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Abstract: Over recent years, preclinical and clinical evidence has implicated myocardial inflammation
(M-Infl) in the pathophysiology and phenotypes of traditionally genetic cardiomyopathies. M-Infl
resembling myocarditis on imaging and histology occurs frequently as a clinical manifestation of
classically genetic cardiac diseases, including dilated and arrhythmogenic cardiomyopathy. The
emerging role of M-Infl in disease pathophysiology is leading to the identification of druggable
targets for molecular treatment of the inflammatory process and a new paradigm in the field of
cardiomyopathies. Cardiomyopathies constitute a leading cause of heart failure and arrhythmic
sudden death in the young population. The aim of this review is to present, from bedside to bench,
the current state of the art about the genetic basis of M-Infl in nonischemic cardiomyopathies of the
dilated and arrhythmogenic spectrum in order to prompt future research towards the identification
of novel mechanisms and treatment targets, with the ultimate goal of lowering disease morbidity
and mortality.

Keywords: myocardial inflammation; cardiomyopathies; genetics; preclinical models; bench; dilated;
arrhythmogenic; ventricular arrhythmias; desmosomes; sudden cardiac death; endomyocardial
biopsy; cardiac magnetic resonance

1. Myocarditis and Primary Cardiomyopathies
1.1. Introduction

The World Health Organization defines myocarditis as an inflammatory disease of
the myocardium diagnosed by established histological, immunological, and immunohisto-
chemical criteria [1]. The main recognized etiologies of myocarditis include viral infections,
toxic agents, and autoimmune mechanisms [2]. Although a genetic background has been
hypothesized either as a predisposing [3] or accelerating factor [4], myocarditis is currently
classified as a nongenetic disease [2]. Over the last decade, however, a growing body of
evidence has attempted to identify a strict connection between genetics and myocarditis. In
particular, pathogenic variants in cardiomyopathic genes have been identified in probands
with familial myocarditis. On the other hand, bursts of active myocardial inflammation
(M-Infl) [5] overlapping with classic myocarditis have been reported in patients with known
genetic cardiomyopathies. Since the development of a manifest phenotype of each genetic
disease depends on the interaction between genetics and environment, myocardial inflam-
mation may represent the “cellular environment” that plays a primary role in the evolution
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of cardiomyopathies. The aim of this narrative review is to describe the state of the art
regarding the genetic basis of myocarditis. In particular, the connection points between
myocarditis and cardiomyopathies of the dilated and arrhythmogenic spectrum will be
presented in both the clinical and preclinical settings. A brief overview of the current
definitions of myocarditis and cardiomyopathies is presented in Table 1.

Table 1. Inflammatory cardiomyopathies: key concepts and definitions.

Term Definition References

Myocarditis

Inflammatory disease of the myocardium diagnosed by established
Histological, immunological, and immunohistochemical criteria (WHO, ESC).

In detail:
-Histology: infiltrating inflammatory mononucleated cells with myocyte

myocyte degeneration and necrosis of nonischemic origin (Dallas criteria). It is
defined borderline myocarditis in the absence of necrosis. It is defined chronic

myocarditis in the presence of replacement-type fibrosis.
-Immunohistochemistry: ≥14 leucocytes/mm2 including up to

4 monocytes/mm2 with the presence of CD 3 positive
T-lymphocytes ≥7 cells/mm2.

Clinical classification based on symptom onset:
-Acute (<1 month)

-Subacute (1–3 months)
-Chronic (>3 months)

[6–8]

Cardiomyopathy

Myocardial disorders in which the heart muscle is structurally and
functionally abnormal, in the absence of coronary artery disease, hypertension,
valvular disease and congenital heart disease sufficient to cause the observed

myocardial abnormality (ESC).
It may also include electrical diseases prone to life-threatening

arrhythmias (AHA).

[9–11]

Dilated cardiomyopathy
(DCM)

Dilation and impaired contraction of the left or both ventricles that is not
explained by abnormal loading conditions or coronary artery disease.

Phenotype classification:-Hypokinetic nondilated cardiomyopathy (LV systolic
dysfunction with no dilation).

-Overt DCM (LV dilation and systolic dysfunction).

[6,12]

Arrhythmogenic
cardiomyopathy (ACM)

Arrhythmogenic heart muscle disorder not explained by ischemic,
hypertensive, or valvular heart disease.

Phenotype classification:
-Classic right ventricular ACM (modified Task Force Criteria).

-Biventricular ACM.
-Left-dominant ACM (Padua criteria).

[13,14]

Inflammatory
cardiomyopathy

Myocarditis in association with cardiac dysfunction (i.e., LV ejection
fraction <50%) [6,7]

Myocardial inflammation
(M-Infl)

Evidence of myocardial inflammation fulfilling the histological (±myocyte
necrosis, i.e., borderline myocarditis) and immunohistochemical criteria for

myocarditis, in a patient with clinical diagnosis of ACM or DCM.
[3,5]

Common definitions in the field of myocarditis and cardiomyopathies are shown. ACM = arrhythmogenic
cardiomyopathy; AHA = American Heart Association; CD = cluster of differentiation; DCM = dilated car-
diomyopathy; ESC = European Society of Cardiology; LV = left ventricular; M-Infl = myocardial inflammation;
WHO = World Health Organization.

1.2. Diagnosis of Myocarditis

Based on the aforementioned definition and updated evidence [6,7], histology is the
gold standard of diagnostics for myocarditis. In particular, the European Society of Cardiol-
ogy (ESC) proposed specific histological and immunohistochemical criteria [6,8], reported
in Table 1. In this setting, borderline myocarditis, defined as the absence of myocyte
necrosis [6], is frequently indistinguishable from cardiomyopathy-associated M-Infl [5]
(Table 2). Histology information can be obtained by means of endomyocardial biopsy
(EMB), provided that tissue sampling is adequate and informative [6,15]. As a diagnos-
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tic tool complementary to EMB, cardiac magnetic resonance (CMR) allows noninvasive,
multiplanar, and panoramic investigation of myocarditis [2]. In particular, the key patho-
physiological components of myocarditis, namely hyperemia, edema, and necrosis, are
mirrored by distinct CMR sequences. As defined by the updated Lake Louise criteria [16],
while T2-weighted sequences point to M-Infl, late gadolinium enhancement (LGE) is ob-
served both during the acute and the post-inflammatory stages of myocarditis [4]. In the
chronic setting, LGE on CMR, as well as low-voltage areas on electro-anatomical mapping,
are considered as rough equivalents of myocardial scar [5,9]. Among the other imaging
techniques, 18F-fluorodeoxy-positron emission tomography (FDG-PET) constitutes an in-
formative diagnostic test when CMR is not feasible, such as in cardiac device carriers [17].
The main techniques and diagnostic criteria for myocarditis are summarized in Figure 1.

