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Abstract

Objective: The resting-state functional connectome has not been extensively

investigated in amyotrophic lateral sclerosis (ALS) spectrum disease, in particu-

lar in relationship with patients’ genetic status. Methods: Here we studied the

network-to-network connectivity of 19 ALS patients carrying the C9orf72 hexa-

nucleotide repeat expansion (C9orf72+), 19 ALS patients not affected by

C9orf72 mutation (C9orf72�), and 19 ALS-mimic patients (ALSm) well-

matched for demographic and clinical variables. Results: When compared with

ALSm, we observed greater connectivity of the default mode and frontoparietal

networks with the visual network for C9orf72+ patients (P = 0.001). Moreover,

the whole-connectome showed greater node degree (P < 0.001), while sensori-

motor cortices resulted isolated in C9orf72+. Interpretation: Our results suggest
a crucial involvement of extra-motor functions in ALS spectrum disease. In

particular, alterations of the visual cortex may have a pathogenic role in

C9orf72-related ALS. The prominent feature of these patients would be

increased visual system connectivity with the networks responsible of the func-

tional balance between internal and external attention.
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Introduction

Amyotrophic lateral sclerosis (ASL) is a neurodegenerative

disorder that affects motor neurons in the brain and spi-

nal cord.1,2 Alongside progressive muscular atrophy and

motor symptoms, 15–20% of ALS patients present non-

motor symptoms, behavioral changes, and severe cogni-

tive deficits within the ALS—frontotemporal dementia

(FTD) clinical spectrum. Growing evidence has linked

ALS with a set of genetic mutations.3 In particular, the

intronic hexanucleotide G4C2 expansion in the chromo-

some 9 open reading frame 72 (C9orf72) is the major

genetic cause of ALS and FTD and it is associated with

more severe forms of ALS.4,5 This mutation has been

observed in 20–40% of familial and 3–8% of sporadic

ALS cases.6,7 The disease onset is earlier in mutation car-

riers (C9orf72+), typically characterized by with bulbar

signs, cognitive symptoms, and faster disease progression

that leads to a shorter survival.8–10 Structural imaging

analyses have also revealed widespread extra-motor

pathology in addition to motor cortex damage in

C9orf72+ patients.11–13 Mutation carriers show gray mat-

ter volume loss and cortical thinning in the primary

motor cortex, extending to prefrontal, occipitotemporal,

and parietal areas,11,13–15 alongside significant thalamic

atrophy.11,12,14,16 Despite this extensive corpus of knowl-

edge, functional network alterations in ALS according to

genetic mutations are still insufficiently investigated. Only

few resting-state functional magnetic resonance imaging

(rs-fMRI) studies have been performed on this topic and

the abnormal connectivity organization in C9orf72+ ALS

patients is still only marginally understood.11,17–20 This

literature gap is particularly striking when considering

that functional connectivity alterations at rest have been

suggested to potentially represent the earliest detectable

brain abnormality in carriers of ALS-causing gene

mutations.17,21 Previous studies have reported patterns of

increased/altered connectivity at rest associated with

C9orf72 mutation. When compared with ALS sporadic

cases, C9orf72+ patients showed increased connectivity

within the visual, anterior default mode, and right dorsal

attention networks,11,19 and diminished connectivity

within salience, sensorimotor, posterior default mode,

and pulvinar/thalamic-seeded networks.11,17–19 These con-

nectivity alterations allegedly emerge during development

and worsen after disease onset.18,22 When compared to

healthy participants, C9orf72+ patients have been reported

to show reduced posterior and subcortical connectivity,20

and decreased meta-states changes23 (i.e., reduced

dynamic changes in brain connectivity patterns). How-

ever, the relationship between intrinsic connectivity net-

works remains unclear and this vast range of alterations

does not allow for a systematic understanding of the

impact of C9orf72 mutation on the overall brain’s func-

tional organization.

On these grounds, it seems crucial to develop a better

understanding of the neurofunctional differences between

mutation carriers and non-mutation carriers. In this

study, we used rs-fMRI to compare a group of ALS

patients carrying the C9orf72 hexanucleotide repeat

expansion (C9orf72+), with a group of well-matched

patients not affected by the gene mutation (C9orf72�),

and a control group of ALS mimics patients24 (ALSm).

