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A B S T R A C T   

Background/Purpose: Tomotherapy may deliver high-quality whole breast irradiation at static angles. The aim of 
this study was to implement Knowledge-Based (KB) automatic planning for left-sided whole breast using this 
modality. 
Materials/Methods: Virtual volumetric plans were associated to the dose distributions of 69 Tomotherapy (TT) 
clinical plans of previously treated patients, aiming to train a KB-model using a commercial tool completely 
implemented in our treatment planning system. An individually optimized template based on the resulting KB- 
model was generated for automatic plan optimization. Thirty patients of the training set and ten new patients 
were considered for internal/external validation. Fully-automatic plans (KB-TT) were generated and compared 
using the same geometry/number of fields of the corresponding clinical plans. 
Results: KB-TT plans were successfully generated in 26/30 and 10/10 patients of the internal/external validation 
sets; for 4 patients whose original plans used only two fields, the manual insertion of one/two fields before 
running the automatic template was sufficient to obtain acceptable plans. Concerning internal validation, 
planning target volume V95%/D1%/dose distribution standard deviation improved by 0.9%/0.4Gy/0.2Gy (p <
0.05) against clinical plans; Organs at risk mean doses were also slightly improved (p < 0.05) by 0.07/0.4/0.2/ 
0.01 Gy for left lung/heart/right breast/right lung respectively. Similarly satisfactory results were replicated in 
the external validation set. The resulting treatment duration was 8 ± 1 min, consistent with our clinical expe
rience. The active planner time per patient was 5–10 minutes. 
Conclusion: Automatic TT left-sided breast KB-plans are comparable to or slightly better than clinical plans and 
can be obtained with limited planner time. The approach is currently under clinical implementation.   

1. Introduction 

Breast-conserving surgery coupled with Whole Breast Irradiation 
(WBI) allows a reduction of the absolute risk of cancer relapse [1,2]. The 
conventional fractionation protocols consisted in delivering 50 Gy in 25 
fractions. Different hypofractionated protocols have recently been 
introduced delivering the treatment in 5–20 fractions [3,4]; among 
them, moderate hypofractionation delivering 40 Gy in 15 fractions (or 
42.5 Gy in 16 fractions), still represents the gold standard for many 
Institutes [4]. Despite the evolution toward increasing the dose to the 
tumor bed (Simultaneous Integrated Boost) or including the nodal 

region in the target for selected categories of patients [5–8], WBI re
mains one of the most used breast cancer radiotherapy approaches. 

The most used techniques for WBI consist in the delivery of 
tangential fields, applying different techniques: 3-Dimensional 
Conformal RadioTherapy (3DCRT) with both physical and dynamic 
wedges; Intensity Modulated RadioTherapy (IMRT) usually obtained 
with 2 to 4 segments per beam, manually optimized (Field in Field) with 
a conventional Linac, or inversely optimized by conventional Linac or 
delivered using a tomotherapy system in static angles modality. These 
techniques allow a reduction of the low dose spread to Organs-At-Risk 
(OARs) and Body, thanks to the selected beam geometry [9–14]. 
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The optimization process is time consuming, and the quality of the 
resulting plan is highly dependent on the planner’s experience. [15] For 
a certain institute, one way to increase plan homogeneity is to stan
dardize the radiotherapy treatment, with the aim of guaranteeing a high 
quality plan for all patients, regardless of time availability and user 
skills. [16] Automatic planning approaches have a key role in this sce
nario, helping to reach an optimal plan, reducing planning time and 
limiting/avoiding intra-operator variability [17–20]. 

Many groups have investigated various auto-planning approaches 
for different clinical applications, including breast site [21–26]. 
Tangential-Field (TF) geometry presents certain difficulties considering 
the degree to which inter-patient variability influences the choice of 
optimal field angles. A suboptimal selection of the segment position is 
highly correlated to a suboptimal plan with a consequent increase in the 
dose delivered to OARs. 