Table 2. Evidence of myocardial inflammation in human cardiomyopathies.

Gene Model Main Findings References

DSP, PKP2 Clinical setting

Patients with DSP variant
cardiomyopathy including 16/105
(15%) who had “acute myocardial

injury episodes” akin to clinical
myocarditis.

[18]

DSP Clinical setting

Acute myocarditis reflects an active
phase of ACM that leads to changes

in phenotype and abrupt
progression of ACM.

[19]

DSP Clinical setting

Cohort of patients initially
presenting with a classic

myocarditis syndrome (chest pain,
troponin elevation) who were

subsequently diagnosed with ACM.
Most patients had a DSP

genetic variant.

[20–22]

DSP, LAMA4, LDB3, MYBPC3
DSC2, RYR2, SOS1, SCN5A,
SGCD, LPL, PKP2, MYH1,

GATA6, and DSG2

Human heart specimens from
autopsy cases

Minimal inflammatory foci may be
an early sign of inherited

cardiomyopathy.
[23]

DSP, FLNC, PKP2,
TMPO, TTN Human EMB

Retrospective multicenter study on
patients with undefined LV ACM

and extensive overlap between
EMB-proven myocardial

inflammation and rare genetic
variants of the

DCM/ACM spectrum.

[5]

Human EMB

Most asymptomatic relatives of
dilated cardiomyopathy patients

with mild left ventricular
enlargement already showed

infiltration of inflammatory cells, at
levels that were similar to those of
patients with established disease.

[24]

SCN5A Case report

Young SCN5A variant carrier with
recurrent ventricular fibrillation

and massive
myocardial inflammation

[25]

The main reports linking myocardial inflammation to primary cardiomyopathies in human subjects are shown.
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Figure 1. Diagnostic workup for myocarditis. The diagnostic workup for myocarditis is summa-
rized, including gold standard techniques (EMB and CMR, yellow panel), additional imaging tech-
niques applying to special patient subsets (FDG-PET and EAM, orange panel), and genetic testing 
to investigate the overlap with primary cardiomyopathies (blue panel). For each diagnostic exam, 
diagnostic criteria and main indications are reported. In each figure, the arrows point to remarkable 
findings. Representative examples are shown in the lower panel. ACM = arrhythmogenic cardiomy-
opathy; CMR = cardiac magnetic resonance; DCM = dilated cardiomyopathy; EAM = electroana-
tomic mapping; EMB = endomyocardial biopsy; FDG-PET = 18F-fluorodeoxypositron emission to-
mography; IHC = immunohistochemistry; LGE = late gadolinium enhancement; PCR = polymerase 
chain reaction; VA = ventricular arrhythmias. 

1.3. Classification of Cardiomyopathies 
Even in the absence of universal agreement about their definition (Table 1), cardio-

myopathies are defined as myocardial disorders in which the heart muscle is structurally 
and/or functionally abnormal in the absence of alternative explanatory causes, including 
coronary artery disease, hypertension, valvular, and congenital heart disease [10,11]. 
Among a wide spectrum of nonischemic muscle diseases, dilated cardiomyopathy (DCM) 
is characterized by dilation and impaired contraction of the left or both ventricles [12], and 
is caused by rare genetic variants in nearly half of cases [26]. On the contrary, arrhythmo-
genic cardiomyopathy (ACM), in turn caused by gene variants in up to 50% of familial 
cases [13], has arrhythmic manifestations as the main clinical phenotype. In clinical prac-
tice, DCM and ACM constitute the main source of overlap with myocarditis and inflam-
matory cardiomyopathy [6,12,27,28]. In detail, while heart failure manifestations call for 
differential diagnosis with DCM [6,12], ventricular arrhythmias (VA) may suggest either 
classic or left dominant ACM [13,14]. In both cases, the nonischemic pattern of LGE is fre-
quently found on the CMR [9]. Figure 2 shows the whole spectrum of overlapping pheno-
types of DCM, ACM, and myocarditis. Although, in the vast majority of cases, specific di-
agnostic criteria allow a conclusive differential diagnosis among DCM, ACM, and myocar-
ditis, in some cases a definitive diagnosis represents an inconclusive challenge due to a sub-
stantial overlap between clinical, instrumental, laboratory, and anatomical-histological data 
(Figure 2). 

Figure 1. Diagnostic workup for myocarditis. The diagnostic workup for myocarditis is summarized,
including gold standard techniques (EMB and CMR, yellow panel), additional imaging techniques
applying to special patient subsets (FDG-PET and EAM, orange panel), and genetic testing to investi-
gate the overlap with primary cardiomyopathies (blue panel). For each diagnostic exam, diagnostic
criteria and main indications are reported. In each figure, the arrows point to remarkable findings.
Representative examples are shown in the lower panel. ACM = arrhythmogenic cardiomyopathy;
CMR = cardiac magnetic resonance; DCM = dilated cardiomyopathy; EAM = electroanatomic map-
ping; EMB = endomyocardial biopsy; FDG-PET = 18F-fluorodeoxypositron emission tomography;
IHC = immunohistochemistry; LGE = late gadolinium enhancement; PCR = polymerase chain
reaction; VA = ventricular arrhythmias.