Participants were carefully matched for disease severity, as

previuously described,25 to describe the genotype signa-

ture controlling for clinical phenotypes. In this study, we

used a functional network connectivity26 (FNC) approach

to investigate the impact of C9orf72 mutation on both

intra- and inter-network connectivity. Based on previous

evidence of alterations within single connectivity net-

works, we expect C9orf72 mutation to significantly affect

the brain’s between-networks organization.

If proven significant, the relationship between inter-

network connectivity and C9orf72 mutations in ALS

would allow a broader understanding of C9orf72-based

alterations and potentially represent an early-detectable

biomarker in asymptomatic and presymptomatic carriers.

Materials and Methods

Participants

Thirty-eight (N = 38) patients diagnosed with ALS (EI

Escorial Revised Criteria27), and 19 (N = 19) ALSm

patients took part to the study. Comorbidity of severe neu-

rological or psychiatric conditions as well as causes of focal

or diffuse brain damage, including lacunae, and extensive

cerebrovascular disorders at routine MRI were considered

as exclusion criteria. Nineteen ALS patients carried the

C9orf72 hexanucleotide repeat expansion (C9orf72+), while
19 ALS patients were not affected by the pathological

C9orf72 expansion (C9orf72�). The group of ALSm
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patients included in this study did not have primary neuro-

degenerative diseases but rather clinical conditions with

features resembling those of ALS: cervical spondylotic mye-

lopathy (N = 3), myasthenia gravis (N = 9), monomelic

amyotrophy (Hirayama) (N = 1), and peripheric motor

neuropathy (N = 6). All ALSm patients were initially

recruited as suspected or possible ALS cases and were later

diagnosed as mimics. ALSm, C9orf72+, and C9orf72� par-

ticipants were carefully matched for age and sex assigned at

birth using a one-by-one pairing technique. C9orf72+ and

C9orf72� patients were additionally matched for ALSFRS-

total score and disease duration. Number of body regions

involved was assessed using King’s staging system28 (KSS).

All included patients had no mutation in SOD1, TARDBP,

and FUS genes. Demographic and clinical data are reported

in Table 1.

The study was carried out in accordance with the Dec-

laration of Helsinki; all clinical data were collected and

analyzed under the local ethics committee approval

(Azienda Ospedaliero-Universitaria Citt�a della Salute e

della Scienza di Torino, SC Neurologia 1U, Turin, Italy).

All participants gave their written consent.

MRI acquisition

Magnetic resonance imaging acquisition was performed

with a 1.5 Tesla General Electric Signa HD-XT scanner

(General Electric, Milwaukee, WI, USA) equipped with an

eight channels 8HRBrain head coil, at the unit of Neurora-

diology Unit, CTO Hospital, AOU Citt�a della Salute e della

Scienza di Torino, Italy. For each participant a T1-weighted

anatomical image was acquired with the following parame-

ters: repetition time [TR] = 11.85 ms, echo time [TE]

= 4.9 ms, flip angle [FA] = 12°, field of view [FOV]

= 240 mm, number of axial slices = 120, voxel

size = 0.47 9 0.47 9 1 mm3, and whole-brain coverage.

rs-fMRI scans were acquired with a fast speed Echo Planar

Imaging sequence with the following parameters

TE = 50 ms; TR = 2250 ms; FA = 90°; number of

volumes = 585; FOV = 210; 25 axial slices per volume;

Table 1. Demographic and clinical data.

