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White matter pathways, typically studied with diffusion tensor imaging (DTI), have been implicated in the neurobiology of
obsessive-compulsive disorder (OCD). However, due to limited sample sizes and the predominance of single-site studies, the
generalizability of OCD classification based on diffusion white matter estimates remains unclear. Here, we tested classification
accuracy using the largest OCD DTI dataset to date, involving 1336 adult participants (690 OCD patients and 646 healthy controls)
and 317 pediatric participants (175 OCD patients and 142 healthy controls) from 18 international sites within the ENIGMA OCD
Working Group. We used an automatic machine learning pipeline (with feature engineering and selection, and model optimization)
and examined the cross-site generalizability of the OCD classification models using leave-one-site-out cross-validation. Our models
showed low-to-moderate accuracy in classifying (1) “OCD vs. healthy controls” (Adults, receiver operator characteristic-area under
the curve= 57.19 ± 3.47 in the replication set; Children, 59.8 ± 7.39), (2) “unmedicated OCD vs. healthy controls” (Adults,
62.67 ± 3.84; Children, 48.51 ± 10.14), and (3) “medicated OCD vs. unmedicated OCD” (Adults, 76.72 ± 3.97; Children, 72.45 ± 8.87).
There was significant site variability in model performance (cross-validated ROC AUC ranges 51.6–79.1 in adults; 35.9–63.2 in
children). Machine learning interpretation showed that diffusivity measures of the corpus callosum, internal capsule, and posterior
thalamic radiation contributed to the classification of OCD from HC. The classification performance appeared greater than the
model trained on grey matter morphometry in the prior ENIGMA OCD study (our study includes subsamples from the morphometry
study). Taken together, this study points to the meaningful multivariate patterns of white matter features relevant to the
neurobiology of OCD, but with low-to-moderate classification accuracy. The OCD classification performance may be constrained by
site variability and medication effects on the white matter integrity, indicating room for improvement for future research.
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INTRODUCTION
Obsessive-compulsive disorder (OCD) is a common, often chronic
psychiatric disorder, affecting 1.0–1.5% of the global population
over their lifetime [1]. Extensive neuroimaging research suggests
structural and functional abnormalities in cortico-striato-thalamo-
cortical (CSTC) circuits in OCD [2–7]. The field has also started to
address the question of whether multivariate analyses of
neuroimaging data can be used to classify OCD [8, 9].
Prior OCD studies with relatively small to modest samples show

mixed findings, with OCD classification accuracies varying from
66% to 100% [8]. However, the generalizability of such findings
has rarely been tested, and reproducibility failures have been a
major challenge in psychiatric neuroimaging [9–12]. Indeed,
typical single-site neuroimaging studies seeking brain-wide
associations with psychopathology using small sample sizes of
tens to hundreds of individuals may report inflated effect sizes,
decreasing reproducibility [13].
The ENIGMA-OCD consortium has allowed rigorous mega-

analyses and meta-analyses based on the largest international
multisite neuroimaging datasets to date [9]. A machine learning
analysis of regional measures of cortical thickness, surface area
and subcortical volume found that model performance did not
exceed chance-level, but that classification performance was
improved when individuals with OCD were grouped according to
medication status.
Altered white matter pathways have been implicated in the

neurobiology of OCD [14]. An ENIGMA-OCD study using diffusion
tensor imaging reported significantly lower fractional anisotropy
(FA) in the sagittal striatum (SS) and posterior thalamic radiation
(PTR), higher mean diffusivity (MD) in the SS and higher radial
diffusivity (RD) in SS and PTR [15]. However, the question of
whether white matter diffusion tensor imaging findings can be

used to classify OCD has not yet been explored in large and
multisite studies.
In this study, we therefore used ENIGMA-OCD on diffusion

tensor imaging to test the classification power of such measures in
a large multisite sample of individuals with OCD and healthy
controls. We tested several machine learning algorithms to
distinguish those with OCD versus healthy controls, as well as to
distinguish OCD individuals off medication versus healthy
controls, and to distinguish OCD individuals on versus off
medication. We also assessed the site-variability and reproduci-
bility of predictive models using leave-one-site-out cross-
validation and evaluated the utility of a post-processing harmo-
nization tool (i.e., NeuroComBat). Finally, we employed a machine
learning interpretation framework to assess which features were
most relevant to the various classifications.

