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Abstract: Sulfurous thermal waters (STWs) are used as a complementary treatment for allergic
rhinitis. However, there is scant data on the effects of STW on nasal epithelial cells, and in vitro
models are warranted. The main aim of this study was to evaluate the dose and time effects of
exposure to 3D nasal inserts (MucilAirTM-HF allergic rhinitis model) with STW or isotonic sodium
chloride solution (ISCS) aerosols. Transepithelial electrical resistance (TEER) and histology were
assessed before and after nebulizations. Chemokine/cytokine levels in the basal supernatants were
assessed by enzyme-linked immunosorbent assay. The results showed that more than four daily
nebulizations of four or more minutes compromised the normal epithelial integrity. In contrast, 1 or
2 min of STW or ISCS nebulizations had no toxic effect up to 3 days. No statistically significant
changes in release of inflammatory chemokines MCP-1/CCL2 > IL-8/CXCL8 > MIP-1α/CCL3,
no meaningful release of “alarmins” (IL-1α, IL-33), nor of anti-inflammatory IL-10 cytokine were
observed. We have characterized safe time and dose conditions for aerosol nebulizations using a
novel in vitro 3D nasal epithelium model of allergic rhinitis patients. This may be a suitable in vitro
setup to mimic in vivo treatments of chronic rhinitis with STW upon triggering an inflammatory
stimulus in the future.

Keywords: air–liquid interface; chemokines; chronic rhinitis; cytokines; histology; MucilAirTM;
nebulizations; sulfurous thermal water; TEER; Vitrocell

1. Introduction

Allergic rhinitis (AR) is a chronic form of nasal inflammation that is induced by ex-
posure to aeroallergens in a person who is sensitized [1]. The pathophysiology of chronic
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upper airway inflammation is multifactorial, involving genetic, environmental, and im-
munological factors [2,3]. In allergic rhinitis, immune interactions are complex and involve
interaction between different adaptive (e.g., T helper 2 cells (Th2), regulatory T cells (Treg),
B regulatory cells B cells (Breg), T follicular helper cells (Thf)), innate cells (e.g., type 2
innate lymphocytes (ILC2), dendritic cells (CD)) and epithelial cells [4]. Worldwide, com-
plementary therapies such as inhalations with mineral thermal waters are a recognized
add-on to pharmacological treatments. Some protective mechanisms have been described,
such as improving local mucosa blood supply, restoring the mucosa integrity, normalizing
epithelial clearance, reduction of the inflammatory states and IgE levels in the blood [5–7].
Despite this, there is still a limited number of published reports, and limited understand-
ing of thermal water effects at the cellular level [8]. To bridge this knowledge gap, it is
crucial to have human in vitro models that would allow functionality mimicking in vivo
human studies, for instance in STW-related skin studies [9]. Three-dimensional organ-
otypic models better mimic the complex tissue architecture and cell–cell interactions found
in vivo and cells exhibit improved differentiation compared to 2D cultures, leading to the
development of tissue-specific structures and functions that more closely resemble in vivo
conditions. Three-dimensional models, such as the MucilAir™ nasal model, provide a
better differentiation, preservation of cell–cell interactions and polarity, allowing for the
assessment of drug permeability and transport in a more representative tissue context.
They offer valuable insights into drug absorption and efflux mechanisms and accurate
predictions of drug responses, pharmacokinetics, and toxicities, thereby reducing the re-
liance on animal models and improving the translatability of preclinical data. They are also
used to create disease-specific tissue constructs, allowing researchers to study the effects
of treatments on diseased tissues such as allergic rhinitis, and to develop personalized
medicine approaches [10,11]. In addition, air–liquid interface in vitro inhalation models
are increasingly being used in respiratory system research because they are more realistic
as they mimic more closely the airways than classic (i.e., submerged) in vitro methods [12].

Nasal respiratory mucosa is composed of a pseudostratified columnar epithelium
containing ciliary epithelial cells, goblet mucus-producing cells, and basal stem cells [13–15],
a membrane basement, and the underlying lamina propria, comprising stromal cells such
as fibroblasts and immune cells [16]. The MucilAir™ nasal model is a 3D in vitro model of
the human nasal epithelium that closely mimics the biology of the nasal barrier. The model
is composed of fully differentiated ciliated, goblet, and basal cells, which are arranged in a
tight, polarized, pseudo-stratified epithelium. The proportion of each cell type in the model
is in accordance with in vivo observations, indicating up to 50–80% of ciliated cells, 15% of
goblet cells, and 5–10% of basal cells in the nasal epithelium. The model has been validated
through a variety of techniques, including immunofluorescence, protein mass spectrometry,
and examination of histological sections. The expression of tight junction proteins, such as
ZO-1, occludin, and claudin-1, as well as the adherens junction protein E-cadherin, has been
demonstrated in the MucilAir™ nasal tissues, indicating the presence of a polarized and
hermetically sealed barrier, which can be evaluated by measuring transepithelial electrical
resistance (TEER) [11,17].

