
RESEARCH ARTICLE

DNA Methylation in the Anti-Mullerian
Hormone Gene and the Risk of Disease

Activity in Multiple Sclerosis
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Objective: Multiple sclerosis (MS) has a complex pathobiology, with genetic and environmental factors being crucial
players. Understanding the mechanisms underlying heterogeneity in disease activity is crucial for tailored treatment.
We explored the impact of DNA methylation, a key mechanism in the genetics-environment interplay, on disease
activity in MS.
Methods: Peripheral immune methylome profiling using Illumina Infinium MethylationEPIC BeadChips was conducted
on 249 untreated relapsing–remitting MS patients, sampled at the start of disease-modifying treatment (DMT). A differen-
tial methylation analysis compared patients with evidence of disease activity (EDA) to those with no evidence of disease
activity (NEDA) over 2 years from DMT start. Utilizing causal inference testing (CIT) and Mendelian randomization (MR),
we sought to elucidate the relationships between DNA methylation, gene expression, genetic variation, and disease
activity.
Results: Four differentially methylated regions (DMRs) were identified between EDA and NEDA. Examining the influ-
ence of single nucleotide polymorphisms (SNPs), 923 variants were found to account for the observed differences in
the 4 DMRs. Importantly, 3 out of the 923 SNPs, affecting DNA methylation in a DMR linked to the anti-Mullerian
hormone (AMH) gene, were associated with disease activity risk in an independent cohort of 1,408 MS patients. CIT
and MR demonstrated that DNA methylation in AMH acts as a mediator for the genetic risk of disease activity.
Interpretation: This study uncovered a novel molecular pathway implicating the interaction between DNA methylation
and genetic variation in the risk of disease activity in MS, emphasizing the role of sex hormones, particularly the AMH,
in MS pathobiology.
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Multiple sclerosis (MS) is an immune-mediated
neurodegenerative disorder of the central nervous

system and a major cause of disability in young individuals.1

Despite significant advances in the understanding of the
pathobiology of MS, it is still unclear what underlies
the heterogeneity of disease severity in MS, that ranges
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from patients with a relatively benign disease course to
patients experiencing severe disability accumulation early
from onset.2 Gaining knowledge on the mechanisms under-
lying disease course heterogeneity in MS is crucial to have
meaningful markers that can help a tailored treatment and
drive future drug development.

DNA methylation, the addition of a methyl group
( CH3) at cytosine-phosphate-guanine (CpG) sites, is
1 of the most stable and studied epigenetic hallmarks
across species.3 Generally, methylation of CpG dinucleo-
tides in enhancers and promoters leads to silencing of gene
expression, while methylation occurring in the gene body
is usually linked to increased expression.4 The study of
DNA methylation is very promising when studying com-
plex diseases, as it is a key element in the crosstalk
between genetics, environment, and gene expression,3 and
it has led to a deeper understanding of tumorigenesis
and cancer transformation mechanisms.5 The interplay
between genetic and environmental factors is crucial for
MS as well,6 therefore making DNA methylation a rele-
vant target in investigations on the pathobiology of the
disease. For this reason, in the past few years the study of
DNA methylation has greatly expanded in MS,7 and
many works showed that changes in DNA methylation
occur in MS patients compared to healthy controls, both
in bulk tissue8,9 and isolated cell types.10,11 In particular,
DNA methylation has been found to mediate the human
leukocyte antigen (HLA) system-related risk of MS,12 but
it is not known whether it is also involved in mechanisms
linked to disease activity.

In this work, we investigate the impact of DNA
methylation changes on disease activity, assessed by the
no evidence of disease activity-3 (NEDA-3) status, in a
bi-centric cohort of relapsing–remitting MS patients.

Materials and Methods
Study Cohort for Methylation Analysis
We included patients with diagnosis of relapsing–remitting MS
(RR-MS) from 2 different centers: IRCCS San Raffaele Scientific
Institute in Milan, Italy (OSR) and Toulouse University
Hospital, France (CHUT). All patients were untreated at the
time of blood sampling. After sampling, patients started disease-
modifying treatments (DMTs) (interferon, glatiramer acetate,
teriflunomide, or dimethyl fumarate) and underwent routine
clinical follow-up. Patients previously treated with highly
effective DMTs (natalizumab, S1P modulators, anti-CD20
drugs, alemtuzumab) or immunosuppressive drugs (azathioprine,
mycophenolate mofetil, mitoxantrone, cyclophosphamide) were
excluded to avoid heterogeneity in terms of observed disease
activity in the study cohort. We also excluded patients with
exposure to corticosteroid drugs in the 30 days prior to sampling
to minimize a potential effect on methylation and gene
expression.

Patients were classified as NEDA when all the following
criteria were fulfilled over the 2-year follow-up: (1) no new
relapses; (2) no new/enlarging or gadolinium enhancing lesions
at brain and spinal cord MRI; (3) no Expanded Disability Status
Scale (EDSS) progression. All patients had undergone clinical
visits with MS specialists at each center at baseline and at least at
month 12 and 24 from baseline, as per clinical routine. All MRI
examinations were performed on 1.5 Tesla scanners and included
T1-weighted (pre- and post-gadolinium administration),
T2-weighted and fluid attenuated inversion recovery (FLAIR)
sequences, as per clinical routine assessment. The definition of
MRI activity was performed at each center by neuroradiologists
and, when available, the images were double-checked by inde-
pendent raters (A.G., F.E., R.L.) for the purpose of this study.
Disability progression was defined as follows: an increase in the
EDSS score of at least 1.5 if baseline EDSS was 0; an increase of
at least 1.0 if baseline EDSS was between 1.0 and 5.5 points; an
increase of EDSS of at least 0.5 if baseline EDSS was ≥6.0.