PARTICIPANTS AND METHODS
Participants
Data from the ENIGMA-OCD Working Group recruited from 18 interna-
tional research institutes were used. We analyzed data from 1653
participants, including 1336 adult participants (429 unmedicated OCD,
261 medicated OCD, 646 HC) and 317 pediatric participants (70
unmedicated OCD, 105 medicated OCD, 142 HC) (Table 1). Here, we
defined pediatrics as under the age of 18 years old, consistent with
previous work from the ENIGMA-OCD working group [2, 9]. The diagnosis
of OCD and other comorbid conditions (i.e., anxiety disorders and major
depressive disorder) were assessed using DSM-IV criteria (American
Psychiatric Association, 2000). Clinical characteristics included medication
status, childhood-onset, disease duration (in years), symptom severity
(total scores ranging from 0-40 on the (Child) Yale-Brown Obsessive-
Compulsive Scale ((C)Y-BOCS) [16, 17] and current or lifetime history of
symptom dimensions (i.e., aggression/checking, cleaning/contamination,
sexual/religion, hoarding, ordering/symmetry). Participants who did not

Table 1. Demographic and clinical characteristics of patients with obsessive-compulsive disorder (OCD) and healthy controls (HCs).

Characteristics Adult OCD sample
(n = 690)

Adult HC sample
(n = 646)

Pediatric OCD sample
(n = 175)

Pediatric HC sample
(n = 142)

Demographic Characteristics

Age (years) 31.6 ± 9.78 30.8 ± 9.97 14.5 ± 2.3 14.3 ± 2.4

Male N (%) 397 (25.6) 380 (24.2) 97 (27.8) 77 (22.1)

Clinical Characteristics

OCD illness severity score 25 ± 7.11 20.8 ± 8.0

Childhood-onset N (%) 351 (51.7)

Duration of illness 12.4 ± 11.1 3.0 ± 2.5

Medication use at time of scan
N (%)

261 (37.8) 105 (60)

Lifetime diagnosis

Anxiety 76 (11.02) 48 (27.4)

Major depression 84 (12.17) 18 (10.3)

Current comorbid disorders

Anxiety 69 (10.0) 29 (16.6)

Major depression 77 (11.2) 6 (3.4)

OCD symptom dimension

Aggressive/checking 411 (59.6) 73 (41.7)

Contamination/cleaning 355 (51.5) 62 (35.4)

Symmetry/ordering 370 (53.6) 68 (38.9)

Sexual/religious 228 (33.0) 55 (31.43)

Hoarding 114 (16.5) 47 (26.9)

Symptom score was indicated by total score on the adult and child version of the Yale-Brown Obsessive Compulsive Scales.
OCD symptom dimensions were measured with the YBOCS symptom checklist.
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have medication information were excluded from the medication
classification analysis.

Image acquisition and processing
Image preprocessing, including brain extraction, eddy current correction,
movement correction, echo-planar imaging-induced distortion correction,
and tensor fitting, was conducted at each site, and Tract-Based Spatial
Statistics (TBSS) was performed using protocols and quality control
pipelines provided by the ENIGMA-DTI working group (http://
enigma.ini.usc.edu/protocols/dti-protocols/) [15]. For the entire skeleton
in each hemisphere, four DTI measures (FA, MD, AD, and RD) were
estimated within 25 tract-wise regions of interest (ROIs) based on the
Johns Hopkins University (JHU) white matter parcellation atlas [15].

