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Simple Summary: An “intelligent agent” based on deep learning solutions is proposed to detect and
non-invasively characterize lung lesions on computed tomography (CT) scans. Our retrospective
study aimed to assess the effectiveness of Retina U-Net and the convolutional neural network for
computer-aided detection (CADe) and computer-aided diagnosis (CADx) purposes. CADe and
CADx were trained, validated, and tested on the publicly available LUNA challenge dataset and two
local low-dose CT datasets from the IRCCS Humanitas Research Hospital.

Abstract: (1) Background: Once lung lesions are identified on CT scans, they must be characterized
by assessing the risk of malignancy. Despite the promising performance of computer-aided systems,
some limitations related to the study design and technical issues undermine these tools’ efficiency; an
“intelligent agent” to detect and non-invasively characterize lung lesions on CT scans is proposed.
(2) Methods: Two main modules tackled the detection of lung nodules on CT scans and the diag-
nosis of each nodule into benign and malignant categories. Computer-aided detection (CADe) and
computer aided-diagnosis (CADx) modules relied on deep learning techniques such as Retina U-Net
and the convolutional neural network; (3) Results: Tests were conducted on one publicly available
dataset and two local datasets featuring CT scans acquired with different devices to reveal deep
learning performances in “real-world” clinical scenarios. The CADe module reached an accuracy
rate of 78%, while the CADx’s accuracy, specificity, and sensitivity stand at 80%, 73%, and 85.7%,
respectively; (4) Conclusions: Two different deep learning techniques have been adapted for CADe
and CADx purposes in both publicly available and private CT scan datasets. Experiments have
shown adequate performance in both detection and diagnosis tasks. Nevertheless, some drawbacks
still characterize the supervised learning paradigm employed in networks such as CNN and Retina
U-Net in real-world clinical scenarios, with CT scans from different devices with different sensors’
fingerprints and spatial resolution. Continuous reassessment of CADe and CADx’s performance is
needed during their implementation in clinical practice.

Keywords: CT scans; lung nodules; artificial intelligence; deep learning

1. Introduction

Lung lesions are common. The overall incidence of lung nodules has increased 10-fold
from 1959 to 2015 [1], but–fortunately—the diagnosis of lung cancer has not risen accord-
ingly [2]. The increasing use of “modern” imaging techniques, the higher adherence to
screening programs, and the regular follow-up of patients suffering from other cancers
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result in a more significant number of lung lesions being incidentally detected in asymp-
tomatic people [2]. Several factors should be considered dealing with the first diagnosis
of lung nodules, including the patient’s pre-test probability of malignancy (e.g., smok-
ing habits and familiar or previous history of lung cancer), and the lesion’s characteristics
(e.g., size, spiculation, and pleura indentation) [2]. Based on these risk assessments, patients
are assigned to a class of risk and are managed accordingly [2]. The workup of patients
with incidentally detected pulmonary lesions comprises actions from no further steps
to computed tomography (CT) surveillance, to [18F]FDG positron emission tomography
(PET)/CT, to invasive procedures (biopsy, surgery, radiation therapy, or interventional
radiology treatment). From a practical point of view, once identified, lung lesions must be
characterized by assessing the risk of malignancy. Several qualitative CT features have been
reported to be associated with malignancy (e.g., size and attenuation characteristics) [2,3],
and standardized criteria to describe pulmonary nodules have been proposed (number,
size, and pattern) [3]. Nonetheless, there are still several hurdles to be overcome concerning
the applicability and reproducibility of these criteria (i.e., inter-operator and intra-operator
variability due to misinterpretation and different experiences and expertise), ultimately
affecting the management of patients diagnosed with lung nodule(s).

