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Abstract
One in 10 cases of sudden cardiac death strikes without warning as the result of an inherited arrhythmic cardiomyopathy, such as 
Brugada Syndrome (BrS). Normal physiological variations often obscure visible signs of this and related life-threatening 
channelopathies in conventional electrocardiograms (ECGs). Sodium channel blockers can reveal previously hidden diagnostic ECG 
features, however, their use carries the risk of life-threatening proarrhythmic side effects. The absence of a nonintrusive test places a 
grossly underestimated fraction of the population at risk of SCD. Here, we present a machine-learning algorithm that extracts, aligns, 
and classifies ECG waveforms for the presence of BrS. This protocol, which succeeds without the use of a sodium channel blocker 
(88.4% accuracy, 0.934 AUC in validation), can aid clinicians in identifying the presence of this potentially life-threatening heart disease.
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Significance Statement

Sudden cardiac death (SCD) persists as a significant public health problem, claiming millions of lives every year, including many 
young and otherwise healthy individuals. Among patients without evident structural heart disease, SCD often occurs as the first clin
ical manifestation of an inherited disorder, such as Brugada Syndrome (BrS). Unfortunately, such patients seldom show overt signs of 
disease. The present study demonstrates that a deep neural network can detect the signature of BrS in an ECG, even in the frequent 
case when these signs are undetectable by the human eye. This tool, when applied to routine clinical ECGs, will alert clinicians to 
potentially life-threatening conditions that would otherwise go undiagnosed.
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Introduction
Sudden cardiac death (SCD) kills more than 4.2 million people 
worldwide every year (1). Among young and otherwise healthy in
dividuals, SCD often appears without warning as the first clinical 
manifestation of an inherited arrhythmic disease (2–4), such as 
Brugada Syndrome (BrS) (5–8). Two-thirds of patients afflicted 
with BrS show no symptoms of cardiovascular disease, and SCD 
often serves as its first clinical manifestation (5).

The hidden and dynamic nature of this disease underlines 
the need for an improved diagnostic test (9). The incidence of 
confirmed BrS varies by country (5); but, the difficulty of diagno
sis coupled with the complex genetic architecture (10, 11) and 
inheritability of this disease suggests that its true prevalence 
is unknown. Most affected patients present a normal ECG, and 
nearly half of BrS-afflicted individuals who survive a cardiac ar
rest fail to show a diagnostic type 1 pattern in a routine ECG (12). 

Both factors severely hinder the recognition of this lethal 
disease.

Where permitted, cardiologists may administer one of several 
sodium channel blockers (SCB) to unmask the BrS type 1 pattern 

(5, 13, 14) as demonstrated in Fig. 1.  However, these drugs can 
cause life-threatening proarrhythmic effects, which limit their 
use to those individuals with a known family history of SCD 
(15, 16). And ajmaline, the most effective diagnostic SCB, is un
available for clinical use in many countries. including the 
United States of America and Japan. Thus, the development of 
an easily applied, nonintrusive BrS diagnostic test remains an im
portant and pressing objective.

The interpretation of an electrocardiogram for medical diagno
sis requires the application of expert knowledge in a full consider
ation of the many interconnected factors that influence ECG 
waveform patterns. This central problem of learning and 
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retention lends itself well to an approach that classifies on the ba
sis of a deep neural network (DNN), tied to a very large library of 
digital waveform standards (17). An extensive body of effort has 
applied artificial intelligence with the processing power of modern 

computers to recognize diagnostic features of gross rhythm disor
ders such as atrial fibrillation, and certain common cardiomyop
athies for which large digital ECG databases exist (18–30). 
However, thus far, machine learning has yet to establish digital 
signatures for more subtle, but no less-threatening conditions 
such as BrS, often harbored by asymptomatic individuals who 
present apparently normal ECGs. The difficulty of assembling a 
large-scale digitized dataset of expertly diagnosed ECGs presents 
a significant challenge to progress (31).