1.3. Classification of Cardiomyopathies

Even in the absence of universal agreement about their definition (Table 1), cardiomy-
opathies are defined as myocardial disorders in which the heart muscle is structurally
and/or functionally abnormal in the absence of alternative explanatory causes, includ-
ing coronary artery disease, hypertension, valvular, and congenital heart disease [10,11].
Among a wide spectrum of nonischemic muscle diseases, dilated cardiomyopathy (DCM) is
characterized by dilation and impaired contraction of the left or both ventricles [12], and is
caused by rare genetic variants in nearly half of cases [26]. On the contrary, arrhythmogenic
cardiomyopathy (ACM), in turn caused by gene variants in up to 50% of familial cases [13],
has arrhythmic manifestations as the main clinical phenotype. In clinical practice, DCM
and ACM constitute the main source of overlap with myocarditis and inflammatory car-
diomyopathy [6,12,27,28]. In detail, while heart failure manifestations call for differential
diagnosis with DCM [6,12], ventricular arrhythmias (VA) may suggest either classic or
left dominant ACM [13,14]. In both cases, the nonischemic pattern of LGE is frequently
found on the CMR [9]. Figure 2 shows the whole spectrum of overlapping phenotypes of
DCM, ACM, and myocarditis. Although, in the vast majority of cases, specific diagnostic
criteria allow a conclusive differential diagnosis among DCM, ACM, and myocarditis, in
some cases a definitive diagnosis represents an inconclusive challenge due to a substan-
tial overlap between clinical, instrumental, laboratory, and anatomical-histological data
(Figure 2).
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netic cardiomyopathies [29]. However, a hereditary component has also been described 
for myocarditis [2]. In detail, it has been reported that genetic variants involved in familial 
cardiomyopathies are frequently found in subjects with childhood-onset disease [30] and 
EMB-proven lymphocytic myocarditis [31].  

Among DCM-causing genes, lymphocytic myocarditis has been suggested as a driver 
for the disease progression [32] in patients with truncating variants of the titin gene (TTN), 
which constitute the most prevalent cause of familial DCM. Other cytoskeletal gene vari-
ants have been shown to increase susceptibility to viral myocarditis [33], accounting for 
inconstant viral clearance and heterogeneous evolution towards inflammatory DCM [31]. 
For instance, variants in genes encoding structural proteins such as DMD have been associ-
ated with the persistence of viral genomes and unfavorable outcomes [34,35], whereas var-
iants affecting genes coding for non-structural proteins such as SCN5A and BAG3 lead to 
slowly progressing disease [33]. In a recent series of genotyped probands, a higher preva-
lence of pathogenic or likely pathogenic variants, in particular in the FLNC, RBM20, and 
BAG3 genes, was reported in association with severe forms of myocarditis, including cardi-
ogenic shock and sustained VA [36]. 

As for ACM, pathogenic variants in desmosomal genes, namely plakoglobin (JUP), 
desmoplakin (DSP), plakophilin (PKP2), desmoglein (DSG2), and desmocollin (DSC), are 
depicted as the main cause [13], in turn displaying extensive overlap with myocarditis. A 
recent study reported variants in the DSP and DSG2 genes in six probands with familial 
myocarditis [20], allowing subsequent identification of up to 28 gene variant carriers, 39% 
of whom had a phenotype consistent with LV rather than classic right ventricular (RV) 
ACM. Myocarditis has been recently included within the typical phenotype of 

Figure 2. Overlap between myocarditis and primary cardiomyopathies. The Venn diagram shows
the overlaps between myocarditis and genetic cardiomyopathies of the arrhythmogenic and di-
lated spectrums. ACM = arrhythmogenic cardiomyopathy; CMR = cardiac magnetic resonance;
DCM = dilated cardiomyopathy; EMB = endomyocardial biopsy.

2. Myocarditis as a Manifestation of Primary Cardiomyopathy: Clinical Scenarios
2.1. Familial Myocarditis

A family history of sudden death or cardiomyopathy is the main clue to suspect
genetic cardiomyopathies [29]. However, a hereditary component has also been described
for myocarditis [2]. In detail, it has been reported that genetic variants involved in familial
cardiomyopathies are frequently found in subjects with childhood-onset disease [30] and
EMB-proven lymphocytic myocarditis [31].

Among DCM-causing genes, lymphocytic myocarditis has been suggested as a driver
for the disease progression [32] in patients with truncating variants of the titin gene (TTN),
which constitute the most prevalent cause of familial DCM. Other cytoskeletal gene variants
have been shown to increase susceptibility to viral myocarditis [33], accounting for incon-
stant viral clearance and heterogeneous evolution towards inflammatory DCM [31]. For
instance, variants in genes encoding structural proteins such as DMD have been associated
with the persistence of viral genomes and unfavorable outcomes [34,35], whereas variants
affecting genes coding for non-structural proteins such as SCN5A and BAG3 lead to slowly
progressing disease [33]. In a recent series of genotyped probands, a higher prevalence
of pathogenic or likely pathogenic variants, in particular in the FLNC, RBM20, and BAG3
genes, was reported in association with severe forms of myocarditis, including cardiogenic
shock and sustained VA [36].

As for ACM, pathogenic variants in desmosomal genes, namely plakoglobin (JUP),
desmoplakin (DSP), plakophilin (PKP2), desmoglein (DSG2), and desmocollin (DSC), are
depicted as the main cause [13], in turn displaying extensive overlap with myocarditis. A
recent study reported variants in the DSP and DSG2 genes in six probands with familial
myocarditis [20], allowing subsequent identification of up to 28 gene variant carriers, 39%
of whom had a phenotype consistent with LV rather than classic right ventricular (RV)
ACM. Myocarditis has been recently included within the typical phenotype of desmo-
plakin cardiomyopathy [18], where VA and recurrence of acute myocarditis are frequently
associated [21,22].
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A further challenging topic for familial myocarditis is the overlap between genetic
background and autoimmunity. Recently, either pathogenic or likely pathogenic variants
in genes associated with recessive immune disorders have been identified in pediatric
patients with myocarditis [37]. Consistently with the complex gene-environment inter-
actions underlying the pathophysiology of inflammatory cardiomyopathy [2,6], serum
anti-heart autoantibodies and anti-intercalated disk autoantibodies have been found in
the majority of patients with familial ACM [38], as well as in arrhythmic myocarditis [39].
Additional evidence includes the finding of circulating anti-myosin and anti-troponin I
autoantibodies in DSP cardiomyopathy [40] and of anti-DSG2 autoantibodies in classic
RV-dominant ACM [41].

2.2. Autoptic Findings from Sudden Death Victims

Both myocarditis and cardiomyopathies constitute relevant causes of sudden cardiac
death in the young population [9,42]. Recent data suggest a relative contribution of 12% for
myocarditis, 10% for ACM, and 4% for DCM [43]. Irrespective of the final diagnosis, the
autoptic series revealed significant overlapping findings, including inflammatory infiltrates
that constantly met definite criteria for myocarditis [6].