Nonetheless, many automatic solutions employing various ap
proaches have been proposed: in-house solutions [15,24,27] or 
commercially available systems [28,29,23], among which it is possible 
to find a tool using a Knowledge-Based (KB) approach. Due to the large 
number of WBI patients, KB is expected to be a good candidate method 
to reach an automation process for the breast site [21,22]. We have 
previously demonstrated the capability of KB to predict TF-geometry 
dose distribution [30], given its ability to completely replace manual 
planning with WBI in the context of TF delivered with 3DCRT. On the 
other hand, KB applications for TomoTherapy (TT) environment have 
already been reported, although in a different site (i.e. prostate cancer) 
[31,32]. The principal goals of this study were to train a prediction 
model for the static angles modality on a TT system to be applied to left- 
sided WBI. Moreover, using this prediction model we aimed to autom
atize plan optimization, replacing manual planning, eliminating sub- 
optimal plans and reducing both inter-operator variability and plan
ning time. 

2. Materials and methods 

2.1. Treatment protocol 

A set of 79 left-sided breast cancer patients treated with tomotherapy 
at our Institute in the period 2017–2021 were available. They were 
treated delivering 40 Gy in 15 fractions (2.67 Gy/fr), prescribed as 
median dose to PTV (Planning Target Volume). Patients were set in a 
supine position, immobilized using a Posiboard™ or Wing Board™ 
(CIVICO, Inc.) breast immobilizer. Arms were positioned above the head 
to avoid inclusion in the field. CTV (Clinical Target Volume), PTV and 
OARs were delineated following the (AIRO) national guidelines: CTV 
was cropped with respect to the body with a 5 mm margin to exclude 
skin; PTV was obtained by expanding the CTV isotropically by 5 mm, 
and cropped analogously to CTV. 

The treatment machine was a TomoHD™ (v. 2.1.4) system used in 
TomoDirect™ (static angles) modality, delivering 6 MV Flattening Filter 
Free beams, coupled with the v.5.1.1.6 Planning Station. When setting 
up the fields, the MLC (MultiLeaf Collimator) leaves were opened to the 
air by the system’s skin flash tool in order to take account of intra- and 
inter-fraction movements or deformations, assuring a distance between 
body and MLC projection of approximately 3 cm when allowed by the 
geometry. 

The distribution of the parameters used in the planning process as 
well as the plan acceptability parameters are shown in the supplemen
tary materials: Tables s1 and s2 respectively. This study was approved 
by the Ethical Committee of our institution (protocol number 248/ 
2021). 

2.2. Model Generation 

The model generation took place in the Treatment Planning System 
(TPS) Eclipse™ from Varian Medical System, Inc. This TPS includes a 

commercially available tool called RapidPlan (RP) that exploits the KB 
approach. Three different sets of data were extracted by RP from pre
vious clinical plans: beam geometry, patient contours and dose distri
bution. Using Principal Component Analysis, RP generated a regression 
model correlating geometrical information (patient anatomy) to the 
Dose-Volume Histogram (DVH), considering the beam arrangement 
used for the specific plan [33,34]. To do so, RP required an inverse- 
planned modality plan as input in the training phase. For this reason, 
mock rotational VMAT (Volumetric Modulated Arc Therapy) plans were 
generated using the geometry arrangement of the ViTAT (Virtual 
Tangential-fields Arc Therapy) technique introduced in previous works 
[30,35]. In short, four arcs were used, ranging from 300◦ to 135◦, with 
collimator angles equal to ±5◦ and ±10◦. Mock plans were obtained 
using a plan template that automatically generated the beam arrange
ments and properties. No optimization was required at this phase. Dose 
distributions of TT plans were exported from the TT system and im
ported in Eclipse™ to be linked to the corresponding mock ViTAT plan. 
The so generated mock plan was then used in the training set of the RP 
model. Only 79 patients were available, 69 of which were used to train a 
KB regression model. The OARs considered in the model were heart, 
ipsilateral lung, contralateral lung and contralateral breast. 

2.3. Outlier removal andtemplate optimization 

In order to assure that the training set used for the model contained 
only high quality plans, an outlier exclusion process was followed using 
the tools inside the RP and the Varian tool Model Analytics. 