Here, we describe the development of a robust noninvasive 
method to diagnose the electrophysiological signature of BrS 
from the digital analysis of a routine clinical electrocardiogram. 
This work differs substantially from the many other machine- 
learning approaches to ECG classification, particularly those 
that target BrS with only a capacity to identify affected individuals 
who present a visible type 1 pattern in their baseline ECG (32–35).

Rather than surveying a continuous ECG for abnormalities, 
much like a medical professional might perform a visual assess
ment, our approach reduces a standard multi-lead ECG trace to 
a set of high-quality representative single heartbeats, one for 
each lead, and then classifies upon this basis. This preprocessing 
strategy better isolates the persistent baseline function of the 
heart’s electrical conduction system by overcoming transient un
correlated beat-to-beat variance present in the raw traces. This di
mensionality reduction helps the neural network recognize the 
persistent ECG features that most consistently encode for BrS.

Methods
Study population
The present study draws upon an existing database of 1,455 con
secutive patients undergoing electrophysiological evaluation for 
the diagnosis of BrS at the Arrhythmia Department of IRCCS 
Policlinico San Donato (San Donato Milanese, Milano, Italy), be
ginning in April 2015 (Fig. 2 and Table S1).
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Fig. 1. Representative heartbeats recorded for V1, V2, and V3 in (left) baseline electrocardiograms of three typical patients diagnosed as spontaneous type 
1 BrS(+) (top), BrS(+) (middle), and BrS(−) (bottom). Electrocardiograms are recorded during ajmaline administration for patients not presenting a 
spontaneous type 1 pattern (right). Note the ST-elevation feature signifying BrS in the type 1 ECG traces. In our study, only 17% of BrS(+) patients exhibit a 
spontaneous type 1 pattern, while the remaining 83% of patients required an ajmaline challenge to reveal a hidden type 1 pattern.
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Fig. 2. (A) Flowcharts illustrating the organization of electrocardiograms 
into one cohort for the purposes of training and validating DNN models, 
and into a second cohort for independent validation. (B) Distributions of 
patient clinical statistics, including medical and family history in the 
Claris training cohort. RBBB refers to right bundle branch block. Complete 
details can be found in the Supplementary Material.
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A second set of ECGs, collected in a separate clinic beginning in 
March 2020, serves as a second independent validation cohort, 
consisting of 405 consecutive new patients in the Brugada screen
ing program (Table S2). The data collected for each patient include 
a physical examination, complete personal and family medical 
histories, and a complete set of digital ECG traces.

These populations each contain two overarching classification 
groups. Patients in the Brugada Group BrS(+) present evidence of a 
spontaneous or drug-induced type 1 BrS ECG pattern. The Control 
Group BrS(−) is comprised of patients, all of whom presented a 
negative sodium channel blocker test, defined as an ECG that 
does not convert to yield a type 1 pattern after a pharmacological 
provocation test (ajmaline injection at the maximal dose of 1 mg/ 
kg, according to the current consensus statement (5)). Although 
we obtained ECGs for eligible patients during ajmaline adminis
tration to confirm BrS diagnoses, we trained and tested our classi
fication algorithms exclusively on baseline ECGs, recorded 
without ajmaline.

The study patients presented as candidates for ajmaline infu
sion owing to diagnostic indicators of risk, associated with the 
possibility of BrS for at least one of the following reasons: (i) 
Family history of SCD or family history of BrS, (ii) unexplained syn
cope, (iii) nondiagnostic Brugada pattern or suspicious ECG, (iv) 
aborted cardiac arrest, (v) unexplained ventricular arrhythmias. 
The exclusion criteria for the ajmaline test included the presence 
of a spontaneous type 1 pattern (n = 106; 7.3%), an established 
diagnosis of an overt structural cardiomyopathy, and severe con
duction disturbances (e.g. left or right bundle branch block with 
QRS > 140ms). During the study period, a small number of pa
tients (n = 53; 3.5%) refused to undergo the ajmaline test. This 
retrospective study subscribed to the plan described in a protocol 
approved by the Ethical Committee of the I.R.C.C.S. Policlinico San 
Donato. All participants provided informed consent.