Methylation Analysis
PBMC Extraction and Methylation Profiling. After blood
sampling, peripheral blood mononuclear cells (PBMC)
were extracted through density gradient centrifugation by
Lymphoprep™ (STEMCELL Technologies, Vancouver,
Canada), as described in the manufacturer’s protocol.
DNA from PBMC was extracted using Quick-DNA/RNA
Miniprep Plus (Zymo) for the OSR cohort and the
Allprep DNA/RNA/miRNA Universal kit (Qiagen) for
CHUT, according to the manufacturing protocols.
Bisulphite conversion and methylation profiling was
performed at the Laboratory of Human Genetics of
Neurological Disorder at OSR. Randomization for array
slides and position, controlling for relevant factors (the
NEDA-3 status and center), was carried out to minimize
potential batch effect (Table S1). After bisulphite conver-
sion with the EZ DNA Methylation kit (Zymo), whole-
epigenome methylation profile was obtained by means of
Illumina Infinium MethylationEPIC BeadChips (Illumina,
Inc., San Diego, CA, USA), following the manufacturer’s
instructions.

Quality Control and Processing of Methylation Data. Quality
control (QC) was performed to remove probes according
to the following criteria: probes with a detection
p-value>0.01 in more than 5% of the subjects, non-CpG
probes, X and Y chromosome probes, cross-reactive pro-
bes, probes mapping to known single nucleotide polymor-
phisms (SNPs), probes with less than 3 bead counts in at
least 5% of the subjects.13 No issues were detected during
QC on samples when checking for sex or age mismatch
and overall sample quality. A detailed QC report is pro-
vided in Table S2.
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Within-array normalization and normalization for
type I and II probes was performed using the ssNoob
method, implemented in the minfi pipeline.14 Methylation
M-values were calculated, to be used in statistical analysis.
We run a principal component analysis (PCA) on methyla-
tion using the FactoMineR pipeline,15 and detected a batch
effect exerted by methylation slide and position in the slide,
as expected.16,17 Therefore, we applied a batch correction
using an empirical Bayes method by the means of the
ComBat function implemented in the SVA package in R,
which reduces error estimates and improves reproducibility.18

Since cellular heterogeneity may have a confounding
effect on methylation levels, we obtained estimated cell
proportions based on methylation beta-values using a
reference-free deconvolution approach, implemented in
the EpiDISH package.19 Cell-proportions (CD8 T cells,
CD4 T cells, NK cells, B cells, monocytes, and neutro-
phils) were incorporated as covariates in the subsequent
analysis, to minimize the impact of cell fractions on
differential methylation. After QC, all 249 subjects
(OSR: 75, CHUT: 174) with RR-MS and a total of
778,879 probes were retained.

Differential Methylation Analysis. The limma R package20

was used to fit generalized linear models assessing the rela-
tionship between DNA methylation and NEDA-3 status,
using sex, age at disease onset, center, and cell type pro-
portions as covariates. Significance of association for the
resulting differentially methylated positions (DMP) was
estimated at 5% false-discovery rate (FDR) following
Benjamini-Hochberg procedure.

From the DMP, we derived the differentially methyla-
tion regions (DMR) using the DMRcate pipeline.21 We used
standard parameters (kernel bandwidth lambda = 1,000,
scaling factor C = 2), to detect DMR encompassing a mini-
mum of 3 CpGs, with at least a 2% change in methylation
beta-values.

Gene Ontology Enrichment Analysis. Enrichment for gene
oooontology (GO) terms (category ‘Biological process’)
was assessed using the top 100 mapped genes from the
DMP analysis. The analysis was conducted using
WebGestalt,22 with standard settings.

Effect of Genotype on DNA Methylation and
NEDA-3 Status
Methylation Quantitative-Trait-Loci Effect Study. The
methylation quantitative trait loci (mQTL) effect in
PBMC was calculated in patients from the methylation
analysis that also had available genotype information,
obtained as described below.

All the SNPs mapping to a � 500 kilobases
(kb) window from the CpGs belonging to each of the
identified DMR were tested. The association between
SNPs and methylation M-values for CpGs was computed
using linear modelling, and adjusting for biological sex,
age at sampling, technical factors (array and array position,
bisulphite conversion plate and plate position), and
estimated cell proportions (neutrophils, monocytes, NK,
CD8 T cells, CD4 T cells, B cells). To adjust for multiple
testing, PLINK v1.923 was used to calculate the number
of linkage disequilibrium (LD) blocks in each of the studied
regions in the 1,000 Genomes project subjects of European
ancestry24 and Bonferroni correction (0.05/number of LD
blocks) was applied. To calculate the LD blocks, the
Haploview’s interpretation of block definition, as integrated
in PLINK v1.9, was used.25

Genotyping and Imputation. All the genetic data for the
OSR cohort were extracted from a larger cohort of MS
patients available at the Laboratory of Human Genetics of
Neurological Disorders at IRCCS San Raffaele Scientific
Institute. Individuals had been genotyped on 4 different
platforms (Illumina OmniExpress, Illumina Omni 2.5,
Illumina Human Quad and Illumina Global Screening
Array). Patients from Toulouse had been genotyped on
2 different platforms: Axiom Genome-Wide LAT
1 (Affymetrix, USA), performed at CHUT, and Illumina
OmniExpress, performed at OSR. The clinical features of
the cohort undergoing genetic QC and analysis are
reported in Table S8.