Given a regression diagram (Fig. s1 in Supplementary materials) 
with the standard deviation σ of the model, an outlier is first recognized 
as a point distant from the linear trend by a value higher than 2 σ. As 
previously explained [33] there were two types of outliers: geometrical 
and dosimetric. The former are associated with an uncommon 
anatomical feature and were maintained in the model, while the latter 
are associated with suboptimal plans and were therefore excluded. 

For each OAR, RP generates a prediction band that indicates where 
the DVH for a new patient is most likely to ‘land’. From these bands it is 
possible to generate a template, but the position and priorities of the 
objectives must be carefully selected. 

The TT template distinguished the structures in targets and OARs: for 
the PTV, a maximum dose constraint was used along with one DVH point 
expressed as the median prescribed dose. For the OARs, a maximum 
dose constraint was used and only three other DVH points may be 
selected; each constraint was linked to a penalty coefficient. Moreover, 
each structure was associated with an ‘importance’ parameter that al
lows the plan to be optimized for the whole structure, rather than for 
only a single DVH point. 

The template was iteratively optimized and modified on a set of 5 
patients, until an optimal plan was obtained for all five patients. 
Structure importance, constraint penalties, maximum dose for OARs, 
and maximum and minimum dose for the target were all optimized. 

The template was generated in the Varian TPS and translated into an 
executable TT template using the Eclipse Scripting Application Pro
gramming Interface (ESAPI). 

Subsequently, it was automatically sent to the TT Planning Station, 
to be used in the optimization process (Fig. s2 in Supplementary 
Materials). 

In the template, a control structure called “Shell” was used. It was 
generated by expanding the PTV isotropically by a margin of 3 cm, and 
furthermore expanding the thus generated Shell by a 5 cm margin in the 
postero-lateral direction, but only in the body region in correspondence 
to the distal beam. The Shell was then cropped with 0 mm margin with 
respect to PTV, contralateral breast, lungs, heart and body (Fig. s3 in 
Supplementary Materials). The shell allows an increase in the confor
mity of the PTV dose distribution. The optimization calculation grid was 
set to “fine” (corresponding to 1.95 mm × 1.95 mm) to better control the 
presence of hot spots of high dose inside and outside the target. 
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2.4. Model Validation 

Model performances were evaluated by means of both an internal 
and external validation process: 30 out of the 69 patients used for 
training, were randomly chosen for the internal validation, while the 
remaining 10 out of 79 new patients were considered for the external 
validation. 

The fully automatic optimized plans (KB-TT), obtained following the 
workflow described in Fig. s2 in Supplementary Materials, were 
compared with the clinical ones. 

In order to compare plans considering only the change in the opti
mization modality, the same beam arrangements of clinical TT plans 
were used for KB-TT plans. The comparison between KB-TT and TT plans 
was carried out in terms of dose-volume parameters: for the PTV, V95%, 
D1%, D2% and the standard deviation of PTV dose distribution (used as 
homogeneity index) were considered; for OARs, D2% and mean dose 
were used. The standard deviation of the PTV dose is used as a target 
dose-homogeneity metric. 

The characteristics of planning parameters used for TT clinical plans 
for the validation tests are shown in the Supplementary Materials. 

The field width was set to 2.5 cm, used for the template tests and for 
the validation tests, along with a modulation factor of 2.000 and a pitch 
of 0.251. These parameters were fixed for all automatic planning opti
mization. The distribution of clinical values for these parameters 
showed the necessity of increasing the modulation for some specific 
plans (35%). The parameter values associated with a higher modulation 
were used for all patients in order to guarantee a wider applicability. 
Paired sample Wilcoxon tests were performed to assess significance of 
results. 

3. Results 

The KB-TT model was generated excluding the dosimetric outliers: in 
total 9 patients were outliers for at least one OAR, resulting in a number 
of trained patients between 62 and 66 for the different OARs. R2 values 
were equal to or higher than 0.70 for all structures except the contra
lateral breast (see Tables s3 and Fig. s1 in supplementary materials). The 
final optimized template is shown in Table 1. 