C9orf72+ (N = 19) C9orf72� (N = 19) ALSm (N = 19) Pa

Male/female ratio 10/9 10/9 10/9 1

Bulbar/spinal onset 13/6 11/8 – 0.68

Cognitive classification n n – 0.36

Normal cognition 7 11 –

ALSbi 1 2 –

ALSci 2 1 –

ALScbi 1 0 –

ALS-FTD 4 1 –

Unknown 4 4 –

KSS (number of body

regions involved)

n n – 0.58

KSS 1 9 7 –

KSS 2 5 8 –

KSS 3 4 2 –

KSS 4 1 2 –

Median (IQR) Median (IQR) Median (IQR) Pb

Age (years) 55.50

(51.15–69.70)

59.50

(53.45–66.05)

60.00 (53.00

–69.00)

0.99

ALSFRS-R

score

43.00

(38.50–45.00)

43.00

(37.50–45.00)

– 0.95

Disease duration (months) 11.0

(8.00–14.50)

11.0

(9.00–13.50)

– 0.94

Overall

survival (years)

2.57

(2.19–3.17)

2.70

(2.13–3.40)

(4 alive)

– 0.91

Disease progression (DALSFRS-R) 0.53

(0.28–0.78)

0.56

(0.27–0.91)

– 0.67

KSS, King’s staging score system; IQR, interquartile range; ALSFRS-R, Revised Amyotrophic Lateral Sclerosis Functional Rating Scale.
aIndicates results for chi-squared test between C9orf72+, C9orf72�, and ALSm.
bIndicates results for two-sample independent t-tests between C9orf72+ and C9orf72�, or one-way ANOVA tests between C9orf72+, C9orf72�,

and ALSm.
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slice thickness = 4; interslice gap = 1 mm; voxel

size = 3.28 9 3.28 9 5 mm3; phase encoding direction =
anterior/posterior; the cerebellum was only partially

included in the volume coverage. Participants were asked

to keep their eyes closed during the rs-fMRI acquisition.

Statistical analyses

Demographical analyses

Analyses were performed with SciPy29 running on

Python3. Parametric tests were performed for all demo-

graphic and clinical variables, except for those not nor-

mally distributed (according to the Kolmogorov–Smirnov

test). Differences in age (years) between all three groups

were tested with Kruskal–Wallis ANOVA. Group differ-

ences in sex assigned at birth distribution were tested

with chi-squared statistics. Differences in clinical variables

(i.e., bulbar vs. spinal onset, ALSFRS-R score, disease

duration in months, survival in years, disease progression,

and number of body regions involved) were tested

between C9orf72+ and C9orf72� with independent sample

t-tests and Mann–Whitney U tests. All results were con-

sidered as significant at P ≤ 0.05 and corrected for multi-

ple comparisons.

Preprocessing

T1-weighted anatomical images were segmented with

FreeSurfer (v6.0.0, http://surfer.nmr.mgh.harvard.edu/).30

The estimated total intracranial volume (TIV), represent-

ing the sum of total gray matter, white matter (WM),

and cerebrospinal fluid volume (CSF), was extracted for

each participant using the same tool. Kolmogorov–Smir-

nov test was performed to assess the normal distribution

of each variable. Group differences in TIV were computed

using a one-way ANOVA to determine the overall atro-

phy degree in patients’ subgroups.

The CONN toolbox31 (version 20.b; MATLAB 9.14)

implemented in SPM12 was used to perform neuroimag-

ing data preprocessing and resting-state functional con-

nectivity analyses. CONN’s “default_MNI” preprocessing

pipeline was used. The following processing steps were

performed: realignment to the first functional image and

unwarping, slice-timing correction (slice

order = interleaved, bottom-up); outlier identification

with the artifact rejection toolbox (ART) (ART thresh-

olds: framewise displacement >1.1 mm; global BOLD sig-

nal changes >5 SD); direct segmentation in gray matter,

WM, and CSF tissue classes; registration and normaliza-

tion of functional and anatomical data into standard

Montreal Neurological Institute (MNI) space32; functional

data resampling to 2 mm isotropic voxels, and anatomical

data resampling to 1 mm isotropic voxels; smoothing

with a full-width at half-maximum 6 9 6 9 6 mm3

Gaussian kernel. Data denoising was performed with the

anatomical component-based noise correction (aComp-

Cor) to extract noise signal from white matter and CSF

components on a voxel-by-voxel level.33,34 For each par-

ticipant, realignment parameters, outlier volumes scrub-

bing parameters, physiological noise components

obtained from mean WM and CSF maps, and “effect of

rest” (initial magnetization transient effects) were entered

as nuisance covariates in the first-level analysis.35 Subse-

quently, a 0.008- to 0.1-Hz bandpass filter was applied to

the time-series to remove low-frequency drifts and high-

frequency noise.

