
UNIVERSITA’ VITA-SALUTE SAN RAFFAELE  

CORSO DI DOTTORATO DI RICERCA 
INTERNAZIONALE IN MEDICINA MOLECOLARE  

CURRICULUM IN MEDICINA CLINICA E SPERIMENTALE 

NON INVASIVE EARLY PREDICTION OF 
TUMOUR BIOLOGICAL BEHAVIOUR, 
AGGRESSIVENESS AND TREATMENT 

RESPONSE: A RADIOMIC TRANSLATIONAL 
APPROACH FOR IDENTIFICATION OF NOVEL 

IMAGING BIOMARKERS IN 
PANCREATIC/OESOPHAGEAL NEOPLASMS 

DoS: Prof. Francesco De Cobelli  

Second Supervisor: Prof. Andrea Laghi  

Tesi di DOTTORATO di RICERCA di Palumbo Diego 

matr. 015650  

Ciclo di dottorato XXXV  

SSD MED/36  

 Anno Accademico 2021/2022  

UNIVERSITA’ VITA-SALUTE SAN RAFFAELE 

CORSO DI DOTTORATO DI RICERCA 

INTERNAZIONALE IN MEDICINA MOLECOLARE 

Curriculum in Medicina Clinica e Sperimentale 

 

Simplification of prostate MRI protocol 

and development of a novel MRI 

technique for prostate cancer detection 

and characterization 

 

DoS: Prof. Francesco De Cobelli  

Second Supervisor: Prof. Shonit Punwani 

 

Tesi di DOTTORATO di RICERCA di Giorgio Brembilla 

matr. 013871 

Ciclo di dottorato 2018/2019 

SSD MED/36 

Anno Accademico 2020/2021  



CONSULTAZIONE TESI DI DOTTORATO DI RICERCA  

Il/la sottoscritto/a    Diego Palumbo 

Matricola / registration number  015650 

nato a/ born at     Crema (CR) 

il/on      05/07/1989 

autore della tesi di Dottorato di ricerca dal titolo / author of the PhD Thesis titled  

NON INVASIVE EARLY PREDICTION OF TUMOUR BIOLOGICAL BEHAVIOUR, AGGRESSIVENESS AND 
TREATMENT RESPONSE: A RADIOMIC TRANSLATIONAL APPROACH FOR IDENTIFICATION OF NOVEL 

IMAGING BIOMARKERS IN PANCREATIC/OESOPHAGEAL NEOPLASMS 

AUTORIZZA la Consultazione della tesi / AUTHORIZES the public release of the thesis  

X NON AUTORIZZA la Consultazione della tesi per 12 mesi /DOES NOT AUTHORIZE the public release of the 
thesis for 12 months  

a partire dalla data di conseguimento del titolo e precisamente / from the PhD thesis date,  specifically  

Dal / from 01/12/2022 Al / to 01/12/2023  

Poiché /because:  

□ l’intera ricerca o parti di essa sono potenzialmente soggette a brevettabilità/ The whole project or part of it 
might be subject to patentability;  

X ci sono parti di tesi che sono già state sottoposte a un editore o sono in attesa di pubblicazione/ Parts of the 
thesis have been or are being submitted to a publisher or are in press;   

□ la tesi è finanziata da enti esterni che vantano dei diritti su di esse e sulla loro pubblicazione/ the thesis project 
is financed by external bodies that have rights over it and on its publication.  

E’ fatto divieto di riprodurre, in tutto o in parte, quanto in essa contenuto / Copyright the contents of the thesis in 
whole or in part is forbidden  

Data /Date 21/11/2022 Firma /Signature   

 



DECLARATION 
 

This thesis has been: i) composed by myself and has not been used in any previous 

application for a degree; ii) throughout the text I use both ‘I’ and ‘We’ interchangeably; 

iii) it has been written according to the editing guidelines approved by the University.  

 

Permission to use images and other material covered by copyright has been sought 

and obtained. 

 

All the results presented here were obtained by myself, except for: 

 

• Samples	 from	 peripheral	 and	 portal	 vein	 blood,	 as	 well	 as	 from	

neoplasm	 cystic	 fluid	 of	 IPMN	 patients	 (chapter	 “Prediction	 of	 the	

characteristics	 of	 aggressiveness	 of	 pancreatic	 neuroendocrine	

neoplasms	 based	 on	 CT	 radiomic	 features”),	 which	 have	 been	

systematically	 collected	 during	 surgery	 by	 experienced	 pancreatic	

surgeons	 (with	 overall	 coordination	 of	 prof.	 Stefano	 Crippa,	 Pancreas	

Translational	 and	 Clinical	 Research	 Centre,	 San	 Raffaele	 Scientific	

Institute,	Milan,	 Italy).	 Levels	 of	 cytokines/chemokines,	 apolipoproteins,	

adipokines,	 hormones,	 and	 other	 biochemical	 parameters	 related	 to	

inflammation	 and	 lipid	 metabolism	 were	 evaluated	 from	 the	 same	

samples	 by	 Dott.	 Benedetta	 Ferrara	 (Diabetes	 Research	 Institute,	 San	

Raffaele	Scientific	Institute,	Milan,	Italy).	

 

The following chapter contains data that have been already published: 

• “Prediction	 of	 early	 distant	 recurrence	 in	 upfront	 resectable	

pancreatic	 adenocarcinoma:	 a	multidisciplinary,	machine	 learning-

based	 approach”	 Palumbo et al. 2021, DOI: 

https://doi.org/10.3390/cancers13194938. 

Abstract, Introduction as well as Materials and Methods sections from chapters 

“Prediction of the characteristics of aggressiveness of pancreatic neuroendocrine 

neoplasms based on CT radiomic features” and “Dynamic change of radiomic 



features within tumour environment predicts pathological response to neoadjuvant 

chemotherapy and disease relapse of pancreatic adenocarcinoma” also contain data 

that have been already published (Palumbo et al. 2021, DOI: 

https://doi.org/10.3390/cancers13194938). 

A paragraph from Introduction as well as Discussion section from chapter “Early 

assessment of pathological response to neoadjuvant chemoradiotherapy for 

oesophageal cancer using fully hybrid PET/MR: results from interim analysis” 

contain material from Palumbo D. et al, 2020 “Imaging in evaluation of response to 

neo-adjuvant treatment. Ann Esophagus”. 

Statistical analysis paragraph from chapter “Identification and biological 

significance of a novel radiological biomarker for IPMN with high-grade 

dysplasia/invasive carcinoma” contains methodology already used in Palumbo et al, 

2021 DOI: 10.1007/s00330-021-07788-y. 

 

All sources of information are acknowledged by means of reference.  



ABSTRACT 
 

Aims: i) To non-invasively stratify pancreatic neoplasms based on their biological 

behaviour and prognosis, and ii) to identify imaging markers for early assessment of 

neoadjuvant treatment response for PDAC and oesophageal cancers. 

Methods: Five observational studies were designed. Preliminarily, a common 

radiomic workflow was defined using i) minimum redundancy, ii) robustness against 

delineation uncertainty and iii) a machine learning bootstrap-based method. #1 – A 

retrospective set of PDAC patients (pts) who underwent upfront surgery was enrolled to 

develop a preoperative model to stratify the chance of early (<11 months) distant 

disease relapse. #2 – A prospective set of IPMN pts candidate for resection was enrolled 

to identify radiological marker(s) to distinguish low- vs. high-risk IPMN. Besides high-

risk stigmata/worrisome features, pancreatic fat content was assessed. #3 – A 

retrospective set of resected panNEN pts was enrolled to train and validate radiomic 

models to predict pathological characteristics of aggressiveness. #4 – A retrospective set 

of PDAC pts who underwent surgery after nCT was enrolled to develop three clusters of 

models based on a) pre-/ b) post-nCT and c) ∆ radiomics to predict disease recurrence 

after surgery, N2 and pathological response to nCT. #5 – A prospective set of 

oesophageal cancer pts scheduled to nCRT was enrolled. PET/MR was performed prior 

to, during and after treatment; for each patient, ERI was computed. TRG=1 stands for 

complete response. 

Results: Models comprising radiomic features and clinicoradiological variables were 

effective in stratifying the risk of early distant relapse after upfront surgery for PDAC, 

as well as pathological characteristics of panNEN aggressiveness. ∆ radiomics well 

stratifies the risk of relapse after nCT for PDAC. Non-radiomic findings were also 

intriguing. Pancreatic fat content was higher in IPMN pts with high-grade 

dysplasia/invasive carcinoma than in low/moderate-grade dysplasia (cohort#2). When 

dealing with cohort#5, pts with TRG=1 had significantly lower ERI values than those 

with TRG≥2; they also had a significant higher median increase in tumour ADC from 

baseline to intermediate scans. 

Conclusions: Our findings could complement current diagnostic workflow and 

improve clinical decision-making for pts with pancreatic/esophageal neoplasms. 
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ACRONYMS AND ABBREVIATIONS 
 

AIOM = Associazione Italiana Oncologia Medica; AUC = Area Under the Curve; 

CI = Confidence Interval; CT = Computed Tomography; EDR = Early Distant 

Recurrence; ERI = Early Regression Index; G = Tumour Grade; HR = Hazard Ratio; 

HRS = High Risk Stigmata; HU = Hounsfield Unit; ICC = Intraclass Coefficient; 

IPMN = Intraductal Papillary Mucinous Neoplasm; IQR = Interquartile Range; M+ = 

Metastases; MCP-1 = Monocyte Chemoattractant Protein-1; MPD = Main Pancreatic 

Duct; MRCP = Magnetic Resonance Cholangiopancreatography; N+ = metastatic 

Lymphnodes; NCCN = National Comprehensive Cancer Network; nCT = neoadjuvant 

Chemotherapy; nCRT = neoadjuvant Chemoradiotherapy; NPV = Negative Predictive 

Value; PanNEN = pancreatic Neuroendocrine Neoplasm; PD = 

pancreaticoduodenectomy; PDAC = Pancreatic Ductal Adenocarcinoma; PET = 

Positron Emission Tomography; PPV = Positive Predictive Value; RECIST = 

Response Evaluation Criteria In Solid Tumours; ROI = Region of Interest; RFs = 

Radiomic Features; SFA = Subcutaneous Fat Area; TAMA = Total Abdominal Muscle 

Area; TRG = Tumour Regression Grade; VFA = Visceral Fat Area; VI = 

Microvascular Invasion; WF = Worrisome Features. 
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INTRODUCTION 

A significant proportion of the overall improvement in cancer outcomes in the recent 

years (Arnold et al, 2019; The Lancet, 2022) is attributable to earlier diagnosis: 

combining current breakthrough, personalized therapies with an effective early 

detection would have an unmatched impact on patients’ survival and quality of life 

(Whitaker, 2020; Koo et al, 2020). Early detection has already been acknowledged as 

having a key role in the management of cervical (Sawaya et al, 2019) and breast (Welch 

et al, 2016) cancer, and is likely to become more important in preventing cancer related 

deaths, although with current inhomogeneous results and non standardized protocols, in 

the control of colorectal (Bretthauer et al, 2022), prostate (Eklund et al, 2021) and lung 

(National Lung Screening Trial Research Team et al, 2011) cancer by the 

implementation of dedicated screening programs and awareness raising campaigns.  

However, some tumour types do not benefit yet from this approach: pancreatic 

cancer (having no recommended screening protocols for patients with no increased risk 

[lifetime risk of pancreatic cancer < 5%]) is usually diagnosed at late stages due to the 

lack of specific clinical manifestations, when disease has already spread, resulting in 

poor prognosis (Pereira et al, 2020; Mizrahi et al, 2020; Overbeek et al, 2022). 

Actually, even when considering highly selected high-risk patients undergoing strict 

surveillance with endoscopic ultrasonography and/or magnetic resonance, Overbeek 

and colleagues (Overbeek et al, 2022) found that almost half of the cancerous lesions 

are usually identified a median of 11 months after an unremarkable imaging; 

furthermore, more than 70% of those neoplastic lesions were > T1 N0, highlighting how 

narrow the temporal window of possible intervention is. Mukherjee and colleagues 

recently proposed instead a different approach, based upon a machine learning model 

able to detect pancreatic cancer on prediagnostic CT scans, beyond conventional human 

interrogation capability (Mukherjee et al, 2022); however, major concerns, mainly 

ethical and methodological, currently undermines this approach practicability.  

Moreover, irrespective of clinical stage, each pancreatic neoplasm subtype has itself 

a wide prognostic range corresponding to intra tumoural biological heterogeneity 

(Mizrahi et al, 2020). It follows that, in the specific setting of pancreatic cancer, early 

morphological depiction is crucial, but proper assessment of the actual malignant 

potential is nothing but necessary. 
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[The following paragraph contains material that has been already published – 

Palumbo et al, DOI: 10.3390/cancers13194938]. 

On that note, a significant example consists of the definition of resectable pancreatic 

adenocarcinoma (PDAC), which is indeed a highly debated issue. The different 

descriptions proposed over the years are mainly based on the extent of vascular 

involvement by the tumour (Zins et al, 2018), which is thought to be the most important 

factor possibly undermining technical feasibility of resection. According to the 2021 

NCCN (National Comprehensive Cancer Network) guidelines (Tempero et al, 2021), 

resectability status should be determined by a multidisciplinary team (comprising 

dedicated radiologists, surgeons and oncologists) that discusses findings on contrast 

enhanced CT scan and determines if the tumour is i) resectable, ii) borderline resectable, 

iii) locally advanced/unresectable or iv) metastatic pancreatic adenocarcinoma. 

Obviously, different resectability status reflects different scheduled approach and 

prognosis (Tempero et al, 2021). However, despite careful selection, approximately 

40% of patients undergoing upfront surgery are found to experience distant disease 

recurrence within 12 months from the index procedure (Petrelli et al, 2017), resulting in 

poor prognosis (Petrelli et al, 2017; Matsumoto et al, 2015). These data suggest that 

upfront surgery is not the best treatment approach for the vast majority of those patients 

currently being claimed as primary resectable, which could instead benefit from 

neoadjuvant chemotherapy (Lee et al, 2019; Barugola et al, 2009). There is indeed an 

urgent, unmet need to expand the concept of what is a pancreatic resectable tumour; 

along with anatomical definition criteria, some other clinical, pathological and 

biological features may help in identifying patients who would not benefit from upfront 

surgery, even when a radiological locally resectable disease is present. 

Other examples illustrating the importance of biological characterization over 

morphological depiction come from intraductal papillary mucinous neoplasms (IPMNs) 

and pancreatic neuroendocrine neoplasms (PanNENs). 

The former entity (IPMN), through a wide spectrum of dysplastic changes, is a well-

known precursor of PDAC but with no clear established progression-timing schedule 

(Crippa et al, 2016; Makohon-Moore et al, 2018). Given that the detection of IPMN in 

the early stage of carcinogenesis could provide a unique opportunity to perform curative 
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surgical treatment before full progression to invasive carcinoma, proper characterization 

of the malignant potential of each pancreatic IPMN is fundamental. Current guidelines 

identify high-risk stigmata and worrisome features as indications for surgical resection 

of IPMN (Tanaka et al, 2017). However, no reliable malignancy biomarker for IPMN 

with high-grade dysplasia is known (Crippa et al, 2022), and the overtreatment 

(surgery, with high morbidity [55.6% in a recent series published by our 

group]/mortality rate [> 2%] even in high-experienced centres (Aleotti et al, 2022; 

Capretti et al, 2018)) of benign IPMN remains a critical clinical issue, as well as under 

treatment (continuing follow-up in case of high-grade dysplasia/invasive carcinoma). 