OCD classification with machine learning
We conducted automated machine learning (AutoML) with H2O Driverless
Artificial Intelligence (AI) (DAI, 1.8.7.1 version) using white matter
anisotropy and diffusivity estimates (FA, MD, AD, RD; N= 252; 4 * {(19
fascicules * 3 (left, right, total)+ 5 fascicules (total; e.g., corpus callosum,
fornix)+ average metrics across all fascicules)} and biological variables
(age, sex). Three classification models were built in adult and pediatric
samples, separately: (1) OCD vs. HC, (2) unmedicated OCD vs. HC (to test
the effects of pure OCD–not confounded by medication effects–on the
white matter), (3) medicated OCD vs. unmedicated OCD (to test the
medication effects on the white matter). To prevent data leakage and
reduce model overfitting, we split the entire data into a discovery set (80%)
and a replication set (20%) (stratified by diagnosis). In the discovery set, we
used leave-one-site-out (LOSO) cross-validation (11 sites for adults, seven
sites for pediatrics) (Supplementary Fig. 1). With this scheme, within the
discovery set, we evaluated the cross-site variability (or generalizability);
within the replication set, we tested the overall model generalizability
considering potential site variability. The test samples of the discovery data
were not used during model optimization. The machine learning pipeline
in AutoML involves the estimation of several base models (e.g., XGBoost,
LightGBM, the general linear model (GLM)) and stacked ensemble models
[18] derived from base models. The AutoML pipeline performs random
hyperparameter tuning along with feature transformation (e.g., interaction
encoding, numeric to categorical target encoding). Firstly, in each iteration,
models learn and update the weights of the features and select important
features based on the prior iteration. Then, the pipeline searches for the
best feature transformations and model parameters using genetic
algorithm [19]. In DAI, this procedure is called “feature evolution”. In
genetic algorithm’s evolution can be seen as a competition between
mutating parameters to find best “individuals” referring to information
about feature transformations and hyperparameters. The feature evolution
procedure is not entirely random and is informed from the variable
importance interactions obtained from the modeling algorithms. So, this
model training procedure including feature selection, transformation, and
hyper-parameter tuning was performed using 11-fold-cross-validation
scheme. In each fold, 10 folds were used for training the model, while
the remaining 1-fold was used to (cross)validate the best training model.
Finally, the best cross-validation models from each fold were combined
and tested on a held-out replication set. In this way, the validation data
within the 11-fold cross validation was not used for model optimization
and feature evolution. Likely, replication data was not used for data
preprocessing, model training or optimization. We used the ROC-AUC as
the primary performance metric and accuracy, sensitivity, and specificity as
additional metrics. pROC v. 1.16.2 in the R programming language was
used to calculate the metrics [20].

NeuroComBat harmonization
To reduce potential biases caused by site and scanner effects, we employed
NeuroComBat harmonization [21]. ComBat, a short name for combatting
batch effects when combining multiple batches [21, 22], corrects potential
scanner/site effects on brain data by harmonizing the mean and variance of
brain measures across scanners. We harmonized the diffusivity measures in
the discovery and replication data separately while also including age and
sex as covariates in the model matrix. Non-parametric empirical Bayes
adjustments were used to adjust for batch effects.

Model interpretation
To interpret the machine learning classifiers, we calculated the relative
weights of DTI features contributing to OCD classification. We used two

steps to determine the relative weights of DTI features contributing to OCD
classification. First, we calculated the relative weights of each base model
according to the model-specific algorithm. For LightGBM and
XGBoostGBM, DAI computed the average reduction in impurity across all
trees. Second, the importance of each base model was multiplied by its
weight and normalized. We further implemented a machine learning
interpretation framework, K-Local Interpretable Model-agnostic Explana-
tion (K-LIME) [23]. This method fits surrogate linear models to data to
extract the important features either positively or negatively associated
with a target outcome: (1) OCD vs. HC, (2) unmedicated OCD vs. HC, and (3)
medicated OCD vs. unmedicated OCD.

Statistical analysis
To assess the effects of sites on diffusion white matter estimates, we
performed principal component analysis (PCA). We tested the association
between predicted OCD probabilities and clinical variables (e.g., medica-
tion status, childhood-onset) using stepwise regression models [24].
Additionally, we tested site effects on individual classification perfor-
mances (i.e., whether participants were correctly classified as OCD or HC).
To adjust for potential confounding factors, we included the following
variables as covariates: age, sex, site, and average DTI metrics (i.e., mean
FA, AD, RD, MD).