The quality of structural and functional images was

assessed and visually inspected using both the quality

assessment (QA) tool implemented in CONN’s default,

and the BIDS-compliant software MRIQC.36 No partici-

pant was excluded because of excessive motion, noise, or

other MRI artifacts.

ROI-to-ROI resting-state functional connectivity

A region of interest-to-region of interest (ROI-to-ROI)

approach was adopted for the first-level analyses. For each

participant, a connectivity matrix including 26 ROIs of the

following rs-fMRI networks, as implemented in CONN’s

default atlas, was computed. Default mode network

(medial prefrontal cortex, left lateral parietal region, right

lateral parietal region, posterior cingulate cortex), sensori-

motor network (left lateral region, right lateral region,

superior region), visual network (medial region, occipital

region, left lateral region, right lateral region), salience net-

work (anterior cingulate cortex, left anterior insula, right

anterior insula, left rostral prefrontal cortex, right rostral

prefrontal cortex, left supramarginal gyrus, right supramar-

ginal gyrus), dorsal attention network (left frontal eye field,

right frontal eye field, left intraparietal sulcus, right intra-

parietal sulcus), and frontoparietal network (left lateral

prefrontal cortex, right lateral prefrontal cortex, left poste-

rior parietal cortex, right posterior parietal cortex). For

each ROI of each rs-fMRI network, Pearson’s correlation

coefficients were computed between the signal time-series

of that ROI and all the other 25 ROIs. Correlation coeffi-

cients were then converted to Z scores with the R-to-Z

Fisher transform and a 26 9 26 whole-connectome matrix

was generated for each subject. Connectome matrices were

entered into the second-level general linear model to com-

pare the functional connectivity network profiles of

patients’ subgroups with directional contrasts (i.e.,

C9orf72+ vs. ALSm, C9orf72� vs. ALSm, and C9orf72+ vs.

C9orf72�). Age, sex assigned at birth, and TIV were

included as nuisance covariates.37–39 The functional
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network connectivity (FNC) method implemented in

CONN was adopted to perform cluster-level inferences on

the rs-fMRI networks of ROIs.26,35 Briefly, FNC first iden-

tifies sets of related ROIs with a data-driven hierarchical

clustering procedure. The entire set of connections between

all pairs of ROIs is then analyzed using a multivariate para-

metric general linear model analysis. To select only highly

significant pairs of sets of connections the cluster-level P-

false-discovery rate (FDR)-corrected for multiple compari-

sons was set at <0.05. To identify only the most robust

individual connections of the significant sets the

connection-level post hoc uncorrected P was set at <0.05.
Cluster-level and connection-level significance thresholds

were kept at CONN 20b’s default settings.

Correlational analyses were performed to determine the

impact of disease duration and ALS progression on brain

connectivity. For each between-group second level signifi-

cant comparison, the mean connectivity of the resulting

matrix was computed for C9orf72+ and C9orf72� and

correlated with disease duration and King’s staging system

scores. Moreover, to assess whether variations in network

connectivity could be observed across different KSS

stages, comparisons between C9orf72+ and C9orf72�
groups were also performed restricting the analysis to

stages with at least five participants per group. Finally, as

both male sex assigned at birth and spinal onset have

been described as factors negatively impacting prognosis

in C9orf72+ patients,40 additional comparisons were per-

formed (i.e., male C9orf72+ patients vs. female C9orf72+
patients; bulbar onset C9orf72+ patients vs. spinal onset

C9orf72+ patients).

Graph theory metrics

In graph theory, the brain’s functional organization can be

modeled as a complex system of interacting elements

(graph) with nodes (ROIs) connected by edges

(connections).41,42 Each participant-specific 26 9 26 ROI-

to-ROI connectivity matrix was thresholded at a cost value

of k = 0.3 as small-world properties were observed at this

threshold (as recommended by CONN’s guidelines31).