Acquisition and storage of ECG traces
All ECG records were digitally acquired and stored in the 
Arrhythmology Department digital repository at the IRCCS 
Policlinico San Donato. The principal calibration and validation 
effort relied upon measurements made using a set of Workmate 
Claris instruments (Abbott Laboratories, Abbott Park, IL, USA). 
The hospital outpatient clinic afforded ECGs for the supplemental 
validation cohort recorded using a Mortara ELI 350 system 
(Mortara Instrument, Inc., Milwaukee, WI, USA).

Both systems were configured to simultaneously acquire and 
digitize two limb leads (L1, L2) and six precordial leads (V1 through 
V6), and automatically reconstruct the 12-lead ECG. The Claris 
system records the ECG with a sampling frequency of 2,000 Hz 
and a resolution of 5 μV, while the Mortara system records at a 
sampling frequency of 1,000 Hz and a resolution of 1 μV. All ECG 
records were collected using a customized high precordial lead 
placement optimized for the detection of the BrS ECG pattern. 
The six precordial leads were placed at the left and right paraster
nal positions in the second (V1 II ICS, or V1; V2 II ICS, or V2), third 
(V1 III ICS, or V3; V2 III ICS, or V4), and fourth intercostal spaces 
(V1 IV ICS, or V5; V2 IV ICS, or V6).

All patients exhibited stable sinus rhythm during baseline ECG 
acquisition without premature ectopies. All baseline ECG records 
were analyzed by three trained and independent cardiologists, 
who each provided an initial index classification: (i) normal (i.e. 
no evident abnormalities resembling a BrS pattern), (ii) spontan
eous type 1 BrS pattern, and (iii) suspicious BrS pattern (i.e. ECG 
abnormalities including but not limited to complete or incomplete 
right bundle branch block, type 2, or type 3 morphology).

Routine diagnosis calls for the acquisition of a baseline ECG, 
followed by one recorded prior to and during an ajmaline chal
lenge for all cases, except for patients whose baseline ECG exhib
ited a spontaneous type 1 BrS pattern. Approximately one minute 
of an ECG recording prior to ajmaline administration was re
corded, anonymized, and exported as a set of text files from the 
hospital database. Additional patient clinical characteristics, in
cluding age, sex, personal history of syncope and cardiac arrest, 
and family history of sudden death and BrS diagnosis, were also 
logged in the export files as additional factors of variation. This in
formation was archived in an SQL database. ECG traces recorded 
on the Mortara system were collected for a new set of patients 
upon admission to the hospital and reserved for independent val
idation. ECG traces recorded from both systems are subject to the 
same ECG trace processing, outlined below.

ECG trace processing
We reduce the pulse train in each lead to a single de-noised and 
representative heartbeat. This procedure, which is detailed in 
the Supplementary Material, combined with down-sampling to 
200 Hz, yields a much sparser representation (Fig. 3a). Averaged, 
single-lead heartbeats, concatenated end-to-end, forms a fused, 
one-dimensional representation of the entire electrocardiogram 
for each patient. The results presented in this study classify on 
the basis of a 9-lead ECG (all leads excluding the unipolar limb 
leads aVF, aVR, and aVL). In the Supplementary Material, we add
itionally explore individual and other lead combinations in detail.

The results reported here stem from the analysis of retrospect
ive clinical databases. The ECGs in these databases were not re
corded for the purpose of digitally training a machine-learning 
algorithm, but rather to enable a clinician to assess visually for 
the presence of diagnostic features. Consequently, we found it ne
cessary to screen for measurement artifacts and deemed some re
cordings unsuitable for multivariate analysis. We performed this 
screening manually prior to any application of machine learning. 
As diagrammed in Fig. 2a, 1,455 unique patients yielded a set of 
1,154 high-quality ECGs. A total of 370 of 405 ECGs met acceptance 
standards in the Mortara validation cohort.

