stimulation parameters (e.g., frequency, 
intensity, duration). 

Second, no correlations were found between behavioural results and 
neurophysiological modulations. This might suggest that the changes 
observed in physiological activity do not reflect behavioural perfor-
mance at the individual level. It is possible that as tACS induced after-
effects are recorded at rest and not during the crowding task, they might 
not fully capture the relationship with behavioural outcomes. It is worth 
mentioning that beta power recorded during (and not before/after) a 
very similar task to the one employed in the present work, showed a 
correlation with behavioural performance (Ronconi et al., 2016; Ron-
coni and Bellacosa Marotti, 2017). Clearly, given that in the present 
work tACS was applied during the task and given the absence of reliable 
algorithms to remove tACS artifacts from EEG data, at the present time it 
is not possible to extract power from EEG data recorded during tACS and 
explore the presence of possible relationship with behavioural perfor-
mance. Future studies will hopefully develop methods to overcome this 
methodological limitation and give important insights for the study of 
the relation between online tACS-induced physiological modifications 
and behaviour. 

5. Conclusions and clinical implications 

The present work provided evidence for the direct relationship be-
tween beta oscillations in bilateral parietal cortices and visual crowding 
during letter identification. The possibility of reducing the impact of 
visual crowding during letter identification by modulating beta-band 
activity in parietal cortices via tACS could provide meaningful insights 
for the development of new neurorehabilitative approaches. Specif-
ically, such novel approaches might particularly benefit individuals with 
neurological and neurodevelopmental disorders characterised by 
excessive visual crowding, such as dyslexia (Bertoni et al., 2019; Gori 
and Facoetti, 2015; Zorzi et al., 2012) and amblyopia (Bonneh et al., 
2007). 
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Fröhlich, F., McCormick, D.A., 2010. Endogenous electric fields may guide neocortical 
network activity. Neuron 67 (1), 129–143. https://doi.org/10.1016/j. 
neuron.2010.06.005. 

Gallotto, S., Schuhmann, T., Duecker, F., Middag-van Spanje, M., de Graaf, T.A., Sack, A. 
T., 2022. Concurrent frontal and parietal network TMS for modulating attention. 
iScience 25 (3), 103962. https://doi.org/10.1016/j.isci.2022.103962. 

Gao, R., Peterson, E.J., Voytek, B., 2017. Inferring synaptic excitation/inhibition balance 
from field potentials. Neuroimage 158, 70–78. https://doi.org/10.1016/j. 
neuroimage.2017.06.078. 

Giesbrecht, B., Woldorff, M.G., Song, A.W., Mangun, G.R., 2003. Neural mechanisms of 
top-down control during spatial and feature attention. Neuroimage 19 (3), 496–512. 
https://doi.org/10.1016/S1053-8119(03)00162-9. 

Goldman-Rakic, P.S., Porrino, L.J., 1985. The primate mediodorsal (MD) nucleus and its 
projection to the frontal lobe. J. Compar. Neurol. 242 (4), 535–560. 

Gori, S., Facoetti, A., 2015. How the visual aspects can be crucial in reading acquisition: 
the intriguing case of crowding and developmental dyslexia. J. Vis. 15 (1), 8–8.  

Han, Q., Luo, H., 2019. Visual crowding involves delayed frontoparietal response and 
enhanced top-down modulation. Eur. J. Neurosci. 50 (6), 2931–2941. https://doi. 
org/10.1111/ejn.14401. 

He, S., Cavanagh, P., Intriligator, J., 1996. Attentional resolution and the locus of visual 
awareness. Nature 383 (6598), 334–337. 

Helfrich, R.F., Knepper, H., Nolte, G., Strüber, D., Rach, S., Herrmann, C.S., Schneider, T. 
R., Engel, A.K., 2014a. Selective modulation of interhemispheric functional 
connectivity by HD-tACS shapes perception. PLoS Biol. 12 (12), e1002031 https:// 
doi.org/10.1371/journal.pbio.1002031. 

Helfrich, R.F., Schneider, T.R., Rach, S., Trautmann-Lengsfeld, S.A., Engel, A.K., 
Herrmann, C.S., 2014b. Entrainment of brain oscillations by transcranial alternating 
current stimulation. Curr. Biol. 24 (3), 333–339. https://doi.org/10.1016/j. 
cub.2013.12.041. 

Heilman, K.M., Van Den Abell, T, 1980. Right hemisphere dominance for attention: the 
mechanism underlying hemispheric asymmetries of inattention (neglect). 
Neurology. 30 (3), 327–330. https://doi.org/10.1212/wnl.30.3.327. 

Intriligator, J., Cavanagh, P., 2001. The spatial resolution of visual attention. Cogn. 
Psychol. 43 (3), 171–216. 

Kasten, F.H., Dowsett, J., Herrmann, C.S., 2016. Sustained aftereffect of α-tACS Lasts Up 
to 70 min after stimulation. Front. Hum. Neurosci. 10 https://doi.org/10.3389/ 
fnhum.2016.00245. 
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