Epithelial cells and fibroblasts are important players in AR and other allergic dis-
eases as they are equipped to respond to allergens or pathogen-associated molecular
patterns (PAMP) and take part in immune response, namely by secreting chemokines and
cytokines [18,19]. These chemokines and inflammatory factors bind to the correspond-
ing receptors and chemotactic various inflammatory cells to reach the epithelium and
tissues [20]. Interleukin-8/C-X-C motif chemokine ligand 8 (IL-8/CXCL8), macrophage in-
flammatory protein-1 alpha/C-C motif chemokine ligand 3 (MIP-1α/CCL3), and monocyte
chemoattractant protein-1/C-C motif chemokine ligand 2 (MCP-1/CCL2) are inflammatory
chemokines whose main function is to recruit neutrophils, macrophages, and monocytes
to the site of injury or infection, respectively [20]. In allergic rhinitis, the chemokine IL-8
has been shown to increase in nasal secretions, after allergen challenge, although it may
act in connection with other chemotactic factors in the recruitment of granulocytes [21,22].
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It has been reported that patients with allergic rhinitis had increased MIP-1α/CCL3 and
other chemokines in nasal fluids, relative to healthy subjects, after nasal delivery of R848,
a PAMP viral RNA analogue, highlighting that dysregulated innate immune responses
of nasal mucosa in allergic individuals may be important in determining the outcome of
viral exposures [23]. MCP-1/CCL2 was found to be highly expressed in most of the allergic
rhinitis patients’ nasal samples compared to control samples of nonallergic nasal mucosa,
in a microarray analysis, which can act as a recruiter of regulatory and effector CD4+ T
and CD8+ T leukocytes, stimulating histamine or leukotriene release from mast cells or
basophils and inducing fibrosis due to TGF-β and procollagen [24]. Interleukin-1alpha
(IL-1α) is a pivotal inflammatory cytokine, released upon cell death, that acts also as an
“alarmin” [25]. In patients with allergic rhinitis, this cytokine was increased in nasal lavages
after nasal allergen challenge, suggesting a role in the induction and perennation of inflam-
matory reaction in this disease [22]. IL-33, which exhibits structural similarities with IL-1,
is released by damaged or necrotic barrier cells (epithelial and endothelial cells), acting
also as an “alarmin” [26], and might have a central role in the pathogenesis of allergic
inflammation [27]. There is evidence that IL-10 plays a role in the pathophysiology of
allergic disease [28]. IL-10 acts primarily as an anti-inflammatory cytokine, and although it
is mainly secreted by regulatory T cells, some non-immune cell types, including intestinal
epithelial cells, have been shown to produce this cytokine, which is critical to maintaining
healthy epithelial homeostasis [29–31]. Murine models of ovalbumin-induced allergic
rhinitis clearly showed that the cytokines/chemokines we studied are indeed expressed
in vivo [32–34]. Overall, these mediators have been implicated in the pathophysiology of
allergic rhinitis in both human and animal models of allergic rhinitis.

The main objective of this study was to evaluate the most optimal conditions for the
development of a robust in vitro model mimicking exposure to respiratory crenotherapy
treatments using STW. Thus, we explored the dose- and time-dependent effects of exposing
3D nasal inserts, specifically the MucilAirTM-HF allergic rhinitis model, to sulfurous thermal
water (STW) aerosols in comparison to isotonic sodium chloride solution (ISCS) both at
the epithelial integrity and at the cellular secretion of chemokines and cytokines into the
basal supernatants. Our results indicate that extensive daily nebulizations compromised
the integrity of nasal epithelium, irrespective of whether they were exposed to STW or
ISCS. However, shorter and less frequent nebulizations appear to be non-toxic to the tissue,
although with no significant impact on the release of chemokines or cytokines.

2. Materials and Methods
2.1. Sulfurous Thermal Water and Isotonic Sodium Chloride Solution

Sulfurous thermal water was collected from the thermal spa of Unhais da Serra, Portu-
gal, every two days. The physicochemical analysis of water was performed by Laboratório
de Análises do Instituto Superior Técnico, accredited by the Portuguese Institute of Accred-
itation (IPAC) (Lisbon, Portugal, test report No. 27677-14). The composition of the STW
is reported in Table 1. Isotonic sodium chloride solution (0.9% NaCl) was acquired from
Labesfal, Santiago de Besteiros, Portugal (lot number 18P2927) and was used as a control.