Neural networks
The representative heartbeats for each patient, along with the at
tendant factors of variation populate a design matrix XECG. We de
fine a disease-state vector Y by assigning 0 or 1 to every ECG, 
representing Brugada-negative and-positive, respectively, deter
mined by the presence or the absence of a type 1 ECG pattern, con
firmed where necessary by a positive response to ajmaline.

We train a deep neural network (DNN), consuming the ele
ments of the design matrix XECG. supervised by the disease state 
Y, to optimize the parameters of a classification function 
F(XECG) = Y (Fig. 3b). Details about the training, optimization, 
and validation procedures for our neural networks can be found 
in the Supplementary Material. All computer codes developed 
for ECG processing, neural network training, and statistical ana
lysis are written in-house using Python 3.9 and Tensorflow 2.

Independent validation of DNNs
Two distinct tests confirm the validity with which the DNN mod
els developed in this work classify newly encountered ECGs for 
BrS. A large-scale process of leave-one-out cross-validation 
(LOOCV) (Fig. 3c) independently gauges the degree to which en
semble learning correctly classifies each and every individual pa
tient in the training dataset.
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In a procedure repeated for all N patients in the database, we 
withhold one patient in turn and use the N − 1 other patients to 
train a distinct set of seven DNN models that are blind to the with
held patient. We employ ensemble learning for each N − 1 training 
subset to minimize sampling bias and overfitting. Consequently, a 
unique set of seven DNN models trained on exclusive N − 1 popu
lations subsampled by 7-fold cross-validation independently clas
sify each patient.

By design, the corresponding set of seven independent DNN 
models assigns a set of seven numbers between 0 and 1 to every 
withheld ECG, which we term the DNN score, or ŷ, which could 

be interpreted as a probability of positive diagnosis. We compute 
the final DNN score for each validated patient as the average of 
the scores produced by the corresponding seven exclusive 
DNNs. We further test the utility of a DNN model trained by all 
the Claris patients by deploying it to classify a second independent 
cohort of validation data containing 370 patients (Mortara 
dataset).

Interpreting statistical results
We gauge the validation success of the DNN models by means of 
the areas under curve (AUC) of receiver-operating characteristics 
(ROC) plots (36). DNN scores close to 0 or 1 indicate high classifica
tion certainty for the absence or the presence of a BrS pattern, re
spectively, while scores close to the decision threshold of 0.5 point 
to ECGs that yield a low classification certainty. The decision 
threshold of 0.5 is determined using Youden’s J statistic (37, 38).

To assess our results, we compare continuous variables using a 
Student t-test and binomial variables with χ2 or Fisher’s exact test, 
as appropriate. We compute the AUC of ROC curves of DNN per
formance, determining confidence intervals by DeLong’s method 
(36), and recognizing statistical significance for p < 0.05. Further 
details on statistical analyses and methods for minimizing overfit
ting are described in the Supplementary Material.

Results
Independent validation within the claris training 
dataset
The DNN, applied in LOOCV within the Claris (training) dataset, 
correctly predicts the ajmaline response for 84.0% (969 of 1,154) 
of patients, with an AUC of 0.912 ± 0.017 (Fig. 4), a sensitivity of 
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85.4%, and a specificity of 82.4% (Tables 1, S1 and S5). 
Furthermore, the DNN classifies patients showing a spontaneous 
type 1 pattern with an accuracy of 100% (103 of 103).

We determine that the 9-lead fused representative ECG trace 
yields the best classification performance by comparing AUC val
ues for various lead combinations (Table S4). The incorporation of 
clinical factors of variation such as age, gender, and family history 
of cardiac events did not significantly change the DNN perform
ance (Table S6). In a thorough exploration of classification strat
egies, we observed superior performance of the training dataset 
DNN to other popular supervised learning techniques such as a 
convolutional neural network (CNN) (Tables S8 and S9), decision 
trees, Naive Bayes, support vector machines (SVM), and k-nearest 
neighbors (KNN), among others (Table S12).