RESULTS
Demographic characteristics
This study included 1336 adult participants (690 OCD, 646 HC) and
317 pediatric participants (175 OCD, 142 HC). Out of the adult OCD
samples, 37.8% were taking medication, while 60% of the
pediatric OCD sample were taking medication. OCD patients
showed comorbidity with lifetime anxiety disorders (adult: 11.02%,
pediatric: 27.4%) and major depressive disorder (adult: 12.2%,
pediatric: 10.3%). Table 1 and Supplementary Table 1 contain
detailed demographic and clinical characteristics of the
participants. Demographic characteristics were not significantly
different between OCD and HC (P’s > 0.45). However, the clinical
characteristics varied across sites, including childhood-onset:
X2 = 93.66, p < 0.001, and symptom dimensions: Aggression/check-
ing: X2 = 64.33, p < 0.001, contamination/cleaning: X2 = 53.02,
p= 0.002, sexual/religious: X2 = 46.33, p= 0.012, hoarding:
X2 = 73.06, p < 0.001, symmetry/ordering: X2 = 145.03, p < 0.001 in
adults. Illness duration also varied across sites in the pediatric
samples, F= 13.20, p < 0.001.

Classification of OCD
The principal component analysis (PCA) of the four-diffusion
metrics (FA, MD, AD, RD) across the 18 international sites revealed
site variability (Fig. 1). In the PCA biplot, we observed two sites,
one from adults and one from pediatrics, which were distinct from
other sites. We then performed three classification tasks using the
stacked ensemble machine learning models (LOSO cross-valida-
tion): (1) OCD vs. HC, (2) unmedicated OCD vs. HC, and (3)
unmedicated OCD vs. medicated OCD (Tables 2 and 3, Fig. 2).
In adult samples, the models minimally-to-modestly classified

participants with OCD diagnosis from healthy controls in the
discovery set (N= 1068, ROC AUC= 67.29 ± 0.26) and the replica-
tion set (N= 268, ROC AUC= 57.19 ± 3.47). The models also
minimally-to-modestly distinguished unmedicated OCD versus
healthy individuals in the discovery set (N= 854, ROC AUC=
63.96 ± 0.43) and the replication set (N= 214, ROC AUC= 62.67
± 3.84). Finally, the models distinguished medicated OCD versus
unmedicated OCD participants in the discovery set (N= 437, ROC
AUC= 60.22 ± 0.40) and the replication set (N= 137, ROC
AUC= 76.72 ± 3.97).
In pediatric samples, the models classified participants with

OCD diagnosis versus healthy controls in the discovery set
(N= 270, ROC AUC= 69.54 ± 8.59) and the replication set
(N= 64, ROC AUC= 59.80 ± 7.39). The models also classified
unmedicated OCD versus healthy individuals in the discovery set
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(N= 151, ROC AUC= 65.96 ± 12.33) and the replication set
(N= 38, ROC AUC= 48.51 ± 10.14). Finally, the models classified
medicated OCD versus unmedicated OCD participants in the
discovery set (N= 140, ROC AUC= 61.82 ± 15.50) and the replica-
tion set (N= 35, ROC AUC= 72.45 ± 8.87) (Table 2C).
In classifying OCD and HC, the ROC AUC of adult samples

ranged from 51.6% (site C) to 79.1% (site F), and pediatric samples
ranged from 35.9% (site M) to 63.2% (site L) across sites. Also,
mean values of DTI metrics across all ROIs showed significant
differences across sites (Fs > 97.4, p < 0.001). The site variability
was significantly associated with the classification performance in
OCD patients (χ2= 57.19, p < 0.001) and HCs (χ2= 50.30, p < 0.001)
when adjusting for the covariates (Fig. 3).

Classification of OCD with NeuroCombat-harmonized data
Considering the site variability (Fig. 1), we implemented the ML
analysis with NeuroCombat-harmonized data to correct site
effects. The NeuroComBat-harmonized data showed slightly lower
performance in the adult samples (Table 2A) and slightly higher
performance in the pediatric samples (Table 2B).

Variables associated with OCD classification
Results of stepwise regression analysis indicated that, in adults,
site (e.g., site H, site I), higher age, hoarding symptoms, and adult-
onset were significantly associated with estimated OCD

probabilities (t > 2.04, p < 0.05) (Table 3). In pediatric samples, site
(e.g., site M, site S), lifetime diagnosis of depression, and
aggression/checking symptoms significantly correlated with pre-
dicted OCD probabilities (t > 2.15, p < 0.05).