For OSR, imputation against reference genome
(Haplotype Reference Consortium26) was carried out sepa-
rately on each platform on Michigan Imputation Server
with later merging on bona-fide imputed variants (imputa-
tion score Rsq >0.6). Given the high level of overlap
between OmniExpress and Omni2.5, samples genotyped
on these 2 platforms were jointly quality-controlled and
imputed. Variants’ rsIDs were assigned from dbSNP v151
GRCh37p13. Prior to imputation, a set of homogeneous
QC steps at sample and SNP levels were conducted. At
sample level, we excluded subjects with sex mismatch, those
with call-rate < 90% and outliers exceeding the mean level of
heterozygosity by >3 standard deviations. At variant level, we
discarded rare SNPs with allele frequency <1%, SNPs with a
call-rate < 90% and those departing from Hardy–Weinberg
equilibrium at p < 1 x 10�6. To identify individuals with
potential biological relationship in the study cohort, we
performed a pairwise identical by descent estimate, that
found 5 pairs of subjects with potential relatedness
(PI_HAT> = 0.250). Two pairs were excluded for
PI_HAT > = 0.50 and of the remaining 3 pairs, the indi-
viduals who were the least characterized were removed
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(total number of individuals removed: 7). To identify
population outliers, we run a PCA and outliers were
excluded (mean � 6 standard deviations). As an addi-
tional level of QC for the study cohort, we retained only
SNPs with a call rate ≥0.99 and minor allele frequency
(MAF) of at least 5%. A PCA on the final dataset was
also run to use principal components (PC) as covariates
in the subsequent association analysis. The final dataset
included 1,154 subjects and 4,231,855 variants.

For CHUT, the imputation was carried out sepa-
rately, as described for the OSR cohort. Post-imputation
QC were performed as reported for the OSR cohort. For
CHUT, starting from 299 patients, 7 were excluded
for heterozygosity rate, 1 for IBD, 27 for PCA, and
20 identified as of non-Caucasian ancestry, resulting in a
total of 254 subjects and 5,127,516 SNPs were retained
after the QC.

Association Analysis with the NEDA-3 Status. The genetic
association analysis with the NEDA-3 status was
conducted on a larger cohort of individuals with avail-
able whole-genome data obtained as described above
(Table S8). From this cohort, we extracted the subjects
who fulfilled the clinical inclusion criteria to define the
NEDA-3 status at 2 years from the start of first-line
DMT. From whole-genome data, we extracted the SNPs
with evidence of mQTL effect on the DMR and studied
their impact on disease activity. The 2 cohorts (OSR and
CHUT) were first analyzed separately using PLINK
v1.9.23 Logistic regression was carried out using the
NEDA-3 status as outcome and genotype as predictor. To
select the covariates for logistic regression model we con-
ducted a preliminary exploratory analysis between clinical
and demographic factors and the NEDA-3 status. Sex,
age, and PC 1 to 8 were included in the OSR cohort as
covariate. In the CHUT cohort PC1 and PC2, age and
sex were included as covariates. The genetic association
analysis was conducted calculating the odds ratio (OR) of
reaching the NEDA-3 status given by the A1 allele (effect
allele). After the 2 single-cohort analysis, the results were
meta-analyzed using a fixed-effect model with PLINK
v1.9, retaining only the variants that were common to
both cohorts.

To account for multiple testing, we again applied a
Bonferroni correction on the number of LD blocks
(calculated as described above) in the tested SNP for
each independent region.

Causal Inference Test
To explore whether DNA methylation is the mediator of the
genetic risk of disease activity, we used causal inference test
(CIT), as previously reported,12,27 as it is a robust method to

overcome pleiotropy and reverse confounding effects in complex
diseases as MS. The analysis was run on the subset of patients of
the main methylation cohort that had available genotype
(n = 231). We run CIT using the SNPs with evidence of effect
both on methylation and disease activity, modeling the NEDA-3
status as phenotype and the methylation beta-values as a
mediator.