In recent years, artificial intelligence, acting as “another pair of eyes”, has gained
popularity. Computer-aided detection (CADe) and computer-aided diagnosis (CADx)
systems have been recently developed [4–6] to support imagers in both lung lesion detection
and diagnosis tasks. A number of models have been developed for the purpose of lung
nodule detection and segmentation [7,8]. Many lung nodule segmentation algorithms
based on either general or multiview neural network architecture have been proposed.
Most studies adopting multiview neural networks have introduced new architectures
by taking multiple lung nodule views. Subsequently, they use those views as inputs to
the neural networks. On the contrary, the general neural-network-based methods rely
primarily on U-Net architecture. Moreover, different lung nodule segmentation methods
can be used for different types of lung nodules. Additionally, many techniques have
been proposed for the classification of lung nodules (e.g., whether they are benign or
malignant) focused on supervised, as opposed to semi-supervised, learning [7,8]. Despite
the promising performance of these computer-aided systems, there are still limitations
related to the study design (e.g., retrospective trial), technical issues (e.g., the manual
labeling of images and high cost) and the efficiency (e.g., low calculation efficiency) of
these tools.

The study presented in this paper aimed to develop an “intelligent agent” to detect
and non-invasively characterize lung lesions on CT scans. Our goal was to apply CNN for
lung cancer identification on the CT scans inspired by the available literature, but more
importantly we aimed to test the tool in a “real-world” setting. In greater detail, the project
involved two main modules: the first one addressed the detection of lung nodules on
CT scans; the second dealt with the diagnosis (CADx) of each nodule into benign and
malignant categories. The “intelligent agent” relied on deep learning techniques, which are
described in the following sections.

2. Materials and Methods
2.1. Study Design

The study was a retrospective, single-institution trial.
We used public and local datasets to develop the CADe-CADx. CADe and CADx were

independently developed. The study was approved by the institutional Ethics Committee.

2.2. Datasets and Image Analysis

This subsection provides details for both publicly available and local datasets for our
CADe-CADx. Tables 1–3 set out lung abnormalities within the LUNA challenge dataset,
CT scans used for CADs’ development, and the number of nodules used for CADx.
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Table 1. Lung abnormalities annotated within the LUNA challenge dataset.

Nodule ≥ 3 mm
Complete region of interest (ROI) boundary (>1 point)

Nodule characteristics (e.g., roundness, sharpness of the margin,
internal structure, etc.)

Nodule < 3 mm The approximate centroid of the nodule
No characteristics

Non nodule > 3 mm The approximate centroid of the nodule
No characteristics

Table 2. CT series datasets used for the CADs’ development.

Dataset Training Validation Test Total

LUNA 603 202 - 805

ICH_s1 764 191 234 1189

ICH_s2 54 19 19 92

Total 1421 412 253 2086

Table 3. The number of lung nodules included in each dataset used for the CADx development.

Final Diagnosis Training Validation Test Total

Benign nodule 381 192 59 632

Malignant nodule 439 198 77 714

Total 820 390 136 1346

2.2.1. LUNA Challenge Dataset

The open-source LUNA challenge dataset [9] and the local ICH_s1 and ICH_s2 datasets
were used for the detection task.

The LUNA dataset consists of 805 series of diagnostic and lung cancer screening chest
CT scans along with XML annotation files. Lung abnormalities have been annotated by
four thoracic radiologists. Each abnormality is classified as a nodule or not, and annotated
according to size, as detailed in Table 1.

The mask of the region of interest (ROI) for nodules of at least 3 mm was based on a
50% consensus criterion on four radiologists’ segmentations.

2.2.2. Local Datasets—ICH_s1 and ICH_s2

ICH_s1 is a local dataset consisting of 1189 low-dose CT series. The images were
independently analyzed by two expert chest radiologists, and all of the nodules were
segmented on non-contrast-enhanced images regardless of size. ICH_s2 consisted of
92 annotated lesions close to the mediastinum. The “ground truth” for the CADe was the
segmentation performed by imagers (full concordance between radiologists). Collectively,
local datasets included 1281 CT scans (441 with at least one nodule). The above-mentioned
datasets were split into three subsets (training, validation, and test), as detailed in Table 2.
Therefore, test set images for both ICH_s1 and ICH_s2 were used neither for training nor
validation purposes.