In DCM, common findings beyond LV volume dilation and wall thinning include
myocyte atrophy, vacuolar degeneration, nuclear pleomorphism, and fibrosis [44]. In this
setting, it has been suggested that minimal inflammatory foci may be an early sign of
inherited cardiomyopathy [23,24]. In many DCM, however, inflammatory infiltrates are
composed of lymphocytes, with no evidence of an activated phenotype or myocytolysis [44].
Conversely, positive staining for CD3 labeling the activated phenotype of T-lymphocytes
has been mainly reported in classic myocarditis and inflammatory DCM [6]. Similar
findings have been described in myocarditis patients known for systemic autoimmune
diseases, such as systemic sclerosis [45].

As for ACM, the main histopathological feature is the progressive loss of ventricular
myocardium and fibro-fatty replacement [44]. In the LV-dominant forms of ACM, fibro-
fatty or fibrous scars are typically located in the epicardial layers of the posterolateral
free wall [46], mimicking the distribution pattern of classic myocarditis [4,5]. In ACM,
myocardial atrophy results from injury and repair processes, which are often accompanied
by patchy myocarditis containing CD45+ and CD43+ T-lymphocytes in up to 75% of hearts
at autopsy [47]. Lymphocytic inflammatory infiltrates and focal fibrosis have been reported
as concealed substrates even in patients carrying nondesmosomal variants of ACM over-
lapping with channelopathies such as Brugada syndrome [25,48]. Since myocyte necrosis
fulfilling the Dallas criteria [8] is seldom evident on autopsy, the differential diagnosis
between true myocarditis and cardiomyopathy-associated M-Infl remains unsolved for
many patients [3].

Given the considerable overlap among ACM, DCM, and chronic myocarditis, differ-
ential diagnosis should rely on experienced cardiovascular pathologists and integrated
clinical-pathological assessment [49].

2.3. Overlapping Phenotypes in Sporadic Disease

The clinical presentation of myocarditis is extremely variable and ranges from acute
coronary syndrome-like chest pain to heart failure and arrhythmias [6]. In turn, the latter
manifestations are frequently found in primary cardiomyopathies: while heart failure
is more common in DCM, VA have been described in both ACM [13] and early-stage
DCM [12,50,51]. To be noted, however, hot-phase bursts of M-Infl resembling an infarct-
like clinical presentation of acute myocarditis have been reported even in ACM patients
irrespectively of family history [19,21,22]. Given the complex and widely overlapping
scenarios, differential diagnosis is challenging in sporadic diseases.

In this setting, CMR has been suggested as a valuable diagnostic tool. As a common
trait, classic myocarditis, ACM, and DCM present with a nonischemic distribution of
substrate abnormalities (Figure 3). However, the presence of LV LGE exceeding the degree
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of systolic dysfunction, especially when arrhythmic manifestations dominate heart failure
symptoms, suggests primary ACM [51]. Furthermore, a ring-like pattern of LGE could
better identify primary cardiomyopathies, in particular those secondary to DSP and FLNC
pathogenic variants [52]. On the other hand, septal involvement and associated conduction
system defects may point to LMNA cardiomyopathy and an adverse prognosis [50,53,54].
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Once the suspicion of cardiomyopathy is confirmed by CMR, additional effort is 
needed to identify M-Infl. Very recent data suggest that EMB-proven myocardial inflam-
mation is found in more than 50% of patients with clinically suspected ACM [5]. Consist-
ently, the presence of associated abnormalities at T2-weighted sequences on CMR sug-
gests M-Infl [16]. Additional diagnostic tools allowing M-Infl identification include FDG-

Figure 3. Representative examples of cardiac magnetic resonance (CMR) findings in patients with
inflammatory and genetic cardiomyopathies. (A) T2-weighted short-tau inversion recovery (STIR)
sequence in a patient with acute myocarditis and nonischemic distribution pattern of substrate
abnormalities (subepicardial hyperintensity in inferolateral left ventricular wall, arrows). (B) Late
gadolinium enhancement (LGE) sequence in a patient with genetic dilated cardiomyopathy (DCM;
pathogenic variant in the FLNC gene) and nonischemic distribution pattern of substrate abnormali-
ties (subepicardial hyperintensity in inferolateral left ventricular wall, arrows). (C) LGE sequence
in a patient with genetic arrhythmogenic cardiomyopathy (ACM; pathogenic variant in the DSP
gene) and nonischemic distribution pattern of substrate abnormalities (subepicardial hyperintensity
mainly involving the inferolateral left ventricular wall, arrows). (D) In the patient with genetic
ACM, the LGE map shows an extensive left ventricular scar burden (red = maximal scar burden;
blue = healthy myocardium).

Once the suspicion of cardiomyopathy is confirmed by CMR, additional effort is
needed to identify M-Infl. Very recent data suggest that EMB-proven myocardial in-
flammation is found in more than 50% of patients with clinically suspected ACM [5].
Consistently, the presence of associated abnormalities at T2-weighted sequences on CMR
suggests M-Infl [16]. Additional diagnostic tools allowing M-Infl identification include
FDG-PET [55] and ECG recording during arrhythmias. In detail, polymorphic and irregular
VA appearances on the 12-lead ECG may point to M-Infl, in contrast with the scar-related
regular and monomorphic arrhythmias observed both in healed myocarditis and primary
cardiomyopathies [56–58].
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A complete overview allowing differentiation among myocarditis, DCM, and ACM
is presented in Figure 4. As for etiology identification in sporadic disease, genetic test-
ing might be considered in the presence of recurrent myocarditis bursts, persistent LV
dysfunction or arrhythmias, or a special LGE pattern on CMR [21,22,52].
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3. Modeling Myocardial Inflammation in Cardiomyopathies: Evidence from the
Preclinical Setting
3.1. Molecular Mechanisms of Primary Cardiomyopathies