2.2. 3D Organotypic In Vitro Human Nasal Epithelial Model

Fully differentiated human nasal airway epithelium, consisting of primary epithelial
cells (MucilAirTM, Epithelix Sàrl, Geneva, Switzerland) cocultured with human airway
fibroblasts (HF) from two non-smoking patients with allergic rhinitis, was used. Fibroblasts
are important for the growth and differentiation of epithelial cells (Epithelix Sàrl, Geneva,
Switzerland, https://www.epithelix.com/, accessed on 9 October 2023). The information
regarding each donor is shown in Table 2. The inserts were cultured on 24-well Transwells
at an air–liquid interface using ready-to-use, serum-free, chemically defined MucilAirTM

culture medium provided by the manufacturer (containing growth factors, phenol red,
and supplemented by default with antibiotics penicillin/streptomycin). The inserts were
maintained in a humidified incubator (37 ◦C, 5% CO2), and the MucilAirTM culture medium

https://www.epithelix.com/
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was changed every day during the experimental procedure. Informed consent, ethical
approval, as well as quality control, were obtained and performed by the manufacturer.

Table 1. Physicochemical composition of sulfurous thermal water used in this study.

Parameter Result Method

Physico-chemical
Temperature at source 37.5 ◦C
pH (at 24 ◦C) 8.43 SMEWW 4500 H+
Conductivity (at 20 ◦C) 303 µS·cm−1 NP EN 27888:1996
Resistivity 3.3 × 103 Ω·cm LAE 4.3 A
Total sulfur 0.14 mmol·L−1 M.M. (CI)
Total sulfuring of sulfide 13 mL (I2 0.01 N·L−1) M.M. 3.11 (21 May 2013)
Hydrogen sulfide <0.5 mg (H2S/L) M.M. 2.2.7 (7 February 2003)
Total alkalinization 75.5 mg (CaCO3)·L−1 SMEWW 2320
Hardness 10 mg (CaCO3)·L−1 SMEWW 2340B
Silica (SO2) 55 mg (SiO2)·L−1 SMEWW 4500 Si-C
Total silicon 57 mg (SiO2)·L−1 SMEWW 4500 Si-C
Dry residue 226 mg·L−1 SMEWW 1030 E
Total mineralization 268 mg·L−1 M.M. 2.1.11 (3 April 2009)

Anions
Bicarbonate (HCO3

−) 82.9 mg (HCO3)·L−1 1.36 mEq·L−1 M.M. 2.2.7 (7 February 2003)
Carbonate <2 mg (CO3)·L−1 ___ M.M. 2.2.7 (7 February 2003)
Chloride (Cl−) 26 mg·L−1 0.73 mEq·L−1 SMEWW 4110B
Fluoride (F−) 16 mg·L−1 0.84 mEq·L−1 SMEWW 4110B
Hydrosulfide 2.2 mg (HS)·L−1 0.07 mEq·L−1 M.M. 2.2.7
Silicate 3.4 mg (H3SiO4)·L−1 M.M. 2.2.7 (7 February 2003)
Nitrate <0.3 mg (NO3)·L−1 ___ SMEWW 4110B
Nitrite <0.010 mg (NO2)·L−1 ___ SMEWW 4500 NO2-B
Silicate 3.4 mg (H3SiO4)·L−1 0.04 mEq·L−1 M.M. 2.2.7 (7 February 2003)
Sulphate (SO4

2−) 7.9 mg (SO4
2−)·L−1 0.16 mEq·L−1 SMEWW 4110 B

Cations
Ammonia nitrogen 0.08 mg (NH4)·L−1 ___ M.M. 4.1 (22 November 1997)
Calcium (Ca2+) 3.9 mg·L−1 0.19 mEq·L−1 EPA 300.7:1986
Lithium 0.3 mg·L−1 0.04 mEq·L−1 EPA 300.7:1986
Magnesium 0.15 mg·L−1 0.01 mEq·L−1 EPA 300.7:1986
Sodium (Na+) 67 mg·L−1 2.91 mEq·L−1 EPA 300.7:1986
Potassium (K+) 2.0 mg·L−1 0.05 mEq·L−1 EPA 300.7:1986
Iron <0.006 mg·L−1 ___ M.M. 5.4 (EAA-CG) (6 May 2013)

Table 2. Donors’ information of the nasal MucilAirTM-HF allergic rhinitis model used in this study.