Accordingly with CONN’s default options, single subjects’

negative functional connectivity values were disregarded in

these analyses. The following graph theory metrics as imple-

mented in CONN were extracted from each participant’s

whole 26 9 26 ROI-to-ROI connectome: node degree (i.e.,

the number of connections of each node), global efficiency

at a node (i.e., the average of the inverse minimum number

of edges between each node and all other nodes in the net-

work, representing a measure of the node’s centrality within

a network), local efficiency at a node (i.e., the extent of the

integration of a sub-graph consisting of only the nodes sur-

rounding a certain node, representing an index of local

integration or coherence), and betweenness centrality (i.e.,

an alternative measure of node centrality representing the

proportion of times that a node is part of a shortest path

between any two pairs of nodes within a graph).42 Graph

theory metrics were compared between each group with

CONN with the same covariates used in the previous for

ROI-to-ROI connectivity analyses. All results were corrected

with a P < 0.05 FDR correction for multiple comparisons.

As the adoption of matrix node thresholds for per-

forming graph analyses can potentially hide small effects,

additional analyses were performed with K cost threshold

set at 0.1; 0.3 (our default); 0.5; 0.7; 0.9, respectively indi-

cating that the analyses were performed only with the top

10%, 30%, 50%, 70%, and 90% of the connectome edges.

Results

Demographical analyses

No significant difference in age between the three groups

was found (H = 0.03, P = 0.98). No significant difference

in ALSFRS-R at the time of MRI (T = 0.06, P = 0.95)

and disease duration from the onset (U = 169.5,

P = 0.76) was found between C9orf72+ and C9orf72�
patients. When comparing TIV among each group, no

significant difference emerged (F = 0.55, P = 0.58).

ROI-to-ROI resting-state functional
connectivity

The comparison between C9orf72� and ALSm patients

did not reveal significant differences. Similarly, no signifi-

cant difference in network connectivity between C9orf72+
and C9orf72� patients was found.

C9orf72+ patients when compared to ALSm revealed

significant differences in the connectivity of one set of

networks (F(2, 50) = 11.14, P-FDR-corrected for multiple

comparisons = 0.001, g2 � 0.92; 95% CI = 0.85–0.96). In
particular, C9orf72+ patients relative to ALSm exhibited

increased connectivity between the default mode network

(bilateral lateral parietal components, medial prefrontal

cortex, posterior cingulate cortex) and the visual network

(medial, occipital, and bilateral lateral components), and

between the frontoparietal network (bilateral posterior

parietal cortex, bilateral prefrontal cortex) and the visual

network (medial, occipital, and bilateral lateral compo-

nents). Results are reported in Table 2; and Fig. 1A.

No significant correlations between the mean connectiv-

ity of significant networks and disease duration, and KSS

score were identified. No significant difference was

observed when grouping patients by KSS stages. No signifi-

cant difference associated with male sex assigned at birth or

bulbar onset were observed in the C9orf72+ group.
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Graph theory metrics

When comparing C9orf72+ with ALSm, graph theory ana-

lyses showed a significant enhancement in the node

degree of the whole connectome in the former (i.e., the

whole system of interconnected networks; T(51) = 4.65,

P-unc < 0.001, d = 0.65, 95% CI = 0.22 to 1.08). Con-

versely, the bilateral lateral nodes of sensorimotor net-

work showed decreased node degree (left node: T(51)

= �3.78, P-FDR = 0.011, d = �0.53, 95% CI = �1.06 to

0; right node: T(51) = �3.19, P-FDR = 0.032; d = �0.45,

95% CI = �1.08 to 0.18) and decreased global efficiency

at node (left node: T(51) = �3.78, P-FDR = .009,

d = �0.53, 95% CI = �1.06, �0; right node: T(51)

= �3.58, P-FDR = 0.009; d = �0.5, 95% CI = �1.06 to

0.06) in C9orf72+ patients.

No significant difference was found when considering

local efficiency and betweenness centrality, and when

comparing C9orf72+ with C9orf72� and C9orf72� with

ALSm patients. Whole-connectome main effects for each

group are reported in Figure 1B.

Analyses performed with K cost threshold values rang-

ing from 0.1 to 0.9 are reported in the Table S1 section.