The main molecular players involved in cardiomyopathy pathophysiology are shown
in Figure 5. Given their primary role in determining the architecture and contractile func-
tion of cardiac myocytes, genetic variants in a wide variety of proteins of the cytoskeleton,
sarcomeres, and calcium handling system have been associated with DCM [59,60]. In
detail, DCM phenotypes from structural changes and impaired mechanotransduction
are observed secondary to pathogenic variants in a number of cytoskeletal genes, in-
cluding TTN (titin), FLNC (filamin C), DES (desmin), DMD (dystrophin), LDB3 (ZASP
protein), BAG3 (BCL2-associated athanogene 3), and the same desmosomal genes involved
in ACM pathophysiology [61–66]. In addition, variants in genes encoding sarcomeric
proteins, such as myosin binding proteins and troponin, or calcium-handling proteins
such as phospholamban, encoded by the PLN gene, have been associated with DCM
phenotypes [67,68].
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On the other hand, the electrical uncoupling between cardiac myocytes secondary to
pathogenic gene variants involving the intercalated disk components has been proposed
as the main arrhythmogenic mechanism in primary ACM [69,70]. With an estimated
prevalence of 19–46%, PKP2 accounts for the majority of variants in adult-onset ACM [71].
As opposed, pediatric cohorts show prevalence of DSP [72], where C-terminal variants
account for up to 16% of ACM, frequently with a LV-dominant variant [73]. Irrespective
of the specific variant, the common pathophysiologic factors observed in ACM [69,74]
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include plakoglobin redistribution from the membrane to the intercellular pool [75], gap
junction remodeling with loss of connexin 43 (Cx43) [75], and apoptosis [76]. Among
nondemsosomal proteins, a relevant role is played by ion channels, which reside in the
intercalated disks [69]. In particular, pathogenic variants in SCN5A, which encodes the
pore-forming subunit of the sodium channel Nav1.5, have been associated with a number
of arrhythmogenic disorders ranging from isolated channelopathies to structural forms of
ACM or DCM [48,77].

Finally, the linker of nucleoskeleton and cytoskeleton (LINC) complex tethers the
nuclear envelope to the cytoskeleton and controls the transcription of a broad range of
genes, including those implicated in DCM and ACM phenotypes [78]. For instance, the
nuclear proteins lamin A and C, encoded by alternative splicing by the LMNA gene,
account for a life-threatening ACM/DCM with potential multisystemic involvement and
age-related penetrance [53,79]. Among the other LINC proteins, while pathogenic variants
in TMPO have been associated with DCM with a low prevalence of approximately 1% [80],
variants in transmembrane protein 43 (TMEM43) account for a non-neglectable proportion
of ACM cases [81].

3.2. Role of Systemic and Local Inflammation

Multiple clues suggest a critical role for both systemic inflammation and M-Infl in car-
diomyopathy pathophysiology. For both DCM and ACM, preclinical evidence suggesting
a role for inflammation is summarized in Table 3.

Table 3. Preclinical models of inflammatory cardiomyopathies.

Models of Genetic Etiologies Linked to DCM

Gene Model Phenotype References

TTN C57BL6/J mice Cardiac inflammation [82]

RBM20 shRbm20 iPSCs
Dysregulation of genes

involved in
inflammation

[83]

DMD Dmdmdx rat Infiltration of leukocytes [84]

DMD Dmdmdx rat
Infiltration of
macrophages [85]

MYH MyH-mutant mouse
Upregulation of
inflammasome

pathways
[86]

LMNA
HEK293 cells expressing

LMNA-p.
Leu140_Ala146dup

Upregulation of Hsp70 [87]

LMNA csPLA transgenic mouse
Inflammatory

cardiomyopathy;
activation of NF-κB

[88]

LMNA LmnaCMKO

mouse

Upregulation of
pro-inflammatory gene

expression programs
[89]

BAG3 BAG3-deficient mice Minimal cardiac muscle
inflammation [90]

MYBPC3 cMyBP-C(t/t) mouse
Macrophage infiltration;

upregulation of
inflammatory pathways

[91]

- IKKMyHC

mouse

Excessive inflammatory
response and myocyte

atrophy
[92]
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Table 3. Cont.

Models of Genetic Etiologies Linked to ACM

Gene Model Phenotype References

PKP2 PKP2-Hz mouse

More sensitivity to
experimental
autoimmune
myocarditis

[93]

PKP2 C57BL/6 RiboTagflox mice

Abundance of
transcripts involved in

the
inflammatory/immune

response

[94]

PKP2

hiPSC line from an ACM
patient with a c.2013delC

(p.Lys672Argfs*12) variant
in plakophilin-2 (PKP2)

Secretion of
inflammatory cytokines [95]

DSG2 N271Sdsg2 transgenic
mouse

Presence of massive
inflammatory infiltrates [96]

DSG2 Dsg2+/+ mouse, Dsg2+/−

mouse, Dsg2−/− mouse

Activation of
inflammatory pathways;

upregulation of genes
linked to specific

macrophage populations

[97]

DSG2 Dsg2MT mouse, Dsg2cKO

mouse

Presence of
inflammatory response,
recruitment of immune

cell

[98]

DSG2 Dsg2mut/mut mouse

Activation of NFκB;
increased levels of

inflammatory cytokines
and chemotactic

molecules

[95]

DSC2 DSC2 transgenic mouse

Upregulation of
inflammatory and
fibrotic remodeling

pathways

[99]

JUP
Neonatal rat ventricular

myocytes expressing
2057del2 plakoglobin

Release of inflammatory
mediators, reduced by

SB216763 treatment
[100]

JUP Dsg2mut/mut mouse,
JUP2157del2 mouse

Extensive inflammation,
improved by SB216763

treatment
[101]

JUP
Neonatal rat ventricular

myocytes expressing
JUP2157del2

Activation of NFκB [95]

JUP JUP mutant mouse
Expression of

pro-inflammatory
cytokines

[102]

JUP PGTR mouse
Overexpression of

IGFBP5 [103]

DSP Cardiac-specific Dsp
knockout mouse

Fibro-fatty substitution
of the myocardium;

cardiomyocyte death
[104]

TMEM43 Tmem43-S358L mutant mice Activation of NFκB [105]

TMEM43 Tmem43-S358L KI Infiltration of
inflammatory cells [106]

- Boxer right ventricular ACM Myocarditis [107]

- Cat right ventricular ACM Signs of inflammatory
infiltrates [108]

Cell and mouse models linking inflammatory mechanisms to ACM and DCM are presented.
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In DCM, the cytokine network has been implicated in the pathophysiology of LV
dilation and systolic dysfunction. It has been shown that systemic inflammation affects
myocardial stiffness by multiple mechanisms, such as post-translational modifications of
titin [109]. Remarkably, truncating variants in the TTN gene, encoding titin, account for 25%
of familial DCM and 18% of idiopathic DCM [110]. Phosphorylation of the N2B segment
by protein kinases decreases the distensibility of titin, while phosphorylation of the PEVK-
domain has the opposite effect [111]. An arrhythmic phenotype of TTN-associated DCM
has been described due to protease vulnerability [112]. Consistently, EMB-proven M-Infl
has been documented in a patient presenting with severe heart failure and VA [113]. In
this setting, titin might play a major role in immunity regulation. In a recent article, DCM
patients with and without a truncating TTN variant showed an autoimmune/inflammatory
trigger in 9% and 12%, respectively [114].