Identification
Code Batch Number Age

(Years Old) Sex Smoker Origin Pathology Viral Status *

EP29 HF-MD006201 36 Male No Caucasian Allergic rhinitis Negative
EP14 HF-MD041901 52 Female No Caucasian Allergic rhinitis Negative

* HIV-1 (anti-HIV-1 antibodies), HIV-2 (anti-HIV-2 antibodies), hepatitis B (HBs antigen and anti-HBc antibody),
hepatitis C (anti-HCV antibody), mycoplasma (mycoplasma detection with MycoAlert®, Lonza, Walkersville,
MD, USA).

2.3. Aerosol Generation and Exposure

Aerosol was generated from the collision between the incoming solution (Figure 1a; 1)
and incoming air (Figure 1a; 2) that was pumped (Figure 1a; 3) using a BioAerosol Neb-
ulizing Generator (Vitrocell® Systems GmbH, Waldkirch, Germany). As a result, the
solution was broken into small liquid droplets (approximately 0.7 to 2.5 µm), originating
the aerosol. These small droplets were then distributed (Figure 1a; 4) and released into the
exposure module system (Figure 1a; 5), where the MucilAirTM–HF nasal inserts were previ-
ously placed. The flow rate to the wells was determined by the vacuum rate that was at
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2.0 ± 0.1 mL/min (Figure S1), and the temperature was kept at 37 ◦C through a water bath
system (Figure 1a; 6). More detailed information is available on the manufacturer’s website
(https://www.vitrocell.com/, accessed on 23 October 2023).
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Figure 1. Experimental setup of the air-liquid interface 3D in vitro model. (a). Vitrocell® exposure
system and air–liquid interface overview: 1—generator system; 2—clean air distribution system;
3—vacuum system; 4—distribution system; 5—exposure module system and schematic view of the
air–liquid interface, where reconstructed human 3D nasal pseudostratified epithelium, comprising
four cell types (ciliated, goblet, basal and fibroblasts—MucilAirTM-HF) were exposed to aerosol; and
6—water bath system. (b). Experimental design of the four sets of experiments (1, 2, 3, and 4; see
also Table 3). CA, clean air control; IL-1α, interleukin-1alpha; IL-8/CXCL8, interleukin-8/C-X-C
motif chemokine ligand 8; IL-10, interleukin-10; IL-33, interleukin-33; ISCS, isotonic sodium chloride
solution; MCP-1/CCL2, monocyte chemoattractant protein-1/C-C motif chemokine ligand 2; MIP-
1α/CCL3, macrophage inflammatory protein-1 alpha/C-C motif chemokine ligand 3; STW, sulfurous
thermal water; TEER, transepithelial electrical resistance. Created with BioRender.com.

https://www.vitrocell.com/
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Table 3. General information of the five sets of experimental designs.

Set ID Code
Number of

Nebulizations
Duration of Nebulization

(Minutes)
Condition (n)

STW ISCS CA None (Incubator)

Pilot EP29 10 15 6 5 - NA

1 EP14 7

1 3 3 - NA
2 3 3 - NA
4 3 3 - NA
8 3 3 - NA

2 EP14 7
1 2 2 - NA
2 2 2 - NA
4 2 2 - NA

3 EP14

0 NA NA NA NA 3

5
1 3 3 - NA
2 3 3 2 NA
4 3 3 - NA

4 EP14
0 NA NA NA NA 2

3
1 11 11 - NA
2 11 11 3 NA

CA, clean air; ID, identification; ISCS, isotonic sodium chloride solution; n, number of inserts; STW, sulfurous
thermal water; NA, not applicable; -, not performed.

2.4. Experimental Design

The MucilAirTM–HF nasal inserts were placed in culture and exposed to STW or ISCS
aerosols. The nebulizations were performed for 1, 2, 4, 8, or 15 min and the maximum
number of nebulizations was 10 (Table 3 and Figure 1b). In some experiments, additional
control tests were performed: exposure to clean air (CA for 2 min) and no exposure
(incubator negative control). For chemokines/cytokines determination, cell supernatants
were collected 24 h after each previous nebulization, and stored at −20 ◦C.

2.5. Tissue Integrity Monitoring—Transepithelial Electrical Resistance

Airway epithelium integrity was measured by transepithelial electrical resistance
(TEER) before (day 0) and 24 h after each exposure. First, 200 µL of MucilAirTM culture
medium was added to the apical surface of each insert, and then the measurements were car-
ried out with an EVOM2 voltohmmeter with an STX2/chopstick electrode (World Precision
Instruments, Sarasota, FL, USA), in agreement with manufacturer’s recommendations. The
resistance value appeared on the EVOMX screen and TEER (Ω·cm2) was then calculated
using the following Formulas (1) and (2) [35].