Cross-platform independent validation
We performed a second independent validation of a seven-DNN 
ensemble trained on the basis of the 1,154 patients in the Claris 
(training) cohort by applying this model to classify for BrS in a 
new prospectively-studied cohort. Routine examinations at the 
IRCCS Policlinico San Donato outpatient clinic using several avail
able Mortara ELI 350 instruments afforded a supplemental set of 
370 ECGs, which served to define a separate, independent valid
ation cohort. Table S3 details the composition and clinical charac
teristics of this cohort.

The DNN model, entirely calibrated and validated using data 
from the Claris platform, correctly identifies BrS(+) patients in 
the independent Mortara cohort with an accuracy of 85.1% (327 
of 370), an AUC of 0.934 ± 0.027 (See Fig. 4), a sensitivity of 
79.6%, and a specificity of 93.6% (Table 1). The 9-lead classification 
metrics of this cross-platform independent validation compare 
with those of the DNN applied to the Claris cohort training data 
(Table 1). Additionally, the DNN correctly classified 100% of the 
spontaneous BrS type 1 patients. Table S8 further details the ac
curacy with which the DNN classifies the Mortara cohort.

Comparative manual assessment 
of the mortara cohort
As a gauge of the present machine learning approach against 
standard clinical practice, we compiled the diagnoses of two clini
cians at the IRCCS Policlinico San Donato, who visually inspected 
and classified the ECG records in the Mortara cohort, without 
knowledge of the accompanying ajmaline-confirmed BrS diagno
ses. Table 1 summarizes the results. An expert cardiologist with 
more than 20 years of experience in clinical arrhythmology and 
electrophysiology (M.D. 1) classified the Mortara cohort ECGs 
with an accuracy of 72.4%, a sensitivity of 71.5%, and a specificity 
of 73.0%. Table S10 provides details. A resident clinician in train
ing (M.D. 2) performed the same classification with an accuracy of 
58.9%, a sensitivity of 55.5%, and a specificity of 60.9%. See 
Table S11. Most tellingly perhaps, AUC values for MD1 and MD2, 
0.722 ± 0.047 and 0.582 ± 0.052, compare with 0.934 ± 0.027 found 
in validation of the DNN by the Motara cohort.

DNN feature importance
Figure 5 shows a heatmap indicating the importance of ECG fea
tures as perceived by the DNN. The type 1 BrS pattern is character
ized by a “coved-type” ST segment, while the type 2 pattern is 
characterized by a “saddle-back” shape with an ST elevation of 
≥ 1mm in leads V1 to V3. As such, a neural network classification 
model that seeks only the type 1 or 2 patterns would likely place a 
significant weight on the ST-segment of leads V1 to V3. However, 

while our DNN model does assign some importance to these 
regions, it Classifies ECGs on the basis of a complex multivariate 
relation among waveform amplitudes, including a nonlinear com
bination of the ST-segments from V1 and V2, and the QRS com
plexes in leads I, III, V1, V2, and V6. We did not provide our DNN 
model with any input weights, nor did we label any regions of 
the ECG as important. Thus, the regions of the fused representa
tive ECG indicated in Fig. 5 detail a positive response to the SCB 
challenge ab initio. Importantly, note that the DNN model assigns 
virtually no weight to the eight junctions at which we have con
catenated the representative beats from each lead. This DNN in
difference affirms the robustness of our preprocessing approach.