Machine learning interpretation
Our machine learning interpretation models showed that various
specific diffusion white matter features contributed to the OCD
classification (Figs. 4 and 5, Supplementary Fig. 2). For the
classification of OCD from HC in adult samples, the top 10
features included the superior corona radiata (MD), age, posterior
thalamic radiation (FA), and posterior limb of the internal capsule
(FA, AD). In the pediatric samples, the cingulum (MD, AD),
uncinate fasciculus (MD), fornix (FA), corticospinal tract (FA), and
anterior corona radiata (AD) were important in classifying OCD
diagnosis (Supplementary Fig. 2). In classifying unmedicated OCD
and HC, the internal capsule contributed to both adult (FA, AD of
posterior limb) and pediatric samples (FA of the retrolenticular
part, AD of anterior limb, FA of posterior limb) (Fig. 4). In
classifying medicated OCD and unmedicated OCD in adult
samples, the top 10 features included the corpus callosum (total,
genu), average FA, and average RD (Supplementary Fig. 2). For
the pediatric samples, fornix and stria terminalis, cingulum
(cingulate gyrus, hippocampus) were included in the top 10
features (Supplementary Fig. 2).

A. Before applying NeuroCombat harmonization.
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B. After applying NeuroCombat harmonization.
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Fig. 1 A biplot of principal component analysis (PCA) using the diffusion tensor estimates of the major white matter fascicules across the
18 international sites. A PCA biplot before applying NeuroCombat. (Left: Adult, Right: Pediatric). Some sites (e.g., site B) show apparent
clusters distinct from the rest of the sites. B PCA biplot after applying NeuroCombat. (Left: Adult, Right: Pediatric).
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DISCUSSION
In this study, we tested the extent to the accuracy of machine
learning in classifying the diagnosis or medication status of OCD
patients based on white matter diffusion estimates obtained using
the ENIGMA-matched image analysis pipeline across 18 interna-
tional sites. Our results showed a low-to-moderate accuracy in
predicting OCD diagnosis and medication status. Classification of
medicated OCD versus unmedicated OCD had the best classifica-
tion accuracy (ROC-AUC of 76.72 in adults), followed by
unmediated OCD-health control classification (ROC-AUC of 63.96
in adults) and all OCD-HC (ROC-AUC of 57.19 in adults). In all OCD-
HC classifications, the performance varied significantly across sites
with cross-validated ROC AUC ranging 51.6–79.1 in adults, and
35.9–63.2 in children. Diffusion white matter features contributing
to OCD classification (compared with HC) include anisotropy and
diffusivity estimates of white matter in the internal capsule,
thalamic radiation, and uncinate fasciculus.

The low-to-moderate accuracy of our machine learning models
is consistent with prior work. OCD machine learning studies using
structural MRI have found that accuracy in classifying OCD and HC,
ranges from 60 to 90%, all in small datasets (N < 150) [8, 10].
However, these classification performances from small studies are
likely to be inflated and not generalizable, while the true effect
size (i.e., the brain-psychopathology association, regardless of the
choice of analysis) may be smaller [13]. Indeed, a recent large-
scale ENIGMA OCD study found that machine learning models
trained on gray matter morphometric estimates from structural
MRI resulted in poor classification of OCD vs. HC (ROC AUC, 51-54;
leave-one-site CV) [9]. Our model based on white matter features
showed improved classification performance compared with the
gray matter morphometry model in adults and pediatric samples,
though a direct comparison may not be warranted due to
different machine learning pipelines and different subsamples
used in this study. Future studies should determine whether multi-

Table 2. Performance of classification of OCD clinical outcomes in (A) adult, (B) adult applied NeuroComBat harmonization, (C) pediatric, (D) pediatric
applied NeuroCombat harmonization samples. ― mean with 95% confidence interval.

