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Abstract
Purpose Primary central nervous system lymphoma (PCNSL) is a rare, aggressive form of extranodal non-Hodgkin lym-
phoma. To predict the overall survival (OS) in advance is of utmost importance as it has the potential to aid clinical
decision-making. Though radiomics-based machine learning (ML) has demonstrated the promising performance in PCNSL,
it demands large amounts of manual feature extraction efforts from magnetic resonance images beforehand. deep learning
(DL) overcomes this limitation.
Methods In this paper, we tailored the 3D ResNet to predict the OS of patients with PCNSL. To overcome the limitation
of data sparsity, we introduced data augmentation and transfer learning, and we evaluated the results using r stratified k-fold
cross-validation. To explain the results of our model, gradient-weighted class activation mapping was applied.
Results We obtained the best performance (the standard error) on post-contrast T1-weighted (T1Gd)—area under curve
= 0.81(0.03), accuracy = 0.87(0.07), precision = 0.88(0.07), recall = 0.88(0.07) and F1-score = 0.87(0.07), while
compared with ML-based models on clinical data and radiomics data, respectively, further confirming the stability of our
model. Also, we observed that PCNSL is a whole-brain disease and in the cases where the OS is less than 1 year, it is more
difficult to distinguish the tumor boundary from the normal part of the brain, which is consistent with the clinical outcome.
Conclusions All these findings indicate that T1Gd can improve prognosis predictions of patients with PCNSL. To the best of
our knowledge, this is the first time to use DL to explain model patterns in OS classification of patients with PCNSL. Future
work would involve collecting more data of patients with PCNSL, or additional retrospective studies on different patient
populations with rare diseases, to further promote the clinical role of our model.
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Introduction

Primary central nervous system lymphoma (PCNSL) is a
rare, aggressive form of extranodal non-Hodgkin lymphoma
confined to the central nervous system, including the brain,
cerebrospinal fluid and eyes without evidence of systemic
spread [1]. The treatment of patients with PCNSL includes
two phases, induction and consolidation. Induction con-
sists of high-dose methotrexate-based chemotherapy, while
whole-brain radiotherapy (WBRT) is a consolidation option
in patients with a disease response to induction [2]. However,
only about 56% of patients are eligible for the consolida-
tion and late neurotoxicity is an important issue especially
when WBRT has been used [3]. The reason of this poor
response to treatment remains unknown. Nevertheless, to
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predict the treatment response in advance is still of paramount
importance as to better understand tumor behavior and aid
clinical decisions. The overall survival (OS), the length of
time from either the date of diagnosis or the start of treat-
ment for a disease to the last follow-up or eventually death,
is the gold standard primary endpoint to evaluate prognosis
[4]. Nowadays, radiomics, a computational tool to extract
high-dimensional features from medical images, has been
popular in customizing treatment of oncology, powered by
the development machine learning (ML) [5, 6]. However,
ML requires suitable parameters, while a large number of
radiomic features is extracted from images; thus, an adequate
feature selection must be performed.

Deep learning (DL), which directly extracts features from
the images, has emerged as one of the most powerful tech-
nologies in the past decade. It has boosted the progress in
the field of computer vision [7]. In fact, DL models are
data hungry due to the stack of hidden layers. In the case
of small dataset, training a very deep network would lead to
overfitting. Data augmentation, transfer learning and cross-
validation are common methods to alleviate the problem
of small dataset and overfitting. Furthermore, most exist-
ing work uses cross-validation to predict model uncertainty,
which can be referred to artificial intelligence (AI) safety [8,
9]. In addition, it is important to interpret DL-based results
to provide intuitive outputs for human review, thus, assess AI
safety and accelerate the adoption of DL into the real-world
medical application [10–12]. However, there are few studies
to implement DL in the analysis of PCNSL while analyzing
model uncertainty and explainability.