Discussion
The present study demonstrates a neural network model that 
learns to recognize the signature of Brugada Syndrome hidden 
in a conventional ECG in the absence of any proarrhythmic drug 
challenge. These results establish that an appropriately trained 
DNN model responds to subtle ECG abnormalities that are un
detectable to the human eye. The algorithm correctly classifies 
a majority of ECGs by predicting the response of a patient to an aj
maline challenge without the need for other clinical information. 
Despite the relatively limited size of this database, the neural net
work assesses apparently normal ECGs with an AUC of 0.912 ± 
0.017 (accuracy of 84.0%) and 0.934 ± 0.027 (accuracy of 88.4%) 
in the training and validation datasets respectively.

To date, when evaluating a patient at an arrhythmia clinic, the 
clinician must decide whether to administer a sodium channel 
blocker in an effort to unmask the BrS phenotype (5, 13, 14, 39, 40). 
This drug challenge exposes the patient to the possibility of a 
life-threatening arrhythmia; but, a decision not to challenge risks 
overlooking a patient with hidden BrS. At present, owing to the 
possibility of life-threatening side effects, only patients with a 
family history of SCD or a suspicious ECG undergo a drug 
challenge.

Thus, many people who show no visible sign of BrS may well re
main undiagnosed (9). The identification of BrS is particularly lim
ited in countries, including the United States of America and 
Japan, where ajmaline is generally unavailable, and the SCB chal
lenge is limited to less effective agents such as procainamide and 
flecainide. Moreover, several conditions expressly contraindicate 
this diagnostic approach. For example, a fatal ventricular arrhyth
mia calls for the assessment of family members for BrS; but, clini
cians may hesitate to administer ajmaline to children. This 
limitation may leave many young carriers of BrS undiagnosed. 
These drugs are also contraindicated in cases of pregnancy, liver 
diseases, and advanced cardiac conduction disturbances.

Sodium channel blockers have negative inotropic properties 
that preclude use for patients suffering from cardiomyopathies, 
particularly those associated with mutations in the SCN5A gene 
and other conditions overlapping with BrS, such as hypertrophic 
cardiomyopathy (HCM) and arrhythmogenic right ventricular car
diomyopathy (ARVC) (41–44). Dynamic effects of these drugs vary 
a great deal from individual to individual, and this clouds the 
significance of any particular test result. The direct hepatotoxic 
effect of these agents further excludes their diagnostic applicabil
ity as a screening tool.

Thus, significant considerations limit the diagnostic applica
tion of SCB drugs compared with an instrumental measure of 
heart function, such as an electrocardiogram, which does not 
rely upon the action of an agonist. While work still remains to val
idate machine-learning classification algorithms for patients with 
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accompanying conditions not considered in the present study, the 
accuracy demonstrated thus far, approaching that normally 
achieved in SCB tests, offers a potential of great benefit as a safe 
first step in screening a wider population.

To this purpose, several studies have reported the usefulness 
of some ECG parameters in the discrimination of BrS patterns 
(45–49). However, intra- and inter-observer variability in specific 
measurements limit the power of univariate pattern-recognition 
methods. More generally, the ability to identify ECG predictors 
of BrS depends on a clinician’s level of clinical experience. Very re
cently, a convolutional neural network approach showed success 
in recognizing the characteristic ST elevation of a type 1 BrS pat
tern (33). However, only a small fraction of BrS(+) individuals 
spontaneously present this plainly visible ECG feature.

Indeed, in the present cohort, roughly 90% of patients showed a 
near-normal or merely suspicious ECG waveform, challenging to 
evaluate even by experienced cardiologists. Thus, the develop
ment of this advanced DNN-based ECG interpretation algorithm 
promises to aid in the diagnosis of BrS by providing a discerning 
and objective tool to assist the clinician prior to the possible use 
of potentially harmful SCB challenges. This tool will add consider
able insight when clinicians, in keeping with current guidelines, 
combine the results of an ECG with a full scope of other clinical 
data to establish a final diagnosis of BrS (5). The Supplementary 
Material offers additional details concerning classification suc
cess upon manual versus DNN analysis with reference to patient 
demographics and clinical characteristics.