Pancreatic neuroendocrine neoplasms (PanNENs) comprise instead a wide range of 

entities too, both histologically and macroscopically (Partelli et al, 2017b; Klimstra, 

2016). In this respect, histology is the only validated methodology currently available 

that allows tumor grading, distinguishing low grade (G1) from more aggressive 

(G2/G3) neoplasms, mainly based on Ki67 proliferative index, and to assess other 

biological characteristics important for prognostic assessment and treatment planning 

(follow-up vs. surgery, surgery vs. neoadjuvant treatment) (Pasaoglu et al, 2015). 

However, endoscopic ultrasound-guided fine-needle aspiration has limited accuracy in 

determining pathological characteristics (Rebours et al, 2015), so that reliable histology 

may be obtained only after surgery. On the other hand, preoperative macroscopic 

imaging features have been associated with the outcome of PanNENs, specifically size 

of the lesion > 2 cm (Partelli et al, 2017a), enhancement kinetics (Yano et al, 2017), 

presence of necrosis (Mapelli et al, 2022b), nodal involvement (Partelli et al, 2022) or 

distant metastases, but with inhomogeneous results. With regard to this last point, as 

pointed out by Partelli and colleagues in the setting of a multidisciplinary prospective 

trial, subjective assessment of nodal status in panNENs has poor sensitivity (26%, when 

dealing with CT) despite good (95%) specificity (Partelli et al, 2022). On the opposite, 

our group recently took a step forward a novel direction suggesting an intriguing 

explanation connecting, in non-functioning panNENs, microvessel density, radiological 

appearance in terms of HU values and biological behavior: in short, low microvessel 

density (assessed by CD34+ staining), corresponding to ipoenhancement in arterial 

phase, has been found to be associated with pathological features of aggressiveness 

(Battistella et al, 2022). However, there is still a long way to go before validating these 
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preliminary results.  

Thus, rationale exists for identifying novel tools able to provide non-invasive 

stratification of pancreatic neoplasms based on their biological behaviour and 

prognosis. 

Furthermore, another matter has to be taken into account when dealing with 

pancreatic cancer: even when a relatively early diagnosis is achieved, surgical treatment 

implies high mortality (up to 5% for pancreaticoduodenectomy even in highly-

experienced centres (Capretti et al, 2018)) and morbidity rates (Palumbo et al, 2021a), 

with inhomogeneous and, unfortunately, unpredictable oncologic outcomes (Petrelli et 

al, 2017). There is indeed an urgent need for identifying those patients who could 

actually benefit, in terms of disease free/overall survival and, hopefully, quality of life, 

from a surgical approach. On that note, it is worth noting that growing literature 

suggests that even early stage PDAC could benefit from a neoadjuvant treatment (Lee et 

al, 2019; Reni et al, 2018a; Reni et al, 2018b); the rationale of such an approach lays in 

the observation that recurrence occurs in almost 90% of these patients within two years 

after surgery, regardless of deployment of adjuvant chemotherapy (which instead 

lengthens the overall survival (Neoptolemos et al, 2017; Conroy et al, 2018)), implying 

that even early stage disease is, actually, a micro metastatic one. It follows that since 

most patients have (micro) metastatic disease at the time of diagnosis, primary surgery, 

only debulking the overall tumour cell burden, is less effective in providing disease 

control when compared to chemotherapy, which instead potentially prevents both local 

and distant tumour progression by reducing the number of neoplastic clones in their 

exponential growth stage (Haeno et al, 2012). Both AIOM (Associazione Italiana 

Oncologia Medica) and NCCN guidelines (Tempero et al, 2021) now include 

neoadjuvant chemotherapy (nCT) as a possible treatment option for resectable disease. 

However, several authors have recently claimed that neoadjuvant chemotherapy might 

impair the diagnostic accuracy of CT in the evaluation of tumour response mostly due 

to abundant desmoplastic reaction mimicking cancer growth (Cassinotto et al, 2014; 

Park et al, 2021). There are indeed no reliable criteria to assess treatment response of 

PDACs after nCT, ultimately undermining the chance for an optimal therapeutic path. 

Another side of the same issue (need for treatment response evaluation) heavily 

burden another cancer type: oesophageal neoplasms. 
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[The following paragraphs contain material that has been already published – 

Palumbo D. et al. “Imaging in evaluation of response to neo-adjuvant treatment. 

Ann Esophagus”. 2020 Dec]. 

The CROSS trial (van Hagen et al, 2012; Shapiro et al, 2015) demonstrated that 

preoperative administration of neoadjuvant chemoradiotherapy (nCRT) doubles the 

median overall survival of locally advanced oesophageal neoplasms in comparison to 

surgery alone. In the cohort of patients enrolled in this multicentre randomized clinical 

trial, the reported percentage of patients with a pathological complete response was 

29%; many authors suggest that this subgroup of patients do not benefit from additional 

surgery, also having regard to the fact that oesophageal resections are associated with 

substantial morbidity and postoperative mortality rates (D’Journo et al, 2021). On the 

other hand 18% of patients who underwent nCRT were deemed as being non-

responders; these patients do not benefit from nCRT and only suffer from its side 

effects. Early identification of tumour response/non response to nCRT could therefore 

enable tailored therapeutic plans, avoiding unnecessary treatment efforts and related 

adverse effects, with major impact on patients’ quality of life as well as health care 

costs (Palumbo et al, 2020). 

Thus, rationale also exists for identifying novel imaging biomarkers able to improve 

non-invasive early identification of tumour response. 

How can these two objectives be achieved? Histological characterization from 

bioptic samples represents current gold standard in clinical practice; however, bioptic 

procedures have some limitations, the main ones being their invasiveness (which limits 

their feasibility) and, above all, the fact that they cannot provide a reliable depiction of 

the entire tumour heterogeneity. Solutions exist. Radiomics is a novel tool consisting in 

extraction of quantitative data from medical images in order to develop predictive 

models relating imaging features to clinical outcomes (Lambin et al, 2017; Gillies et al, 

2016; Palumbo et al, 2020); interestingly, given that radiomic features are derived from 

volumes (rather than from samples), they are paradoxically more representative of the 

heterogeneity and characteristics of the entire lesion than histology itself. However, 

there are many challenges to be faced regarding translation of radiomics into clinical 

practice (Pinto Dos Santos et al, 2021; Spadarella et al, 2022); radiomics is a tricky 

multistep process, and within each step there are issues to exceed to ensure robustness 
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of model’s findings, while reproducibility and deployment are often impaired, as 

pointed out by Mori, Palumbo and colleagues in a recent review article questioning 

whether a role exists for radiomics in the setting of gastroesophageal junction 

adenocarcinoma (Mori et al, 2022). It follows that the implementation of a 

methodologically robust radiomic workflow should be the unavoidable basis for any 

further research. Moreover, combining few highly selected, highly robust radiomic 

features together with highly relevant clinical/radiological variables could be a game-

changing approach to fill the current translational gap undermining radiomics 

deployment. In this respect, our group has already published a number of manuscripts 

dealing with such methodological issues (a) reliance upon diverse imaging parameters 

(Mapelli et al, 2022), b) delineation uncertainty (Loi et al, 2020; Mori et al, 2019), c) 

intra/interscanner variability and d) need for clinical interpretation of selected radiomic 

features (Palumbo et al, 2021b)) and proposed a standardized, multidisciplinary 

workflow for features extraction, model development and clinical/biological 

interpretation of final results (Palumbo et al, 2021b). 

That said, another crucial point to be taken into account when looking for novel 

imaging biomarkers for i) prognosis stratification and/or ii) treatment response early 

assessment is a proper characterization of tumour microenvironment, which could 

represent an outstanding source of information for identifying carcinogenesis promoters 

as well as mechanisms of treatment resistance (Ho et al, 2020). On that note, imaging 

has unmatched advantages (over bioptic samples) to achieve this aim, since it allows 

simultaneous assessment of the index lesion together with its surrounding 

microenvironment as well as patients’ body composition, which account for a sort of a 

surrogate for metabolic compartments. Now, when referring to this last point our recent 

efforts were headed towards possible relationships between radiologically measured 

patients’ body composition and the occurrence of postoperative complications 

(Pecorelli et al, 2022; Guarneri et al, 2022); we are now shifting our focus on 

oncological outcomes, as will be explained in the next chapters of the present 

manuscript. 

Finally, a last challenge to be faced to answer both our research questions lies in the 

attempt to highlight the importance of dynamical change of the neoplastic environment 

in course of treatment over its stationary consideration (before or after the same 
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treatment); there is indeed an urgent need for adjusting conventional “single temporal 

frame” imaging to a more comprehensive one, in order to move alongside with 

currently available novel treatment possibilities. 

Accordingly, here we present five chapters, corresponding to five separate (yet 

firmly complemented) studies, thought to be embedded into a more comprehensive 

oncological framework in order to properly answer, from five different perspectives, to 

the abovementioned research questions. 
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AIM OF THE WORK 

Characterizing, non-invasively, biological aggressiveness of pancreatic/oesophageal 

neoplasms constitutes the major core of the present project; these two tumour types well 

illustrate, indeed, the importance of biological characterization over morphological 

depiction. Such major aim translates into two specific research questions: 

• How to non-invasively stratify pancreatic neoplasms (pancreatic 

adenocarcinoma, intraductal papillary mucinous neoplasm and pancreatic 

neuroendocrine neoplasm) based on their biological behaviour and prognosis? 

This first question stems from the observation that, irrespective of clinical stage, 

each pancreatic neoplasm subtype has itself a wide prognostic range 

corresponding to intra tumoural biological heterogeneity. Such assumption 

heavily struggles against currently used staging systems, mostly relying on 

macroscopic imaging findings and ultimately hampered by biological 

inconsistency. On that note, characterization of tumour microenvironment could 

be a game changer. 

• How to identify imaging biomarkers for early assessment of neoadjuvant 

treatment response for pancreatic adenocarcinoma and oesophageal cancer? This 

second question comes instead from the need for adjusting conventional “single 

temporal frame” imaging to a more comprehensive one, in order to move 

alongside with currently available novel treatment possibilities. To accomplish 

this specific aim it would be necessary to highlight the importance of dynamical 

change of the neoplastic environment in course of treatment over its stationary 

consideration (before or after the same treatment). 

Properly addressing both these questions could have significant clinical impact, since 

it could provide substantial aid in complementing current diagnostic workflow, 

ultimately improving patients’ therapeutic path. 
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Prediction of early distant recurrence in upfront resectable pancreatic 

adenocarcinoma: a multidisciplinary, machine learning-based 

approach. 

[The following chapter contains data that have been already published – Palumbo et al, DOI: 

10.3390/cancers13194938]. 

Materials and Methods 

Patients’ cohort 

This is a single-center retrospective study conducted at San Raffaele Scientific 

Institute (Milan, Italy); data were collected within the context of an Ethics Committee 

approved study (28/INT/2015) in patients who had signed an institutional procedure 

specific informed consent. From a prospectively acquired database, all consecutive 

patients with pancreatic adenocarcinoma who underwent upfront 

pancreaticoduodenectomy (PD) between January 2015 and December 2019 were 

identified (n = 652); within this database, patients who were evaluated with at least one 

multiphase, contrast-enhanced CT scan within 30 days before index surgery (n = 156) 

were enrolled into our study. Patients who died within 90 days after index surgery (n = 

7) were excluded from further analysis; moreover, two patients had no sufficient 

follow-up information and were also excluded. The resulting population (n = 147) was 

then randomly split into training (n = 94) and validation (n = 53) cohorts according to 

the second level of the TRIPOD guidelines for the validation of predictive models in 

oncology (Moons et al, 2015). A detailed flowchart of this study design (comprehensive 

of inclusion and exclusion criteria) is shown in Figure 1.  

Patients were finally divided into an early distant recurrence (EDR) group (disease 

free survival < 11 months) and a non-EDR group (disease free survival ≥ 11 months); 

the cut-off was in agreement with the median time to distant relapse observed in our 

cohort (11 months [IQR: 8 – 15.7]). 

Surgical technique, pathology protocol, adjuvant therapy and follow-up data 

collection 

A multidisciplinary team comprising radiologists, surgeons and oncologists 
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evaluated the included patients and had deemed all of them as upfront resectable 

according to the 2021 NCCN (National Comprehensive Cancer Network) guidelines 

(Tempero et al, 2021). 

Both pylorus preserving and Whipple PDs were performed by six surgeons with at 

least 10 years of experience in pancreatic surgery. All patients were treated according to 

the principles of the Enhanced Recovery After Surgery (Braga et al, 2014). 

After resection, pathologic tumor stage (according to the 8th edition of the American 

Joint Committee on Cancer staging system (van Roessell et al, 2018)), and disease 

grade were assessed. Perineural invasion was systematically described as present/absent 

and further classified according to the calibre and number of nerve trunks involved; 

lymphovascular invasion was also described. The number of metastatic lymph nodes 

and the ratio of positive to harvested lymph nodes were recorded. 

Adjuvant treatment was always considered when sufficient recovery within 12 weeks 

after resection was achieved. All the patients were monitored every three months, until 

death, via outpatient clinic visits, which included imaging studies and laboratory 

examinations. Once a follow-up imaging study showed the emergence of any distant 

lesion, the recurrence was confirmed. 
 

Clinical Variables 

Retrospective chart review was used to obtain information on demographics (gender, 

age, eventual comorbidities), duration of symptoms, laboratory findings and eventual 

use of adjuvant chemotherapy. Of note, in order to lower possible confounding factors 

(Ballehaninna & Chamberlain, 2012), CA 19.9 serum levels were recorded, as a 

continuous variable, after eventual endoscopic/angiographic palliation. 

 

Radiological Variables and Radiomic Features 

In patients who underwent multiple preoperative CT scan, the last examination 

closest to the date of surgery was used for review.	

CT protocol – All CT examinations were performed on multidetector CT scanners 

(scanner 1: SOMATOM Definition Flash Dual Source CT, Siemens Healthcare; scanner 

2: BRILLIANCE, Philips medical system). CT protocol included administration of 

intravenous iodine contrast medium (Iopromide, Ultravist 370 mg iodine/ml (Bayer 



	16	

HealthCare), 120 ml at a rate of 4 ml/s) and consisted of a multiphase acquisition 

(unenhanced, late arterial, portal venous and late axial scans of the abdomen). 

  

Conventional Image based parameters – CT findings were selected for analysis by 

two radiologists and two senior consultants pancreatic surgeons on the basis of their 

clinical experience; variables previously described in the literature were also considered 

(including those proposed by the Society of Abdominal Radiology and the American 

Pancreatic Association in their dedicated reporting template (Al-Hawary et al, 2014)). 

Readers with different experiences in abdominal CT imaging were selected for image 

review: specifically, two residents in their last year of training and one radiologist with 

10 years experience and a specific commitment in pancreatic imaging. They 

independently analysed all CT images, blinded to any pathological information. After 

image review completion, a consensus was established for each selected categorical CT 

finding. 

Lesion delineation on CT images – The robustness of CT radiomic features (RFs) 

against interobserver contouring variability was preliminarily assessed on a subgroup of 

29 patients by the same three readers. Then, two of these three reviewers contoured all 

tumour volumes on late arterial phase CT images, where tumour conspicuity was the 

most. Contours were transferred from the late arterial to the unenhanced images by 

means of a rigid registration, and then manually adjusted on the latter to correct minor 

anatomical discrepancies due to organ motion. Contouring was performed using the 

MIM Software (v. 6.8.2). 

Radiomic features extraction – SPAARC Pipeline for Automated Analysis and 

Radiomics Computing complying with the Image Biomarker Standardization Initiative 

(IBSI) (Zwanenburg et al, 2020) was used to process images for RF extraction. All 

images were resampled at 1 mm cubic voxels with a bilinear interpolation. This 

procedure was implemented to reduce directional bias when voxel sizes were not 

already isotropic to allow comparison between image data from different samples, 

cohorts or batches. This is essential to compare final results because many RFs are 

based on the sum of the entire number of voxels in the lesion. Image rebinning was also 
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necessary, not only to speed up the process of RF extraction, but also to limit noise: we 

chose 64 bins, as reported in literature (Benedetti et al, 2021). 