(A) Adult sample

OCD (N= 690) vs. HC (N= 646) Unmedicated OCD (N= 429) vs. HC
(N= 646)

Unmedicated OCD (N= 429) vs.
medicated OCD (N= 261)

Discovery set Replication set Discovery set Replication set Discovery set Replication set

ROC-AUC 67.29 ± 0.26 57.19 ± 3.47 63.96 ± 0.43 62.67 ± 3.84 60.22 ± 0.40 76.72 ± 3.97

Accuracy (%) 66.37 ± 0.27 57.08 ± 3.22 64.64 ± 0.49 61.68 ± 3.58 66.88 ± 0.32 67.15 ± 12.83

Sensitivity (%) 61.96 ± 0.79 75.36 ± 8.49 65.84 ± 1.66 58.82 ± 19.79 58.7 ± 1.53 92.31 ± 2.95

Specificity (%) 71.87 ± 0.73 37.69 ± 29.44 68.44 ± 1.00 63.57 ± 7.92 73.77 ± 1.44 51.76 ± 16.19

(B) Adult sample, NeuroComBat

OCD (N= 690) vs. HC (N= 646) Unmedicated OCD (N= 429) vs. HC
(N= 646)

Unmedicated OCD (N= 429) vs.
medicated OCD (N= 261)

Discovery set Replication set Discovery set Replication set Discovery set Replication set

ROC-AUC 64 ± 0.05 51.07 ± 3.54 67.35 ± 0.52 52.8 ± 4.18 66.12 ± 3.63 62.24 ± 5.08

Accuracy (%) 63.87 ± 0.07 53.36 ± 3.64 66.44 ± 0.52 60.75 ± 3.09 74.42 ± 0.65 68.6 ± 3.72

Sensitivity (%) 67.14 ± 1.20 37.68 ± 25.16 63.95 ± 1.80 37.65 ± 17.42 76.14 ± 0.71 48.08 ± 13.79

Specificity (%) 60.96 ± 1.24 70 ± 13.74 71.55 ± 0.87 75.97 ± 9.51 70.31 ± 1.35 81.18 ± 4.19

(C) Pediatric sample

OCD (N= 175) vs. HC (N= 142) Unmedicated OCD (N= 105) vs. HC
(N= 142)

Unmedicated OCD (N= 105) vs.
medicated OCD (N= 70)

Discovery set Replication set Discovery set Replication set Discovery set Replication set

ROC-AUC 69.54 ± 8.59 59.8 ± 7.39 65.96 ± 12.33 48.51 ± 10.14 61.82 ± 15.50 72.45 ± 8.87

Accuracy (%) 73.56 ± 6.82 62.5 ± 6.38 69.15 ± 8.35 57.9 ± 8.06 69.15 ± 11.18 74.3 ± 5.83

Sensitivity (%) 73.25 ± 17.25 65.71 ± 16.03 73.43 ± 14.12 50 ± 25.51 73.43 ± 12.74 95.24 ± 2.43

Specificity (%) 73.03 ± 13.18 58.62 ± 20.58 68.75 ± 9.90 62.5 ± 19.13 68.75 ± 15.95 42.86 ± 29.15

(D) Pediatric sample, NeuroComBat

OCD (N= 175) vs. HC (N= 142) Unmedicated OCD (N= 105) vs. HC
(N= 142)

Unmedicated OCD (N= 105) vs.
medicated OCD (N= 70)

Discovery set Replication set Discovery set Replication set Discovery set Replication set

ROC-AUC 66.05 ± 0.41 60.49 ± 7.20 60.71 ± 0.92 55.36 ± 10.15 66.78 ± 0.35 58.2 ± 8.85

Accuracy (%) 67.56 ± 0.38 62.5 ± 6.38 61.46 ± 0.28 71.05 ± 8.06 72.1 ± 0.28 60 ± 5.82

Sensitivity (%) 62.28 ± 1.55 71.43 ± 13.10 84.06 ± 0.91 35.71 ± 25.51 77.5 ± 0.91 47.61 ± 2.43

Specificity (%) 77.16 ± 1.46 51.72 ± 24.63 54.69 ± 2.05 91.67 ± 19.13 68.75 ± 2.05 78.57 ± 29.15