Rinsert = Rtotal − Rblank (1)

TEER (Ω·cm2) = (Rinsert − Rmembrane) × A (2)

where R is resistance, Ω; Rmembrane is membrane resistance = 100 Ω; and A is the surface area
of the porous membrane of the insert = 0.33 cm2. According to Epithelix Sàrl, TEER values
were typically in the range of 200–600 Ω·cm2. Afterward, the culture medium was gently
aspirated from the apical surface and MucilAirTM–HF inserts were immediately exposed to
STW, ISCS, or clean air. Inserts that were not exposed were returned to the incubator.

2.6. Morphology Monitoring—Histological Evaluation

The inserts were fixed in 3.7–4.0% formaldehyde solution for 30 min at room tempera-
ture. After the dehydration process, the inserts were embedded in paraffin and sectioned at
4 µm with a microtome (Microm HM 340E, Microm, Walldorf, Germany). Hematoxylin and
Eosin (H&E) staining was used to highlight the nasal epithelial histological integrity. Slides
were viewed using an Olympus BX41 phase contrast and darkfield microscope (Olympus,
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Tokyo, Japan), an Axiocam 105 color camera (Zeiss, Oberkochen, Germany), and ZEN 2.3
lite Microscopy Software (Zeiss).

2.7. Determination of Chemokine/Cytokine Levels

Levels of chemokines (IL-8/CXCL8, MCP1/CCL2 and MIP-1α/CCL3) and cytokines
(IL-1α, IL-33, and IL-10) in the basal supernatants of MucilAirTM–HF nasal inserts were as-
sessed by sandwich enzyme-linked immunosorbent assay (ELISA) kits from Boster (Boster
Biotech, Pleasanton, CA, USA). The measurements were performed according to the manu-
facturer’s instructions and specific sensitivity levels can be found in the manufacturer’s
manuals. The average zero standard O.D. was subtracted for each sample and standard.
Standard curves were generated with a four-parametric logistic (4-PL) curve fit and data
were analyzed using MyAssays Analysis Software Solutions (www.myassays.com, accessed
on 9 June 2023). Detection limits were automatically calculated by the MyAssays Software,
and the mean percentage of recoveries from the calibrator standards were 95.65%, 108.09%,
100.56%, 101.90%, 106.60%, 98.9% for IL-8/CXCL8, MCP1/CCL2 and MIP-1α/CCL3, IL-1α,
IL-33, and IL-10, respectively. All 4-PL curves had a R2 > 0.9.

2.8. Statistical Analysis

Statistical analysis was conducted using Prism 9.0 software (GraphPad Software, San
Diego, CA, USA) or SPSS 28 software (IBM, Armonk, NY, USA), and p < 0.05 was considered
to indicate a statistically significant difference. Data were checked for normality using
the Kolmogorov–Smirnov test. TEER values and normalized production of IL-8/CXCL8
were expressed as the mean ± standard error of the mean (SEM) and were analyzed using
parametric tests: one-way ANOVA with multiple comparisons Dunnet’s test (versus day 0)
or one-way ANOVA with multiple comparisons Sídák test (STW versus ISCS, for each time
point). Since the cytokine levels were not normally distributed, these data are expressed as
the median (minimum and maximum, interquartile range/IQR, range) and were analyzed
using the nonparametric Kruskal–Wallis and Dunn’s multiple comparisons test (only for
IL-8/CXCL8 and MIP-1α/CCL3; for the remaining chemokines/cytokines only descriptive
data are shown since many samples were outside (below or above) the calibrator standard
curve range).

3. Results
3.1. Tissue Integrity Monitoring

Nasal inserts from AR patients were subjected to daily nebulizations of STW or ISCS
(Figure 1), for time-course and dose-response experiments. Tissue integrity was monitored
by measuring TEER (Figure 2) and by analyzing tissue histology (Figure 3).