Discussion

The relationship between brain functional connectivity

at rest and the gene mutation status in ALS is not fully

understood. This lack of consistency may depend, at

least in part, on adequate patients-controls matching

and methodological choices in data processing. In par-

ticular, most of the aforementioned studies adopted an

independent component analysis-based approach to

explore connectivity changes within—and not between

—isolated networks. Due to the brain’s complex and

interconnected nature, neurological disorders are known

to disrupt communication between multiple interdepen-

dent large-scale functional connectivity networks.41,43–45

In this study, we tested inter- and intra-network con-

nectivity between C9orf72 mutation carriers, noncarriers,

and ALS-mimic patients. Two main results were

obtained when comparing C9orf72+ with ALSm. Func-

tional Network Connectivity analyses revealed enhanced

connectivity of the visual network with both the default

mode network and the frontoparietal network. More-

over, graph theoretical metrics revealed increased num-

ber of connections within the whole connectome in the

Table 2. ROI-to-ROI resting-state functional connectivity results.

Cluster F-value P-FDR

Whole network 11.41 <0.001

Region 1 MNI xyz coordinates Region 2 MNI xyz coordinates T-value P-unc

Visual lateral (L) �37, �79, 10 Default mode LP (L) �39, �77, 33 4.01 <0.001

Visual lateral (R) 38, �72, 13 Frontoparietal LPFC (R) 41, 38, 30 3.82 <0.001

Visual lateral (R) 38, �72, 13 Default mode LP (R) 47, �67, 29 3.78 <0.001

Visual lateral (L) �37, �79, 10 Default mode LP (R) 47, �67, 29 3.66 <0.001

Visual lateral (R) 38, �72, 13 Frontoparietal PPC (L) �46, �58, 49 3.44 0.001

Visual lateral (R) 38, �72, 13 Default mode LP (L) �39, �77, 33 3.43 0.001

Visual lateral (R) 38, �72, 13 Default mode PCC 1, �61, 38 3.28 0.002

Visual lateral (R) 38, �72, 13 Frontoparietal LPFC (L) �43, 33, 28 3.24 0.002

Visual lateral (L) �37, �79, 10 Frontoparietal LPFC (R) 41, 38, 30 3.14 0.003

Visual occipital 0, �93, �4 Default mode LP (R) 47, �67, 29 3.17 0.003

Visual occipital 0, �93, -4 Default mode LP (L) �39, �77, 33 3.17 0.003

Visual lateral (L) �37, �79, 10 Frontoparietal PPC (R) 52, �52, 45 2.79 0.007

Visual lateral (L) �37, �79, 10 Frontoparietal LPFC (L) �43, 33, 28 2.75 0.008

Visual lateral (L) �37, �79, 10 Default mode PCC 1, �61, 38 2.7 0.009

Visual medial 2, �79, 12 Default mode LP (R) 47, �67, 29 3.38 0.001

Visual medial 2, �79, 12 Default mode LP (L) �39, �77, 33 3.13 0.003

Visual lateral (R) 38, �72, 13 Frontoparietal PPC (R) 52, �52, 45 2.6 0.012

Visual lateral (L) �37, �79, 10 Frontoparietal PPC (L) �46, �58, 49 2.46 0.017

Visual lateral (L) �37, �79, 10 Default mode MPFC 1, 55, �3 2.23 0.03

Visual medial 2, �79, 12 Frontoparietal LPFC (R) 41, 38, 30 2.6 0.012

Visual medial 2, �79, 12 Frontoparietal LPFC (L) �43, 33, 28 2.18 0.034

Visual medial 2, �79, 12 Default mode MPFC 1, 55, �3 2.15 0.036

Visual occipital 0, �93, �4 Frontoparietal PPC (R) 52, �52, 45 2.03 0.047

Significance threshold is set at P-false-discovery rate (FDR)-corrected <0.05 (cluster level) and at P-uncorrected <0.05 (connection level). L, left; R,

right.
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face of functional segregation of sensorimotor bilateral

nodes.