For the classification of medication status among OCD patients, some sites (i.e., Amsterdam, Shanghai) containing only unmedicated OCD were excluded from
the discovery set.
For the classification of medication status among OCD patients, some sites (i.e., Calgary) containing only unmedicated OCD were excluded from the discovery set.
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modal machine learning using structural and functional MRI can
increase classification accuracy [25–28].
We observed significant site variability in classification perfor-

mance. Firstly, this may be related to the variability of the quality
of the diffusion MRI across sites. The aggregated ENIGMA MRI
data were harmonized for the post-imaging processing proce-
dure (e.g., TBSS) but not for data acquisition. Though this
harmonization method was a best practice when the raw image
data were not sharable, nevertheless, given the sensitivity of
diffusion MRI to the image acquisition conditions (e.g., magnets
types, pulse sequences, such as numbers of gradient directions or
b values, etc.; compared with the gray matter morphometry
validated across scanners, sites, and pulse sequence designs [29]),
our approach is limited in controlling potential confounding
factors and their impact on the quality of the diffusion white
matter metrics. Also, our application of another post-processing
harmonization method, NeuroComBat, was effective in matching
the distributions of the data across the sites (in our PCA results).
However, this method failed to result in a performance gain in the
OCD classification (slightly higher AUC in pediatric samples,
slightly lower AUC in adult samples) or a reduction of the cross-
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Fig. 2 Classification of OCD diagnosis and medication status using diffusion tensor estimates. A Classification performances in adult
samples. B Classification performances in pediatric samples.

Table 3. The association between brain-predicted OCD risk
probabilities and clinical features in a discovery set (stepwise
regression).

Variable Beta F P value η2

(A) Adult sample, Discovery set (OCD= 379) (Adjusted= 15.15%)

Site 6.996 7.72E−08 0.118

Age 0.011 16.152 7.10E−05 0.042

Hoarding 0.017 8.316 0.004 0.022

Childhood-onset −0.010 4.172 0.042 0.011

Current Depression 0.015 2.372 0.124 0.006

(B) Pediatric sample, Discovery set (OCD= 55) (Adjusted= 32.89%)

Site 11.796 6.57E−05 0.325

Depression −0.13142 5.062 0.029 0.094

Aggression,
Checking

−0.0645 4.619 0.037 0.086

Age 0.02355 1.896 0.175 0.037

B.-G. Kim et al.

6

Molecular Psychiatry



site variability. The covariate modeling with NeuroComBat also
did not demonstrate a gain in performance. Secondly, our
international multisite clinical samples show variability in clinical
characteristics such as symptom severity, age, adult-onset, and
duration of illness. The sampling variability may have added
complexity to the already challenging task of OCD classification.
Our analysis of the machine learning model indicated that OCD

probability was significantly associated with several sociodemo-
graphic and clinical characteristics. In adults with OCD, a higher age,
adult onset, greater hoarding symptoms, and greater depressive
symptoms were more likely to be predicted as having OCD. The
significant correlation of age and adult-onset with the OCD likelihood
might reflect age-dependent patterns in the diffusion white matter
estimates. Though there are no significant group differences in age

between OCD and HC, the neurobiology of OCD might be related to
abnormal aging effects on the diffusion white matter estimates.
Indeed, some literature shows that psychiatric disorders, including
OCD and anxiety disorders, are linked to accelerated brain aging
[30, 31]. However, the potential association between the neuropatho-
physiology of OCD and age appears more relevant to adults than to
children because, despite the similar effect sizes of age and the OCD
likelihood, only adult samples show statistical significance (probably
due to a larger sample size). This may reflect the effects of chronicity
in adult samples [32].
Our machine learning interpretation is consistent with prior

white matter studies that have relied on univariate analyses and/
or small sample sizes [33]. For example, the well-known CTSC
pathway includes the internal capsule (posterior limb (FA, AD) in