The 30 automatic plans obtained for the internal validation set were 
all acceptable apart from four that were found to be unacceptable in 
terms of PTV coverage. Overall, KB-TT plans showed small but signifi
cant (p < 0.05) improvement in the internal validation set (Table 2 and 
Fig. 1): better PTV V95% (0.9%), improved PTV D1% (0.4 Gy) and stan
dard deviation of PTV dose (0.2 Gy); Ipsilateral Lung and Heart received 
a lower mean dose by 0.07 Gy and 0.4 Gy; mean dose to contralateral 

OARs was reduced by at least 4.8% relative to the clinical TT; integral 
dose to body was reduced by 0.3 Gy. Delivery time for KB-TT plans 
averaged over all 30 patients was 8 ± 1 min that is comparable with the 
delivery time resulting from clinical plans delivered using 5 cm fields (6 
± 1 min) and 2.5 cm fields (8 ± 2 min). 

The same trend was found for the external validation set, but the 
significance of the obtained value was not found: KB-TT plans resulted in 
similar PTV coverage, better PTV D1% (0.5 Gy, p < 0.05) and slightly 
better PTV homogeneity. There was a reduction of 0.4 Gy and 0.1 Gy to 
D2% of ipsilateral lung and contralateral breast, respectively (Table 3 
and Fig. 2). 

The delivery time for KB-TT plans averaged over the entire 10 patient 
population was 8 ± 1 min against 6 ± 1 min and 9 ± 1 min for the 5 cm 
and the 2.5 cm field clinical plans respectively. 

Table 1 
TT fine-tuned optimization template. Structure priority is shown in parentheses 
before organ name. PTV is treated as the target (T) structure and prescription is 
normalized to the median of organ dose. “Gen.” placeholder is automatically 
replaced with the corresponding value exported from RP prediction.  

Fine-Tuned Optimization Template 

(Priority) 
Organ 

Importance Dmax 

[Gy] 
Dmax 

Penalty 
Vol. 
[%] 

Dose 
[Gy] 

Penalty 

(T) PTV 20 40 55 Median 40 55 
(1) Heart 4 40 15 Gen. 5 12     

Gen. 16 16     
Gen. 30 15 

(2) Contr. 
Breast 

3 Gen. 30 Gen. 1 30 

(3) Ipsi. 
Lung 

4 40 10 Gen. 5 20     

Gen. 20 20     
Gen. 30 12 

(4) Contr. 
Lung 

2 Gen. 30 Gen. 1 5 

(5) Shell 5 40 70 7 38 7  

Table 2 
Quantitative comparison between KB-TT and TT plans for the Internal Valida
tion set. Median values for each set are shown along with the interquartile range 
(in brackets). Bold font is associated with significant (p < 0.05) results. SD is the 
standard deviation of the PTV dose distribution, it is used as homogeneity index.  

Internal Validation 

Organ Parameter TT KB-TT ΔP 

PTV V95% [%] 97.5  [1.9] 98.4 [1.5]  ¡0.9  
D2% [Gy] 41.0 [0.3] 40.6 [0.3]  0.4  
D1% [Gy] 41.2 [0.4] 40.8 [0.3]  0.4  
SD [Gy] 0.8 [0.3] 0.6 [0.2]  0.2 

Body Dmean [Gy] 3.5 [1.3] 3.2 [1.1]  0.3  
D2% [Gy] 39.9 [0.2] 39.8 [0.2]  0.1 

Heart V3Gy [%] 10.1 [8.6] 7.7 [4.8]  2.4  
V16Gy [%] 2.4 [2.7] 1.9 [1.6]  0.1  
Dmean [Gy] 1.9 [1.1] 1.5 [0.9]  0.4  
D2% [Gy] 18.5 [15.9] 15.4 [8.6]  3.1 

Contralateral Lung Dmean [Gy] 0.21 [0.08] 0.20 [0.06]  0.01  
D2% [Gy] 0.6 [0.2] 0.6 [0.1]  0.00 

Contralateral Breast Dmean [Gy] 0.27 [0.13] 0.24 [0.05]  0.03  
D2% [Gy] 0.9 [0.5] 0.7 [0.3]  0.2 