In this study, the visual system resulted more strongly

connected with anterior and posterior regions of the

default mode network and the frontoparietal network in

C9orf72+ when compared to ALSm. Early pathological

changes within the occipital cortex accompanied by local

functional and structural abnormalities have been

reported in C9orf72+ patients.46–48 Agosta and

colleagues11 showed enhanced visual functional connectiv-

ity in C9orf72+ patients in the presence of occipital corti-

cal thinning and decreased inferior frontooccipital

fasciculus microstructural integrity. Moreover, Premi and

colleagues23 recently reported a C9orf72 mutation-driven

association between pathological brain connectivity and

processing speed in a visual search task (TMT-A) that

might support a negative impact of gene mutation on

visuospatial functions.

On the other hand, alterations in both default mode

and frontoparietal networks have been reported in muta-

tion carriers. The default mode network consists of a

group of interconnected brain regions whose activity

increases while at rest and during “inactive” states (e.g.,

self-referential processing and mind wandering), and

decreases when the brain is engaged in attention-

demanding and goal-directed tasks.49,50 Conversely, the

frontoparietal network is part of the “central executive

network” whose activity is typically associated with direct-

ing attention to perform intentional goal-driven behavior

and exert adaptive cognitive control.51,52 In C9orf72+
patients with respect to sporadic cases and healthy partici-

pants, both increased and decreased connectivity within

the default mode network have been observed.17–19 Com-

paring presymptomatic C9orf72+ participants with healthy

participants, longitudinal trajectories of intra-network

homogeneity of the frontoparietal network showed

increased connectivity as aging.22 Moreover, according to

the well-known “triple network model,” the activity of

the default mode network and the frontoparietal network

is typically found to be connected and mediated by the

salience network, as attention naturally switches from

internal to external awareness states and vice-versa.53

Figure 1. (A) Results from the C9orf72+ > ALSm contrast, in the ROI-2-ROI analyses. Results are shown at connection-P-uncorrected <0.05,

cluster-P-FDR-corrected for multiple comparisons <0.05. L = left; R = right. Red color indicates increased ROI-to-ROI connectivity. (B) Resting-state

functional connectivity main effects at the whole-connectome level. Results are shown at connection-P-uncorrected <0.05, cluster-P-FDR-corrected

for multiple comparisons <0.05. Red color indicates positive ROI-to-ROI connectivity, blue color indicates negative ROI-to-ROI connectivity.
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Alteration of this specific functional organization of infor-

mation transfer would be impactful on executive func-

tions sustained by the main hubs of these large-scale

networks, such as prefrontal, parietal, and cingulate

cortices.54–56 This interpretation is in line with neuropsy-

chological evidence of greater impairment in executive

functions, and visual and verbal memory in C9orf72

mutation carriers when compared with C9orf72�
patients.9 The altered visual network connectivity with the

default mode and frontoparietal networks in C9orf72+
patients is an original finding of this study that needs to