Effect of Genotype on Gene Expression
The expression-QTL (eQTL) effect in PBMC was evaluated on
a subgroup of the MS patients included in the methylation
analysis, that had available whole-genome gene expression and
genotype data (n = 225). Inclusion criteria and PBMC extrac-
tion were described above. RNA from PBMC was extracted
using Quick-DNA/RNA Miniprep Plus (Zymo), according to
the manufacturing protocol. Quantity and quality of RNA was
assessed by Qubit (Thermo Fisher Scientific) and Tapestation
(Agilent Technologies). The transcriptomic profile of patients
was obtained via next-generation sequencing at CHUT. RNA
libraries were generated using the TruSeq Stranded mRNA
Library Prep Kit (Illumina) and sequenced on a HiSeq3000
sequencer (Illumina), reaching >25 million reads/samples on
average. RNA-seq reads were aligned to hg19 reference genome,
removing poor-quality bases and adapter sequences. Quantifica-
tion of gene expression levels and feature-level summarization
was performed using featureCounts,28 according to GENCODE
v19 annotation gene model. Quality control of raw and aligned
reads was performed by means of MultiQC tool.29 To discard
features deemed as not expressed, we only retained those with >5
counts in at least 25% of the whole cohort. From transcriptome-
wide analysis, we extracted the gene of interest and computed
the eQTL effect between the genotype of the studied SNPs
(obtained as described above) and rank-inverse transformed nor-
malized gene counts (via linear modelling, adjusting for center,
age at sampling, and sex).

Mendelian Randomization
We run Mendelian randomization (MR) analysis to assess
whether DNA methylation is causally associated with change in
gene expression. First, we applied a pruning for LD (R2 >0.3)
using 1,000 Genomes European population24 as a reference on
the 3 SNPs with evidence of mQTL effect that mediated the
genetic risk of disease activity using CIT, as it is a prerequisite
for MR that the variants are not strongly correlated. Then, we
run a 2-sample MR analysis using an inverse-variance weighted
model in the MendelianRandomization R package.

Standard Protocol Approvals, Registrations, and
Patient Consents
The study was approved by the local ethical committees
at IRCCS San Raffaele Scientific Institute (Milan, Italy) and
at Toulouse University Hospital (Toulouse, France).

292 Volume 96, No. 2

ANNALS of Neurology
 15318249, 2024, 2, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/ana.26959 by IR
C

C
S O

spedale San R
affaele, W

iley O
nline L

ibrary on [10/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Results
Differential Methylation Analysis Identified
4 Regions Associated with Disease Activity
A total of 249 RR-MS patients fulfilling the inclusion
criteria were sampled for DNA methylation profiling
before treatment start and underwent QC. Clinical data
were collected retrospectively through revision of medical
records and MRI to define the NEDA-3 status30 at
2 years from treatment start (Table 1). In addition, for
each site, a subset of the MRI studies was reviewed inde-
pendently for quality assurance (OSR: 70/75, CHUT:
118/174). The clinical and demographic features of the
patients who underwent methylation profiling and analysis
are reported in Table 1. In these subjects, we carried out
an analysis to unravel sites of the genome that are differen-
tially methylated between patients without (NEDA) and
with evidence of disease activity (EDA) over 2-year
follow-up from first-line treatment start (Table 1). A
flowchart of the analyses is shown in Figure 1A.

As a first step, we investigated single CpGs running
a DMP analysis, as it is instrumental to the generation of
DMR. The DMP analysis revealed that DNA methylation

levels of 7 CpGs at baseline were significantly associated
with the NEDA-3 status at 2 years, after adjustment for
multiple testing (FDR p < 0.05) (Table 2). These sites
overall map to genes with potential interesting effect on
the immune system (see Discussion).

Then, to identify regions of contiguous CpGs associ-
ated with the outcome and provide a more biologically
meaningful insight, we focused on the difference in meth-
ylation occurring in wider portion of the genome, deriving
DMR from DMP. We successfully detected 4 regions that
were differentially methylated between NEDA and EDA
patients, as shown in Table 3.

Genetic Variation Significantly Affects
Methylation Levels
Genetic variation can extensively affect the levels of DNA
methylation (i.e. methylation Quantitative-Trait-Loci
effect, or mQTL effect).4 To understand whether the
difference in methylation observed in the 4 DMR is con-
trolled by genetic factors, we studied the impact of SNPs
in cis (� 500 kb from each DMR) on the methylation
levels of the CpGs composing each DMR in the PBMC

Table 1. Clinical and Demographic Characteristics of Cohort for the Methylation Study Cohort

Parameter OSR CHUT Total p-Value

No. of subjects 75 174 249 -

Age at sampling 37.1 (9.8) 40.1 (10.8) 39.2 (10.3) 0.04†

Age at onset 32.7 (8.9) 33.4 (10.2) 33.2 (10.1) 0.68†

F/M ratio 1.59 3.97 2.89 0.0021§

Disease duration 4.3 (6.5) 6.6 (7.7) 5.9 (7.2) 0.046†

EDSS score 1.5 (1.0–2.0) 1.5 (1.0–2.5) 1.5 (1.0–2.0) 0.13†

NEDA status at 2 years 0.002§

NEDA 29 (39%) 106 (61%) 135 (54%)

EDA 46 (61%) 68 (39%) 114 (46%)

DMT started at baseline -

Dimethyl fumarate 68% 42% 50%

Teriflunomide 16% 34% 29%

Copaxone 13% 8% 9%

Interferon-beta 3% 16% 12%

Note: The total and center-specific characteristics of the study cohort at baseline are shown. In the rightmost column, the p-values from chi-square test
(§) or Mann–Whitney-Wilcox test (†)—as appropriate—are reported, to identify baseline differences between the 2 centers. For age at sampling, age
at onset and disease duration mean values (with standard deviation) are displayed. For the EDSS score, the median value and its interquantile range is
shown. For the NEDA status at 2 years, the raw numbers are reported (with percentage).
Abbreviations: CHUT, Toulouse University Hospital; DMT, disease-modifying treatment; EDA, evidence of disease activity; F/M ratio, female/male
ratio; OSR, IRCCS San Raffaele Scientific Institute.
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from the subgroup of patients with available genotype data
(n = 231) (Figure 1). We identified a total of 923 SNPs
that exert a mQTL effect on the CpGs composing the
4 DMR, demonstrating a significant contribution of
genetic variation (Tables S4–S7).