In this paper, a DL model 3D ResNet was used to per-
form binary OS classification of patients with PCNSL. Then,
Gradient-weighted Class Activation Mapping (Grad-CAM)
was tailored to visualize and explain the patterns of our
model. Specifically, our main contributions were the follow-
ing:

1. Training from scratch vs transfer learning: We evaluated
the 3D ResNet on different MRI modalities under train-
ing from scratch and transfer learning, respectively, and
obtained one specific MRI modality with the best perfor-
mance, which is consistent with the clinical outcome.

2. Uncertainty prediction and pattern explainability: To the
best of our knowledge, this is the first trial to output the
uncertainty and success and failure patterns of the 3D DL
model inOS classification of patients with PCNSL,which
can be referred to AI safety in the medical field.

Related work

Currently, radiomics-based ML has taken advantage of mag-
netic resonance imaging (MRI). ML in training classifiers

to distinguish between glioblastoma and PCNSL performed
well with respect to area under curve (AUC) [13, 14]. How-
ever, this type of studies is limited to the differentiation of
PCNSL from glioblastoma. Besides, ML requires manual
feature extraction from images, which is time- and resource-
consuming. It is also found that some feature extraction
methods would introduce too much noise and lead to ML
model unstability [15]. A famous example is that none of
radiomics-based ML approaches is able to outperform the
age-only baselinewith cross-validation in the BraTS survival
prediction challenge 2018 [16].

On the contrary, DL has been applied inmedical images of
brain diseases and obtained state-of-the-art results, withmin-
imal prior medical knowledge and feature selection. A DL
model containing stacked auto-encoders and a softmax out-
put layer was designed to perform diagnosis of Alzheimer’s
disease, and a significantly better performance (accuracy is
0.88) was achieved compared with support vector machine
(accuracy is 0.84) [17]. A 3DU-Net for brain tumor segmen-
tation using separable 3D convolutions achieved competitive
results withDice scores of 0.69, 0.84 and 0.78 for the enhanc-
ing tumor, the whole tumor and the tumor core, respectively
[18]. These studies may have great potential to lead to a new
perspective for computational medical research. However,
to achieve state-of-the-art accuracy, DLmodels require large
labeled dataset for training, which it is usually prohibitive to
be acquired due to the extensive annotation efforts and the
demand of expertise in the medical domain.

In the case rare tumors, there have been successful exam-
ples tackling the problem of small dataset. An EfficientNet-
based convolutionneural network (CNN)was used to classify
primary bone tumors from preoperative radiographs with
better accuracy than junior radiologists; data augmentation
and cross-validation were introduced to mitigate the issue of
small dataset and predict model uncertainty [19]. Low-shot
DL was adopted for the detection of conjunctival melanoma
onocular surface images, and theMobileNetV2 trained under
transfer learning and with generative adversarial network
(GAN)-based augmentation displayed the highest accuracy
of 0.97 [20]. However, there are seldom attempts to explain
the patterns of the DL models in rare tumors.

Method

Dataset and image preprocessing

Multi-center brain MRI modalities with different scanners
(Philips Medical System Achieva and Whole, GE Medi-
cal System/Optima MR450 and SIEMENS AERA) of 56
patients with PCNSL between January 2010 and November
2019 were retrospectively collected at San Raffaele Hos-
pital in Milan (Italy). Different MRI modalities, namely
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T1-weighted (T1), T2-weighted (T2) and post-contrast T1-
weighted (T1Gd), which are helpful for diagnosing different
neurological pathology, were collected. Also, clinical data
(the age, the level of lactate dehydrogenase, the cerebrospinal
fluid total protein, the performance status, the IELSG score
and the OS) of these patients was collected. In particular,
the OS is positive means the OS is more than 1 year and
the OS is negative means the OS is less than 1 year; in our
dataset, there are 30 positive cases and 26 negative cases,
respectively. Differences among these three MRI modalities
are depicted in Fig. 1.