The 234-test series from the ICH_s1 dataset comprises 104 nodules. One nodule per
series is present in the 19-test series from the ICH_s2 dataset. Image segmentation and
labelling were performed using a dedicated plug-in implemented for the 3D-slicer software
tool (version 4.10.2, Slicer.org, Boston, MA, USA) [8].

2.2.3. CADx—Datasets and Image Analysis

The local datasets, ICH_x1 and ICH_x2, were used for classification tasks. The ICH_x1
subset comprised 349 low-dose CT images with nodules, with 29 confirmed to be malig-
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nant. The images were analyzed by an expert chest radiologist (CT), and all of the nodules
were segmented on non-contrast-enhanced images regardless of size. There was a partial
overlap between the series included in ICH_s1 and ICH_x1. The ICH_x2 subset consists
of 957 CT scans (all with at least one nodule) annotated by marking the lesion centroid.
ICH_x2 samples were annotated on non-contrast-enhanced images by experienced im-
agers (CT and MS). ICH_x2 comprises any type of CT scan acquired at our institution,
including co-registered images of PET/CT (n = 301), biopsy-guiding CT scans (n = 305),
and diagnostic CT scans (n = 351, respectively). Collectively, 1346 nodules in 1306 CT
scans were segmented and labelled. Radiological follow-up and pathology were used as
reference standards in 350/1346 and 996/1346 cases, respectively (Table 3). Specifically,
complete resolution of lung lesions was used as a radiological reference standard to define
a nodule as benign. The final radiological diagnosis was used to classify 567/632 benign
nodules. In the other 65/632 cases, benign nodules were pathologically confirmed. All ma-
lignant nodules were pathologically confirmed. Malignancy included primary lung cancer
(adenocarcinoma = 392/714, squamous cell carcinoma = 113/714, carcinoid tumor = 31/714,
and other = 35/714) and lung metastases (n = 133/714). In ten patients, the primary lung
tumor subtype was not specified. The final diagnosis was collected from electronic medical
records. Image segmentation and labelling were performed using a dedicated plug-in
implemented with the 3D slicer tool.

2.3. CADe and CADx Architectures

As briefly mentioned in the previous sections, deep learning paradigms are behind
the proposed CADe and CADx systems. One of the main challenges in our work was
to test the effectiveness of deep learning architectures in real scenarios accounting for
several variables, such as different CT devices, images with different spatial resolutions,
and device fingerprints.

Due to the different nature of detection and diagnosis tasks, we opted for two different
deep neural network architectures. CADe relies on pixel-wise segmentation to reveal
whether a pixel is part of a lung lesion. To this end, it is necessary to obtain a full-resolution
output binary mask to retrieve both the coordinates and the region of the lung lesion.

Conversely, CADx focuses on the final diagnosis of a given lung lesion. The system is
meant to return a label indicating ‘benign nodule’ or ‘malignant nodule’. Then, it is not
necessary to make the system to return a full-resolution output mask while only an output
label is needed. The following two subsections provide further technicalities regarding the
two different architectures for CADe and CADx.

Furthermore, it is necessary to point out that deep learning networks must ingest
many images to deliver a model with knowledge inference and generalization that can
accomplish a specific domain task. The biomedical image analysis scenario is afflicted by a
dimensionality problem due to the lack of manually annotated data. To be more accurate,
the dimensionality issue refers to the size of hand-labelled data, which is not reasonably
big enough to have a deep neural network trained from scratch.

That is where data augmentation comes into play; applying image transformations
without altering the meaningful content of the image itself makes a given dataset bigger in
size by generating new samples. Examples of primary data augmentation are the following:
flipping, mirroring, rotation, translation, and scaling.

In the following two subsections, a further description of the deep learning techniques
for CADe and CADx tasks is given.