Genetic Variation in AMH Affects Disease
Activity
Since multiple SNPs were found to account for the differ-
ence in methylation between NEDA and EDA patients, it

is reasonable to expect that the same variants can also
affect the risk of NEDA/EDA. Therefore, we assessed
whether the SNPs influencing the levels of methylation in
the 4 DMRs were also associated with disease activity
in MS, taking advantage of a larger cohort composed by
1,408 patients from OSR and CHUT, and using the
NEDA-3 status as outcome disease activity (Figure 1). Of
the 923 SNPs exerting mQTL effect, we found that for
only 1 DMR (DMR1, see Table 3), 3 variants regulating
the methylation levels of DMR1 were also associated with

FIGURE 1: Flowchart and identification of DMRs. (A) The approach used to identify the causal relationship between methylation,
genetic variation, and disease activity, as described in the main text. (B) The UCSC RefSeq track (GRCh37/hg19) for the AMH
gene, with highlight (red brackets) of the identified DMR. (C) The DMR in the AMH gene (and the respective CpGs from the
Illumina EPIC 850 K array) and RoadMap chromatin states31 for PBMC (BLD.PER.MONUC.PC), T lymphocytes (BLD.CD3.PPC:
CD3+ T cells, BLD.CD4.NPC: CD4+ T cells, BLD.CD8.NPC: CD8+ T cells), B lymphocytes (BLD.CD19.PPC: CD19), and monocytes
(BLD.CD14.PC). The purple track indicates that the region is part of a bivalent promoter in PBMC and in CD4/CD8 T cells, while
the dark gray track indicates that the region maps to a polycomb repressive complex in monocytes and B cells.31 [Color figure
can be viewed at www.annalsofneurology.org]
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TABLE 2. Top 20 DMPs

CpG LogFC p-Value Adj. P CHR BP Gene Gene Feature

cg27267436 �0.2 6.42 x 10�8 0.046 19 3,754,012 APBA3 Body

cg20025086 0.11 1.65 x 10�7 0.046 12 109,569,130 Intergenic IGR

cg20308351 0.21 1.77 x 10�7 0.046 7 3,067,980 CARD11 5’UTR

cg22193657 0.09 2.61 x 10�7 0.046 3 194,948,010 XXYLT1 Body

cg19915997 �0.16 3.61 x 10�7 0.046 3 15,492,725 COLQ 3’UTR

cg25829490 0.18 4.00 x 10�7 0.046 2 176,988,792 HOXD9 Body

cg12362502 �0.22 4.16 x 10�7 0.046 6 43,603,544 MAD2L1BP TSS200

cg07146435 0.12 6.45 x 10�7 0.061 10 100,028,499 LOXL4 TSS1500

cg00352218 0.18 7.05 x 10�7 0.061 6 19,691,654 Intergenic IGR

cg07973246 0.17 1.20 x 10�6 0.094 12 64,238,719 SRGAP1 Body

cg24764861 �0.17 1.34 x 10�6 0.095 16 1,495,122 CCDC154 TSS1500

cg11923320 0.13 1.47 x 10�6 0.095 1 63,783,977 Intergenic IGR

cg14345857 0.16 1.62 x 10�6 0.096 5 72,742,869 FOXD1 1st exon

cg25911023 �0.14 1.73 x 10�6 0.096 1 202,776,454 KDM5B Body

cg01144764 �0.26 2.34 x 10�6 0.121 10 121,633,063 C10orf119 TSS1500

cg24424115 �0.13 2.64 x 10�6 0.129 3 58,476,822 KCTD6 TSS1500

cg18190847 0.17 4.60 x 10�6 0.200 3 11,195,751 HRH1 5’UTR

cg06138439 0.09 4.62 x 10�6 0.200 16 54,973,128 Intergenic IGR

cg17886959 �0.16 5.58 x 10�6 0.214 16 56,642,024 MT2A TSS1500

cg02919861 0.2 5.80 x 10�6 0.214 8 70,090,456 Intergenic IGR

Abbreviations: adj. p, 5% FDR adjusted p-value; Body, between the ATG and the stop codon, irrespective of the presence of introns, exons, TSS, or
promoters; BP, base-pair position; CHR, chromosome; gene, mapped gene according to University of California Santa Cruz (UCSC) RefSeq annota-
tion; Gene region, Gene region feature category describing the CpG position. IGR, intergenic region; LogFC, log fold-change in NEDA versus EDA;
TSS, transcription start site; TSS1500, 200–1,500 bases upstream of the TSS; 5’UTR, within the 50 untranslated region, between the TSS and the
ATG translation initiation codon; 3’UTR, between the stop codon and poly A signal.