The sensitivity and specificity of our DNN model compare fa
vorably with other diagnostic tests used in cardiology, such as ex
ercise electrocardiography to diagnose coronary artery disease 
(50), and exceed other medical screening tests, such as the BNP 
immunoassay for heart failure (AUC 0.60–0.70) (51), the 

Papanicolaou smear for cervical cancer (AUC 0.70) (52), and the 
CHA2DS2-VASc Score for stroke risk (AUC 0.57–0.72) (53). 
Moreover, the relatively high negative predictive value (NPV) of 
the DNN classification will lend reassurance in decisions to forego 
the invasive and risky step of an ajmaline challenge. The current 
findings will translate to a clinical application that informs clini
cians who are considering ordering an SCB challenge for sus
pected Brugada Syndrome.

Of 1,455 patients in the present cohort, 7% presented an ECG 
with a spontaneous type 1 pattern. Using standard clinical proto
cols, a conventional BrS screening program would have found 
only these patients. Among asymptomatic individuals in this 
study, we diagnosed more than 49% as having BrS. Most of these 
patients had no idea that they carried this condition. They were 
referred for screening only because of the sudden and unex
plained death of a relative, reinforcing the idea that the actual 
prevalence of BrS is likely underestimated.

Remarkably, the DNN model correctly classifies every patient 
who presented a spontaneous type 1 ECG. This marker signals a 
heightened danger of cardiac arrest (5, 54, 55). But, nearly half of 
BrS patients who survive cardiac arrest do not show a spontaneous 
type 1 pattern, underlining the critical need to clinically identify pa
tients that harbor a hidden disease signature and face a substantial 
probability of SCD (12). In young adults, the first clinical manifest
ation of BrS is often atrial fibrillation (56). This suggests that BrS 
may represent a complex and diffuse phenotype, sharing genetic 
mutations with various supraventricular arrhythmias (43, 57, 58), 
as well as with other cardiomyopathies, such as HCM (44), ARVC 
(10) and early repolarization syndrome (59).

This broader relevance points to an additional reach of non
invasive BrS screening as a means to reduce the risk of life- 
threatening arrhythmias and sudden death. This is particularly 

Table 1. Classification metrics of the trained neural networks on independent holdout cases in the claris (training) and mortara 
(independent validation) cohorts.

Cohort Classifier Sensitivity Specificity PPV NPV Accuracy AUC p-value

Claris (Training) DNN 85.4% 82.4% 83.9% 84.1% 84.0% 0.912 ± 0.017 0.039
(509 of 596) (460 of 558) (509 of 607) (460 of 547) (969 of 1,154)

Mortara (Validation) DNN 79.6% 93.6% 87.9% 88.6% 88.4% 0.934 ± 0.027 –
(109 of 137) (218 of 233) (109 of 124) (218 of 246) (327 of 370)

M.D. 1 71.5% 73.0% 60.9% 81.3% 72.4% 0.722 ± 0.047 4.65E−08
(98 of 137) (170 of 233) (98 of 161) (170 of 209) (268 of 370)

M.D. 2 55.5% 60.9% 45.5% 70.0% 58.9% 0.582 ± 0.052 9.41E−20
(76 of 137) (142 of 233) (76 of 167) (142 of 203) (218 of 370)

For the Claris cohort (n = 1, 154), comprising 9-lead fused representative ECG traces, we perform independent validation of each case using 7-fold leave-one-out 
cross-validation (LOOCV). For the Mortara cohort (n = 370), we report the results of the trained neural networks on independent holdout cases. p-values are 
calculated by a two-sided χ2 test between the DNN and Mortara accuracy scores. Delong’s method yields uncertainties for AUC-ROC values at a 95% confidence 
interval.
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Fig. 5. DNN feature importance shown on a 9-lead fused ECG trace, representative of the DNN training data. The colormap displays the magnitude of the 
weights applied by the DNN when predicting ajmaline response. The weights range from 0.0001 to 0.3021; higher–weighted regions have a greater 
influence on the DNN model.
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relevant for patients who present a nondiagnostic ECG pattern 
that may mask a clinically aggressive phenotype requiring further 
cardiac investigation. The classification success of the DNN sug
gests that machine learning will enable clinicians to identify these 
patients even from an apparently normal ECG.