Subsequently, adjusted DICOM files were imported to MATLAB using the 

Computational Environment for Radiological Research. 182 RFs of first and higher 

order were extracted, belonging to the following families: Morphology, Statistical, 

Intensity Histogram, Grey Level Co-occurrence Matrix 3D_average (GLCM3D_avg), 

Grey Level Co-occurrence Matrix 3D_combined (GLCM3D_comb), Grey Level Run 

Length 3D_average (GLRL3D_avg), Grey Level Run Length 3D_combined 

(GLRL3D_comb), Grey Level Size Zone Matrix 3D, Neighbor Grey Tone Difference 

Matrix 3D (NGTDM3D), Grey Level Distance Zone Matrix 3D (GLDZM3D). Figure 2 

summarizes the radiomic workflow. 

 

Statistical analysis 

As previously stated, the original population was randomly split into training (n = 

94) and validation (n = 53) cohorts. According to the primary endpoint (EDR evaluated 

at 11 months), 25 “events” were recorded in the training cohort, making feasible to 

preferably include a maximum of three variables in the resulting multivariable models 

(Peduzzi et al, 1996). 

Variables redundancy elimination  – Since the large number of variables (clinical, 

pure radiologic and radiomic [n = 182]) considered, exceeding the number of patients, 

many variables were expected to be redundant, especially RFs owning to the same 

family. To limit the risk of redundancy, we applied a correlation-based filter: starting 

from the correlation matrix, a Spearman coefficient (S) threshold equal to 0.70 was 

arbitrarily fixed to select redundant (S > 0.70) and independent features (S < 0.70).  

Variables found to be independent were selected; differently, among the redundant 

variables, the ones with the best p values in univariate logistic regression were selected 

for further analysis (one for each group of correlated features). 

Inter reader agreement – The robustness of CT RF against interobserver contouring 

variability was assessed using intraclass correlation coefficient (ICC); ICCs higher than 

0.80 were considered to be in high agreement. RFs demonstrating an ICC < 0.80 were 

excluded from further analysis. 
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Multivariable model development – In order to assess the best combination of the 

previously selected clinical, radiologic and radiomic variables to predict the primary 

endpoint, a machine learning bootstrap-based method was used. Briefly, the training set, 

constituted by the original sample of variables selected, was bootstrapped 1000 times 

and a backward univariate logistic regression was run for each sample. The variables 

most significantly associated with the endpoint occurring in each sample were collected 

and ranked according to their frequency. Accordingly, three models were developed: a 

strictly radiomic model, a clinicoradiological model, and a combined model. For each 

model, the most frequent variables resulting from the bootstrap ranking procedure 

(taking those variables with p value < 0.05 in more than 500 cases on the 1000 

bootstrapped samples) were included in a backward multivariable logistic regression for 

the prediction of EDR. Finally, a maximum number of variables to be retained equal to 

three, based on the endpoint events’ number, was fixed. 

A prognostic index (P index) was derived for each model according to the following 

logistic regression formula in the training cohort and then tested in the validation group: 

P index =  !
!!!"# ! (⅀ (!!∗!!!∗𝑿!))                

Specifically, for each model the Bi coefficients are given applying the logistic 

regression to the training cohort, whereas Xi represents the values of predictors from 

each patient. 

Model performance assessment – To assess the ability of the P index in stratifying 

patients according to the risk of developing EDR, a cut off value was derived as the best 

criterion according to the maximum value of the Youden index of the corresponding 

ROC curve. The P index was then dichotomized as greater or smaller than the cut-off 

value; finally, the separation of the survival curves of the two groups was tested with a 

Kaplan-Meier test. The P index resulting from the training set was then tested in the 

validation cohort. The performances of the models were quantified in terms of: area 

under the ROC curve (AUC), positive and negative predictive values (PPV, NPV), 

specificity and sensitivity. Analyses were performed using homemade Matlab codes.  
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Results 

Patients’ characteristics 

Patients’ characteristics are summarized in Table 1. The median overall survival and 

progression-free survival were 20 (IQR: 15-28) and 15 (IQR: 10-22) months, 

respectively. 

85 patients out of 147 (57.8%) had a disease recurrence during the follow-up time 

period (median follow-up time: 19 months, [IQR: 14 - 32]). Distant recurrence (n = 76, 

51.7%) was the most frequent pattern of disease relapse. Considering distant 

recurrences alone, median time to relapse was 11 months (IQR: 8 – 15.7), which has 

been found, in agreement with previous literature (Petrelli et al, 2017; Yamamoto et al, 

2014), to be a consistent threshold value for distinguishing early and late distant 

recurrences; accordingly, 39 out of 147 patients (26.5%) included in the final cohort had 

EDR. 

Between training and validation cohorts, no significant differences were found in 

terms of EDR rate (26.5% vs. 26.3%, p = 0.54). No differences were observed when 

considering both clinical and radiological variables, nor pathological data, except for 

lymphovascular invasion (93.6% vs. 76.8%, p = 0.015). Adjuvant treatment was 

implemented in 73% (n = 69) and 73.2% (n = 39) of patients after surgery, respectively 

per cohort. No significant differences were found in terms of EDR rate between those 

patients who underwent adjuvant treatment and those who did not (25.7% vs. 30.2%, p 

= 0.197); however, a statistical trend (p = 0.068) in favour of adjuvant treatment exists 

when considering overall disease free survival (16 months [IQR: 10.5 – 27] vs. 14 

months [IQR: 9 – 22]). 

Between EDR and non-EDR groups no statistically significant differences exist in 

terms of R status (R0 vs. R1) (52.2% vs. 42.2%, p = 0.185) and lymphovascular 

invasion (94.8% vs. 88.5%, p = 0.346); EDR group patients had higher lymph node 

ratio (0.23±0.18 vs. 0.14±0.13, p = 0.003). 

 

Variables Selection 
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Of the 182 radiomic features extracted, those with ICC values higher than 0.80 

(89/182, 48.9%) were considered for analysis. After further selection to limit the risk of 

redundancy 23 variables were retained and tested. Thereafter, the machine-learning 

bootstrap-ranking procedure identified the 10 most frequent variables: eight radiomic 

features (3 morphologic, 4 texture related and 1 statistical features) and two 

clinicoradiological variables. The details of the selected features are shown in Figure 3. 

 

Training and Validation of the Radiomic Model 

Amongst the eight most frequent RFs resulting from machine-learning bootstrap-

ranking procedure, only Surface to Volume ratio was retained in the final model (p = 

0.0097, AUC = 0.59), with a strong inverse relation (coefficient: - 3.82) to the primary 

endpoint considered. After calculating the corresponding P index, the model was 

confirmed in the validation cohort (p = 0.0244, AUC = 0.73). Further details are 

provided in Table 2. Corresponding ROC curves and Kaplan-Meier survival curves 

based on the P index best threshold are shown in Figure 4. With regard to this last point, 

the radiomic model demonstrated an overall good performance in stratifying the risk of 

EDR after upfront surgery (training cohort: HR = 2.05, 95% CI = 1.03 – 4.09; 

validation cohort: HR = 2.84, 95% CI = 1.12 – 7.21). 

 

Training and Validation of the Clinicoradiological Model 

Both the most frequent clinicoradiological variables resulting from machine-learning 

bootstrap-ranking procedure (presence of tumour necrosis at preoperative CT imaging, 

and CA 19.9 serum levels) were retained in the final model (p = 0.0018, AUC = 0.72). 

However, after computation of the corresponding P index, the model was not confirmed 

in the validation cohort (p = 0.9529, AUC = 0.54). Further details are provided in Table 

2. Corresponding ROC curves and Kaplan-Meier survival curves based on the P index 

best threshold are shown in Figure 5: the clinicoradiological model failed to predict 

EDR in the validation set. 

 

Training and Validation of the Combined Model 

The variables retained in this model were found to be the same as those in the 

separate models: Surface to Volume ratio, presence of tumour necrosis at preoperative 
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CT imaging and CA 19.9 serum levels. The model developed in the training cohort 

demonstrated good overall performance (p = 0.0015, AUC = 0.75). After calculating the 

corresponding P index, the model was confirmed in the validation cohort (p = 0.00178, 

AUC = 0.76). Further details are provided in Table 2. Corresponding ROC curves and 

Kaplan-Meier survival curves based on the P index best threshold are shown in Figure 

6. The combined model demonstrated an excellent performance in stratifying the risk of 

distant relapse, especially in the first months after upfront surgery (training cohort: HR 

= 3.58, 95% CI = 1.91 – 6.71; validation cohort: HR = 5.06, 95% CI = 1.75 – 14.58): at 

12 months after surgery 50% of high risk patients experienced distant relapse of disease 

vs. 12% of low risk patients (p < 0.001).  
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Discussion 

There is growing literature demonstrating the efficacy of neoadjuvant chemotherapy 

in patients with resectable pancreatic ductal adenocarcinoma (Lee et al, 2019; Reni et 

al, 2018a; Reni et al, 2018b); whether all these patients should receive preoperative 

chemotherapy remains, though, controversial. The main issue is that, currently, there is 

no clinically relevant tool able to accurately stratify patients in terms of early distant 

relapse (EDR) after upfront surgery. Previously proposed models have limited clinical 

utility mainly because they consist of pathologic data obtained after surgery and 

therefore are not applicable in a preoperative setting (Groot et al, 2018; Kudo et al, 

2020; Strijker et al, 2019); another major limitation is the poor, inhomogeneous 

selection of the study cohorts (Kim et al, 2020; Eilaghi et al, 2017). In the present study 

we sought to develop a preoperative model to help identify patients with increased risk 

of EDR after upfront surgery for pancreatic head adenocarcinoma. To facilitate its use 

in a clinical setting, only three variables were retained in the final, internally validated 

combined model: one radiomic feature (Surface to Volume ratio), one conventional 

radiological variable (presence of tumour necrosis at preoperative CT imaging), and one 

clinical variable (CA 19.9 serum levels). According to these three variables, a 

prognostic index can easily be derived for each patient, being a surrogate for the risk of 

developing EDR after primary surgery. Of note, the combined model outperformed the 

separate ones (radiomic and clinicoradiological) in terms of i) overall performance, ii) 

robustness and reproducibility, and, above all, iii) outcome prediction. 

Literature has widely described the importance of both radiological tumour necrosis 

and CA 19.9 serum levels in outlying the biological behaviour of pancreatic 

adenocarcinomas regardless of anatomical resectability. Kudo and colleagues, for 

instance, identified a worthwhile relation between radiological tumour necrosis and 

pathological lymph node metastasis and lymphovascular invasion, strongly affecting 

overall prognosis (Kudo et al, 2020). On the other hand, CA 19.9 serum levels have 

been reported to well correlate with disease burden, even besides what imaging can 

show (Petrelli et al, 2017). Our results corroborate this evidence. In our cohort, CA 19.9 

serum levels have been found to be the most informative clinical predictor of EDR after 

primary surgery (35 U/mL [non-EDR group] vs. 106 U/mL [EDR group], p < 0.001). 
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On the contrary, the biological significance of the radiomic feature finally retained in 

our model, Surface to Volume ratio, has not been investigated. It belongs to the 

morphological family of the radiomic features, summing up the relationship between 

the surface area of a given object and its volume. Our data highlighted a strong inverse 

relation between this neoplastic feature and the occurrence of EDR after upfront 

surgery: in short, adenocarcinomas with low Surface to Volume ratio values were more 

prone to early relapse after primary surgery. With regard to this last point, one may 

argue that the assumption that a round shaped tumour with smooth contours (the 

geometrical object lowering at most Surface to Volume ratio is a sphere) should have a 

worse prognosis when compared to an ill-defined one is, at least, counterintuitive. In 

this respect, three reflections have to be done. 

1. Limkin and colleagues (Limkin et al, 2019) demonstrated that the 

major determinant of Surface to Volume ratio is volume, and therefore it 

should not be considered as an immediate surrogate for tumour 

complexity, but rather as a precise tool for dimensional assessment. 

However, in our cohort, Surface to Volume ratio has been proven to be 

an extraordinary predictor of EDR, exceeding the other dimension-

related variables considered. It follows that Surface to Volume ratio 

accounts for more information than raw dimensional data do. 

2. According to Bribiesca, for similar values of volume, Surface to 

Volume ratio could be considered an indirect expression of geometrical 

compactness (Bribiesca, 2000). Based on our own data, a compact 

pancreatic tumour (low Surface to Volume ratio) has to be considered at 

high risk of EDR. Mori and colleagues, while developing a PET 

(positron emission tomography)-based radiomic signature to predict 

distant relapse free survival in patients with locally advanced pancreatic 

adenocarcinoma, identified a radiomic feature (Centre of Mass shift), 

which represents the distance between the geometrical and the metabolic 

centroids of a given object: the smaller the shift, the more homogeneous 

the uptake of the contoured lesion and, ultimately, the higher its 

compactness (Mori et al, 2020). The authors found that low values of 

Centre of Mass shift contributed to worse prognosis, which is in line with 
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our results. 

3. From a biological point of view, Surface to Volume ratio could be 

considered the major determinant of cell size, since a low ratio may 

undermine the rate of chemical exchange, resulting in cell death (Harris 

& Theriot, 2018). Moving to tumour perspective, a low Surface to 

Volume ratio implies impaired vascularization, possibly resulting in 

tumour hypoxia and necrosis.  

Taken together, these observations allow considering Surface to Volume ratio far 

more than just a mere morphological feature, and give a novel insight into pancreatic 

tumour biological behaviour. 

However, one may question which is the contribution of Surface to Volume ratio to 

the overall performance of our combined model. The prognostic index computed from 

the combined model allowed optimal dichotomization of the validation cohort with 50% 

of high risk patients experiencing distant relapse of disease within 11 months after 

surgery vs. 12% of low risk patients (p < 0.001). Interestingly, this result was obtained 

by including a single, extremely robust radiomic feature with a strong biological 

rationale selected throughout a highly reliable methodological approach. Our approach, 

hence, differs substantially from previously reported, similar studies (Eilaghi et al, 

2017; Abunahel et al, 2021; Xie et al, 2020) relying instead on several radiomic 

features ultimately impairing the actual deployment of the resulting models in clinics. 

Straightforwardness, robustness and reproducibility are, on the contrary, key features of 

the combined model we propose, which is, moreover, entirely presurgical. 

Clinically, our data suggest that those upfront resectable patients thought to be at 

high risk of EDR according to our combined model should be scheduled to neoadjuvant 

treatment; on the other hand, low risk patients might be considered a highly selected 

group possibly suitable for primary resection. 

The present study has several limitations, the most important being its retrospective 

nature and the relatively small number of events observed. External validation is also 

warranted. Furthermore, our model has been thought not for a standalone usage but 

rather to be embedded in the multidisciplinary assessment of the patient, which remains 
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the absolute cornerstone in the battleground against pancreatic adenocarcinoma. 