We followed standard image preprocessing techniques—
bias field correction, registration, skull stripping, intensity
normalization, and voxel resampling using 3D Slicer [21,
22]. Furthermore, we performed additional preprocessing,
including background removing and data augmentation, to
enhance the stability of the model. In fact, these images were
collected fromdifferent hospitals andwith different scanners,
which would induce unavoidable systemic noise. In particu-
lar, the following steps were performed (Fig. 1):

1. Step #1: The N4ITK MRI bias correction module was
used for bias field correction. All MRI acquisitions
for each patient were registered on T1Gd. The Z-score
method was used to normalize image intensity by sub-
tracting the mean of the image and then dividing by the
standard deviation of all the voxels in the image. The size
of each voxel after resampling was 1mm×1mm×1mm.

2. Step #2: Regions around the brain were removed first
to help the model focus on the foreground (brain and
tumor only). For data augmentation, affine transforma-
tion, elastic deformation, random spatial cropping and
random rotation were performed for each MRI modality.
The size of random spatial cropping was 96 × 96 × 96.
The degree, the axis and the probability of random rota-
tionwere 15◦, x-axis and 0.5, respectively. The image size
was resized to 128 × 128 × 128 for each MRI modality.

Model architecture and transfer learning

The model architecture was based on the 3D voxel ResNet
since our inputs are three-dimensional images (Fig. 2).More-
over, the 3D voxel network is more powerful at capturing
the spatial information in natural or organic formations than
its 2D version [7, 23]. Furthermore, to improve the perfor-
mance of the model, transfer learning was used. First, we
pre-trained the 3D ResNet on the BraTS2020 dataset for
the task OS classification of patients with glioblastoma. In
particular, BraTS2020 consists of multi-modal preoperative
images of 235 glioblastoma patients from19 institutionswith
the reported resection status and known OS [24]. Then, we

Fig. 1 Preprocessing steps of MRI of patients with PCNSL

fine-tuned the 3DResNet on our PCNSLdataset for the target
task OS classification of patients with PCNSL.

Cross-validation and pattern visualization

To perform convincible classification on the small dataset
and avoid overfitting, we also used r stratified k-fold cross-
validation. The r stratified k-fold cross-validation reports the
mean result across all iterations, and the uncertainty between
the mean performance and the unknown underlying perfor-
mance can be estimated using the standard deviation (std).
In this paper, we set hyperparameters r = 2 and k = 5; after
choosing some specific evaluation metric, we obtained the
corresponding mean and std for these 10 iterations.

To visualize the patterns of our model, we customized the
original Grad-CAM to fit the 3D ResNet-based architecture
and output the 3D activationmap of the last convolution layer
on the original input based on the prediction of the model
[10]. Then, we extracted the 2D activation map of the slice
near the tumor.

Experiment description

Since PCNSL is a rare cancer and it is hard to reach large
dataset, we split the original PCNSL dataset into training set
(45 patients) and validation set (11 patients) for each iteration
of r stratified k-fold cross-validation.

To compare clinical practice with our model, we used
ML models—logistic regression (LR) and support vector
machine (SVM) on clinical data and radiomics data, respec-
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Fig. 2 Architecture of the 3D ResNet: Input a 3D image, use the convolution layers and pooling layers as the encoder to extract features, and
finally, a linear FC layer was used to output the OS classification result

tively, to predict the OS of patients with PCNSL. For training
from scratch (T), we trained the 3D ResNet on T1, T2
and T1Gd, respectively, to predict the OS of patients with
PCNSL. Theweights of the 3DResNet were initialized using
a uniform distribution [7]. For transfer learning (TL), we
concatenated all MRI modalities from BraTS2020 along the
channel dimension and pre-trained the 3D ResNet on these
inputs and, then, fine-tuned the model on T1, T2 and T1Gd
from the PCNSL dataset, respectively, to predict the OS of
patients with PCNSL. In addition, for T and TL, we set a
batch size of 8 and used the cross entropy as loss function.
The learning rate was set to be 0.001 and was multiplied by
0.1 every 30 epochs. The Adam algorithm was used for opti-
mization, themaximum training epoch was set to be 250, and
an early stoppingpolicywas used.Thewhole trainingprocess
was carried out using a single NVIDIA A100 GPU (20GB).
Then, we evaluated the performance of ML, T and TL: For
eachmetric—AUC, accuracy, precision, recall and F1-score,
we reported the corresponding mean and std. Last, we chose
the model whose performance is the best evaluated in the
above r stratified k-fold cross-validation process, retrained
the model with the same hyperparameter setting mentioned
in section “Experiment description” and output the patterns
of this model.