TABLE 3. DMRs in NEDA vs. EDA Patients

Parameter CHR BP Start BP End N CpGs Max Delta-β Mean Delta-β Min FDR Gene

DMR1 19 2,250,901 2,251,067 4 0.032 0.028 6.12 x 10�8 AMH

DMR2 17 76,037,035 76,037,364 5 �0.031 �0.020 3.26 x 10�8 TNRC6C

DMR3 7 56,515,666 56,516,129 5 �0.042 �0.029 1.61 x 10�8 LOC650226

DMR4 19 22,234,980 22,235,850 8 �0.067 �0.022 6.76 x 10�9 ZNF257

Abbreviations: CHR, chromosome; BP start, basepair start position; BP end, basepair end position describe the genomic coordinates of the DMR (ref-
erence: GRCh37/hg19); N CpGs, number of CpGs composing the region; Max Delta-β and Mean Delta-β, show, respectively, the maximum and
mean difference in methylation beta-value found in the region, with NEDA as reference. Min FDR, minimum smoothed FDR p-value. Gene, anno-
tated gene according to UCSC RefSeq.
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the NEDA-3 status at 2 years from treatment start, after
adjustment for multiple testing. Our evidence of mQTL
effect exerted by these variants confirms data from a previ-
ous study on more than 32,000 healthy subjects, that
demonstrated a significant impact of these 3 SNPs on

methylation levels.32 The minor allele (C) for the top
SNP rs2240656, located at �135 kb upstream DMR1,
was associated with increased odds of reaching the
NEDA-3 status at 2-year follow-up (p = 1.37 x 10�3;
ORNEDA = 1.73; meta-analysis I2 = 0; Figure 2) and

FIGURE 2: The DMR in AMH is associated with disease activity. (A) Visualization of the DMR in the AMH gene in NEDA versus
EDA patients; on the y-axis fitted beta-values of methylation for the CpGs of the DMR1 (x-axis) are shown. (B) The effect of the
genotype status of the rs2240656 SNP (the top associated SNP with disease activity) is shown, with the SNP driving the
observed difference. (C) Bar plot illustrating the distribution of EDA/NEDA status across rs2240656 genotype. (D) Boxplot
showing distribution of AMH expression levels (in gene counts) in PBMC across rs2240656 genotype. Each dot represents an
individual. ** = p-value <0.01; **** = p-value <0.0001. [Color figure can be viewed at www.annalsofneurology.org]
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with increased methylation levels of all the 4 CpGs
composing DMR1 (Table S4, Table 4). This finding is
consistent with our observation that NEDA subjects had
higher methylation levels in this region. The DMR1 is a
167 base-pairs wide region which we found to be hyper-
methylated in NEDA patients and hypomethylated in
EDA patients. The region maps to the bivalent promoter
of the anti-Mullerian hormone (AMH) gene in PBMC,
and specifically in CD4 and CD8 T lymphocytes (but not
in B cells and monocytes), prompting a complex regula-
tory role on gene expression (Figure 1). In addition,
AMH was found to be significantly expressed in brain tis-
sue in the GTeX project,33 as well as, to a lesser extent, in
CD4 and CD8 cells,34 as said. Interestingly, when run-
ning a GO enrichment analysis on the top 100 DMP, we
found terms as, ‘Fertilization’ and ‘Reproductive system
development’, together with ‘Leukocyte differentiation’,
although not statistically significant after multiple testing
correction (Table S9).

Sensitivity Analysis
Given the role of AMH in reproductive biology, to rule
out a potential bias given by the biological sex of patients
(even though we had already included sex as a covariate)
we run a sensitivity analysis of the DMR separately in
males and females, which did not yield to the identifica-
tion of the DMR in the AMH gene, or of any other
DMR. This finding, which is probably a consequence

of reduced statistical power when analyzing separately
males and females, supports that identified DMR could
be important in MS patients, independent of their
biological sex.

In addition, we were interested in exploring whether
the difference in methylation in the AMH gene region was
also observed when dissecting the NEDA-3 status in the
3 elements on which it is based (i.e., relapses, MRI activ-
ity, and EDSS progression), to investigate whether 1 or
more of these components are mainly driving the observed
difference. Therefore, we repeated the same differential
methylation analysis considering separately the occurrence
of relapses, the MRI activity and the EDSS progression as
clinical outcomes. We observed that the reduced methyla-
tion levels of the 4 CpGs composing the DMR in AMH
had the same direction of effects when considering sepa-
rately the 3 components of the NEDA status, however the
signal was stronger and statistically significant only when
looking at the MRI activity (presence of new/enlarging or
contrast-enhancing lesions) over the 2-year follow-up
(Table S10).