In conclusion, despite the abovementioned limitations, we have developed a robust, 

entirely preoperative tool to predict early distant relapse of disease after upfront 

surgery. This model redefines resectability status and provides a personalized tool for 

patients’ management, identifying those upfront resectable patients at high risk of early 

recurrence who would benefit from neoadjuvant chemotherapy, as well as those at low 

risk, which may represent a highly selected group potentially suitable for primary 

resection. Independent validations of the model are warranted to further corroborate its 

validity.  
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        TOTAL (n=147)  TRAINING 
(n=94) 

VALIDATION 
(n=53) 

p-
value 

C
L

IN
IC

A
L  V

A
R

IA
B

LES 

Age at diagnosis 
(year)* 69.94 (44-88) 70.06 (43-87) 69.73 (43-88) 0.84 

Sex    0.13 

 Female 61 (41.6%) 35 (37.6%) 27 (50.5%)  

 Male 86 (58.4%) 59 (63.4%) 26 (49.5%)  
CA 19.9 (U/mL)* 40 (14-150) 48.5 (13.25-191) 35 (14.5 - 77.5) 0.21 

CA 19.9    0.15 

 <200 U/ml 111 (75.6%) 69 (73.4%) 42 (78.6%)  

 ≥200 U/ml 36 (24.4%) 25 (26.6%) 11 (20.8%)  
Adjuvant Treatment 111 (75%) 69 (73.2%) 42 (78.6%) 0.38 

 
Adjuvant 

Chemotherapy 107 (73.0%) 68 (73.0%) 39 (73.2%) 0.45 

 
Adjuvant 

Radiotherapy 31 (21%) 21 (22.3%) 10 (19.6%) 0.11 

PA
T

H
O

L
O

G
IC

A
L D

A
TA 

Tumor Size (mm)^ 27.33 (+/- 0.78) 28.36 (+/- 0.97) 25.48 (+/- 1.29) 0.78 
Final R status    0.08 

 R1 65 (44.2%) 44 (46.8%) 21 (39.6%)  
 R0 82 (55.8%) 50 (53.2%) 32 (60.4%)  
Lymph-vascular 

Invasion 129 (87.8%) 88 (93.6%) 41 (76.8%) 0.015 

Perineural Invasion 130 (87.1%) 86 (91.4%) 44 (82.1%) 0.06 
Peripancreatic Fat 

Invasion 135 (91%) 92 (97.8%) 43 (80.3%) 0.72 

Grading    0.42 

 G1 3 (2.0%) 3 (3.1%) 0 (0%)  
 G2 66 (45.0%) 45 (47.8%) 26 (48.2%)  
 G3 78 (53.0%) 46 (49.1%) 27 (51.8%)  

TNM     

 T    0.75 

 T1 34 (22.7%) 20 (20.3%) 14 (26.8%)  
 T2 102 (69.2%) 68 (72.3%) 34 (64.3%)  
 T3 11 (7.7%) 7 (7.4%) 5 (8.9%)  
 N    0.065 

 N0 23 (16.1%) 15 (15.0%) 9 (17.8%)  
 N1 50 (33.9%) 26 (27.6%) 24 (44.6%)  
 N2 74 (50%) 54 (57.4%) 20 (37.5%)  

Lymphnode Ratio* 0.136 (0.04 - 0.25) 0.16 (0.06-0.26) 0.10 (0.03-0.2) 0.11 

 D
A

TA
 

R
A

D
IO

L
O

G
IC

A
L

  

Dimension (mm)^ 24.5 (+/- 7.2) 25.79 (+/- 6.8) 23.23 (+/- 7.8) 0.07 

Necrosis    0.34 

 Present 27 (18.2%) 18 (19.1%) 9 (16.9%)  
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        TOTAL (n=147)  TRAINING 
(n=94) 

VALIDATION 
(n=53) 

p-
value 

 Absent 120 (81.6%) 76 (85.2%) 44 (83.0%)  
Hypodense on 

pancreatic phase 116 (74.4%) 77 (81.9%) 39 (73.5%) 0.48 

Hypodense on 
venous phase 93 (57.1%) 91 (96.8%) 2 (3.5%) 0.50 

Isodense on 
pancreatic phase 23 (21.8%) 21 (23.4%) 2 (3.5%) 0.58 

V
A

R
IA

B
LES O

U
T

C
O

M
E  

Early distant 
recurrence (EDR)    0.54 

 EDR 39 (25.6%) 25 (26.5%) 14 (26.3%)  

 non-EDR 108 (74.4%) 69 (73.5%) 39 (73.7%)  
Time to recurrence 

(months)* 15 (10 - 22) 15 (9 - 22) 16 (11 - 26) 0.55 

Overall survival 
(months)* 20 (15-28) 20 (15-28) 20 (16-28.5) 0.98 

Length of follow-up 
(months)* 19 (14 - 27) 19 (14 - 27) 19.5 (13.25 - 27.75) 0.94 

 
Unless otherwise indicated, data are numbers of patients and data in parentheses are percentages. p values were 
determined by comparing characteristics between patients of Training and Validation cohort. 
 
*Data are medians, data in parentheses are ranges 
^ Data are means with standard deviations 
 

TABLE #1: Patients’ characteristics. Palumbo et al, DOI: 10.3390/cancers13194938 
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Table #2: Overall performance in both training and validation cohorts of radiomic, 
clinicoradiological and combined models quantified in terms of area under the ROC curve 
(AUC), positive and negative predictive values, specificity and sensitivity. Palumbo et al, DOI: 
10.3390/cancers13194938  
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Figure #1: Inclusion and exclusion criteria flowchart. Palumbo et al, DOI: 
10.3390/cancers13194938  

   

207 (31.7%) patients 
suffering from pathologies 

other than pancreatic 
adenocarcinoma

652 consecutive patients 
who underwent 

pancreaticoduodenectomy
(PD) from 01/2015 to 12/2019

445 (68.3%) PD for 
pancreatic 

adenocarcinoma (PDAC)

283 (43.5%) upfront 
resectable patients 

176 (26.8%) upfront 
resectable patients with 

adequate imaging

156 (23.7%) CT studies fit 
for radiomic analysis 

147 (22.3%) patients
included in the final 
retrospective cohort

Training
(n=94)

Validation
(n=53)

162 (24.8%) excluded 
(neoadjuvant treatment)

107 (16.7%) patients without 
adequate presurgical CT 

imaging

20 (3.1%) excluded (poor 
conspicuity of the lesion)

9 (1.4%) excluded 
(perioperative death [n=7] 
and/or missing follow-up 

[n=2])
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.

 

Figure #2: Radiomic workflow for features extraction and models development. Modified from 
Palumbo et al, DOI: 10.3390/cancers13194938. 

 

 

Figure #3: 10 most frequent variables identified through machine-learning bootstrap-ranking 
procedure: eight radiomic features (3 morphologic, 4 texture related and 1 statistical features) 
and two clinicoradiological variables (radiological tumour necrosis, serum level of CA19.9). 
Palumbo et al, DOI: 10.3390/cancers13194938.  

COMBINED with GRADE 
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0.1490 to 0.5241 0.06860 to 0.5704 

Table 3: Hazard Ratio from Kaplan Meier analysis, Training and validation. 
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Figure #4: Radiomic model overall performance in terms of [a] area under the ROC curve 
(AUC) for both training (red empty circles) and validation (red filled squares) cohorts, and 
outcome prediction in terms of Kaplan Meier curve separation between low and high-risk 
patients according to the computed prognostic index in both cohorts. Palumbo et al, DOI: 
10.3390/cancers13194938 

 

Figure #5: Clinicoradiological model overall performance in terms of [a] area under the ROC 
curve (AUC) for both training (green empty circles) and validation (green filled squares) 
cohorts, and outcome prediction in terms of Kaplan Meier curve separation between low and 
high-risk patients according to the computed prognostic index in both cohorts. Palumbo et al, 
DOI: 10.3390/cancers13194938 

 

Figure #6: Combined model overall performance in terms of [a] area under the ROC curve 
(AUC) for both training (blue empty circles) and validation (blue filled squares) cohorts, and 
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outcome prediction in terms of Kaplan Meier curve separation between low and high-risk 
patients according to the computed prognostic index in both cohorts. Palumbo et al, DOI: 
10.3390/cancers13194938 
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Identification and biological significance of a novel radiological 

biomarker for IPMN with high-grade dysplasia/invasive carcinoma. 

Materials and Methods 
Patients’ cohort 

This is a single center prospective observational study conducted at San Raffaele 

Scientific Institute (Milan, Italy), part of a broader investigation funded by minister of 

health (Ricerca Finalizzata Giovani Ricercatori (2018) GR-2018-12366897 – 

“Definition of radiological and endocrine/metabolic/inflammatory biomarker(s) to 

identify high grade dysplasia/invasive carcinoma in patients with IPMN of the 

pancreas”); data were collected after Ethics Committee approval. 

Between July 2020 and November 2021, 48 adult patients (Charlson comorbidity 

index < 7) scheduled for surgical resection for suspected IPMN (based on current major 

guidelines) were prospectively enrolled into our study. 

Within 60 days before index surgery all patients underwent magnetic resonance 

cholangiopancreatography (MRCP) with a dedicated protocol (including mDixon Quant 

Fat FRACTION sequences for liver and pancreatic fat content quantification) and/or 

contrast-enhanced CT scan of the abdomen. 

In order to better characterize the endocrine, metabolic and inflammatory 

microenvironment of IPMN, samples from peripheral and portal vein blood, as well as 

from neoplasm cystic fluid have been systematically collected during surgery; in 

particular: (i) 20 ml of fasting peripheral blood samples, collected immediately after the 

induction of general anaesthesia; ii) 20 ml of portal blood, taken from a collateral vein 

of portal vein, specifically splenic vein for distal pancreatectomy, superior pancreatic 

vein for pancreaticoduodenectomy (4 patients didn’t undergo portal blood sampling due 

to portal vein thrombosis; 27 patients had portal blood samples < 20 ml, so they only 

underwent Luminex®/ELISA analyses); iii) neoplasm cystic fluid, collected within an 

hour after the completion of pancreatic resection from a dedicated pancreatic 

pathologist (we were unable to obtain samples from 13 patients because of mainly solid 

lesions). The aforementioned samples were used to evaluate the levels of 

cytokines/chemokines, apolipoproteins, adipokines, hormones, and other biochemical 
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parameters related to inflammation and lipid metabolism, in order to assess eventual 

correlations with pathology. 

Finally, after surgery, all these (radiological, biological) data were systematically 

correlated with the pathological outcome. 

 

MR/CT protocol and imaging findings 

When considered of unsatisfactory quality, imaging procedures were repeated at our 

site upon request. MR examinations were all performed with a 1.5 T scanner (Ingenia, 

Philips Medical Systems – Best, The Netherlands) with an eight-channel phased-array 

torso coil; imaging protocol has been previously published (Crippa et al, 2022). To 

reduce hyperintense signal from fluid-filled stomach and duodenum, a negative oral 

contrast agent (high manganese content agents – pineapple or blueberry juice) was 

administered before acquisition. CT protocol included intravenous administration of 

iodine contrast medium and consisted of a multiphase acquisition (unenhanced, late 

arterial and portal venous axial scans of the abdomen). 

Two radiologists with a particular commitment for pancreatic imaging reviewed all 

images; inter reader agreement has been systematically assessed for each one of the 

selected findings using Fleiss’ kappa (categorical variables) and intraclass correlation 

coefficient (ICC) (continuous variables). Imaging findings were selected for analysis on 

the basis of clinical experience and existing literature; aside from worrisome features (i) 

cyst > 3 cm, ii) enhancing mural nodule < 5 mm, iii) thickened/enhancing cyst walls, iv) 

main pancreatic duct [MPD] calibre between 5 and 9 mm, v) abrupt change in MPD 

calibre with distal parenchymal atrophy, vi) lymphadenopathies) and high-risk stigmata 

(i) enhancing mural nodule > 5 mm, ii) MPD calibre > 10 mm) (Tanaka et al, 2017), the 

following findings were also considered: i) peripancreatic oedema/fat 

stranding,(evaluated on fat saturated T2-weighted images), ii) pancreatic/liver fat 

content (measured on mDixon Quant Fat FRACTION sequences by sampling and then 

averaging three standardized regions of interest at the level of V, VI e VIII liver 

segment [for liver assessment] and three standardized regions of interest at the level of 

pancreatic head, body and tail [for pancreatic assessment]). 

CT imaging post-processing analysis – Two sets of analysis have been 

systematically carried on for all patients who underwent CT imaging: 
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• Body composition assessment (SliceOmatic version 5.0, Tomovision): an 

axial CT image at the level of the third lumbar vertebra (L3) was processed for 

each patient, as per previous literature (Pecorelli et al, 2022; Guarneri et al, 

2022). Total abdominal muscle area (TAMA) (cm2), then normalized with 

respect to stature and rationalized for sex (sarcopenia was defined for TAMA 

values lower than 52.4 and 38.5 cm2/m2 in males and females, respectively), 

visceral fat area (VFA) (cm2) and subcutaneous fat area (SFA) (cm2) were 

systematically calculated. The VFA/TAMA and VFA/SFA ratios were 

calculated for each patient and analysed independently. 

• Volumetric assessment of IPMN (cystic and solid component) and 

residual pancreatic parenchyma (Intellispace version 8.0, Phillips, “tumour 

tracking” tool). 

 

Statistical analysis [The following paragraph contains material that has been 

already published – Palumbo et al, DOI: 10.1007/s00330-021-07788-y] 

The reliability of agreement has been assessed for each one of the selected imaging 

findings using Fleiss’ kappa for categorical features and intraclass correlation 

coefficient (ICC) for continuous variables. Fleiss’ kappa values > 0.80 were deemed to 

be excellent; ICCs > 0.75 were considered to be in high agreement.  

The association of any finding with different degrees of dysplasia was studied 

univariably. Categorical parameters were compared using the χ2 test, whereas Student’s 

t and the Mann–Whitney U tests were used to compare groups with and without high-

grade dysplasia/invasive carcinoma, for parametric and non-parametric continuous 

variables, respectively. The relationship between continuous variables was assessed by 

Spearman bivariate correlation. 

Statistical analysis was performed using commercially available software (SPSS 

version 21.0, IBM Corp.). A p-value < 0.05 was considered statistically significant. 
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Results 

Patients’ characteristics 

After exclusions, a total of 48 patients with suspected IPMN candidate for resection 

(20 females [41.7%], with a median age of 69 years [IQR: 59-74]) have been enrolled 

into this prospective study. 

All patients underwent major surgical procedures: 20 distal pancreatectomies 

(41.7%), 20 pancreaticoduodenectomies (41.7%), 8 total pancreatectomies (16.6%).  

After surgical resection, definitive histological examinations were as follows: 35 

IPMN (72.9%) (12 with low dysplasia [34.2%]; 8 with moderate dysplasia [22.8%]; 15 

with severe dysplasia/invasive carcinoma [42.8%]); one PDAC without any IPMN 

component (2%), 12 other (25%).  

 

Imaging findings 

Within 60 days before index surgery, 43 patients (89.5%) underwent MRCP (5 

patients suffered from claustrophobia and cannot complete scheduled examination), 42 

(87.5%) contrast enhanced CT (6 patients had a history of allergic reactions to iodinated 

contrast medium), 37 (77%) both.  

Worrisome features (WF)/High-risk stigmata (HRS) – Data regarding WF/HRS are 

summarized in Table 4. Presence of an enhancing mural nodule ≥ 5 mm at CT (p = 

0.015), and MR evidence of abrupt main pancreatic duct calibre change with distal 

pancreatic atrophy (p = 0.012) as well as thickened/enhancing cyst walls (p = 0.002) 

were more common in IPMN patients with high-grade dysplasia/invasive carcinoma 

when compared to those with low/moderate-grade dysplasia. Moreover, a trend towards 

statistical significance exists when considering MR evidence of main pancreatic duct ≥ 

10 mm (p = 0.052). 

Diagnostic performance of contrast enhanced CT and MRCP for predicting 

malignant potential of IPMNs – When defining malignant IPMN with a total score of 

three WF with or without at lest one HRS (such combination represents indeed the best 

threshold to differentiate, in our cohort, between patients with low/moderate-grade 

dysplasia and those with high-grade dysplasia/invasive carcinoma), the sensitivity and 

specificity were 83.3% [95%CI: 51.6-97.9] (10 of 15) and 78.3% [95%CI: 56.3-92.5] 

(18 of 20) with CT, respectively, and 85.7% [95%CI: 57.2-98.2] (12 of 15) and 85.7% 
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[95%CI: 63.6-96.9] (18 of 20) with contrast enhanced MRCP, respectively. Of note, the 

diagnostic performance of CT and MR were similar in recognizing WF/HRS (area 

under the curve, 0.79 and 0.85, respectively; p = 0.232). 