Results

Quantitative analysis

In Table 1, simply using ML on clinical data, we obtained
values less than 0.70 in terms of all metrics while using

ML on radiomics data from T1 and T2, respectively, and
we obtained larger values in terms of all metrics. For T
and TL, we obtained values more than 0.70 in terms of
all inputs and all metrics except for AUC. In particular, we
obtained largest mean values from T1Gd under TL in terms
of all metrics—AUC = 0.81(0.03), accuracy = 0.87(0.07),
precision = 0.88(0.07), recall = 0.88(0.07) and F1-score
= 0.87(0.07).We also predicted the uncertainty of themodel
using the std. T1Gd under TL outperforms the others while
maintaining the small std 0.03–0.07 in terms of all metrics.
For each metric, we used the t test to test whether the sam-
ples of T1Gd under TL and any other model are statistically
different [25]. In Table 1, for TL, the p value for each metric
is less than the significant level 0.05 except for T2 evaluated
with Precision. To sum up, we observed that T1Gd under TL
learns better representation of PCNSL andmay help OS clas-
sification while maintaining stability in terms of all metrics.

Qualitative analysis

From the results in section “Quantitative analysis”, T1Gd
under TLmay have the best performance in OS classification
of patientswithPCNSLonunseendataset. Thus,we retrained
the 3DResNet onT1GdunderTLwith the samehyperparam-
eter setting mentioned in section “Experiment description”
and used Grad-CAM to analyze the corresponding success
and failure patterns. The success OS classification patterns of
ourmodel are given inFig. 3.Aswe can see, themodelmostly
focuses on the tumor region while exploring the normal part
of the brain. Moreover, compared with the true-positive (TP)
cases (Fig. 3a), it is more difficult to distinguish the tumor
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Table 1 Cross-validation results
of ML models and the 3D
ResNet

AUC (std) Accuracy (std) Precision (std) Recall (std) F1-score (std)

SVM:Clinic 0.69 (0.15)* 0.61 (0.14)* 0.62 (0.15)* 0.61 (0.14)* 0.60 (0.14)*

SVM:T1r 0.79 (0.07) 0.79 (0.07)* 0.85 (0.08)* 0.73 (0.11) 0.78 (0.08)*

SVM:T2r 0.75 (0.01) 0.76 (0.09)* 0.73 (0.09)* 0.88 (0.13) 0.80 (0.08)

SVM:T1Gdr 0.56 (0.12)* 0.57 (0.11)* 0.57 (0.08)* 0.76 (0.21) 0.64 (0.11)*

T:T1 0.56 (0.04)* 0.72 (0.03)* 0.78 (0.06)* 0.73 (0.04)* 0.71 (0.03)*

T:T2 0.63 (0.18)* 0.72 (0.08)* 0.72 (0.08)* 0.71 (0.09)* 0.71 (0.09)*

T:T1Gd 0.65 (0.12)* 0.80 (0.04)* 0.81 (0.03)* 0.80 (0.03)* 0.80 (0.04)*

TL:T1 0.66 (0.12)* 0.72 (0.02)* 0.76 (0.04)* 0.72 (0.02)* 0.71 (0.03)*

TL:T2 0.69 (0.06)* 0.79 (0.04)* 0.85 (0.02) 0.79 (0.04)* 0.78 (0.05)*

TL:T1Gd 0.81 (0.03) 0.87 (0.07) 0.88 (0.07) 0.88 (0.07) 0.87 (0.07)

SVM Support vector machine, T training from scratch, TL transfer learning. Clinic meant clinical data. T1r,
T2r and T1Gdr meant radiomics data from T1, T2 and T1Gd, respectively
*Meant p < 0.05 in the t test

boundary from the normal part of the brain in the true-
negative (TN) cases (Fig. 3b). We also gave the failure OS
classification patterns: the false-positive (FP) cases (Fig. 3c)
and the false-negative (FN) cases (Fig. 3d).