2.3.1. CADe Architecture and Development

The main goal of a CADe system is to return a full-resolution mask highlighting
the suggested regions of interest for a given input image. That is why we opted for
the fully convolutional neural network (FCNN) architecture. CADe tasks are, therefore,
accomplished in a pixel-wise manner to extract information related to both the ROI (region
of interest) and the corresponding targets. FCNN allows for return of a full-resolution
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mask for a given input image. In simpler terms, an FCNN ingests an input image with size
M × N and returns an output mask with the exact dimensions. The latter makes it suitable
for critical biomedical image analysis tasks, such as segmentation and detection.

One of the most popular and cited FCNNs for biomedical image segmentation is the
so-called U-Net [10] which owes its name to the U-shape of the network architecture. In
this section, we provide readers with the overall description of U-Net, including the main
layers and operations throughout the network. For the sake of clarity, we do not address
the most complex mathematical concepts, and instead point the readers toward to the
reference articles for further details [10].

The overall U-Net architecture is depicted in Figure 1. The encoder is responsible for
extracting hidden information within the pixel domain. The latter is achieved with a stack
of filters that down-sample input images in the first place. In simpler terms, the network
architecture is organized in levels, with each level consisting of two Conv (convolutional
layers) followed by a ReLU (rectified linear unit), a max pooling layer characterized by a
parameter, namely ‘stride’, tuning the down-sampling factor for the input image.

Figure 1. U-Net architecture.

All of the encoder levels are meant to extract the most meaningful features from the
input images all the way to the network bottom level. Each level returns outputs through
feature maps (or channels). They represent intermediate stages of the network layers
that feed the following level in the stack. From a graphical viewpoint, blue rectangles
indicate the input, feature maps, and output of the network. Going through consecutive
layers through the encoder, it is noticeable how rectangles change in size, turning into
shorter but wider blue rectangles. This is a descriptive representation showing what
happens inside the network: convolutional layers work as image feature extractors; ReLU
is an activation function whose primary role is to give neural networks non-linearity
representation capabilities to represent results with more accuracy. Max pooling is a
“pooling” operator extracting the max value from image patches and bringing down down-
sampled patches.

Purple downward arrows in Figure 1 show max pooling coming into play, while or-
ange arrows represent the sequence Conv + ReLU. The encoder is responsible for extracting
“what” is in the images, while the decoder deals with the “where”.

The features extracted by the contracting path are then progressively reconstructed by
the expanding path (decoder) with layers consisting of transpose convolution (deconvo-
lution), Conv + ReLU and Final Conv. Transpose convolution allows upsampling of the
feature maps out of the previous layers; Conv + ReLU are then applied in combination with
skip connections to refine the results in each level. Skip connections help to retrieve missing
information from the encoder feature maps standing on the same level. The top left corner
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of the network returns a segmentation map by adopting a one-dimensional convolutional
layer. The latter can return labels in a pixel-wise fashion.

The network employed for our CADe, namely, Retina U-Net [11], is a variant of two
pre-existing networks, Retina Net [12] and U-Net [10].

2.3.2. Retina U-Net

Retina U-Net [11] integrates elements from Retina Net and U-Net to combine object
detection and semantic segmentation. Taking after most of the state-of-the-art object detec-
tors, Retina U-Net complements U-Net architecture by introducing object-level predictions
through feature pyramid networks (FPNs) [13]. FPNs are feature extractors with bottom-up
and top-down paths. The overall Retina U-Net architecture is graphically represented in
Figure 2. The overall pipeline is mainly characterized by FPNs, coarse features detectors,
skip connections, Conv + Softmax, Conv + ReLu + MaxPool.

Figure 2. Architecture of the U-Net neural network used to segment lung nodules in CT scans. The
number left on each layer represents the number of output channels.