However, gene-environment interactions may be more complex. For instance, it
has been shown that toll-like receptor 3 variants increase susceptibility to enteroviral
myocarditis and DCM [115]. In patients with immune checkpoint inhibitor (ICI)-related
myocarditis and myositis, anti-titin and anti-potassium channel Kv1.4 antibodies are of-
ten detected [116]. Remarkably, pathogenic titin variants in solid tumors are associated
with higher immunogenicity and inflammatory infiltrates [117]. Recently, it has also
been suggested that mimic peptides from commensal bacteria can promote inflammatory
cardiomyopathy in genetically susceptible individuals [118]. Consistently, the use of im-
munosuppressive therapy [119,120], as well as IL-1 inhibitors [121], to target EMB-proven
M-Infl, has been associated with LV reverse remodeling and improved systolic function in
clinical practice.

As for ACM, high circulating levels of proinflammatory cytokines, as well as reduced
levels of anti-inflammatory ones [122], have been reported irrespectively of the specific
underlying genetic background. For instance, plakoglobin translocation from intercalated
disks to the intracellular pool has been observed in response to low concentrations of proin-
flammatory cytokines, including IL-6 and TNF-α in granulomatous myocarditis and ACM
but not in classic lymphocytic myocarditis [123]. Regardless of the underlying pathogenic
variant, one of the main drivers of myocardial inflammation in the ACM is signaling by
glycogen synthase kinase-3β (GSK3β) an ubiquitin protein involved in the proteasomal
degradation system. In ACM hearts, GSK3β translocates from the cytoplasm to the interca-
lated disk, resulting in activation of nuclear factor-κB (NFκB), the master cellular regulator
of inflammation and innate immune response [95]. Downstream NFκB, transforming
growth factor-β3 (TGFβ3) induces a fibrotic response by promoting the expression of extra-
cellular matrix genes and by suppressing the activity of matrix metalloproteinases [124]. As
for humoral autoimmunity, anti-DSG2 antibodies have been shown to cause gap junction
dysfunction regardless of the ACM genotype [41]. The proarrhythmogenic role of DSG2
autoantibodies is further enhanced by the positive correlation found between circulating
levels and the burden of premature ventricular contractions [41].

Since the whole process of M-Infl is too complex to be properly reproduced in vitro,
cell and animal models have been developed to understand the molecular mechanisms
of inflammatory cardiomyopathies [125]. In this setting, key targets for biological and
immunomodulating therapy are summarized in Figure 6.

3.3. Inflammation Models in Genetic Etiologies Linked to DCM

A common pathway for most of the described genetic forms of myocarditis susceptibil-
ity is NF-kB. It has been shown that NFκB activation in cardiomyocytes is per se sufficient
to cause DCM. Inducible transgenic mice with cardiomyocyte-specific constitutively ac-
tive IκB kinase (IKK; activator of NF-kB) induce an excessive inflammatory response and
myocyte atrophy, leading to a reversible form of heart failure [92].
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While TTN transgenic animal models have not been investigated for cardiac inflamma-
tory patterns, so far, TTN protein has been indirectly linked to viral myocarditis pathogene-
sis. Indeed, in a model of Coxsackie virus B3 (CVB3)-induced myocarditis, impaired titin
phosphorylation was observed, along with LV dysfunction, increased cardiac inflammation,
including IL-6 levels, and fibrosis. In this setting, IL-6 receptor blockade led to a reduction
in viral load paralleled by extracellular matrix regulation, and titin function improved,
resulting in preserved LV function [82]. This concept can be further generalized. Viruses or
other infecting agents release proteases that interfere with cytoskeleton/sarcomere proteins,
as, for instance, desmin or cardiac troponin, worsening an already compromised situation
when these proteins are defective due to a genetic variant [32].

Defects in phospholamban and other proteins involved in Ca2+-dependent signaling,
have both a direct role in arrhythmia induction as well as in the maladaptive remodeling
of the heart [126]. The impaired cellular Ca2+ content leads to the abnormal activation
of key mediators, such as calmodulin-dependent kinase II (CaMKII) and calcineurin. Ac-
tive CaMKII, among many functions, is known to increase inflammatory signaling [127].
However, myocardial inflammation has not been investigated in PLN animal models.

The RBM20 protein is an essential component of the RNA processing machinery
and is required to regulate cardiac gene expression and processing. Using a human-
induced pluripotent stem cell (hiPSC)-derived platform, the genes dysregulated by RBM20
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pathogenic variants have been revealed. Among them, 16 are involved in heart diseases,
such as cardiomyopathies and inflammation of the myocardium [83].

Dystrophin-deficient rats (Dmdmdx) are used to recapitulate the pathological pheno-
type of DMD patients. The first immunophenotype profile assessed in skeletal and cardiac
muscles excised from Dmdmdx rats showed leukocyte infiltration at the age of 12 weeks,
which consisted mostly of macrophages and T cells, including CD68+ and CD45RChigh T
cells [84]. Accordingly, another study pointing at the characterization of the cardiovascular
phenotype of the Dmdmdx rat demonstrated CD68+ macrophage infiltration in both left
and right ventricles [85]. Collectively, these data suggest that the recruitment of inflamma-
tory cells could be at the basis of the cardiac dysfunction of DMD patients, who indeed
develop a progressive DCM characterized by inflammatory cell infiltration, necrosis, and
cardiac fibrosis.

In MyH-mutant mouse hearts, which show heart failure and arrhythmias, the inflam-
masome pathway was upregulated [86].