Ipsilateral Lung V5Gy [%] 22.0 [5.2] 21.5 [4.3]  0.5  
V20Gy [%] 11.3 [3.1] 11.0 [4.0]  0.3  
Dmean [Gy] 5.43 [1.1] 5.36 [1.4]  0.07  
D2% [Gy] 37.5 [1.1] 36.7 [1.8]  0.8  

Fig. 1. Mean DVH comparison between KB-TT and TT plans, for both internal 
(top) and external (bottom) validation sets. KB-TT is associated with a solid 
line, and TT with dashed line. 
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4. Discussion 

We proposed an approach using a commercially available system to 
automate the plan optimization process for WBI, using RP to handle dose 
distributions not delivered through its native TPS environment, 
obtaining equal to or slightly better plans in terms of PTV coverage 
(V95%), mean OAR doses and dose-volume parameters in general. 

The quality of the obtained plan is in line with other authors findings 
for KB models [23,35,36]. 

Previous examples [31,32] show the feasibility of using RP for 
different environments. The translation of the DVH prediction band into 
an effective, individually optimized fine-tuned template, as a first step, 
and the following translation of the native TPS template into a TT 
executable one are a fundamental step of this work. 

In principle, the translation step could be carried out manually 

without the use of the script, making the implementation of this process 
clinically possible in all centers that have a TT system and the RP soft
ware available. The use of the script, however, allows the possibility of 
speeding up the process and simplifying the use of this methodology 
being implemented inside the TPS used in daily clinical procedures. 

While generating the model, a field geometry had to be established. 
For this reason we used the ViTAT geometry even though it is not 
directly referred to the original clinical plan, because, as previously 
found [30,37], it is possible to link the dose distribution obtained with 
tangential field arrangement to a mock rotational plan. The mock ge
ometry is easily and rapidly obtainable by setting an appropriate plan 
setup template in the native TPS environment. 

Moreover, the model regression plots were optimal for breast 
application as confirmed by the obtained results. The contralateral 
breast is associated to the lower value since this organ is not always 
visible from the beam’s-eye-views, and it is consequently more difficult 
for the system to associate the geometric component to the dosimetric 
one. 

It is important to notice that user personalization is limited due to the 
use of a protocol with fixed field width, pitch and modulation factors. 
Only four plans out of thirty were found to be unacceptable; in fact they 
were associated with the use of only two fields. Adding other two seg
ments to a total of four (modifying the entrance angle by 5◦ from the 
clinical ones) and re-starting the automatic optimization, it was possible 
to obtain acceptable plans, with better PTV coverage compared to the 
original clinical ones (Fig. 2). 

The use of four beams allowed the generation of the totality of 
acceptable plans; it is therefore suggested always to select four seg
ments, instead of just two, in order to increase coverage and modulation. 
The dimension of the internal validation cohort was sufficiently high to 
highlight the significant differences; unfortunately, due to the small 
number of patients included in the set, only 10 patients were available 
for the external validation cohort at the time of the present study. 

Due to the small number of patients, the significance of the reported 
differences, with respect to the internal validation case, was lost; how
ever, the results showed a pattern very similar to that found in the in
ternal set. When possible, by increasing the number of patients in the 
external validation set, it is expected that a higher level of significance 
will be reached with the same results. 

The delivery time of KB-TT plans is 8 ± 1 min, due mainly to the 

Table 3 
Quantitative comparison between KB-TT and TT plans for the External Valida
tion set. Median values of each set are shown along with the interquartile range 
(in brackets). Bold font is associated with significant (p < 0.05) results. SD is the 
standard daviation of the PTV dose distribution, it is used as a homogeneity 
index.  