Our first approach considered that typical thermal water treatment of allergic rhinitis
patients in Portuguese thermal spas includes 15 min of daily nebulizations for 14 days.
Accordingly, in a pilot study, inserts were exposed daily for 15 min for 10 days (Table 3),
with STW (n = 6) or ISCS (n = 5), using a low flow rate of 2 mL/min, recommended by the
Vitrocell manufacturer. However, tissue integrity monitored by measuring TEER revealed
that this condition was too aggressive (TEER < 100 Ω·cm2) for the 24-well inserts already
at day 4. Thus, in the next set of experiments, we decreased the period of nebulizations
(ranging from 8 to 1 min), as well as the number of nebulizations (ranging from seven to
three), as shown in Table 3. As can be seen in Figure 2, aerosol exposure for 8 min was
also destructive after five (STW) or six (ISCS) nebulizations (TEER < 200 Ω·cm2). In these
conditions, TEER values were significantly lower than basal TEER values at day 0, i.e.,
no nebulizations (p < 0.05, one-way ANOVA with multiple comparisons Dunnet’s test).
Comparing nebulizations with STW versus ISCS showed lower TEER values after five
nebulizations for 8 min with STW (p < 0.0001, one-way ANOVA with multiple comparisons
Sídák test). Thus, in the second set of experiments, this condition (8 min) was abandoned.
Exposures for 4 min also revealed a statistically significant decrease in the TEER values for
the ISCS, after six nebulizations (p < 0.05, one-way ANOVA with multiple comparisons
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Dunnet’s test). Although nebulizations for 4 min with STW maintained the epithelial TEER
values rather constant, histological evaluation on day 5 showed that most epithelial tissues
lost the typical pseudostratified morphology (Figure 3a). The same kind of metaplasia
could also be observed on day 5 in inserts exposed for 1 or 2 min, both with STW and with
ISCS (Figure 3a,b, respectively). Clean air or no nebulization (incubator control) maintained
tissue integrity (Figure 3c). Overall, evaluating both TEER and histology, we conclude that
up to three nebulizations for 1 or 2 min preserves tissue integrity, using STW or ISCS.

3.2. Chemokines/Cytokines’ Release into the Basal Supernatant

Next, we wanted to evaluate whether nebulization with STW or with ISCS control
influenced chemokine/cytokine profile secretion into the basal medium. We evaluated
the levels of three pro-inflammatory chemokines, IL-8/CXCL8, MCP-1/CCL2, and MIP-
1α/CCL3, two “alarmins” that are released upon cell death, IL-33 and IL-1α, and one
anti-inflammatory cytokine, IL-10.

We detected the production of IL-8/CXCL8 in all samples of allergic rhinitis inserts
(n = 112) with median (minimum–maximum; IQR; range) values of 708.2 (139.7–1173.0;
723.3; 1033.3) pg/mL, without statistically significant differences among the different tested
conditions (p > 0.05, Kruskal–Wallis and Dunn’s multiple comparisons test). To correct
for an observed batch effect between set 3 and set 4, we normalized the production of
IL-8/CXCL8 relative to day 0. Figure 4 shows that the levels of IL-8/CXCL8 released
into the basal supernatants after 24 h remained constant, independently of the number of
nebulizations, or the type/duration of each nebulization (STW versus ISCS/1 versus 2 min,
one-way ANOVA with multiple comparisons Sídák test, p > 0.05).
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Figure 2. Assessment of tissue integrity by transepithelial electric resistance. Effect of repeated
nebulizations (up to 7 days) on the TEER values of MucilAirTM-HF inserts (Total n = 98, see Table 3)
with STW (during 1, 2, 4, or 8 min), or ISCS (also during 1, 2, 4 or 8 min). Data are presented
as mean ± standard error of the mean (SEM). Horizontal dash lines indicate the typical healthy
TEER values for MucilAirTM-HF inserts, in the range 200–600 Ω·cm2. * p ≤ 0.05, ** p ≤ 0.005,
*** p ≤ 0.001, one-way ANOVA with multiple comparisons Dunnet’s test versus day 0;
#### p ≤ 0.0001, one-way ANOVA with multiple comparisons Sídák test versus ISCS). INC, in-
cubator control; ISCS, isotonic sodium chloride solution; min, minutes; STW, sulfurous thermal water;
TEER, transepithelial electrical resistance.
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Figure 3. Morphology monitoring by histological evaluation. Representative histological images
of human MucilAirTM-HF nasal inserts harvested at the end of day 0, day 1, day 2, day 3, or day 5.
(a) Nebulizations with STW during 1, 2, or 4 min. (b) Nebulizations with ISCS for 1, 2, or 4 min.
(c) Incubator (no nebulization) or exposure to clean air for 2 min. For each insert the respective TEER
value is shown. Fixed tissue slices stained with hematoxylin and eosin. In some inserts, human
fibroblasts or the Transwell membrane detached during the tissue processing. CA, Clean Air; Inc,
incubator; ISCS, isotonic sodium chloride solution; min, minutes; ND, not done; STW, sulfurous
thermal water; TEER, transepithelial electrical resistance.
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supernatants 24 h after 1, 2, or 3 nebulizations of MucilAirTM-HF inserts (n = 5, 2 from set 3, and
3 from set 4) with STW (during 1 or 2 min), or ISCS (also during 1 or 2 min), were normalized to
day 0 (no exposition) for each insert. The dashed line represents day 0 (100%). Data are presented as
mean ± standard error of the mean (SEM). One-way ANOVA with multiple comparisons Sídák test.
IL-8/CXCL8, interleukin-8/C-X-C motif chemokine ligand 8; ISCS, isotonic sodium chloride solution;
min, minutes; STW, sulfurous thermal water.