Furthermore, as plainly evident in Fig. 4, a completely inde
pendent cross-platform dataset validates the DNN with virtually 
the same accuracy (AUC 0.93 vs 0.9) as LOOCV applied to the 
training dataset. This not only proves again that the algorithm 
generalizes well to classify previously unseen data, but also to 
successfully classify ECG data acquired on different machines. 
A larger ECG dataset and multiparametric diagnostic assessment, 
performed by combining ECG machine learning and genetic 
information (60), could provide better accuracy, and advance sub
stantially in diminishing the devastating impact of a family of le
thal diseases by screening the general population. Additionally, 
next-generation electrocardiographs and new implantable or 
wearable devices could support operating systems that incorpor
ate artificial intelligence built upon this DNN model for output 
processing (61).

A DNN algorithm for assisting the diagnosis of BrS offers sev
eral advantages compared with current practices: (i) reduction 
of test-related adverse events, such as life-threatening arrhyth
mias and ajmaline-induced liver injury, (ii) reduction of the cost 
compared with an SCB test, which must be performed in a hos
pital setting, and (iii) identification of family members at risk of 
BrS in centers with limited access to drug testing or no access to 
ajmaline.

Interpreting DNN feature importance
Understanding where a DNN places the greatest importance in 
the input data is crucial for interpreting the decisions a model 
makes (see Fig. 5). By identifying which ECG features the DNN 
weights most heavily in its classification model, we can under
stand which aspects of the ECG signal play the greatest role in 
identifying the BrS phenotype. This information can help guide 
the selection of new data for training, improve the interpretability 
of the model, and explain why the model might fail to correctly 
identify the BrS phenotype in some cases.

We observe that the DNN’s interpretation largely aligns with 
the cardiologists’ approach, as it considers not only ST elevation, 
but also other aspects of the ECG, including QRS interval, QT inter
val, J point depression, and the presence of an incomplete right 
bundle branch block. This convergence is significant, as it illus
trates how the DNN learns to recognize important ECG features 
in a completely unbiased data-driven approach, supervised solely 
on a patient’s response to the ajmaline challenge.

DNN multivariate classification evaluates ECG data by means 
of thousands of nonlinear decision-making pathways, allowing 
it to identify patterns and features that escape notice in conven
tional approaches. This enables the DNN model to recognize sub
tle covariance of diagnostic significance. We believe that feature 
importance patterns established by our DNN approach could 
help refine and expand the understanding of Brugada 
Syndrome, potentially leading to the development of more robust 
diagnostic criteria.

The substantial data preprocessing method described here re
duces a raw, noisy ECG trace to yield a representative heartbeat as 
a single, averaged complete cardiac cycle (750 ms in duration) 
centered near the R peak. The high signal-to-noise representative 
heartbeat yields a persistent, reproducible waveform for classifi
cation by the DNN. Our segmentation strategy overcomes uncor
related beat-to-beat variance in the raw traces. This 

transformation aids the DNN in recognizing persistent ECG 
morphology that consistently encodes for BrS while ignoring tran
sient abnormalities.

Conclusion
The present work demonstrates an ECG screening algorithm for 
BrS that competes with the sodium-channel-blocker challenge 
while presenting the clear advantage of no life-threatening side 
effects. This mode of computer-assisted analysis can be applied 
to digital ECG traces from all current electrocardiographs. The 
broad application of this methodology will enable clinicians to 
test widely for this deadly disease. We foresee that this machine 
learning approach to ECG analysis will extend beyond the diagno
sis of BrS to broader risk stratification and mitigation of SCD.
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