External Validation 

Organ Parameter TT KB-TT ΔP 

PTV V95% [%] 96.9  [1.2] 97.8 [1.5] − 0.9  
D2% [Gy] 41.1 [0.5] 40.7 [0.2] 0.4  
D1% [Gy] 41.3 [0.7] 40.8 [0.3] 0.5  
SD [Gy] 0.9 [0.3] 0.7 [0.3] 0.2 

Body Dmean [Gy] 3.4 [1.0] 3.2 [0.9] 0.2  
D2% [Gy] 39.8 [0.2] 39.8 [0.1] 0.0 

Heart V3Gy [%] 12.8 [10.0] 9.9 [8.5] 2.9  
V16Gy [%] 2.4 [1.2] 2.5 [1.9] − 0.1  
Dmean [Gy] 2.3 [0.9] 1.9 [0.9] 0.4  
D2% [Gy] 16.8 [5.5] 18.0 [7.9] − 1.2 

Contralateral Lung Dmean [Gy] 0.21 [0.08] 0.20 [0.04] 0.01  
D2 [Gy] 0.55 [0.10] 0.50 [0.11] 0.05 

Contralateral Breast Dmean [Gy] 0.26 [0.11] 0.23 [0.13] 0.03  
D2% [Gy] 0.8 [1.4] 0.7 [1.2] 0.1 

Ipsilateral Lung V5Gy [%] 21.9 [4.6] 21.2 [2.1] 0.7  
V20Gy [%] 12.2 [1.8] 11.4 [1.5] 0.8  
Dmean [Gy] 5.6 [0.8] 5.3 [0.6] 0.3  
D2% [Gy] 37.9 [0.8] 37.5 [0.9] 0.4  

Fig. 2. Example of an unacceptable plan using two beams and modification in dose distribution adding two segments to a total of four. The color wash in the 
transversal CT image show the 95% of the prescription dose (38 Gy) for the two beam cases (four beam, and clinical). DVHs show the automatic plans (KB-TT) against 
the clinical ones (TT). 

P.G. Esposito et al.                                                                                                                                                                                                                              



Physics and Imaging in Radiation Oncology 23 (2022) 54–59

58

chosen field width (2.5 cm). Although 5 cm field clinical plans (65% of 
historical patients) are delivered in 6 ± 1 min, it was deemed necessary 
to use the 2.5 cm field width in order to obtain an optimal plan for the 
remaining 35% of patients, with the smaller field width leading to a 
higher modulation factor and lower pitch. In fact, smaller field width is 
associated with a higher conformity of the PTV dose distribution. It is 
expected that the use of our KB approach will reduce planning time, and 
importantly improve plan homogeneity between planners, avoiding sub- 
optimal plans. The entire process requires 25–30 min for the generation 
of a plan. Active planner time is from 5 to 10 min for plan template 
selection, ROI generation and script launching. The automatic optimi
zation process requires approximately 20 min, but as it is a passive ac
tivity, the planner is free to work on other tasks. Preparation and 
optimization of a manually optimized plan would require at least 1 h. 
The generation of a manual WBI plans would, on the other hand, 
generally require significantly more time, depending on the peculiarity 
of the anatomy or on special requests by the clinician. The KB approach 
makes it possible to obtain a high quality plan from the first cycle of 
optimization, but if necessary, the KB-TT plan may be used as a starting 
point for any further refinements. 

Currently, the choice of the treating beam angles is still manual and 
user dependent. It was decided to use the same criteria of the clinical 
plans for angle selection in the validation sets. This approach demon
strated that even without modifying the angles, it is possible to obtain 
the same or slightly better plan quality while reducing the time required 
to obtain it. The angle selection results in residual inter-planner vari
ability. In principle, this process is, in principle automatable: this 
objective could be achieved by means of various approaches proposed in 
the literature; [26,38–40] the number of manual refinements would be 
then further reduced for this reason this could be the focus of further 
improvements on our approach. 

The static angles modality is often preferred to helical modality or, in 
general, to rotational techniques as it allows the reduction of the low 
dose bath [13] and it is expected to be one of the most widely used 
techniques in centers where TT is available, due to its high performance, 
reported to be generally comparable or superior to the best WBI mo
dalities [9]. 

The approach presented here demonstrates the possibility of 
replacing the manual optimization of TT planning for WBI, with KB 
automatic planning increasing efficiency and plan homogeneity. This 
approach is versatile, and the use of a commercial system is expected to 
facilitate a large-scale implementation. 
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