Regarding MCP-1/CCL2, all samples analyzed were also positive. However, it is
important to call attention to two limitations. First, although we could retrieve concentra-
tion values, most of the values were outside and above the range of the standards (15.6
to 1000 pg/mL). Second, 30 out of 108 analyzed samples were even above the curve fit
(ceiling effect), and no concentration could be estimated. Therefore, the values presented
here are an underestimation of the real production of MCP-1/CCL2 for 24 h, with a median
(minimum–maximum; IQR; range) value of 599.8 (125.9–7292.0; 1053.9; 7166.1) pg/mL
(n = 78), and no statistical analysis was applied.

In all supernatants of the assessed inserts (n = 36, set 3), we detected low levels of
MIP-1α/CCL3: median (minimum–maximum; IQR; range) value of 77.9 (63.0–149.6; 14.3;
86.6) pg/mL, but no statistically significant differences were observed among the groups
(p > 0.05, Kruskal–Wallis and Dunn’s multiple comparisons test).

For IL-33, IL-1α, and IL-10, most of the samples were below the lower limit of quantifi-
cation (floor effect). Therefore, no statistical analysis was performed. IL-33 was evaluated
in 112 inserts and only 3 inserts were positive (65.2, 260.2, and 301.5 pg/mL). IL-1α was
below detectable levels in all assessed inserts (n = 40, set 3). Regarding IL-10 (n = 40,
set 3), only 9 inserts were positive, median (minimum–maximum; IQR; range) value of
2.6 (0.4–7.4; 4.9; 7.0) pg/mL, while the remaining 31 inserts were below detection level.

4. Discussion

To the best of our knowledge, this is the first investigation studying the effects of
using a prolonged and repeated exposure regime of STW or ISCS on nasal MucilAirTM-
HF inserts.

One of the central findings of this study is the relationship between the dose and
duration of aerosol exposure and the integrity of nasal epithelial cells. The results indicate
that more than four daily nebulizations lasting four minutes or more compromised the
normal epithelial integrity, as assessed by TEER and histological analysis. This observation
suggests a potential threshold beyond which extended exposure to aerosols, whether STW
or ISCS, can lead to detrimental effects on the nasal epithelial barrier. Comparison with
in vivo settings is difficult for several reasons. The simulation of the flow inside a nasal
cavity is complex due to its anatomic geometry [36–38], and modeling inevitably requires
simplifications and assumptions [39]. Another factor that influences the total flow rate
(minute respiratory volume) is the respiratory rate, which is about 12 breaths per minute.
Adopting these assumptions, flow rates range from 6 L/min [40], 12 L/min [41], 17 L/min
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to 34 L/min [38], to 60 L/min or 70 L/min in non-invasive high-flow-rate therapy with
humidified medical gas [42] have been described. To estimate the flow rate in an in vivo
0.33 cm2 nasal area, it is also necessary to consider additional assumptions, namely that
the flow rate is the same through all nasal areas. Estimations of the total surface area of
both nasal cavities are about 160 cm2 [15] or 150 cm2 [43], and if the paranasal sinuses are
included, about 400 cm2 [41]. Considering all these assumptions, we conclude that in our
study of the 0.33 cm2 insert, the applied flow rate was 6.0× to 80.0× lower than in vivo
settings (Table S1), using the low flow rate of 2 mL/min recommended by the manufacturer.
Accordingly, it was notable that shorter exposures, specifically 1 or 2 min of nebulization
with either STW or ISCS, had no toxic effects on the tissue for up to three days. This implies
that there exists a range of safe conditions in terms of exposure duration, within which
the epithelial integrity remains intact. These findings offer valuable guidance for future
applications of aerosol nebulizations, helping to establish limits to ensure the preservation
of nasal tissue health in vitro setups.