It has been shown that expression of mutant LMNA (LMNA-p. Leu140_Ala146dup) in
HEK293 cells led to increased expression of the pro-inflammatory protein Hsp70, mimick-
ing its increase in serum exosomes of patients harboring this same variant [87]. Interestingly,
the degree of inflammation, in terms of the amount of pro-inflammatory cytokines up-
regulated, correlated with the severity of the clinical manifestations associated with each
patient. Besides heterologous systems, several mouse models carrying different pathogenic
variants of LMNA have been obtained, which recapitulate the severe human cardiac struc-
tural and arrhythmic defects [128]. One in particular, a transgenic with cardiac-specific
prelamin-A accumulation (csPLA-Tg) exhibited a phenotype consistent with inflamma-
tory cardiomyopathy [88]. In the LMNA context, it was demonstrated that the trigger
for inflammation is likely linked to premature myocardial senescence [129], due to the
nuclear lamina disruption, and mediated by the senescence-associated secretory phenotype
(SASP) [130]. Inflammaging was sustained by the high myocardial activation of NFκB in
csPLA-Tg. Finally, in a LmnaCMKO mouse model, cardiomyocyte nuclear rupture occurred
2 weeks prior to the development of fibrosis and reduction in ejection fraction and was
accompanied by upregulation of pro-inflammatory gene expression and cytoplasmic re-
lease of HMGB1, a potent pro-inflammatory protein normally localized in the nucleus [89].
This nuclear-driven pro-inflammatory machinery comes into play in the early stages of the
disease, possibly accounting for the development of DCM. Consistently, in animal models,
the inhibition of the mTOR pathway by temsirolimus or rapamycin was able to rescue the
DCM phenotype [131].

Although cardiac muscle inflammation is minimal in BAG3-deficient mice [90], a lack
of BAG3 is associated with a pathogen-dependent reaction. Indeed, NF-kB regulates BAG3
expression in the presence of lipopolysaccharide, the main component of the bacterial
membrane, hinting at BAG3s’ implication in the bacteria-induced response, which is
associated with enhanced expression of pro-inflammatory cytokines [132]. In addition, a
mouse model overexpressing the BAG3 inhibitor Tat, is more sensitive to viral infection,
developing virus-associated cardiomyopathy [133].

The association between myocardial inflammation and cardiac dysfunction in DCM
caused by the rare MYBPC3 variant has been investigated in the cMyBP-C(t/t) mouse
model of DCM at 3 months of age [91]. This study described the infiltration of activated
(CD45+CD11b+Ly6C−MHCII+F480+) and pro-inflammatory M1
(CD45+CD11b+Ly6C−MHCII+F480+CD206−) macrophages, along with upregulation of
inflammatory pathways, in the hearts of DCM animals.

3.4. Inflammation Models in Genetic Etiologies Linked to ACM

A transcriptome analysis in mice revealed that functional pathways related to viral
infection, platelet activation, inflammation, and immune response networks were inversely
correlated with PKP2 expression [94]. PKP2 haploinsufficiency in the murine heart does
not lead to overt phenotypes but has been demonstrated to make the heart more sensitive
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to experimental autoimmune myocarditis (EAM). The induction of EAM resulted in more
subepicardial fibrosis, loss of Cx43 expression, and larger non-myocyte areas [93]. The
mouse model with cardiomyocyte-specific conditional homozygous knock-out of PKP2
(PKP2cKO), instead, phenotypically shows biventricular dilation and few spontaneous pre-
mature ventricular contractions, worsened by isoproterenol induction [134]. Transcriptome
analyses revealed, among others, pathways enriched for inflammatory and pro-fibrotic
genes. In particular, untranslated region variants in the TGFB3 gene in ACM can lead to
increased myocardial fibrosis [135] via activation of the SMAD2/3 and mitogen-activated
protein kinase signaling pathways [122,136]. In a mouse derived by crossing PKP2cKO with
a RiboTag line, PKP2 loss in cardiomyocytes was transcriptionally linked to genes coding for
host-response mechanisms even in the absence of an exogenous trigger [94]. In this model,
infiltration of CD45+ cells in the sub-epicardial layer of PKP2cKO/RiboTag mouse hearts was
seen in the early phases of the disease [94], hinting at a deficient cardiomyocyte-dependent
recruitment of inflammatory cells from the bloodstream. Accordingly, hiPSC-derived car-
diac myocytes from a carrier of a PKP2 variant are characterized by an over-activation
of NFκB and increased cytokine expression [95], describing a cardiac activation of innate
immunity. In this setting, small molecules such as the GSK3β inhibitor SB216763 and
Bay 11-7082 have shown the capability of reversing the ACM phenotype [94,95,99,100].
In particular, SB216763 normalized the expression and localization of GSK3β as well as
plakoglobin and Cx43 with positive effects on arrhythmogenesis [122].

In mice with cardiac-restricted inactivation of wild-type desmosomal cadherins, as
well as in those with overexpression of mutant ones, inflammatory macrophagic infiltration
has been described in nearby necrotic tissue [70,96,137]. In the first-generated mouse model
of Dsg2-related right ventricular ACM (a transgenic mouse overexpressing dsg2-N271S),
the progression of the disease phenotype has been finely reported [96]. It involves: (i)
necrotic cell death that prompts an inflammatory response, mediated by massive inflam-
matory infiltrates, and calcification in the myocardium, (ii) injury repair with fibrous tissue
replacement. Early activation of inflammatory-associated pathways, along with upregula-
tion of genes linked to specific macrophage populations, was confirmed also in other Dsg2
mouse models [97], further strengthening the idea that activation of the pro-inflammatory
machinery plays a pivotal role in generating the phenotype in Dsg2 mouse models of
ACM. In addition to this, the contribution of inflammatory cells to all stages of murine
ACM has been reported and comprises neutrophil granulocyte recruitment at the disease
onset, recruitment and differentiation of macrophages during acute disease progression,
and persistence of T cells during chronic disease progression [98]. The increased levels
of inflammatory cytokines and chemotactic molecules were associated with activation of
NFκB signaling, in a mouse model in which exons four and five of Dsg2 were excised to
generate a frameshift variant [95]. Consistently, treatment of DSG2 mutant mice with Bay
11-7082 reduced the number of infiltrating inflammatory cells in the myocardium [95].