Discussion

In this paper, we investigated the power of DL models in
OS classification of patients with PCNSL from MRI. The
OS reflects the treatment response and would help clini-
cians improve prognosis. Given that DL has circumvented
the problem of feature selection in ML and has been widely
applied in medical tasks, we further utilized its potential
into the domain of PCNSL—we used the 3D ResNet to
perform binary OS classification of patients with PCNSL.
From the performance results, we can say that T1Gd under
TL learns better representation of PCNSL, while compared
with ML-based models on clinical data and radiomics data,
respectively. In particular, we obtained the largest AUC
0.81(0.03) from T1Gd under TL, meaning that T1Gd under
TL is stable for different threshold and the model ranks a
random positive example (the OS is more than 1 year) more
highly than a random negative example (the OS is less than
1 year), i.e., the model highlights the difference between the
positive example and the negative example. The reason may
be that T1Gd induces better contrast among brain tissues,
and our model utilizes this contrast. This is consistent with
previous clinical studies, where clinicians predicted the OS
of patients with glioblastoma based on contrast-enhanced
MRI and used AUC as a model evaluation metric [26].
In addition, the result that T1Gd under TL has the largest
F1-score 0.87(0.07) is again consistent with previous clin-
ical trials, where signal intensity of T1Gd has been shown
to correlate with histopathology-based nuclear cell density

and has been evaluated with F1-score [27]. Also, the value
for each metric of T1Gd under TL is larger than under T,
meaning that BraTS2020 does help the 3D ResNet learn
subtle differences among T1Gd of patients with PCNSL.
All these results confirm the stability of T1Gd under TL
in the real PCNSL application. Furthermore, compared the
performance between the models with t test, we obtained
that the difference between T1Gd under TL and other mod-
els is statistically significant in most cases. In particular, for
TL, the difference between T1Gd and any other model is
statistically significant except for T2 evaluated with preci-
sion. This suggests that T2 would be a suboptimal choice
where precision weighs more or T1Gd is missing. Also, this
can be supported by the finding that precision is positively
correlated with magnetic pulse duration and T2 is produced
by using longer magnetic pulse duration [28]. Last, through
visualizing the patterns with Grad-CAM, we observed that
themodelmostly focuses on the tumor regionwhile exploring
the other part of the brain, which may support the hypothe-
sis that PCNSL is a whole-brain disease [29]. Moreover, in
the cases where the OS is less than 1 year, it is more diffi-
cult to distinguish the tumor boundary from the normal part
of the brain. In previous studies of glioblastoma, increasing
gross total resection (GTR) rate remains a challenge to clini-
cians as it is difficult to distinguish the tumor boundary from
normal brain parenchyma; thus, the survival rate is inferior
[30, 31]. In this aspect, our model fits the regular routine of
treatment of oncology. Besides, the failure patterns encour-
age us to include the critical clinical attributes in the future
analysis of PCNSL such as the location of the tumor. This
is reasonable and can be referred to AI safety in the medical
field. To the best of our knowledge, this is the first time to
use DL to analyze model uncertainty and explain model pat-
terns in OS classification of patients with PCNSL. Finally,
in the hope to guide future researchers, we would like to
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Fig. 3 Some success and failure OS classification patterns of the 3D
ResNet in PCNSL. #number was the ID of the patient. The MRI row
showed the slice of TIGd near the tumor, and the activation map row

showed the corresponding activation map of the slice. The colorbar on
the right showed the intensity level of the activation maps
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point out limitation of our study: The number of the patients
is not large enough, requiring collecting a larger population
to improve our model. Also, clinical data such as the loca-
tion of the tumor need to be collected at the same time, to
aid the decision-making procedure and enhance AI safety in
PCNSL. Moreover, retrospective studies on different patient
populations with rare diseases should be considered, to test
the generalizability of ourmodel and further clarify its poten-
tial clinical impact.
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