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& Physiology
Abstract Neurons in the central nervous system communicate with each other by activating billions
of tiny synaptic boutons distributed along their fine axons. These presynaptic varicosities are very
crowded environments, comprising hundreds of synaptic vesicles. Only a fraction of these vesicles
can be recruited in a single release episode, either spontaneous or evoked by action potentials. Since
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the seminal work by Fatt and Katz, spontaneous release has been modelled as a memoryless process.
Nevertheless, at central synapses, experimental evidence indicates more complex features, including
non-exponential distributions of release intervals and power-law behaviour in their rate. To describe
these features, we developed a probabilistic model of spontaneous release based on Brownian motion
of synaptic vesicles in the presynaptic environment. To account for different diffusion regimes,
we based our simulations on fractional Brownian motion. We show that this model can predict
both deviation from the Poisson hypothesis and power-law features in experimental quantal release
series, thus suggesting that the vesicular motion by diffusion could per se explain the emergence of
these properties. We demonstrate the efficacy of our modelling approach using electrophysiological
recordings at single synaptic boutons and ultrastructural data. When this approach was used to
simulate evoked responses, we found that the replenishment of the readily releasable pool driven
by Brownian motion of vesicles can reproduce the characteristic binomial release distributions seen
experimentally. We believe that our modelling approach supports the idea that vesicle diffusion and
readily releasable pool dynamics are crucial factors for the physiological functioning of neuronal
communication.
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Abstract figure legend A novel model of synaptic vesicle exo-endocytosis was developed, based on vesicles’ anomalous
diffusion before their docking to the presynaptic active zone. Different regimes of diffusion, from sub-diffusion to
super-diffusion, including Brownian motion, can be modelled by fractal Brownian motion with different values of the
Hurst exponent, H. Predicted spatial distributions of recycling vesicles fit ultrastructural data. Importantly, the model
correctly predicts complex features of spontaneous neurotransmission, including heavy-tailed distributions of miniature
excitatory post-synaptic currents recorded at single synaptic boutons as well as power-law spectra of their rate. The model
provides insights into the dynamics of the readily releasable pool of synaptic vesicles and their effect on action potential
evoked neurotransmission.

Key points

e We developed a new probabilistic model of spontaneous and evoked vesicle fusion based on simple
biophysical assumptions, including the motion of vesicles before they dock to the release site.

e We provide closed-form equations for the interval distribution of spontaneous releases in the
special case of Brownian diffusion of vesicles, showing that a power-law heavy tail is generated.

e Fractional Brownian motion (fBm) was exploited to simulate anomalous vesicle diffusion,
including directed and non-directed motion, by varying the Hurst exponent.

e We show that our model predicts non-linear features observed in experimental spontaneous
quantal release series as well as ultrastructural data of synaptic vesicles spatial distribution.

e Evoked exocytosis based on a diffusion-replenished readily releasable pool might explain the
emergence of power-law behaviour in neuronal activity.
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Introduction

Understanding the fine mechanisms behind neuronal
communication is a primary goal in neuroscience, since it
is very likely that the extraordinary computational power
of our brains resides in these still nebulous processes.
Neurons in the central nervous system communicate with
each other by activating billions of tiny synaptic boutons
distributed along their fine axons. These presynaptic

varicosities are very crowded environments, comprising
thousands of distinct protein species and hundreds of
synaptic vesicles. Only some of these vesicles are actively
recycled to sustain the quantal discharge of neuro-
transmitter molecules, which occurs both spontaneously
and upon the arrival of action potentials, while the others
await future recruitment in a reserved pool. Spontaneous
and evoked release have been extensively investigated
for their interactions, and two opposite perspectives

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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have emerged: on the one hand, the two processes
were initially thought to share the same biochemical
mechanisms, molecular machinery and vesicles (Wilhelm
et al,, 2010); in recent years, several authors provided
extensive evidence supporting separate pathways and
vesicles for the two processes (Chung et al., 2010; Kavalali,
2015; Peng et al., 2012; Sara et al., 2005).