be further explored. A potential explanatory interpretation

may involve the causal relationship between thalamic

degeneration in C9orf72+ patients and dysfunctions in

brain connectivity at rest. Thalamic alterations have been

recurrently reported in mutation carriers, and have been

considered a robust morphological signature of C9orf72

mutation.14,16,47,57,58 In particular, pulvinar nuclei within

the thalamus are a fundamental point of convergence in

visual pathways and are involved in visual cognition and

visuospatial attention processes. Moreover, pulvinar

nuclei are functionally and anatomically connected with

the visual network and have topographically organized

visual field maps.59,60 Lee and colleagues17,18 observed

medial pulvinar degeneration associated with disrupted

salience network connectivity in C9orf72+ presympto-

matic patients when compared with healthy controls (see

also Premi and colleagues23). Our findings may suggest

that the visual network in C9orf72+ patients, potentially

“disanchored” from atrophic pulvinar nuclei, loses its

functional specificity and becomes more strongly con-

nected with internal and external attention networks that

are typically mediated by the salience network in healthy

controls.53

Considering graph theoretical metrics, our results

revealed that C9orf72+ patients are characterized by a con-

nectome with a larger number of connections. This finding

is in line with previous accounts of increased resting-state

connectivity observed in C9orf72 mutation carriers11,19 and

it is most probably mirrored at the structural connectivity

level.61 Hyperconnected systems (i.e., enhanced functional

connectivity in terms of the number or the strength of

connections) have been observed in several neurological

and psychiatric disorders, either as a compensatory

response to neurological disruption or following the loss

of local inhibition.21,62–64 According to graph theory, net-

work hyperconnectivity generally indicates high-cost infor-

mation transfer, with redundant connections that are

metabolically expensive to maintain and associated with

increased vulnerability to pathologies.42,64,65 In addition to

whole-connectome increased number of connections,

C9orf72+ patients showed isolated sensorimotor cortices

when compared with the ALSm group. This finding is in

line with the known alterations of the sensorimotor cortex

integrity and connectivity observed in ALS patients, irre-

spective of the mutation status.11,22,66 Our results suggest

that functional connectivity at rest in C9orf72+ patients is

costly and inefficient, with abnormalities in high-cost com-

ponents such as network hubs and long-distance

connections.65 Within this system, sensorimotor processes

would be inadequately integrated. This pathological orga-

nization allegedly originates from combined neurodevelop-

mental factors and neurodegenerative processes that would

lead to dysfunctional motor and extra-motor behavior in

mutation carriers.

Our results should be considered in light of two main

limitations. First, it was not possible to collect imaging

data from healthy controls due to the hospital setting in

which the data were acquired. Comparing our cohorts of

patients with a control group of healthy individuals

would have allowed a broader understanding of the neu-

rofunctional impact of C9orf72 mutation in ALS. None-

theless, the inclusion of ALSm patients did allow us to

identify those features that are unique to ALS and the

C9orf72 mutation in particular, irrespective of the com-

mon symptomatic manifestations with symptomatic

mimics. In addition, the group of ALSm patients consid-

ered in this study did not have primary neurodegenerative

diseases, which could have influenced the comparison.

Moreover, the heterogeneous group of clinical conditions

within the control group might have contributed to sig-

nificant variability in ALSm connectivity. This limitation

is again derived by the inherent difficulties in obtaining

closely matched healthy controls within a clinical setting.

However, such variability could have partially reduced

possible between-group differences. The effect size and

confidence intervals of the ROI-to-ROI network conneci-

tivity comparison indicate a large between-group effect,

with a narrow confidence interval, thus suggesting robust

effect only marginally influenced by group variability.

Nonetheless, future studies could better address this issue

directly by enrolling healthy control subjects. As a second

limitation, our analyses did not reveal significant differ-

ences between C9orf72+ and C9orf72� patients. The two

samples were accurately matched for age, sex assigned at

birth, and disease burden. Of note, the mean disease

duration in both cohorts was inferior to 1 year. Group

differences between mutation and non-mutation carriers

may appear later, as dysfunctional connectivity changes

over time with dissimilar disease trajectories.8,18,22,67 On

these grounds, the two groups might have been too simi-

lar for large-scale network connectivity differences to

emerge significantly at this early stage of pathology. A

longitudinal study would be better suited to explore

mutation-based differences in the impact of disease trajec-

tories on functional connectivity.
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Taken together, our results provide an original over-

view of the impact of the genetic status on large-scale

connectivity networks in ALS, paving the way for future

research on gene-based connectomics and gene-targeted

therapies. C9orf72 mutation is associated with a neuroim-

aging phenotype caused by neurodevelopmental and neu-

rodegenerative processes that induce pathological

hyperconnectivity between extra-motor networks in the

face of sensorimotor network isolation.

Conclusions

In the present study, we used network neuroscience as a

methodological framework to investigate how C9orf72

hexanucleotide expansion in ALS patients affects the

brain’s functional connectivity at rest. Our findings high-

light the unique role played by C9orf72 mutation in the

pathological neurofunctional profile of ALS patients. In

particular, mutation carriers showed abnormal visual net-

work connectivity with internal and external attention

networks and a broadly hyperconnected connectome with

isolated sensorimotor nodes.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Table S1. Graph theoretical results (C9orf72+>ALSm), at

different K cost thresholds.
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