Coarse feature detectors, indicated by red rectangles in Figure 2, are responsible for
detecting small-sized objects using sub-network operations such as the so-called bounding
box regressor (a well-known object detection technique) [14]. Skip connections support the
network in retrieving missing information from the encoder feature maps standing on the
same level. The Conv + ReLU + MaxPool stack consists of convolutional filter, a rectified
linear unit function, and a max pooling filter. They are key to the contracting path of the
FCNN as Conv filters and MaxPool filters down-sample the input feature map while ReLU
allows for generalization and inference of knowledge from a non-linear input (as it is a
piecewise linear function).

Conv + SoftMax consists of a sequence of a convolutional filter and a SoftMax function
returning a probability map for every possible class to be detected in the images. The
Up-pool and Deconv layers are responsible for the image reconstruction starting from the
network bottleneck (the bottom layer in the U-shaped architecture).

In this work, the Retina U-Net was implemented to segment lung nodules. It sums up
6 layers in the contracting path (see Figure 2), 18 feature maps in the first layer and 576 in
the deeper one. In the expansive path, on the other hand, the number of channels is half
the ones in the first 4 layers, starting from 576, but then it is kept to 18 in the last 2 upper
layers, consistently with the contracting path.

2.3.3. CADx Architecture and Development

The neural network architecture adopted to classify lung nodules is a convolutional
neural network (CNN) adapted from [15] (Figure 3).
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Figure 3. Architecture of the convolutional neural network used to classify lung nodules as benign or
malignant. The number in each layer represents the number of output channels in that layer.

CNN consists of several layers responsible for feature extraction steps (four convo-
lutional blocks) and classification (three fully connected layers and a SoftMax layer). The
SoftMax function returns probability values for a given lung lesion, which is then classified
as benign or malignant.

In Figure 3, the CNN layers are grouped into three blocks: the convolutional block,
linear block, and SoftMax layer.

The convolution block consists of a convolutional layer, ReLU (rectified linear unit),
and 2D dropout. Unlike FCNN, CNN does not account for an expanding path because
it is not designed to return full-resolution images; its output labels are related to the
classification task. As noticeable in Figure 3, a stack of convolution blocks allows for down-
sampling of the input image (CT scan) into feature maps that are subsequently ingested by
a linear block. The latter consists of fully connected layers paramount to the classification
task and ingests high-level features out of down-sampled feature maps from the previous
layers. The last layer is characterized by the SoftMax function returning probability values
for the input belonging to the category of interest.

Training was performed using an equally balanced cross-entropy loss and Adam
optimizer. Each series was preprocessed to extract the pixels belonging to lung nodules;
indeed, the series was multiplied by the binary segmentation of each nodule.

As a result, any pixel not belonging to lung nodules is considered a background pixel.
In the inference phase, the binary mask of each nodule is the result of the segmentation
network described in the previous section, followed by the CNN.

The input volumes are centrally cropped around the lesion to a target size of eight
slices, with a 100 × 100-pixel mask. During training, image augmentation is performed by
applying random rotations, flipping, and brightness variation. The latter step is to increase
the size of the training set to prevent the output model from being prone to overfitting.

As can be noticed in Figure 3 the latest layer from the network stack is a SoftMax
function, which is responsible for returning probability values. The likelihood value is then
adopted to extract the classification target, which is the network output.

The following section focuses on the system infrastructure and depicts the healthcare
scenario we adopted in this study.

3. System Infrastructure

DICOM series identified from the institutional PACS as chest CT scan acquired and
stored according to good clinical practice were downloaded and retrieved from the PACS
AI Invariant. Data were anonymously stored in this layer to address privacy requirements
compliance. Each series retrieved from the PACS AI Invariant was added daily to a DICOM
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series queue preprocessed in a cascade by the neural networks previously described. The
Invariant AI Runtime module (Figure 4) was used to run the models. The results were
then re-transferred to PACS AI Invariant to be processed, consulted, and envisaged on
radiological workstations. The model results and manual annotations performed using the
3D-slicer plugin were stored in PACS AI Invariant and a data warehouse.

Figure 4. System infrastructure components: PACS Humanitas; PACS AI Invariant, Invariant AI
Runtime; Data Warehouse; Radiomix Station, Radiological Workstation.