Since the seminal work by Fatt & Katz (1952),
spontaneous vesicle fusion has been modelled as a
memoryless process, well described by a Poisson point
process with exponential distribution of intervals among
successive release events. In the last decades, evidence has
accumulated denying this prediction for central synapses:
both non-homogeneity of the release rate (Abenavoli et al.,
2000; Forti et al., 1997) and non-linear features (Lamanna
et al,, 2011, 2015; Lowen et al, 1997) are clearly pre-
sent, but these have never been considered together in
a complete model. On the other hand, evoked release
driven by action potentials is universally modelled using a
binomial model, where a fixed pool of readily releasable
vesicles (RRP), docked to the presynaptic membrane,
have a common probability of being randomly discharged
when the action potential triggers a calcium rise in their
proximity. Powerful quantal analysis methods (Bykowska
et al., 2019), including Bayesian approaches, have been
developed in the last decades for obtaining unbiased
and efficient estimators for number of sites (N), release
probability (p), and quantal amplitude from recorded
postsynaptic responses. Unfortunately, the underlying
assumptions about the RRP and the fusion process still do
not enable the capture of the sources of non-linearity that
have been shown to emerge in neuronal activity at several
levels of the CNS. Beside not being able to reproduce the
aforementioned experimental features, both the Poisson
and binomial models do not account for the previous
history of vesicles, e.g. their motion in the presynaptic
compartment before docking to the membrane.

Our understanding of vesicle motion in the synaptic
boutons remained limited until sufficient resolution was
achieved by advanced microscopy techniques. Semi-
nal studies applied total internal reflection fluorescence
(TIRF) microscopy to very large terminals, the ribbon
of retina bipolar cells, gathering important clues about
vesicle mobility and localization before and during the
fusion process: vesicles involved in recycling are mobile,
as opposed to resting ones, and reach the cytoplasmic
membrane with similar timing independent of their
final spot, but they fuse with much higher probability
and speed at active zones (Zenlsek et al., 2000). With
the introduction of super-resolution microscopy, similar
observations were obtained at hippocampal neurons
synapses, and further details emerged (Westphal et al,
2008). According to these studies, stimulation of action
potentials does not affect vesicle motion, but only
fusion probability (Kamin et al., 2010), although recent
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evidence contradicts this conclusion. In addition, patches
of membrane resulting from fully collapsed vesicles
remain stable in their molecular composition to be later
retrieved by the clathrin machinery and become mobile
again for recycling (Kamin et al., 2010). More recent
studies succeeded in tracking the 3D motion of synaptic
vesicles with high resolution and confirmed that in control
conditions vesicles from the RRP remain close to their
fusion site after retrieval (Chen et al., 2021).

Importantly, all the above studies suggest that vesicles
motion represents a substantial fraction of vesicles’ life-
time before fusion, and thus these dynamics are likely to
be reflected in their recycling. This aspect is of particular
importance at central presynaptic terminals, where a few
vesicles (<20) have been estimated to reside in the docked
pool (Schikorski & Stevens, 2001). As a matter of fact,
we can argue that the replenishment of this pool is
mostly driven by vesicle diffusive motion, whose temporal
dynamics would affect the ‘instantaneous’ number of
RRP vesicles: each vesicle, after its flight in the pre-
synaptic milieu, will eventually dock to the presynaptic
membrane and go through spontaneous or evoked fusion
after a variable period. A natural consequence of this
scenario is that the timing of spontaneous quantal
discharges and the quantal amplitude of evoked trans-
mission will both, at least in part, reflect the motion
dynamics. Interestingly, vesicle motion appears as a very
complex phenomenon, due to the crowded presynaptic
environment that causes stick-and-diffuse, but also to
the molecular motors involved (Chung et al, 2010;
Kneussel & Wagner, 2013; Maschi et al., 2018). In this
context, single vesicle tracking has evidenced both free
and directed regimes of motion that can stochastically
switch during vesicle flight (Joensuu et al., 2016) and
whose relative proportion can significantly differ between
vesicles involved in spontaneous and evoked fusions, the
latter more often involving molecular motors (Peng et al.,
2012). These forms of motion are generally regarded
as non-Brownian anomalous diffusion, and one of the
most comprehensive approaches for the modelling of
such motions is fractional Brownian motion (fBm) with
varying Hurst exponent, H (Han et al., 2020), where
H = 0.5 for pure Brownian motion typical of free diffusion,
H < 0.5 for sub-diffusive motion in really crowded
environments, and H > 0.5 for super-diffusive (directed)
motion where molecular motors are involved.

In this work, we developed a probabilistic model based
on simple biophysical assumptions, which includes the
motion of vesicles before they dock to the release site.
Starting from our simulations and analyses, we then
show that this model can reproduce both deviation
from the Poisson hypothesis and power-law features for
spontaneous quantal release series. In addition, this model
provides useful insights into the negative consequences
of abnormal synaptic vesicle motion, which has been
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recently implicated in models of mental disorders (Chen
etal., 2021).