Fig. 3 Sample characteristics and prediction performance (ROC AUC) across sites. A In adult samples. B In pediatric samples. Left: Violin
plots of sociodemographic, clinical, and 763 brain features across sites, Right: Box plot of the area under the receiver operating 764
characteristic curve (ROC AUC) for the leave-one-site-out (LOSO) cross validation in the 765 diagnosis classification task (OCD vs. HC).
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adults and retrolenticular part (MD) in children), which has been
implicated in habit formation and cognitive control in OCD [34]. In
the classification model of unmedicated OCD and HC, the corpus
callosum - connecting the two cerebral hemispheres - was
important in adults and pediatric samples alike. This finding is in
line with the previous ENIGMA-OCD study [15] indicating that
adult OCD was characterized by lower volume in the genu of the
corpus callosum than HC. However, careful interpretation is
needed because of differences in the brain metrics used, here
based on tensor modeling (FA, MD). In addition, we found that the
cingulum bundle contributed to the classification of unmedicated
OCD and medicated OCD in both adult and pediatric samples. The
cingulum bundle contains short and long connections between
the frontal lobe, parietal lobe, and temporal lobe. In short, our
machine learning findings suggest common patterns of white
matter abnormalities in adult and pediatric OCD, as well as distinct
patterns consistent with prior work [2].
The classification model of unmedicated OCD from HC showed

greater accuracies than the model classifying all OCD from HC.
This would suggest medication status likely confounds the white
matter microstructure of OCD patients. In the literature, the causal
effects of medication, Serotonin Reuptake Inhibitor (SSRI), on the
white matter microstructure remain unclear: No randomized
controlled trial exists. Nevertheless, given the key role of
serotonin in neurodevelopment including gliogenesis [35],
changes in extracellular serotonin levels in the brain owing to
SSRI may impact the integrity of the white matter fibers. Prior
correlational research supports this. A cross-sectional study shows
a decrease in FA in the sagittal striatum associated with
medication use in adults with OCD compared to unmedicated

OCD [15]; longitudinal clinical studies show a decrease in MD of
the midbrain white matter bundles after 12-week administration
of SSRI [36], a decrease in MD in the frontal regions and the
corpus callosum [37]. Though some of these correlational findings
might indicate causal effects of SSRI on the white matter,
nevertheless, without direct causal evidence it is still unclear if the
associations result from the neurobiological effects of SSRI,
symptom improvement, or both. A practical implication of our
finding is that the diffusion white matter-based model presents a
particular utility in classifying medication naïve individuals with
OCD from healthy individuals. Though not reaching the clinical
utility yet (e.g., around AUC of 80%), with further research
(perhaps with the integration of brain, genetic, and behavioral
multi-modal data [38]), the white matter diffusion estimates
might be used to predict the risk for OCD. Future research may
test whether the models trained on medication naïve OCD
patients—perhaps capable of learning the neurobiological
patterns underlying the OCD without medication confounding
—may be used for related tasks (e.g., via representational
learning [39].
There are limitations of this study. Firstly, the imaging

acquisition was not harmonized across the sites, so we could
not test whether the suboptimal model performance or the cross-
site variability might result from the issues of the data or not.
Given the sensitivity of the anisotropy and diffusivity estimates
depending on the pulse sequence designs (e.g., the number of
directions, b-values) [40], despite the harmonized image proces-
sing method (TBSS), the remaining data quality and validity issues
perhaps may have worked against model performance. Secondly,
since only the image-derived phenotypes were available from the

Fig. 4 Top 10 features of classification models in adults. A Top 10 features contribute to the classification of OCD from HC in adults. B Top 10
features contribute to the classification of unmedicated OCD from HC in adults. C Top 10 features contribute to the classification of medicated
OCD from unmedicated OCD in adults. Note: The color legend represents DTI measures: red for FA, yellow for MD, green for AD, and blue for
RD. Regions with multiple DTI measures are highlighted in purple.
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ENIGMA consortium, but not the raw images, our results are only
limited to a single type of analysis (TBSS) and metrics (diffusivity
and anisotropy). Thirdly, our adult samples were larger than
the pediatric samples, so our machine learning methods may
have resulted in more optimized learning outcomes for adult
samples.
In conclusion, using the largest multisite DTI with harmonized

image processing, our investigation indicates that machine
learning models currently allow only poor-to-modest classification
power, but that capture meaningful multivariate patterns of white
matter features relevant to the neurobiology of OCD. Accuracy is
largely constrained by site variability, indicating room for future
improvement.
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