4. Metrics

The detection rate, accuracy, specificity, and sensitivity were computed to evaluate
the performance of the CADs and the CADx, respectively. Specifically, the “ground truth”
for the CADs was the segmentation performed by the imagers (complete concordance
between the imagers). The detection rate was calculated as the number of nodules correctly
identified by the CADe and the total number of nodules segmented by the imagers. The
Dice score was calculated to compare CADe’s and imager’s segmentation. The final
diagnosis (radiological follow-up or pathology) represented the reference standard to
evaluate CADx’s performance. Accordingly, each CADx prediction was classified as true
positive, true negative, false positive, or false negative. The confidence analysis was used
to evaluate the distribution of the probability values of each predicted nodule to belong to
its class. The abovementioned metrics were calculated for training, validation, and test sets.

5. Results

As mentioned above, CADe and CADx were independently developed, trained, and
tested. The results of CADx (i.e., classification) were not related to the CADe’s prediction
(i.e., segmentation). We reported the results of the performance obtained in the test set.

5.1. CADe

CADe correctly identified 96/123 nodules (78%) and missed 27/123 nodules. Specif-
ically, 90/104 and 6/19 nodules of the ICH_s1 and ICH_s2 datasets, respectively, were
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detected correctly. Failures were relayed mainly on ground glass opacity (n = 6) and very
small or very large nodules close to vessels, pleura (Figure 5), and/or mediastinum (n = 6,
n = 9, and n = 4, respectively).

Figure 5. Example of a nodule close to pleura in the right lung correctly predicted by the CADe and
of a small nodule, near to the previous one, missed by the CADe. Left panel: axial CT slice with
prediction (yellow) and/or mask (pink); right panel: original CT image.

An average of 10.84 nodules per series were falsely identified. The number of false
positives was reduced to 6.5 nodules per series when excluding nodules smaller than 3 mm.

5.2. CADx

CADx correctly classified 109/136 nodules (43 true negatives and 66 true positives). The
CADx failed in classifying 27 nodules (11 false negatives and 16 false positives, Figures 6 and 7).
The size of nodules wrongly classified was between 3 and 6 mm in 7/27 cases (6/7 solid and
all falsely classified as benign), greater than 6 mm but smaller than 8 mm in 5/27 cases (3/5
solid and 2/5 falsely classified as malignant), between 8 and 10 mm in 2/27 cases (both ground
glass opacity resulted false positive), bigger than 10 mm but less than 15 mm in 2/27 cases
(both solid, one resulted in a false negative and one resulted in a false positive), between 15 and
25 mm in 9/27 cases, and greater than 25 mm in the remaining 2/27 cases. Specifically, false
negative nodules were small nodules with a median size of 4.85 mm (range 3–11.3 mm)
and solid in the majority of the cases (8/11). Considering only solid nodules, the median
size of lesions falsely classified as negative was 4.7 mm (range 3–11.2 mm). Three round
glass opacities (median size of 7 mm, range 3.3–7) were wrongly classified as benign. False
positive nodules were quite big nodules with a median size of 20 mm (range 7.2–55 mm).
Nodules wrongly classified as malignant were mainly solid (10/16) with a median size
of 22 mm (range 7.2–55 mm). Considering only this class (i.e., solid nodules resulted in
false positives), a consistent number of nodules (7/10) were bigger than 15 mm. Other false
positive results accounted for ground glass opacity (n = 3/16) and part-solid nodules (3/16)
with a median size of 10 mm (range 9–15 mm) and 23 mm (range 20–23 mm), respectively.

Our CADx system achieved an 80% accuracy rate. The sensitivity and specificity rates
were equal to 85.7% and 73%, respectively.