Interobserver agreement – All HRS/WF had moderate to good interobserver 

agreement at both CT and MRCP (qualitative variables: k = 0.55–0.82; quantitative 

variables: ICC = 0.68–0.83) except for the presence of thickened/enhancing cyst walls, 

which showed poor interobserver agreement for both modalities (k = 0.28 for CT, k = 

0.39 and MRCP). Of note, the interobserver agreement for the presence of 

thickened/enhancing cyst walls at MR significantly improved using subtracted images 

(k = 0.72). 

Intermodality agreement – Between contrast enhanced CT and MRCP, agreement 

was excellent for both HRS and WF (k = 0.81–0.95) except for cyst dimension > 4 cm, 

main pancreatic duct size ≥ 10 mm, lymphadenopathies and the presence of 

thickened/enhancing cyst walls, which showed fair to good agreement (k = 0.55, 0.39, 

0.39 and 0.35, respectively). 

 

CT imaging post processing 

Body composition assessment – Based upon previously validated thresholds, 33 out 

of 42 patients (78.6%) who underwent preoperative CT were found to be sarcopenic; no 

significant differences were found, in terms of sarcopenia distribution, between IPMN 

patients with different degree of dysplasia (p = 0.348). Differently, VFA/TAMA 

showed a trend towards statistical significance (p = 0.058) in differentiating patients 

with low/moderate-grade dysplasia and those with high-grade dysplasia/invasive 

carcinoma; specifically, sarcopenic obesity (high VFA/TAMA values) was found to be 

more frequent in the latter group. 

“Volumetric” assessment – No statistically significant differences were found 

between IPMN patients with different degree of dysplasia when considering median 

volume of cystic disease (5.29 cc [1.87–24.03]) (p = 0.542), median volume of 

uninvolved pancreatic parenchyma (33.74 cc [21.99-61.00]) (p = 0.180), nor, when 

present, median volume of solid disease (2.72 cc [0.77-6.00]) (p = 0.378). 
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Fat content assessment (measured by mDixon Quant Fat FRACTION sequences) 

Mean liver fat content was 4.27% ± 5.27; mean pancreatic fat content was 11.04% ± 

10.44. Of note, when dealing with histologically proven IPMN, pancreatic fat content 

(as measured by mDixon Quant Fat FRACTION sequences) was proven to be 

significantly higher in those patients with high-grade dysplasia/invasive carcinoma 

(15.65% ± 13.8) when compared to low/moderate-grade dysplasia (6.86% ± 4.95) (p = 

0.023). Furthermore, pancreatic fat fraction was found to be directly related to MCP 

(monocyte chemoattractant protein)-1 levels in peripheral blood (R = 0.628, p < 0.001); 

a trend towards statistical significance also exists when considering MCP-1 levels in 

cystic fluid (R = 0.418, p = 0.075). Preliminary results from the biological pillar of the 

same study pointed out a statistically significant association between MCP-1 levels in 

cystic fluid and IPMN with high-grade dysplasia/invasive carcinoma (p = 0.0077), as 

shown in Figure 7. Finally, differently from liver fat content which was significantly 

related to apolipoprotein-A1 levels in portal vein blood (R = 0.584, p < 0.001), 

pancreatic fat fraction showed no correlation with any apolipoprotein (in any biological 

compartment). 
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Discussion 

Up to 40% of patients undergoing abdominal imaging harbour unsuspected 

pancreatic cysts, mostly intraductal papillary mucinous neoplasms (IPMN), which are 

well-known precursors of pancreatic ductal adenocarcinoma (PDAC) but without an 

established temporal window of progression (Gardner et al, 2013; Overbeek et al, 

2022). Current guidelines identify high-risk stigmata (HRS)/absolute criteria and 

worrisome features (WF)/relative criteria as indications for surgical resection of IPMN 

(Tanaka et al, 2017). However, no reliable malignancy biomarker for IPMN with high-

grade dysplasia is known (Crippa et al, 2022), and the overtreatment (surgery, with 

high morbidity/mortality rate (Aleotti et al, 2022; Capretti et al, 2018)) of benign IPMN 

remains a critical clinical issue, as well as under treatment. Accordingly, our aim was to 

identify preoperative radiological biomarker(s) to distinguish low- versus high-risk 

IPMN for cancer progression.  

As main result of our investigation, we found that the pancreatic fat content 

(measured by mDixon Quant Fat FRACTION sequences) is significantly higher in 

IPMN patients with high-grade dysplasia/invasive carcinoma when compared to those 

with low/moderate-grade dysplasia. 

In this respect, there is literature suggesting a role for severe obesity (BMI [Body 

Mass Index] ≥ 35 kg/m2) in increasing the frequency of malignancy in patients with 

branch duct (BD)-IPMN (Mathur et al, 2009; Capurso et al, 2020). However, a major 

issue undermines these studies, since BMI cannot provide a reliable depiction of each 

metabolic compartment; specifically, it cannot differentiate whether fat accrual occurs 

subcutaneously, in the visceral adipose tissue, or instead within liver/pancreatic 

parenchyma. On that note, our data highlight the importance of a very specific type of 

obesity characterized by subtle systemic inflammation (sarcopenic obesity (Pecorelli et 

al, 2022; Guarneri et al, 2022)), which seems to be prevalent among IPMN patients 

with high-grade dysplasia/invasive carcinoma. In this setting, pancreatic fat 

accumulation could be a mere consequence of such metabolic dysregulation; however, 

two points have to be taken into account. 

• Our results demonstrate a strong direct correlation between 

pancreatic fat content measured by mDixon Quant Fat FRACTION 

sequences and MCP (monocyte chemoattractant protein)-1 levels in 
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peripheral blood (p < 0.001); a trend towards statistical significance also 

exists when considering MCP-1 levels in cystic fluid (p = 0.075). MCP-1 

(also known as CCL2 [CC chemokine ligand 2]) is a small chemokine 

whose expression by pancreatic cancer cells is up regulated by pro 

inflammatory cytokines (it can be considered a sort of pancreatic cancer 

marker), resulting in the recruitment of leukocytes at the level of the 

tumour microenvironment (Gu et al, 2021). On that note, Monti and 

colleagues (Monti et al, 2003) found that serum MCP-1 levels positively 

correlate with tumour macrophage infiltration. Of note, macrophages 

have complex interactions with neoplastic cells, frequently displaying a 

mixed polarization state. On the one side, M1 macrophages are known to 

inhibit neoplastic growth; on the other, M2 macrophages produce 

lymphangiogenic growth factors and proteases, thus promoting digestion 

of extracellular matrix and, ultimately, neoplastic progression. Moreover, 

preliminary results from the biological pillar of our study pointed out a 

statistically significant association between MCP-1 levels in cystic fluid 

and IPMN with high-grade dysplasia/invasive carcinoma. 

• Our data also point out a striking, somehow surprising difference 

between liver steatosis and pancreatic fat storage, two entities brought 

together by a similar imaging appearance. Differently from liver fat 

content, which was found to be (as expected) significantly related to 

apolipoprotein-A1 levels in portal vein blood (p < 0.001) (Karavia et al, 

2012), pancreatic fat fraction showed no correlation with any protein (in 

any biological compartment) involved in lipid metabolism. 

 

Taken together, these observations promote the hypothesis of high pancreatic fat 

fraction being a marker of inflammation at the level of the tumour microenvironment, 

rather than just the expression of fat over accrual within pancreatic parenchyma, 

possibly being a target for future therapies. Although not statistically significant, also 

the high prevalence of sarcopenic obesity among IPMN patients with high-grade 

dysplasia/invasive carcinoma pushes in the same direction of subtle inflammation as a 

possible primer for pancreatic carcinogenesis (as also supported by existing literature 
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(Sadot et al, 2015)). Previous authors reported pancreatic fat fraction as measured by 

mDixon Quant Fat FRACTION sequences as being a reliable measure of the actual 

pathological fat content (Sotozono et al, 2022; Lin et al, 2022; Wen et al, 2022); they 

also suggest a possible relationship with inflammation, but with no clear data 

supporting this hypothesis. In this respect, major novelty of the present manuscript is to 

provide the first in vivo biological justification for pancreatic fat fraction as a reliable 

marker of local inflammation and, ultimately, malignant progression. 

The present study has several limitations, the main ones being the small sample size 

(preliminary findings from the second installment of patients [overall n = 82] 

corroborate the presented observations) and the lack of precise pathological 

quantification of pancreatic fat content. On that note, it is worth noting that preliminary 

observations from pathological specimens of our series confirm the absolute peculiarity 

of fat accrual within pancreatic parenchyma when compared to liver steatosis: no 

ballooning degeneration was indeed observed, whereas fatty infiltration is predominant 

as meaning that pancreatic parenchyma is variably replaced by adipocytes mostly 

distributed around arterioles. Another limitation to be taken into account refers to 

possible heterogeneity of fat accrual within the pancreas, resulting in not reliable 

measurements as obtained by placing the three 2D standardized regions of interest; to 

avoid/limit this risk, each sample has been taken based on the consensus of the two 

experienced radiologists. That said, we admit a possible methodological bias related 

with this issue, and future studies have to prefer volumetric sampling to represent the 

exact amount of fat accrual (Lin et al, 2022).  

In conclusion, our preliminary findings suggest that quantification of pancreatic fat 

content by mDixon Quant Fat FRACTION sequences is a promising tool to provide 

non-invasive characterization of tumour microenvironment (high pancreatic fat content 

stands for subtle inflammation within tumour microenvironment, possibly related to the 

amount of tumour-infiltrating macrophages with pro-oncogenic commitment) and, 

ultimately, distinguish low- versus high-risk IPMN for cancer progression, also having 

regard to the low accuracy of conventional WF/HRS. Therefore, it may complement the 

current IPMN diagnostic workflow and improve clinical decision-making regarding the 

need for surgical resection or, alternatively, surveillance.  
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. 
  CT MR 
  Benign (n = 20) Malignant (n = 15) P Value Benign (n = 20) Malignant (n = 15) P Value 

Main Pancreatic 
duct size ≥ 10 mm 4 (20%) 5 (33.3%) 0.812 5 (25%) 7 (46.6%) 0.052 

Enhancing mural 
nodule ≥ 5 mm 0 (0%) 4 (26.6%) 0.015 0 (0%) 2 (13.3%) 0.191 

Cyst ≥ 3 cm 10 (50%) 8 (53.3%) 0.484 9 (45%) 9 (60%)  0.314 
Thickened / 

Enhancing cyst wall 1 (5%) 2 (13.3%) 0.356 2 (10%) 10 (66.6%) 0.002 

Main Duct size 5-9 
mm 7 (35%) 5 (33.3%) 0.724 6 (30%) 4 (26.6%) 0.745 

Enhancing mural 
nodule < 5 mm  1 (5%)  0 (0%) 0.324 0 (0%) 1 (6.6%) 0.679 

Abrupt change in 
calibre of 

pancreatic duct 
with distal 

pancreatic atrophy 

7 (37%) 8 (53.3%) 0.101 6 (30%) 9 (60%) 0.012 

Lymphadenopathy 
(short axis > 10 

mm)  
1 (5%) 1 (6.6%) 0.66 0 (0%) 0 (0%) N/A 

Macroscopic Solid 
Component  

(it is NOT the 
mural nodule)  

0 (0%) 4 (26.6%) 0.029 1 (5%) 3 (20%) 0.109 

Peripancreatic Fat 
Heterogeneity 2 (10%) 3 (20%) 0.345 4 (20%) 5 (33.3%) 0.151 

Table #3: High Risk Stigmata/Worrisome Features.  
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Figure #7: Correlation between MCP-1 levels in cystic fluid and IPMN with high-grade 
dysplasia/invasive carcinoma.   
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Prediction of the characteristics of aggressiveness of pancreatic 

neuroendocrine neoplasms based on CT radiomic features. 

Materials and Methods 
Patients’ cohort 

This is a single-center, retrospective, observational study including patients who 

underwent upfront surgery for pancreatic neuroendocrine neoplasms (panNEN) at San 

Raffaele Scientific Institute (Milan, Italy) from January 2015 and December 2021; data 

were collected within the context of an Ethics Committee approved study 

(06/INT/2022) in patients who had signed an institutional procedure specific informed 

consent. From a prospectively acquired database, adult patients without visible distant 

metastases who underwent adequate quality abdominal CT imaging within one month 

before index surgery were enrolled. The resulting population (n = 101) was then 

randomly split into training (n = 70) and validation (n = 31) cohorts according to the 

second level of the TRIPOD guidelines for the validation of predictive models in 

oncology (Moons et al, 2015). 

The histological endpoints considered, as defined by postoperative histological 

specimens, were: tumor grade (G) (G1vs.G2/3), the presence of distant metastases 

(M+), metastatic lymphnodes (N+) and microvascular invasion (VI). 

 

Clinical variables 

Demographic variables were retrospectively reviewed from an electronic database. 

 

Radiological variables and radiomic features (RFs) 

Methodological details regarding CT protocol have been already published (Palumbo 

et al, 2021b).  

The variability of the features between different scanners were tested through Mann-

Whitney test, finding no significant inter-scanner variations: this result, together with 

the careful application of the above mentioned acquisition protocols should limit any 

potential bias due to features repeatability.  

Conventional imaging parameters –The selected CT findings included the 
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followings: i) presence of necrosis, defined as tumoral, non cystic tissue that did not 

enhance in the arterial and portal venous phases, ii) presence of cystic/liquid 

component, iii) pancreatic parenchyma atrophy, defined as a significant reduction in the 

volume of the gland, iv) macroscopic arterial/venous infiltration and v) contiguous 

organs invasion. 

Delineation – The robustness of CT RFs against interobserver contouring variability 

was already assessed by our group in the specific setting of panNENs, showing high 

intra-correlation coefficient (ICC) for all features (Loi et al, 2020; Mori et al, 2019). As 

previously reported, since PanNENs show the greatest conspicuity on arterial phase 

images, it was established to contour tumors in this phase only. Then, a registration, 

based upon a region of interest comprising the pancreas, was performed between arterial 

and basal CT images; finally, the contours were transferred on the co-registered 

unenhanced CT images, and manually adjusted for minor inconsistencies possibly due 

to respiration artifacts and organ motion between the two phases.  

The choice of unenhanced images for radiomic features extraction was due to the 

fact that contrast medium administration could modify tissue heterogeneity with respect 

to the intrinsic inter-patient variability of contrast administration. 

RFs extraction [The following paragraph contains methodology that has been 

already published – Palumbo et al, DOI: 10.3390/cancers13194938] – All images 

were resampled at cubic voxels of 0.78x0.78x0.78 mm3 with bilinear interpolation using 

an automatic workflow expressly developed in commercially available software (MIM 

Software Inc., version 6.5.5). This procedure was implemented to reduce directional 

bias, according to the specific recommendation of the International Biomarker 

Standardization Initiative (IBSI) (Zwanenburg et al, 2020; Palumbo et al, 2021b). 

Image rebinning was also necessary, not only to speed up the process of RFs extraction, 

but also to limit noise: we chose 64 bins, as reported in literature (Benedetti et al, 2021). 

DICOM files were then imported into MATLAB using the Computational Environment 

for Radiological Research. 182 RFs of first and higher order were extracted using 

SPAARC Pipeline for Automated Analysis and Radiomics Computing (IBSI 

complying). 
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Statistical analysis [The following paragraph contains methodology that has 

been already published – Palumbo et al, DOI: 10.3390/cancers13194938]. 

As previously stated, the original population was randomly split into training (n = 

70) and validation (n = 31) cohorts. 

Methodological details regarding RFs redundancy limitation have been already 

published (Palumbo et al, 2021b).  