DNA Methylation in AMH Mediates the Genetic
Risk of Disease Activity
We found that genetic variation affects both DNA meth-
ylation in the AMH gene and the risk of disease activity,
but it remains to be clarified whether the SNPs primarily
affect the levels of DNA methylation, which then mediate

TABLE 4. Results of the CIT

CpG SNP A1

mQTL NEDA CIT

β SE β P OR 95% CI p-Value p-Value

cg23218559 rs2240656 C 0.53 0.14 2.13 x 10�4 1.73 1.24–2.42 0.0014 0.0197

cg04052466 rs2240656 C 0.50 0.12 6.72 x 10�5 1.73 1.24–2.42 0.0014 0.0255

cg26000619 rs2240656 C 0.48 0.11 3.22 x 10�5 1.73 1.24–2.42 0.0014 0.0267

cg23218559 rs733846 G 0.56 0.08 5.55 x 10�11 1.35 1.07–1.71 0.0123 0.0187

cg04052466 rs733846 G 0.59 0.06 2.19 x 10�17 1.35 1.07–1.71 0.0123 0.0271

cg26000619 rs733846 G 0.51 0.06 1.96 x 10�14 1.35 1.07–1.71 0.0123 0.0302

cg23218559 rs2074860 G 0.53 0.08 2.52 x 10�10 1.32 1.05–1.65 0.0157 0.0216

cg26000619 rs2074860 G 0.46 0.06 2.76 x 10�12 1.32 1.05–1.65 0.0157 0.0331

cg04052466 rs2074860 G 0.57 0.06 5.67 x 10�16 1.32 1.05–1.65 0.0157 0.0333

Note: The table shows the list of the CpGs that mediate the genetic risk of disease activity, assessed by the NEDA-3 status. For each CpG, the effect
allele (A1) of the SNPs with the respective regression coefficients (β), standard errors (β mQTL), and p-values of the mQTL effect are shown, as well
as the odds ratio (OR), 95% confidence interval (95% CI), and p-values of association between the SNPs and the NEDA-3 status. In the rightmost
column, the p-values from CIT are reported. Threshold for multiple testing correction for the p values of association with the NEDA3-status was set at
p < 0.0167 (0.05/3 LD blocks), as described in the main text.
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an increased risk of disease activity (i.e., methylation is a
mediator of the genetic risk of disease activity), or if the
SNPs affect independently methylation and the risk of dis-
ease activity. To answer this question, we used causal
inference testing (CIT), as previously reported.12,27 We
run CIT on the 3 SNPs with evidence of mQTL effect
and association with risk of disease activity, finding evi-
dence that for all the SNPs DNA methylation is the medi-
ator of their effect on disease activity (p < 0.05) (Table 4).

Increased DNA Methylation Levels in the DMR Lead to

Decreased AMH Expression. Modulating the levels of
DNA methylation in a promoter region is likely to pro-
voke changes in gene expression.4 Therefore, we verified
whether the SNPs that affect the risk of disease activity
through modulation of DNA methylation in the AMH
gene had also an impact on gene expression. To do so, we
used RNA-seq data from PBMC from 225 patients
involved in the methylation analysis. We found that all
the 3 SNPs were associated with lower AMH expression
in PBMC (rs2240656: β = �0.87, SE 0.16,
P = 1.1 x 10�7; rs733846: β = �0.58, SE = 0.091,
P = 1.38 x 10�9; rs2074860: β = �0.71, SE = 0.92,
P = 5.9 x 10�13) (Figure 2D). Then, we conducted a
MR analysis to assess causality between methylation and
expression and to exclude reverse causation. The results
confirm that higher methylation levels in the DMR driven
by genotype is causally associated with decreased AMH
expression (p < 0.0001; β = �1.47 for decrease in gene
expression for increase of 1-unit of methylation M-values,
SE 0.06), further clarifying mechanistically the events that
lead to increased risk of disease activity in patients who
are carriers of the risk alleles for the mentioned SNPs.

Discussion
In this work, we studied the impact of the peripheral
immune methylome on disease activity in RR-MS,
assessed with the NEDA-3 status. First, we investigated
single CpGs, and found 7 DMP that were significantly
associated with disease activity, after correction for multi-
ple testing. Although instrumental to the generation of
DMR, the DMP analysis yielded some interesting associa-
tions, which is worth to briefly comment. As an example,
the top associated CpG (cg27267436) maps to an intronic
region of APBA3 (amyloid beta precursor protein binding
family A member 3), also known as MINT3. APBA3/
MINT3 is an activator of the hypoxia-inducible factor
1-alfa (HIF1A) gene,35 through which it plays an impor-
tant role in the formation of beta-amyloid plaques in
Alzheimer disease36 and in the activation of monocytes
and macrophages.35 HIF1A is not only a fundamental
driver of Alzheimer disease pathobiology,37 but it is also

essential for the Th17/regulatory T cell balance, and
HIF1A knock-out mice do not develop Experimental
Autoimmune Encephalitis, an animal model of MS.38

Cg20308351 maps to CARD11 (caspase recruitment
domain family member 11), and a previous study found a
region in CARD11 which is differentially methylated in B
cells of MS patients versus controls.39 CARD11 regulates
NF-kB through BCL10 in B cells,40 and represents 1 of
the main molecular targets of the Bruton tyrosine kinase
inhibitors (BTKi), a class of drugs that is currently under
investigation as DMT for MS.