While DSC2 KO mice do not show a cardiac phenotype unless stressed [138], cardiac-
specific overexpression of wild-type DSC2 causes biventricular cardiomyopathy. This
includes severe fibrosis, cardiac necrosis, calcification, and cardiac inflammation [104].
Accordingly, gene expression data indicate up-regulation of genes responsible for acute
sterile inflammation (cytokines, chemokines, and toll-like receptor signaling) and fibrotic
remodeling [104].

Neonatal rat ventricular myocytes transfected to express the variant 2057del2 of
plakoglobin showed typical cardiomyocyte-specific ACM phenotypes, including the re-
lease of different inflammatory mediators into the culture medium, such as IL-6, TNF-α,
and MIP-1α [100]. These features were normalized when cells were incubated with the
GSK3β inhibitor SB216763 [100,101]. In addition, the transfected cardiomyocytes with
the JUP2157del2 construct showed nuclear signal for phospho-RelA/p65 (Ser536), indi-
cating activation of NFκB, which was prevented by the anti-inflammatory Bay 11-7082.
Accordingly, inflammatory cells, mostly neutrophils and macrophages, were observed in
homozygous Jup mutant mice obtained by ablating Jup in cardiomyocytes. This agrees
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with the increased expression of pro-inflammatory cytokines IL-1β and IL-6 in Jup mutant
hearts [102]. Among WNT pathway mediators, stromal progenitor cells from the hearts of
plakoglobin transgenic mice (truncation variant of Jup) overexpressed IGFBP5, which has
many biological functions, including in the inflammatory response [103,139].

A cardiac-specific Dsp knockout in the heterozygous form was obtained in mice. Hap-
loinsufficiency gave rise to fibro-fatty substitution of the myocardium and cardiomyocyte
death, leading to cardiac dysfunction and arrhythmogenesis [140]. Interestingly, among the
differentially expressed genes for WNT pathway inhibitors and endothelial to mesenchy-
mal transition mediators, those encoding for inflammatory proteins were highly expressed
in the cardiomyocytes of these mice [140].

The hearts of Tmem43-S358L mutant mice are characterized by NFκB activation. How-
ever, this activation does not promote a typical cardiac inflammatory response, instead
leading to TGFβ-mediated fibrosis [105]. On the other side, inflammatory cell infiltration
was also observed in homozygous Tmem43-S358L KI rats [106]. Consistently, GSK3β in-
hibition in TMEM43 mutant mice resulted in a relative improvement in the contractile
function [105,141].

Other animal models with different but still unknown genetic causes phenotypically
display a cardiomyopathy with an inflammatory aspect. ACM in boxer dogs is inherited,
but the genetic etiology is still debated [142,143]. Dogs show ventricular arrhythmia,
ventricular dilation, fibro-fatty replacement, and myocarditis, characterized by patchy
mononuclear cells infiltrating the RV [107]. Auto-antibodies against DSG2, proposed
as a specific biomarker for all genetic forms of ACM and as a proof of autoimmunity
resultant from ACM pathogenic gene variants, have been found in the sera of boxer
dogs spontaneously manifesting the disease [41], but were never tested in ACM mouse
models. Spontaneous feline ACM, characterized by right-ventricular disease, ventricular
tachycardia, and fibro-fatty replacement of the myocardium, also has signs of inflammatory
infiltrates [108].

4. Clinical Implications and Conclusive Remarks

To date, the clinical significance of M-Infl in genetic cardiomyopathies is still under
investigation. Preliminary evidence suggests that the detection of M-Infl by multimodal
workup is feasible and allows the subsequent use of immunomodulatory treatment [144].
However, the impact of immunomodulatory strategies on outcomes is still controversial.
For instance, while M-Infl has been recognized as a major pathophysiological contribu-
tor to heart failure, the results of several trials attempting anti-inflammatory strategies
in uncharacterized DCM did not result in a significant clinical improvement [145]. As
opposed, in patients with EMB-proven inflammatory DCM, the use of immunosuppressive
therapy has been proven safe and associated with LV reverse remodeling and recovery
of the systolic function [6,119]. In light of its reversibility potential, M-Infl has been pro-
posed as an indicator of good prognosis even in pediatric series [146]. In the setting
of DCM, the use of IST is meant not only to prevent end-stage heart failure but also
to avoid the improper application of implantable cardioverter defibrillators in primary
prevention [4,147]. As for the arrhythmic manifestations, it has been suggested that M-
Infl is capable of predicting ventricular arrhythmia recurrences in patients with classic
lymphocytic myocarditis [58], as well as in cases with M-Infl in the context of rare genetic
variants of the DCM/ACM spectrum [5]. In both conditions, preliminary data support a
favorable role of immunosuppressive therapy on arrhythmic outcomes [5,39,144]. In light
of the above, a careful assessment of the myocardial inflammatory status may result in
patient-tailored strategies to prevent sudden arrhythmic death [4,148]. Additional evidence
from larger multicenter trials is needed before such preliminary evidence can be translated
into practical clinical guidelines.

In conclusion, based on current knowledge, M-Infl is expected to play a major role
in the pathophysiology of cardiomyopathies. In detail, both clinical and preclinical evi-
dence support multiple interconnections between cardiac inflammation and diseases of
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the DCM and ACM spectrum. As shown in Figure 4, genetic testing should be more ex-
tensively applied to distinguish specific etiologies among a spectrum of cardiomyopathies
with overlapping phenotypes [149]. On the other hand, further studies using in vitro and
in vivo models are needed to explore the causal relationship between M-Infl and inherited
cardiomyopathy genes [150]. In this setting, inflammation could also be a general, aberrant,
and unspecific response to the impairment of cardiomyocyte function, irrespective of the
underlying etiology, microbial, chemical, or primarily genetic. The contribution of human
leukocyte antigen (HLA) variants and immune genes deserves appropriate investigation
as well. Finally, additional evidence is expected from the pharmacological targeting of
inflammation in genetic diseases. Preliminary data from animal models [95,122] and clinical
experience [5,39,119] showed that the use of anti-inflammatory and immunomodulating
therapy was accompanied by an improvement in both the arrhythmic and mechanical man-
ifestations of the diseases. These findings pave the way for novel therapeutic perspectives
and trials in human disease.
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