Models development – To assess the best combination of the previously selected 

clinical, radiological and radiomic variables, a machine learning bootstrap-based 

method was used. In short, the training set of data was bootstrapped 1000 times and a 

backward multivariate logistic regression was run for each sample including two (for G 

and M+) or three (for N+ and VI) variables according to the number of events for each 

endpoint. Three models were then developed for each endpoint: a “conventional” 

radiological model, a strictly radiomic model and a combined model considering 

information from radiomic, conventional radiologic and clinical variables. Finally, a 

prognostic index was derived according to a previously published formula (Palumbo et 

al, 2021b). 

Models validation – To assess the ability of the prognostic index in stratifying 

patients according to the histological endpoints, the coefficients of the prognostic index 

were directly entered into a new univariate logistic regression considering data from 

validation set. For each model, a p < 0.05 was required for considering it validated. 

Analyses were performed using homemade Matlab codes.  
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Results 

Patients’ characteristics 

Patients’ characteristics are summarized in Table 4. Twenty-five patients (24.7%) 

had G2/G3 tumor (specifically, three patients only [2.9%] had undifferentiated 

neoplasm), 37 (36.6%) were shown to have nodal involvement, 14 (13.8%) suffered 

from distant metastases (mostly in the liver), and 38 (37.6%) had microvascular spread 

of the disease at pathological specimen. Between training and validation cohorts, no 

significant differences were found when considering both radiological and clinical 

variables, nor pathological data. Median tumor volume was 6 cc (range: 1.3-19.9). 

 

Models training and validation 

The combination of two variables only (one radiomic and one clinicoradiological 

feature) resulted in good prediction of the risk of M+ and G with AUC = 0.85 and 0.67, 

respectively; these results were confirmed in the validation cohort (AUC = 0.77 and 

0.72, respectively). The models predicting the risk of IV and N+ (both comprising two 

radiomic and one clinicoradiological feature) showed AUC = 0.82 and 0.72, 

respectively, in the training set; these results were confirmed in the validation cohort 

(0.75 and 0.62, respectively). A pure RF_model could be generated only when 

considering M+ and G as endpoints, with similar performances of the corresponding 

COMB_models (AUC=0.81 and 0.68, respectively, in the training cohort, AUC=0.81 

and 0.70 in the validation set). A pure “conventional” radiological model failed to be 

confirmed in the validation set for all endpoints with the only exception of 

microvascular invasion. 

Negative predictive values resulted moderate to high for all validated models for the 

different endpoints, ranging between 77.8% (G+ COMB_model) and 97 % (M+ 

RF_model). 

The performances of the models (those which successfully passed validation step) 

for each endpoint are reported in Table 5 and summarized in Figure 8. In Figure 9, ROC 

curves of the same models are shown.  
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Discussion 

Few studies explored the potential of radiomics in the setting of pancreatic 

neuroendocrine neoplasms (PanNENs), often showing contrasting results since limited 

by small sample size issues and potentially biased methodologies (Gu et al, 2019; Liang 

et al, 2019; Bian et al, 2020a; Bian et al, 2020b). In the present study we applied, in a 

relatively large cohort of patients, a machine learning approach optimized to limit/avoid 

the risk of overfit; in doing so, we sought to develop and validate preoperative models 

(including a maximum of three variables) based upon CT images to predict tumor grade 

(G1vs.G2/3), presence of distant metastasis, metastatic lymphnodes and microvascular 

invasion at pathological specimen. 

The vast majority of the present literature focuses on tumor grade prediction (Gu et 

al, 2019; Liang et al, 2019; Bian et al, 2020a; Choi et al, 2018; Bezzi et al, 2021), 

which is indeed a crucial cornerstone for treatment planning being a surrogate for 

biological aggressiveness. In this respect, an image-based biomarker able to accurately 

predict grading could be of great impact, especially when considering patients with 

small lesions (< 2 cm) which are generally thought to correspond to well-differentiated 

(G1) tumors to be conservatively managed (Partelli et al, 2017a). Nevertheless, these 

small tumors do sometimes reveal aggressive biological behavior and need a more 

aggressive approach (Partelli et al, 2017b). Importantly, endoscopic ultrasound-guided 

fine-needle aspiration is not always reliable in determining tumor grading of small 

tumors (Rebours et al, 2015). A possible solution could come from radiomics, since 

radiomic features (RFs), being derived from the whole volume of the lesion, are 

paradoxically more representative of the heterogeneity of the entire lesion than 

histology itself. In the present study we found that coupling one robust RF 

(Morphology_areaDensity_aabb) with one conventional radiological finding (tumor 

necrosis) resulted in good negative predictive value (77.8%) and area under the curve 

(0.72) for grade prediction. 

These results corroborated our previous findings in a pilot study on 39 patients 

(Benedetti et al, 2021) and highlight the importance of a rigorous radiomic workflow 

based upon i) a strict selection of few robust RFs and ii) availability of an independent 

validation cohort to reduce any risk of overfitting. Other studies tried to avoid this issue 

by restricting the number of variables (Bian et al, 2020a), or splitting the cohort into 
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training and validation sets (Gu et al, 2019; Lian et al, 2019); however, with this second 

approach only, if no attempt is made to achieve optimally robust models in the training 

group, the performances may significantly reduce in course of validation, and the 

proposed findings may lack of interpretability. In this respect, our findings are in good 

agreement with the results obtained by Bian and colleagues in a group of 102 PanNEN 

patients applying LASSO for tumor grade prediction (Bian et al, 2020a),. 

Apart from G, to our knowledge, few other studies explored the value of radiomics to 

predict other histological characteristics of panNENs (Mapelli et al, 2022, Bezzi et al, 

2021). 

Accurate preoperative N staging represents indeed a major cornerstone in the 

treatment algorithm of panNENs, since patients with different N stages have different 

prognosis and may need a different extent of lymphadenectomy or neoadjuvant 

treatment; specifically, the number of positive lymph nodes is accurate in predicting 

recurrence for panNENs after surgery (Guarneri et al, 2021). A recent report by Mapelli 

and colleagues (Mapelli et al, 2022) found that second-order RFs extracted from T2 

Magnetic Resonance sequences have good predictive performance (AUC = 0.992) with 

respect to lymph nodal involvement. Our model has lower accuracy, but with the clear 

advantage of relying upon RFs derived from CT images, which are, actually, the 

standard of care when dealing with non-invasive staging of panNENs. 

Our models also show good results with respect to prediction of distant metastases 

and microvascular invasion, providing a further insight into disease biological 

behaviour; these findings are indeed in agreement with previous literature (Kulali et al, 

2018). 

Interestingly, the degree of clinical/biological interpretability of the RFs finally 

retained in each validated model is promising, being related to tumor irregular and/or 

compact shape (as frequently observed in the setting of pancreatic adenocarcinoma 

(Palumbo et al, 2021b) and/or HU values heterogeneity. With regard to this last point, 

our group recently found an intriguing explanation connecting, in non-functioning 

panNENs, microvessel density, radiological appearance in terms of HU values and 

biological behavior: in short, low microvessel density (assessed by CD34+ staining), 

corresponding to ipoenhancement in arterial phase, has been found to be associated with 

pathological features of aggressiveness (Battistella et al, 2022). 
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Finally, to objectify the incremental value of radiomics with respect to radiologists’ 

subjective assessment (an issue already mentioned in the existing literature (Partelli et 

al, 2022)) we demonstrated that a model based upon, specifically, conventional 

radiological parameters failed to be confirmed in the validation set. 

The present study has several limitations, the most important ones being its 

retrospective nature and the relatively small number of events observed. External 

validation is also warranted and already planned.  

In conclusion, despite the above-mentioned limitations, the combination of few 

radiomic and clinicoradiological features by means of robust methodology that 

avoid/limit the risk of overfit resulted in robust presurgical prediction of histological 

characteristics of PanNENs, potentially providing a tool for patients’ personalized 

management, once more extensive external validation will be accomplished.  
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Clinicoradiological Variables  Training       
(n=70) 

Validation      
(n=31) 

Age* 58 (18-77) 55 (26-84) 
Gender (Male) 28 (40.0%) 11 (35.5%) 
Presence of necrosis 15 (21.4%) 7 (22.6%) 
Cystic morphology 15 (21.4%) 12 (38.7%) 
Pancreas atrophy 16 (22.8%) 4 (12.9%) 
Arterial invasion 11 (16%) 4 (12.9%) 
Venous invasion 21 (30%) 4 (12.9%) 
Contiguous organs invasion 7 (10.0%) 6 (19.3%) 

Endpoint   
High Grade (G2/G3) 17 (24.3%) 8 (25.8%) 
Liver Metastasis (M+) 11 (15.7%) 3 (9.6%) 
Microvascular Invasion (VI+) 28 (40.0%) 10 (32.2%) 
Metastatic Lymphnodes (N+) 26 (37.1%) 11 (35.4%) 

Unless otherwise indicated, data are numbers of patients and data in parentheses are 
percentages 

* Data are medians, data in parentheses are interquartile ranges (IQR) 

Table #4: Patients’ characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 



	52	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table #5: Overall performance of pure radiomic and clinicoradiological/radiomic models.  
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Figure #8: Summary of performances of the models for each endpoint (training and validation).  
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Figure #9: ROC curves of the models (training and validation).  
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Dynamic change of radiomic features within tumour environment 

predicts pathological response to neoadjuvant chemotherapy and 

disease relapse of pancreatic adenocarcinoma.	

Materials and Methods 

Patients’ cohort 

This is a single-centre retrospective study conducted at San Raffaele Scientific 

Institute (Milan, Italy); data were collected within the context of an Ethics Committee 

approved study (06/INT/2022). From a prospectively acquired database, all consecutive 

adult patients with pancreatic adenocarcinoma (clinical stage I-III, according to TNM 

8th edition (van Roessel et al, 2018); resectable or borderline resectable, as anatomically 

defined according to 2021 [National Comprehensive Cancer Network] NCCN 

guidelines (Tempero et al, 2021)) who underwent pancreaticoduodenectomy (PD) after 

neoadjuvant chemotherapy (nCT) between January 2016 and December 2020 were 

identified (n = 330); patients who were evaluated at baseline (before nCT start) and 

within 30 days before index surgery (after nCT completion) with multiphase, contrast 

enhanced CT scans at our institution (n = 108) were enrolled into our study. Patients 

who died within 90 days after index surgery (n = 3) were excluded from further 

analysis; moreover, 22 patients had no adequate follow-up and were consequently also 

excluded. 

Endpoints definition 

Three endpoints were considered, one clinical (disease recurrence after index 

surgery [any type of], defined at follow-up imaging) and two pathological (N2 status [≥ 

4 regional lymph-nodes with metastases] and pathological response to nCT [Hartman 

Tumor Regression Grade, TRG (Cacciato Insilla et al, 2020) – where “marked 

response” stands for pathological complete response in terms of no residual cancer cells 

or small group of cancer cells within a prevalent fibrotic stroma]). With specific regard 

to this last endpoint, patients’ cohort was then divided into good (moderate to marked 

pathological response) vs. poor responders (minimal to poor/absent pathological 

response). 
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Multidisciplinary evaluation, neoadjuvant regimens and follow-up data collection 

A dedicated multidisciplinary team evaluated radiological, biological (with particular 

regard to CA 19.9 serum levels after eventual jaundice palliation, where needed) and 

conditional (performance status and comorbidities) information of the enrolled patients 

(Petrelli et al, 2017) and had deemed all of them as resectable/borderline resectable, 

according to the 2021 NCCN guidelines (Tempero et al, 2021), and potentially eligible 

for surgical resection after nCT. Neoadjuvant chemotherapy regimens included PAXG, 

gemcitabine plus abraxane or modified FOLFIRINOX. Resectability status was 

systematically reassessed after nCT completion; in those patients who were confirmed 

to have resectable disease after nCT, surgical treatment (PD with lymphadenectomy) 

has been performed four to six weeks after completion of neoadjuvant treatment, with 

possible variations depending upon each patient’s performance status. Finally, after 

surgery, all data collected were systematically correlated with the pathological outcome 

in terms of TRG, which is based on the percentage of viable residual neoplastic cells in 

comparison with fibrosis/necrosis after treatment, and nodal involvement. Adjuvant 

treatment (chemoradiotherapy vs. chemotherapy alone) was considered depending on 

pathological information (TNM staging, grading, eventual presence of perineural 

invasion, …). Follow-up imaging examinations were accurately evaluated looking for 

disease relapse. 

 

CT protocol and radiomic features extraction 

Methodological details regarding CT protocol, radiomic features extraction and 

redundancy lowering have been already published (Palumbo et al, 2021b). 182 radiomic 

features (RFs) were extracted from late arterial phase of both baseline and post 

treatment CT scans. For each RF, ∆ value was computed as the difference between the 

absolute value calculated at the two time points, according to the formula: ∆ RF = 

(RFpost) – (RFpre). In short, the longitudinal net changes in RFs were calculated. 

Lesion delineation on CT images – The robustness against interobserver contouring 

variability was preliminarily assessed focusing on a subgroup of 30 patients whose 

baseline CT scans were evaluated by three independent readers; only RFs with ICC > 

0.80 among these three readers were considered robust (and potentially reproducible) 
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and therefore retained for subsequent analysis. The contouring has been systematically 

carried out on late arterial phase, where tumor conspicuity is the most (Zins et al, 2018). 

Statistical Analysis – After the selection of the most significant RFs (at both 

timepoints imaging, separetly) and ∆ RFs (between timepoints imaging), a machine 

learning bootstrap-based method was applied to develop radiomic models for i) 

recurrence after index surgery, ii) pathological response to neoadjuvant treatment 

(TRG) and iii) pathological N2 status. Specifically, for each endpoint three models (a) 

pre nCT, b) post nCT and c) delta radiomics) were constructed.  

The original population of 83 patients was bootstrapped 1000 times to produce 

different samples with the same informative content of the original population. A 

backward multivariate Cox analysis was performed for the prediction of recurrence, and 

a backward logistic regression for the prediction of the other two endpoints in order to 

find the best combination of RFs and ∆ RFs with the best AUC and p-values (< 0.05). 

A prognostic index (P index) was then derived for each one of the three radiomic 

models. In the case of logistic regression, the PI was given by the risk computation: 

PI = B! +  B!x!!
!!! . For the Cox analysis the PI was given by the natural logarithm of 

the Hazard Ratio: PI = −ln ! !
!! !

 = B!x!!
!!! . In both cases Bi coefficients are given 

applying the logistic and Cox regressions on the original population, whereas Xi 

represents the values of variables selected by the bootstrap method. 

Model performance assessment [The following paragraph contains methodology 

that has been already published – Palumbo et al, DOI: 10.3390/cancers13194938] – 

To assess the ability of the P index in stratifying patients according to the risk of 

recurrences, the P index was dichotomized as greater or smaller than the cut-off value 

(Palumbo et al, 2021); finally, the separation of the survival curves of the two groups 

with high and low risk of recurrence was tested with a Kaplan-Meier test. Regarding 

TRG and N2, the ability of P index to stratify the risk classes was tested with box-plots. 

The performances of the three models were quantified using the P index in terms of: 

area under the ROC curve (AUC), positive and negative predictive values (PPV, NPV), 

specificity and sensitivity. Analyses were performed using homemade Matlab codes.  
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Results 

Patients’ characteristics 

After exclusions, 83 patients (31 female [37.3%]) with a median age of 65.5 years 

[range, 39 – 85]) were enrolled in this study. 

The median overall survival and progression-free survival were 21 (IQR: 14 – 31) 

and 11  (IQR: 5 – 20) months, respectively. 48 patients out of 83 (57.8%) had a disease 

recurrence during the follow-up time period (median follow-up time: 21 months, (IQR: 

15 – 31); of these, 20 (41.6%) experienced an early disease recurrence (occurring < 11 

months after index surgery). With respect to pathological endpoints, 14 patients (16.8%) 

were found to have N2 disease, and 63 (75.9%) demonstrated moderate to marked 

response.	