The graphs in Figure 8 show the probability of each predicted nodule belonging to
its class being similar for correctly classified lesions and nodules misclassified as benign
(mean = 0.84 and standard deviation = 0.09 and mean = 0.84 and standard deviation = 0.10,
respectively). In contrast, the confidence mean of the CAD in incorrectly predicted malig-
nant lung lesions was lower (mean = 0.72 and standard deviation = 0.08, Figure 7).
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Figure 6. Example of a solid nodule of 6.3 mm (inside the red box) wrongly predicted as benign by
the CADx.

Figure 7. Example of a lesion of 55 mm (in yellow) wrongly predicted as malignant by the CADx.

Figure 8. Confidence mean and standard deviation for correct classifications, false benign nodules
and false malignant nodules.

6. Discussion

We developed an “intelligent agent” to detect and non-invasively characterize lung
lesions using any type of CT scan. Big nodules detected incidentally are typically not a
challenge for clinicians since the size and radiological characteristics rarely leave room for
doubt. In contrast, nodules of less than 1 cm may be uncertain and difficult to characterize.
In this setting, based on patient risk assessment (low versus high), number (solitary versus
multiple), pattern (solid, part-solid, and ground glass), and the size of the nodule, radio-
logical follow-up, [18F]FDG PET/CT and biopsy are recommended [3]. However, these
actions might be not feasible and/or can result in inconclusive results. Therefore, a tool able
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to correctly classify at least small nodule (3–8 mm) as benign or malignant is actually an
unmet clinical need. As mentioned, our CADe missed some nodules (22%), mainly ground
glass opacity or nodules close to vessels, pleura, or mediastinum. Notably, all nodules of
15 mm or greater were wrongly classified as false positives, while the majority of nodules
smaller than 10 mm (77%) resulted in false negatives. Collectively, our CADx was more
sensitive than specific and wrongly classified 20% of nodules (8% as false negatives and
12% as false positives).

Performant algorithms capable of detecting lung lesions and discriminating benign
from malignant nodules with great accuracy have been described [4,6]. Our CADe and
CADx exhibited lower accuracy for both detection and classification (78% and 80%, re-
spectively) tasks than those achieved by the algorithms reported in the literature (up to
95% [6] and 96% [4], respectively). Our CADe missed some ground glass opacities and
close-to-vessel nodules, pleura, and/or mediastinum. Similar failures have been reported
for deep learning-based algorithms in the literature [16]. Nonetheless, our CADs-CADx
benefitted in some respects. Firstly, they were developed and tested using a local dataset
from real-scenario data including different types of CT images (co-registered CT from
PET/CT = 23%, biopsy-guiding CT scans = 23%, low-dose CT = 27%, and fully diagnostic
CT = 27%). The performance achieved in highly selected and homogeneous datasets may
lead to overestimated model reliability. Therefore, continuous “real-world” re-validation is
necessary for clinical implementation of DL-based tools.

Secondly, our dataset consists of well-balanced classes of benign and malignant nod-
ules (47% and 53%, respectively). Thirdly, the final diagnosis does not rely on subjective
interpretative criteria to assess malignancy risks.

Conversely, we used pathology or a rigorous radiological criterion to determine
whether a nodule was benign or malignant (approximately 60% and 40% of cases, respec-
tively). Several deep-learning-based algorithms developed to detect and classify lung
nodules relied on public datasets consisting of low-dose CT images collected within lung
screening programs [4,6], which dealt with a low prevalence of relatively small nodules.
Many publicly available databases see the risk of malignancy assessment by expert im-
agers as the “ground truth” [17–19]. Nonetheless, the latter has been recently shown to
affect CADx’s reliability and performance [16]. Moreover, in many experiments, malignant
nodules accounted for approximately one-third of the total number of nodules [20–22],
potentially causing overfitting and ultimately affecting the model’s reliability. Lastly, malig-
nancy in our datasets comprised primary lung tumors and lung metastases (81% and 19%,
respectively). The pattern recognition out of CNN has shown similarities to typical image-
feature-based learning [23]. Still, different imaging-based features in primary lung tumors
and metastases have been reported [24], suggesting specific histology-based descriptors.