Next, we focused on the analysis of DMR, as it is
known that differences in methylation occurring in clus-
ters of neighboring CpGs have a more relevant biological
meaning, and reduce the risk of false positives.41 We iden-
tified 4 regions that were differentially methylated in
NEDA versus EDA patients, mapping to 4 genes (AMH,
TNRC6C, LOC650226, ZNF257), as shown in Table 3.
Hypothesizing that the observed differences in DNA
methylation may be an effect of the underlying genetic
variation, we studied the mQTL effect exerted by nearby
SNPs, finding that all the DMR are consistently affected
by genetic variants. To better support this connection, we
verified whether the variants themselves associate with dis-
ease activity, conducting a genetic association study on a
cohort of 1,408 MS patients. In this analysis, SNPs mod-
ulating the levels of methylation in only 1 of the 4 DMR,
mapping to the AMH gene, resulted to be associated with
disease activity. Next, to provide an insight on the under-
lying mechanisms, we tested whether DNA methylation
can mediate the genetic risk for disease activity exerted by
SNPs in AMH. Our data demonstrated that SNPs alleles
that reduce the risk of disease activity act through an
increase in DNA methylation in the bivalent promoter of
the AMH gene in the immune cells, which consequently
results in lower AMH expression in PBMC (Figure 2).

The AMH is a fundamental sex hormone of the
transforming growth factor beta (TGF-β) family, a key
regulator of the immune system, and has known effects
during fetal development and adult life, with a role both
in males and females. During fetal life, higher expression
of the AMH gene prevents the development of a female
reproductive tract. Recent evidence highlighted that the
AMH continues to exert important effects during
the adult life as well, reflecting the aging of the reproduc-
tive system.42,43 In adult women, AMH decreases together
with the number of follicles over the time, hence its role
as a marker in conditions like the polycystic ovarian syn-
drome.42 In men, the AMH is produced by the Sertoli
cells in the testis during sex differentiation and it is
suppressed by androgens when the primary differentiation
is completed.43 At puberty, AMH levels rise again in the
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male and regulate fertility, whereas they decrease with
the aging of the reproductive system.43

Hormonal factors are crucial for MS. Specifically,
gender difference significantly impacts MS, which is more
common in women but, once established, the disease
course seems to be less favorable in men. In women, phys-
iological conditions related to changes in sex hormones
(as pregnancy, post-partum, or menopause) significantly
influence the risk of relapses and disease outcomes.44,45

However, the biological mechanisms underlying the
importance of sex hormones in MS are still not completely
understood.46 Interestingly, the AMH is most well-known
for the mentioned effects on the reproductive systems, but
it is also part of the TGF-β superfamily, a key player in
development and tolerance of the immune system.47

Nevertheless, the possible involvement of AMH in immune
mechanisms is not clear, but some studies report an increased
risk of autoimmunity with ovarian dysfunction and AMH
dysregulation.47 Moreover, very little is known about AMH
and MS,46 as the few previous small studies that assessed the
association of AMH levels and disease outcomes in MS
overall led to controversial results.48–50

In the present study, we found that the genetic
background influences the levels of disease activity in MS
acting through changes in DNA methylation that lead to
modulation of AMH expression. As said, the circulating
levels of AMH reflect aging. It is very well known that a
younger age is a strong risk factor for clinical and radiolog-
ical signs of new inflammatory disease activity, while with
aging such risk decreases.51 On this basis, our findings
may underline the importance of hormonal factors in the
machinery of the so-called ‘inflammaging’, which is
thought to play a major role in MS.52 This hypothesis,
however, requires further support from future functional
studies. Interestingly, when we run a GO enrichment
analysis, we found an enrichment for many terms related
with in utero development, fertilization, and embryogenic
development, involving other genes (Table S9). These
data additionally support that sex hormones are important
in determining disease activity in MS and prompt future
interventional studies that focus on related lifestyle and
modifiable factors.

Limitations of This Study
The present study presents some limitations that should
be highlighted; the more relevant is the retrospective col-
lection of clinical data to group patients according to the
NEDA-3 status. We acknowledge this limitation, as pro-
spective data collection is certainly the gold standard in
clinical studies. However, we believe also that this type of
study could provide a realistic perspective outside clinical
trials, making the results more directly linked to routine

clinical practice and real life management. Similarly, the
retrospective study design did not allow to obtain mea-
sures of brain atrophy at MRI, as it is not part of the rou-
tine clinical assessment of patients. Future follow-up
investigations should also be focused on assessing potential
association with brain atrophy. Another limitation is rep-
resented by the sample size of the cohort used in the
genetic association study on the NEDA-3 status. In this
case, the relatively small sample size for a genetic associa-
tion analysis may have reduced the number of significant
variants for which an association with the NEDA-3 status
was found. We are aware of this issue, and therefore we
used a stringent statistical approach with multiple testing
correction as reported in the Methods, to minimize the
possibility of false positive associations. Another limitation
is the lack of an additional validation dataset to replicate
our results, which would strengthen our findings. Multi-
center studies using multi-layer molecular information are
the ideal setting to translate research findings into the bed-
side practice. However, harmonization of complex clinical
datasets (as the one used in our study) between multiple
centers is often extremely challenge and can prevent the
feasibility of this kind of efforts.

Conclusions
In conclusions, this work unraveled a novel molecular
pathway that is relevant to disease severity implicating the
interaction between the genetic background and DNA
methylation in AMH, and adds more evidence to the
importance of sex hormones in the pathobiology of MS.
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