Pre nCT radiomic models (Table 6) 

Amongst the most frequent baseline (pre nCT) RFs resulting from the machine 

learning bootstrap-ranking procedure, three RFs were retained in the model dealing with 

disease recurrence (p < 0.001, AUC = 0.79). Corresponding Kaplan-Meier survival 

curve is shown in Figure 10, demonstrating that the proposed model have poor 

performance in stratifying the risk of early disease relapse after surgery (also having 

regard to a low NPV of 63%), with significant overlap in terms of recurrence chance at 

10 months between high- and low-risk patients. Also pre nCT models for the prediction 

of N2 disease and pathological regression grade consisted of three RFs only; they 

demonstrated moderate to high performance (p = 0.0002 and 0.0119, AUC = 0.84 and 

0.77, respectively [Figures 11 and 12, respectively]) with considerable NPV (96.7% and 

95.2%, respectively). 

Post nCT radiomic models (Table 7) 

Four post nCT RFs contributed to the realization of the presurgical model for the 

prediction of disease recurrence after resection (p = 0.003, AUC = 0.78). Corresponding 

Kaplan-Meier survival curve is shown in Figure 13, demonstrating an overall poor 

performance in distinguishing the risk of early disease relapse after surgery between 

high-risk (having a 32% recurrence chance at 10 months) and low-risk patients (having 

a 20% recurrence chance at 10 months) (p > 0.05). Both post nCT models for the 

prediction of N2 disease and pathological regression grade consisted instead of three 
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RFs only; they demonstrated moderate to high performance (p = 0.079 and 0.0005, 

AUC = 0.80 and 0.80, respectively [Figures 14 and 15, respectively]) with significant 

NPV (94.2% and 92.2%, respectively). 

Delta radiomics models (Table 8) 

Amongst the most frequent longitudinal net changes resulting from the machine 

learning bootstrap-ranking procedure, four ∆ RFs were retained in the final model 

dealing with disease recurrence (p = 0.0045, AUC = 0.71). Corresponding Kaplan-

Meier survival curve is shown in Figure 16. In this respect, the proposed model showed 

a good performance in stratifying the risk of early disease relapse after surgery by 

identifying, with a good NPV of 78.3% and a hazard ratio of 2.91, high-risk patients 

with a recurrence chance of 40% at 10 months (vs. low-risk patients with a chance of 

5% [p < 0.001]). Three highly selected, highly robust ∆ RFs took part instead in the 

construction of the presurgical models for the prediction of the other two endpoints (N2 

disease and pathological regression grade), which both demonstrated moderate to high 

performance (p = 0.0010 and 0.0087, AUC = 0.82 and 0.72, respectively [Figures 17 

and 18, respectively]) with considerable NPV (93.9% and 88.7%, respectively). 
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Discussion 

Growing literature suggests that even early stage pancreatic ductal adenocarcinoma 

(PDAC) (clinical stage I-III, according to TNM 8th edition (van Roessel et al, 2018); 

resectable or borderline resectable, as anatomically defined according to 2021 [National 

Comprehensive Cancer Network] NCCN guidelines (Tempero et al, 2021)) could 

benefit from a neoadjuvant treatment (Lee et al, 2019; Reni et al, 2019a; Reni et al, 

2019b); the rationale of such an approach lays in the observation that recurrence occurs 

in almost 90% of these patients within two years after index surgery, implying that even 

early stage disease is, actually, a micro metastatic one. It follows that since most 

patients have (micro) metastatic disease at the time of diagnosis, upfront surgery, only 

debulking the overall tumour cell burden, is less effective in providing disease control 

when compared to chemotherapy, which instead potentially prevents both local and 

distant tumour progression by reducing the number of neoplastic cells in their 

exponential growth stage (Haeno et al, 2012). Both AIOM (Associazione Italiana 

Oncologia Medica) and NCCN guidelines now include neoadjuvant chemotherapy 

(nCT) as a possible treatment option for resectable disease. However, a major 

radiological issue is currently undermining such an approach; several authors have 

recently claimed that neoadjuvant chemotherapy/radiotherapy might impair the 

diagnostic accuracy of CT imaging in the evaluation of tumour response, mostly due to 

abundant desmoplastic reaction mimicking cancer growth (Cassinotto et al, 2014; Park 

et al, 2021). There are indeed no reliable criteria to assess treatment response of PDACs 

after nCT, ultimately hampering the chance for an optimal therapeutic path. 

Most authors have sought possible solutions to this diagnostic dilemma focusing on 

tumour morphological (i.e. RECIST [Response Evaluation Criteria In Solid Tumours]) 

(Park et al, 2021) and/or densitometric changes (Marchegiani et al, 2018; Wagner et al, 

2016) occurring in course of nCT, but with inconsistent (generally poor, mostly in terms 

of low specificity) results, ultimately contributing to overstage issues. Other authors 

(Jeon et al, 2022; Noda et al, 2022; Jang et al, 2021) shifted their focus on the extent of 

tumour contact with adjacent vessels: in this respect, they found even a minimal 

regression (also not significant according to RECIST criteria and/or 2019 NCCN 

guidelines) being a reliable predictor of R0 resection. However, Jeon and colleagues 

(Jeon et al, 2022) found that this assumption can be deemed correct only when referring 
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to pancreatic neoplasms classified (after nCT) as resectable or locally advanced; 

borderline resectable tumours, which represent indeed one of the major surgical issues, 

escape this criterion. On that note, it is worth noting that there are still few studies 

claiming a role for radiomics to unsolve this matter, almost all relying on baseline 

imaging (before nCT start) for features extraction (Elsherif et al, 2022; Borhani et al, 

2020); in this respect, a possible ethical concern exists: baseline stratification tools 

rarely rule out patients from undergoing standard of care treatment, unless 

demonstrating almost perfect accuracy in identifying responder/non responder status. 

To address this challenge, we applied a machine learning approach to develop three 

clusters of models based upon, respectively, a) pre-/ b) post-nCT and c) delta radiomics. 

To the best of our knowledge, this is the first manuscript PDAC-orientated exploring, at 

once, the contribution of radiomic features (RFs) derived at different time points 

together with their dynamical change in course of nCT. Of note, our data support the 

predominant role of ∆ RFs over “raw” ones in stratifying the risk of early disease 

relapse after surgery by identifying high-risk patients with a recurrence chance of 40% 

at 10 months (vs. low-risk patients with a chance of 5%). On the opposite, when 

considering pathological endpoints (namely, pathological response to nCT and N2 

status) no significant differences were found among these three approaches in terms of 

accuracy (overall good NPVs, together with poor PPVs). 

Taken together, these results could have huge clinical consequences: 

• After scheduled nCT completion, knowing whether the index lesion had 

a good (vs. poor) response in terms of viable residual neoplastic cells could be a 

crucial information to be taken into account during multidisciplinary team 

discussion for surgical candidacy vs. switching to another chemotherapy 

regimen. Similar considerations can be made regarding nodal status, which is 

thought to be a major determinant for disease recurrence after surgery (Crippa et 

al, 2021): having available a sort of radiomic presurgical “advance” of the final 

pathological report shortly after nCT completion (by applying post-nCT/∆ 

radiomics) could be indeed a game changer in the decision-making algorithm of 

PDAC patients. 

• On the opposite, thinking of a possible role for pre-nCT radiomics in the 

PDAC real clinical setting is far more challenging. As stated before, baseline 
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stratification tools rarely rule out patients from undergoing standard of care 

treatment, unless demonstrating almost perfect accuracy in identifying 

responder/non responder status; on that note, there is a long way off for our pre-

nCT models from being 100% reliable. One may speculate that baseline 

information could be potentially useful for selecting the most appropriate nCT 

regimen for each patient (an issue currently explored at our Institution within the 

CASSANDRA trial [PACT-21 protocol]), also having regard to possible 

germline pathogenic variants (Macchini et al, 2021); however, our data do not 

support this fascinating hypothesis and further studies are needed to prove/refute 

it. 

• That said, what comes up from our results is the predominant prognostic 

role of ∆ radiomics over “raw” pre-/post RFs; the clinical significance of the 

neoplastic environment dynamical change in course of nCT appears indeed 

significantly superior when compared to its stationary consideration, a concept 

already used in the evaluation of biological markers (Reni et al, 2020). This 

assumption highlights the inherent limitations of the present restaging strategies, 

mostly relying on “single frame” analysis. 

 

Significant strengths of the present study are i) its methodological robustness based 

upon a previously validated machine learning approach optimized to limit/avoid the risk 

of overfit when selecting RFs for model development (Palumbo et al, 2021b), ii) the 

effort for including each radiomic model into a real clinical setting emphasizing its 

possible contribution, and iii) the choice of biologically/clinically significant endpoints. 

With regard to this last point, it is worth noting that the vast majority of the existing 

(mostly radiological) PDAC-orientated literature dealing with the identification of novel 

markers of treatment response after nCT selects as major endpoint the status of 

resection margins (Jeon et al, 2022; Noda et al, 2022; Jang et al, 2021), which is indeed 

a surgical variable highly dependant on surgeons’ experience, rather than more 

objective parameters of treatment response (as, for instance, TRG), resulting in 

methodological biases possibly undermining presented results. Finally, we would like to 

highlight the biological significance of the RFs finally retained in the ∆ models, mostly 

belonging to the morphological family of features. Specifically, the assumption that the 
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longitudinal positive net change of Surface to Volume ratio strongly predicts ≥ 4 

regional lymphnodes with metastases is somehow striking, as meaning that it implies 

that tumour complexity (in terms of spiculatedness) is a major determinant of prognosis, 

even superior to tumour volume; in other words, a reduction of tumour size in course of 

nCT should be considered cautiously, since it could hide a modification of tumour 

contours towards spiculatedness. 

Limitations also exist, the main ones being the relative small sample size (although 

highly selected) and the absence of a validation cohort, which is indeed already 

planned. Another more subtle, yet clinically crucial limitation has to be taken into 

account: overall, the three clusters of radiomic models referring to both pathological 

endpoints are clearly hampered by low PPVs (as low as 35.5%), which counteract very 

good NPVs (up to 96.7%). It follows that the presented models are very good at 

identifying patients with good pathological response and no nodal metastases (low-risk 

patients) but often fail in identifying poor responders to nCT (high-risk patients). Such 

an imbalance could ultimately lead to incorrect exclusion of low-risk patients from 

surgical chance; to limit/avoid this risk our models have to be embedded in the standard 

of care multidisciplinary assessment of the patient. 

In conclusion, our results point out the crucial significance of ∆ radiomics as a 

marker of treatment response for PDAC undergoing nCT, providing substantial aid 

towards personalized therapeutic path and, hopefully, prognosis improvement.  
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Table #6: Overall performance of pre nCT radiomic models.. 
 
 

 
Table #7: Overall performance of post nCT radiomic models. 
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Table #8: Overall performance of Δ radiomic models.  
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Figure #10: Kaplan-Meier survival curve stratifying the chance of disease relapse after surgery 
based upon the prognostic index resulting from pre nCT radiomic model. 
 

Figure #11: Box plot illustrating N2 prediction model (pre nCT radiomic model), and 
corresponding ROC curve. 

 
Figure #12: Box plot illustrating TRG prediction model (pre nCT radiomic model), and 
corresponding ROC curve.  
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Figure #13: Kaplan-Meier survival curve stratifying the chance of disease relapse after surgery 
based upon the prognostic index resulting from post nCT radiomic model. 
 

 
Figure #14: Box plot illustrating N2 prediction model (post nCT radiomic model), and 
corresponding ROC curve. 
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Figure #15: Box plot illustrating TRG prediction model (post nCT radiomic model), and 
corresponding ROC curve. 
 

 
Figure #16: Kaplan-Meier survival curve stratifying the chance of disease relapse after surgery 
based upon the prognostic index resulting from Δ radiomic model. 
 

 
Figure #17: Box plot illustrating N2 prediction model (Δ radiomic model), and corresponding 
ROC curve. 
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Figure #18: Box plot illustrating TRG prediction model (Δ radiomic model), and corresponding 
ROC curve. 
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Early assessment of pathological response to neoadjuvant 

chemoradiotherapy for oesophageal cancer using fully hybrid 

PET/MR: results from interim analysis.	

Materials and Methods 

Patients’ cohort 

This is a single center prospective observational study conducted at San Raffaele 

Scientific Institute (Milan, Italy), part of a broader investigation funded by AIRC (IG 

23105 – “ESCAPE” protocol); data were collected after Ethics Committee approval 

(07/INT/2020). 

From January 2020 to August 2022, all consecutive patients with biopsy-proven 

potentially resectable oesophageal cancer (adenocarcinoma or squamous cell 

carcinoma) scheduled to receive neoadjuvant chemoradiationtherapy (nCRT) were 

prospectively enrolled. In addition to standard of care imaging (De Cobelli et al, 2020), 

a fully integrated hybrid Positron Emission Tomography (PET)/Magnetic Resonance 

(MR) was performed at three time points. Specifically, in all cases, evaluation has been 

performed i) within two weeks before the beginning of nCRT and then repeated ii) after 

the beginning of the third chemotherapy weekly cycle (that means, between 

radiotherapy fractions 11-14) and iii) at the end of nCRT, within one week before 

surgery. Study flowchart is summarized in Figure 19. 

Neoadjuvant treatment regimen consists of fractioned radiotherapy (41.4 Gy in 23 

fractions, delivered 5 days per week) plus concurrent administrations of carboplatin and 

paclitaxel. In those patients who were confirmed to have resectable disease after nCRT, 

surgical treatment (Ivor Lewis esophagectomy with lymphadenectomy (Low et al, 

2019)) has been performed eight to twelve weeks after completion of neoadjuvant 

treatment, with possible variations depending upon each patient’s performance status 

and response to nCRT. Finally, after surgery, all data collected were systematically 

correlated with the pathological outcome in terms of Mandard Tumour Regression 

Grade (TRG, 1 to 5) (Mandard et al, 1994), which is based on the percentage of viable 

residual neoplastic cells in comparison with fibrosis/necrosis after treatment (TRG = 1 

refers to pathological complete response status) and represents indeed the primary 
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endpoint of this study. Accordingly, patients’ cohort was then divided into complete 

responders (TRG = 1) and partial/non-responders (TRG ≥ 2). 

Patients with unexpected distant metastases after nCRT (n = 2), withdrawal from 

study participation (n = 1) or failure to complete scheduled neoadjuvant treatment (n = 

3) were excluded from final study population.  

PET/MR protocol 

PET/MR images were acquired using a fully hybrid 3T Signa PET/MR system 

(General Electrics Healthcare – US) and applying a combined protocol already 

validated in clinical practice at our Institution in other clinical settings (Mapelli et al, 

2022a; Mapelli et al, 2022b; Ironi et al, 2022).  

The acquisition protocol starts with MR localizers to determine the exact number of 

“table positions” needed to cover the whole body 18FDG-PET study. LAVA (LAVA = 

Liver Acquisition with Volume Acceleration)-Flex sequences are also acquired over the 

whole body scan for anatomical match of the PET signal. At the end of the whole body 

scan, a complete MR examination, spatially corresponding to a single PET “table 

position” (the one including the target lesion), is acquired. MR sequences included: i) 

axial T2-weighted FSE (Fast Spin Echo) PROPELLER (Periodically Rotated 

Overlapping ParallEL Lines with Enhanced Reconstruction), ii) axial and 

coronal/sagittal T2-weighted FSE black blood, iii) axial DWI (b=0, 400, 800 s/mm2), 

iv) Dynamic contrast enhanced (DCE) MR T1-weighted SPGR (Spoiled Gradient 

Recoiled Echo) DIfferential Sub sampling with Cartesian Ordering (DISCO), v) axial 

post contrast fat saturated T1-weighted. For DCE MR examination, a contrast medium 

(gadobutrol 0,1 mmol/kg, Gadovist, Bayer) is routinely administered.  