On one hand, all these factors, although theoretically positive, generated a widely
heterogenous dataset which was analyzed using the gold standard as a reference, which
possibly explains why our tool was less performant than those reported in the literature.
On the other hand, with the dataset being more heterogeneous, it positively impacted
the overfitting and the generalizability of the CADs-CADx in the “real world”. Therefore,
we can realistically consider our CADx as a tool—albeit to be further improved—for a
“virtual biopsy”. It could result in several worthwhile circumstances, including, among
others, lung nodules of undetermined significance. Giles et al. [25] reported that lung
nodules of unknown significance were malignant in 86% of cases. Notably, in this series
of 500 surgically treated patients, the percentage of lung metastases was not negligible
concerning the total number of malignant lesions (22% metastases versus 78% primary
lung tumors) [25], thus underlying the potential additional value of our CADx. Moreover,
synchronous and metachronous tumors incidentally detected during staging or follow-up
examinations have increased [26], making it imperative to exclude malignancy in a patient
with a newly diagnosed lung nodule and a history of cancer.

Despite the abovementioned positive aspects, this study also presented some limita-
tions. Firstly, the CADs-CADx were independently developed, and the presented results
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refer to the detection and classification tasks separately. The next step will be to test the
end-to-end tool on independent data. Furthermore, the algorithms’ architectures used for
the CADs-CADx were modified from pre-existing neural networks. That is common for real
scenario-oriented deep learning, with fewer methodological and theoretical contributions
than new, application-oriented results; the novelty is often represented by the employment
of pre-existing deep learning techniques applied in new scenarios and research fields
through context-based modifications.

The consideration above paves the way to a crucial point in the reliability of so-called
supervised deep learning for some specific tasks. Two main questions arise from our
experimental results: Can CNNs and FCNNs be considered as reliable tools for CADe and
CADx? Is the supervised learning paradigm gradually going to be left behind in favor of
semi-self-supervised deep learning architectures?

The paradigm adopted might not be the most suitable for a scenario with several
constraints: images with different spatial resolutions and various sensors’ fingerprints. The
latest progress in AI sees new architectures reliant on self-supervised learning, which move
toward AGI (artificial general intelligence) capable of inferring hidden properties from
input data to be fine-tuned over a specific target with only a limited number of annotated
samples. The results bring up some other aspects that deserve further investigation. For ex-
ample, our experimental campaign ran essential data augmentation to prevent lung lesion
shape distortion. Nonetheless, more advanced augmentation techniques based on genera-
tive deep learning, such as GANs (generative adversarial networks), appear to be promising
to provide datasets with many more samples to be re-utilized for training purposes.

All that said, as for other domains of image patter recognition (e.g., animal photos) [27],
we are convinced that sophisticated algorithms are insufficient in the setting of “real-world”
data, and a huge number of observations (A million? A billion?) are needed to reach
satisfactory results in terms of sensitivity and specificity. Moreover, we should keep in
mind that our final goal is to develop a tool able to reach 100% accuracy, since even only
one misclassified case is a misdiagnosed patient.

7. Conclusions

We have presented a specific case study on the detection and classification of lung
lesions on CT scans to test the effectiveness of two of the most popular deep learning
architectures, FCNN and CNN. To this end, we employed data from datasets with different
features and specs. The first one was the LUNA 16 Challenge dataset; the second one
consisted of images locally acquired and labelled. Furthermore, CT scans were acquired
with different scanners making the case study close to real scenarios with the probability
of unknown information about the sensors generating the images undergoing CADe and
CADx checks. The experimental campaign confirmed the promise of these approaches
in automated lung nodule assessment on CT, alongside with some drawbacks of the su-
pervised learning paradigm employed in networks such as CNN and Retina U-Net in
real-world clinical scenarios, with CT scans from different devices with different sensors’
fingerprints. Collectively, we proved that these tools, although promising, are not “ma-
ture” enough to successfully analyze “real-world” data and to be finally implemented in
clinical practice.
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