Numerous studies have investigated the simulation of nebulized thermal water expo-
sure in the nasal cavity [44], and in vivo experiments in humans have consistently demon-
strated the anti-inflammatory effects of thermal water nebulization in various respiratory
diseases [8,45–48]. In situations whereas an inflammatory state is present, sulfur com-
pounds such as hydrogen sulfide may shape adaptive immune Th and B-cell response [49].
For instance, reduction of IgE has been previous reported in in vivo human studies [7,46].
Whether STW is accomplished by a polarization into a protective shift towards IgGs remains
to be investigated [50]. In vitro studies with thermal water consist mostly of applications in
skin models [51–54]. However, to date, there has been a notable absence of research on the
in vitro nebulization of thermal water using a three-dimensional (3D) model of the nasal
epithelium. To our knowledge, no prior investigations have explored the nebulization of
thermal water in in vitro nasal epithelium. Moreover, existing in vitro studies involving
thermal water have primarily exposed monolayer cells, such as A549 cells [55], to thermal
water within the culture medium. Notably, these studies have not utilized a 3D nasal
epithelium model for examining the effects of thermal water nebulization. Conversely, the
3D nasal epithelium model has been employed in numerous studies to investigate the expo-
sure and nebulization of various compounds, including nanoparticles [56–61], pollens [62],
pollutants [57,63,64], pharmaceutical compounds [65,66], and viral infections [67,68]. How-
ever, in these studies, the compounds were either added to the culture medium or applied
to the apical side in the form of a solid aerosol, or liquid solution [69,70].

We did not detect a significant presence of two “alarmins”, IL-1α and IL-33, known to
be released upon epithelial cell death [25,26]. In an experimental allergic rhinitis mouse
model, it was shown that IL-33 protein was constitutively expressed in the nucleus of
nasal epithelial cells and was promptly released in response to nasal exposure to ragweed
pollen [71]. IL-1α production was shown to be associated with antigen-induced late nasal
response in patients with allergic rhinitis [22]. Therefore, it is possible that although we have
studied nasal tissue reconstituted from cells removed from an allergic rhinitis patient, the
tissue was not in an inflamed phase. A retainment of Th2-type memory has been previously
described in polyp basal progenitor cells from patients with chronic rhinosinusitis, but
not in non-polyp steam cells [14]. In agreement with the hypothesis that our epithelial
tissue was in a non-exacerbated phase is the fact that the levels of the studied inflammatory
chemokines were like, or below, the levels detected in the basal medium of human nasal
or bronchial MucilAir derived from normal healthy donors [58,62,72–75]. Inflammatory
stimuli such as LPS or TNF-α induce much higher levels of these chemokines [62,75]. This is
a limitation of this study, and future studies should include positive inflammatory controls
like LPS, TNF-α, IL-1β or house dust mite allergen extract to demonstrate the model’s
sensitivity to the known stimuli. Some minor differences in the concentration of chemokines
among studies may depend on the technique used or even inter-individual variations. We
did not find IL-10 production in our system, although this anti-inflammatory cytokine
has been implicated in maintaining healthy epithelial homeostasis [29–31]. In future
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studies aiming to investigate the potential anti-inflammatory effect of STW [6] on in vitro
nasal epithelial models from allergic rhinitis patients, it is important that there is a prior
challenge to cells either with inflammatory or with allergens stimuli. Another limitation
of our in vitro model is the absence of immune cells. Consequently, the immunological
responses portrayed by this model may not be entirely representative of the more complex
inter-cellular crosstalk’s. Future opportunities to compensate for the complex interaction
among epithelial and immune cells might be addressed in vitro using co-cultures, i.e.,
incorporating macrophages or lymphocytes [62,76]. This might provide a starting point to
gather insights on the mechanisms how STW or STW-derived formulations would affect
the epithelial barrier in allergic rhinitis before validation in human trials.

A final limitation was that although we used a high number of nasal inserts, they
were all developed from a single donor. This has also been the situation with many other
published studies using nasal inserts, given the complexity of their preparation, and which
have used only 1–3 donors [61,72,77,78].

5. Conclusions

To conclude, the characterization of the chemokine/cytokine profile and the identifica-
tion of safe time and dose conditions in these in vitro aerosol nebulizations (not more than
three once daily 1- or 2 min-long exposures, at 2 mL/min), provide a promising avenue
for future research and the development of therapeutic strategies in the context of chronic
allergic rhinitis. Nonetheless, further studies with more donors should be performed to
confirm this pilot study.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines12020408/s1, Figure S1. The flux rate generated by the aerosol
generator was 2 L/min (A) and it is split into three channels (2.0 L/min/3, i.e., 0.7 L/min). The flux
rate that goes to the cell inserts in the exposure model system is determined by the vacuum, and is
2 mL/min (B). Most of the remaining aerosol is exhausted, i.e., 2 L/min minus 3 times 2 mL/min
(C). Created with BioRender.com. Table S1. Estimation of flow rate in in vivo 0.33 cm2 human nasal
epithelium [15,37–40].
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