Importantly, data from the first five patients enrolled have been used to fine tune the 

protocol based on a consensus agreement between the involved physicians and 

confirmed by two expert readers. Two nuclear medicine physicians and two radiologists 

evaluated all data sets, for PET and MR images, respectively. Inter reader agreement 

was systematically assessed. 
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Imaging findings 

Analysis of PET and MR images has been performed by using the Advantage 

Workstation (General Electrics Healthcare – US). 

Baseline MR imaging has been compared to those collected at the other two defined 

time points in terms of percentage change in tumor volume (contoured on axial high-

resolution T2 weighted images with a semi automated delineation method allowing for 

manual editing), apparent diffusion coefficient (ADC) (obtained from ADC map 

generated from diffusion-weighted images [b=0, 400, 800 s/mm2]) and perfusion 

parameters (both semi-quantitative [area under the concentration time curve] and 

quantitative [volume transfer coefficient reflecting vascular permeability = Ktrans; flux 

rate constant = Kep; extracellular volume ratio = Ve]).  

On the subject of tumour volume percentage change (measured on both DWI and 

axial high-resolution T2 weighted images) between scheduled time points, for each 

patient, an early regression index (ERI), originally developed and already externally 

validated by our own group in the setting of rectal cancer (Cusumano et al, 2020; 

Broggi et al, 2020; Fiorino et al, 2019; Fiorino et al, 2018), was computed according to 

the following formula, which accounts for the assumed fraction of survival neoplastic 

cells after the delivery of a certain treatment dose: ERI= ln [1–(tumour 

volumemid/tumour volumepre) tumour volume pre]. In short, with this formula each patient is 

given a probability of having a complete pathological response after completion of 

neoadjuvant treatment. 

PET-derived quantitative parameters obtained at the different time points have been 

also evaluated after contouring of the entire primary lesion. Specifically, SUV 

(standardized uptake value) max, MTV (metabolic tumor volume) and TLG (total lesion 

glycolysis) have been systematically calculated. 

 

Statistical analysis 

The association of any finding with different types of treatment response was studied 

univariably. Categorical parameters were compared using the χ2 test, whereas Student’s 

t and the Mann–Whitney U tests were used to compare groups with complete vs., 

partial/non-responders for parametric and non-parametric continuous variables, 

respectively. 
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Statistical analysis was performed using commercially available software (SPSS 

version 21.0, IBM Corp.). A p-value < 0.05 was considered statistically significant. 
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Results 

Patients’ characteristics 

After exclusions, 25 patients (9 female [36%]) with a median age of 59.1 years 

[range, 48-79]) were prospectively enrolled in this study; adenocarcinoma accounted for 

the most frequent histotype (16/25, 64%). A pathological complete response (TRG = 1) 

was found in eight patients (32%). No significant differences were found between 

responder and partial/non-responder patients in terms of baseline demographic data, T 

stage and pathological subtype.  

 

Imaging findings 

The median tumour volume contoured on baseline axial high-resolution T2 weighted 

images was 19.64 cc (IQR 12.17 –52.24 cc), not significantly different between 

complete and partial/non-responders (25.19 cc [1.6 – 31.08 cc] vs. 39.78 cc [13.96  – 

45.72 cc], respectively, p = 0.782). Interestingly, patients with a pathological complete 

response demonstrated significantly lower median ERI values (measured on axial high-

resolution T2 weighted images) when compared with those patients with TRG ≥ 2 (6.05 

[range, 0.18–14.89] vs.19.83 [range, 8.53–37.07], p <0.001). Differently, ERI values 

calculated on axial DWI images did not obtain any statistical significance (p = 0.388).  

The percentage modification in tumour ADC values from baseline to intermediate 

scans (Δ ADCmid) was found to be significantly different between complete and 

partial/non-responder patients (median increase: 32% vs. 5%, p = 0.002). On the 

opposite, no differences (nor in terms of increase or decrease of tumour ADC) were 

observed when looking at the third imaging time point (Δ ADCpost) (p = 0.185).  

When considering the percentage modification in tumour Ktrans from baseline to 

intermediate scans (Δ Ktrans) a trend toward statistical significance exists between 

complete and partial/non-responder patients; specifically, the former have an early drop 

in Ktrans values (median Δ = – 30.9%) when compared to the latter (median Δ = – 

15.8%) (p = 0.075).  

No PET parameter was shown to significantly correlate to TRG; however, patients 

with TRG = 1 had usually lower values of mean SUVmax at baseline imaging (13.2 vs. 

19.8 in partial/non-responder patients, p = 0.180). This difference almost completely 
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disappears when looking at the other two imaging time points, possibly because of a 

sort of treatment-related inflammatory superimposition, which flattens any biological-

driven metabolic difference. 
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Discussion 

Primary chemoradiotherapy with (or without) subsequent surgery is currently 

regarded as the treatment of choice for locally advanced oesophageal cancer. The 

CROSS trial (van Hagen et al, 2012; Shapiro et al, 2015) demonstrated indeed that 

preoperative administration of neoadjuvant chemoradiotherapy (nCRT) doubles the 

median overall survival of this subset of patients in comparison to surgery alone, with a 

huge 29% of pathological complete response; many authors suggest that these patients 

do not benefit from additional surgery, also having regard to the fact that oesophageal 

resections are associated with substantial morbidity and postoperative mortality rates 

even in highly experienced centres (Low et al, 2019). On the opposite, 18% of patients 

who underwent nCRT were deemed as being non-responders; these patients do not 

benefit from nCRT and only suffer from its side effects. 

It follows that early identification of tumour response to nCRT is a crucial issue, 

since it could enable tailored therapeutic plans, avoiding unnecessary treatment efforts 

and related adverse effects, with major impact on patients’ quality of life as well as 

health care costs. 

Currently, response to nCRT is evaluated by using morphologic imaging (De Cobelli 

et al, 2020; Palumbo et al, 2020), such as Computed Tomography (CT) and endoscopic 

ultrasonography (EUS); limitations exist, the main ones being the difficulty in 

distinguishing viable tumor from necrotic scar tissue and the delay between cell death 

and macroscopic tumor shrinkage. Conversely, 18F-fluorodeoxyglucose (FDG) Positron 

Emission Tomography (PET) detects alterations in tissue metabolism that generally 

precede anatomic changes (Beukinga et al, 2018); however, it must be taken into 

account that false positive results can occur during nCRT as a result of FDG uptake 

from inflamed tissue. False negative results can also occur because of substantial tumor 

shrinkage. 

On that note, the recently available fully hybrid PET/Magnetic Resonance (MR) 

imaging allows combination of metabolic, functional and anatomic information. There 

are some obvious advantages on using PET/MRI over PET/CT that cannot be 

unnoticed, such as a substantial radiation exposure reduction explained by the fact that 

MR involves no high energy radiation and that the tracer dose is generally lower than 

that used in case of PET/CT; moreover, MR, with its excellent soft tissue resolution (De 
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Cobelli et al, 2020), can overcome some of the abovementioned limitations of the other 

staging modalities. 

As main results of our investigation inquiring the role of a fully hybrid PET/MR 

multimodal protocol in the characterization of locally advanced esophageal neoplasms 

undergoing nCRT, we found that patients with a pathological complete response 

demonstrated i) significantly lower median ERI (Early Regression Index) values and ii) 

significantly different percentage modification in tumour ADC (in terms of median 

increase) from baseline to intermediate scans when compared to patients with TRG ≥ 2. 

• To the best of our knowledge, this is the first study reporting association 

between an early regression index (ERI), originally developed and already 

externally validated by our own group in the setting of rectal cancer, and the 

pathological response after neoadjuvant treatment for locally advanced 

oesophageal neoplasms. In short, each patient is given a probability of having a 

complete pathological response after completion of nCRT based upon the 

amount of tumour shrinkage at the first imaging assessment, which accounts for 

the assumed fraction of dead neoplastic cells after the delivery of a certain 

treatment dose; in this respect, ERI could be considered a sort of a measurement 

surrogate for the sensitivity of neoplastic clones to the treatment. Specifically, 

our data demonstrate that a significant neoplastic volume drop within the third 

chemotherapy weekly cycle is associated with high probability of pathological 

complete response (TRG = 1). 

• Previous studies specifically inquiring the role of DW imaging for the 

characterization of oesophageal cancer patients undergoing neoadjuvant 

treatment (Wang et al, 2016; Li et al, 2018; Xie et al, 2015; Giganti et al, 2016; 

De Cobelli et al, 2013; Borggreve et al, 2020a; Borggreve et al, 2020b) have 

already identified Δ ADC as a robust marker of tumour response. The vast 

majority of these studies (Wang et al, 2016; Li et al, 2018; Xie et al, 2015; 

Giganti et al, 2016; De Cobelli et al, 2013) reported significant modifications in 

tumour ADC after treatment completion when compared to baseline values; 

other authors (Borggreve et al, 2020a; Borggreve et al, 2020b) focused instead 

on possible differences occurring during nCRT. Of note, our results corroborate 
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the findings of these latter authors, highlighting the importance of functional 

modifications possibly occurring earlier than morphological ones; on that note, 

it is worth noting that in our patients’ cohort ERI values and Δ ADCmid were 

always concordant in predicting pathological response, except for two case in 

which Δ ADCmid was later found (after surgery) to be the one correct. 

Taken together, these findings highlight the importance of the intermediate 

evaluation (after the beginning of the third chemotherapy weekly cycle) in predicting 

pathological response; in this respect, our findings are consistent with those recently 

published by Borggreve and colleagues, which identify MR imaging obtained during 

the second week of neoadjuvant treatment for locally advanced oesophageal carcinoma 

as the most informative one for predicting pathological complete response (Borggreve 

et al, 2020a). This is of crucial significance, since only a very early assessment of 

treatment response could actually change, in a positive way, the therapeutic path of a 

given patient, thus providing a real benefit in terms of overall survival and, possibly, 

quality of life. On that note, our results could lay firm basis for the development of a 

novel algorithm founded on two extreme situations: on the one hand, those patients 

thought to be complete responders could benefit from “organ sparing”/surgery-free 

approaches (e.g. enrolment into endoscopic follow-up programs with bite to bite 

biopsies); on the other, poorly responder patients could undergo early surgery.  

One might argue that our findings account for local disease response only, and 

cannot be confidently assumed as markers of overall response. Here comes the 

importance of a fully hybrid imaging comprising PET, which has the ability of 

accurately identifying eventual distant metastases. That said, in our case series no 

quantitative PET parameter was shown to significantly correlate to TRG; this finding is 

consistent with previous literature, which suggests that 18FDG-PET does not achieve 

sufficient reliability to drive clinical decision. 

Significant strengths of the current study include the use of the same nCRT regimen 

for all patients (CROSS regimen), the presence of a pathological reference standard in 

all patients and the consistent delineation by semi automated contouring.  

Limitations also exist, the main one being the small sample size, which might have 

lead to false negative results with particular regard to PET quantitative parameters. 

Moreover, patients were enrolled during a long study period of 32 months, since 
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COVID-19 pandemics established a temporary downsizing of the normal 

oncological/surgical activity at our Institution; the same issue also undermined a 

homogeneous collection of data regarding longitudinal follow-up, which will be the 

central matter for a second study. Finally, although PET/MR is generally well tolerated 

by patients, shorter acquisition times could further improve their experience. 

In conclusion, our preliminary results suggest the existence of a novel, easily 

computable MR-based biomarker (ERI), able to early predict pathological tumour 

response during nCRT; the percentage modification in tumour ADC values from 

baseline to intermediate scans (Δ ADCmid) was also found to be significantly different 

between responder and partial/non-responder patients. Embedded in a multidisciplinary 

algorithm, these findings have the potential to provide an actual aid for patients’ 

personalized therapeutic path.  
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Figure #19: Study flowchart.  
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CONCLUSION 
As major findings of this thesis, we identified novel imaging biomarkers for i) 

prognosis stratification and ii) treatment response assessment, not intended for a stand 

alone deployment but to be embedded into more comprehensive multidisciplinary 

algorithms. Now, regardless of any methodological difference possibly distinguishing 

each single study that composes the entire thesis, a joint substrate actually exists, being 

a firm intention of providing an effective biological justification for any finding 

resulting from our researches. Such intent has been translated into various ways, 

ranging from straight correlation with pathological endpoints (studies #3 and #4) and 

fascinating speculations exploring cellular perspectives (studies #1 and #3) to more 

subtle characterization of tumour microenvironment intended as both an extraordinary 

reflection of systemic/local metabolic dysregulations (study #2) as well as a dynamic 

motif to be considered as a longitudinal net change rather than a stationary frame 

(studies #4 and #5). In this respect, it is worth noting that the same finding could have 

dichotomous biological meaning depending on its specific clinical setting. As an 

instance, when referring to pancreatic adenocarcinoma, the same radiomic feature 

finally retained in the predictive models of study #1 (upfront surgery cohort) and #4 

(neoadjuvant treatment cohort), Surface Area to Volume ratio, was found to have, in the 

two groups, completely different significance in terms of biological aggressiveness. A 

low ratio implies indeed a significant chance of early distant disease recurrence after 

primary resection, whereas its positive longitudinal net change in course of neoadjuvant 

chemotherapy strongly predicts ≥ 4 regional lymphnodes with metastases and, 

ultimately, a worse prognosis. How to solve such incongruence? Our findings support 

the assumption that Surface Area to Volume ratio conveys a balance between volume 

and complexity of the index lesion, with the scale tipping towards tumour volume as 

major determinant of prognosis (high ratio) in the upfront surgery cohort, and towards 

tumour complexity (low ratio) in the neoadjuvant treatment cohort. It follows that a 

reduction of tumour size in course of neoadjuvant chemotherapy should be considered 

cautiously, since it could hide a modification of tumour contours towards 

spiculatedness, which is a message with huge clinical implications.  

Obviously, our findings do not claim to fully address all issues implied in the 

original research questions we presented, much less to unveil the underlying whole 
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biological complexity. That said, what we hope to have managed to disclose in the 

previous chapters is the possibility for a strict, biologically orientated research 

methodology based upon medical images. It should be a stepwise approach, i) starting 

from clinically relevant research questions, then moving down ii) looking for the most 

appropriate imaging tool to address that issue, and finally iii) providing a suitable 

biological explanation of any finding. On the opposite, a substantial part of the most 

recent radiological literature is built around the intriguing promise of radiomics (and, by 

extension, of any artificial intelligence based approach) to easily provide a large amount 

of data, so much that it justifies by itself its broad application escaping 

clinical/biological explanation. “Unweighted” deployment of radiomics accounts indeed 

for one of the major grounds currently hampering its actual clinical translation, together 

with the eventual lack of a methodologically robust radiomic workflow, as previously 

pointed out (Introduction). On that note, another issue that has to be considered is the 

complex implementation of radiomics into real world clinical practice; with regard to 

this last point, our group is currently developing clinician-friendly interfaces to 

promptly extract radiomic features ready to be embedded into easy to use 

multidisciplinary algorithms, but there is still a long way to go. Taken together, these 

observations corroborate our methodological approach not solely dependent on 

radiomics, relying instead also on other more “conventional” imaging analysis tools (a 

sort of “as simple as reasonably achievable” precept to adapt, time after time, to each 

research question), ranging, for example, from body composition assessment, diffusion 

weighted imaging sampling and definition of qualitative features of the index lesion 

(such as, tumour necrosis). 

In conclusion, this thesis (and, broadly speaking, this PhD journey) allowed me to 

construct far more than just five studies trying addressing, at least partially, two 

research questions, but it laid methodological basis for other projects dealing with 

different subjects. 
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