Methods
Ethical approval

Research and animal care procedures were approved by
our Institutional Animal Care and Use Committee for
Good Animal Experimentation, in accordance with the
Italian Ministero della Salute code of practice for the
care and use of animals for scientific purposes (IACUC
number: 728). Sprague-Dawley newborn rats (P2-P5;
both sexes; CD strain), together with SD dams were
acquired from Charles River (Milan, Italy). SD dams were
always supplied with ad libitum food and water. All effort
was made to minimize the rats’ distress, and humane
killing procedure were used: sevoflurane overdose for
dams; neck dislocation for newborns of P2-P5.

Simulation of fractional Brownian motion

All data simulations and analysis as well as data
representations were performed using custom algorithms
developed in MATLAB (The MathWorks, Natick, MA,
USA).

To simulate 1D fBm we employed an algorithm based
on a fast Fourier transform (FFT) providing a good
trade-off between simulation accuracy and speed of
computation (Botev, 2016; Kroese & Botev, 2013). This
algorithm allows us to generate a series of motion steps
which are distributed as a gaussian, and whose temporal
structure shows long-term correlation for specific ranges
of H (while for H = 0.5 it produces the standard Brownian
motion). For completeness, we provide details of the
algorithm here.

In brief, the algorithm simulates the fBm {W;, t > 0}
with covariance function:

cov (Wp, W) = = (It + [¢1*7 — |t — o) .5 = 0(1)

N =

where H € (0, 1) is the Hurst exponent, by first generating
a fractional Gaussian noise (fGn) X; with covariance
function:

| =

cov (Xi, Xirk) = = (Ik+ 1" =20k + [k — 1),

S N

k=0,1,2,... (2)

Simulation of fBm on the uniformly spaced grid
0=ty<t <t -...<t,=1canbeobtained by generating
the increment process {X;, Xp, ..., X,,}, where {X; = W;
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— Wi_1} (Botev, 2016; Kroese & Botev, 2013), and finally

delivering the cumulative sum:

i
W, =c" Y Xi.i=1,..
k=

LN, c=— (3)
n

We set n = 100,000, since this number of samples
was sufficient to get a second zero-crossing by the fBm
(including the starting point W, = 0) in almost all cases.
If the simulation failed to reach a zero-crossing, it was
discarded and a new fBm simulation was generated.

Simulation of the release time series

The series of time intervals between successive release
events from one vesicle was generated using the full
model: T ~ Tyg + Truse. To account for different
conditions of vesicle diffusion (sub-diffusive and
super-diffusive regimes), we simulated, as described
above, a fractional Brownian motion (fBm) trajectory
with a dT of 35 ms, as the fBm sampling time and the
following values of the Hurst exponent H: 0.1, 0.25,
0.5, 0.75, 0.9. Ty is the first return time of a 1D fBm
to the origin (i.e. the first zero crossing for t > 0). To
simulate T, we generated time intervals following the
exponential distribution exp(u) we opted for generating
simulations with different u values (0.1, 1, 10, 100 s). The
time required by the vesicle to spontaneously fuse after
the new docking event was extracted from an exponential
distribution with mean parameter 1 using the exprnd ()
function of the statistical toolbox of MATLAB. Tenqo Was
generated using another mono-exponential distribution
with mean parameter equal to 12 s. In indicated cases, we
linearly scaled the series of fusions to obtain a standard
average fusion frequency for sake of comparability
(Nmax/ Timax = 0.1 Hz).

Log-binned histograms for interval distributions

Due to the heavy-tail nature of the involved distributions
and to previous reports (Abenavoli et al., 2000, 2002;
Lamanna et al., 2012), we decided to generate histograms
of simulated intervals according to a logarithmically
binned representation (McManus et al., 1987; Sigworth &
Sine, 1987). Furthermore, such a representation provides
a direct comparison of our simulated data with both real
and simulated data of single-synapse recordings described
before (Abenavoli et al., 2000, 2002; Lamanna et al., 2012).
For such a representation, intervals between successive
simulated events were binned according to the logarithm
of their duration. This produces an increase in bin width
as interval duration increases. The number of intervals
falling in each bin (bin content) was divided by bin width
to obtain a normalized bin content, which was then shown

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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as a function of bin centre on a doubly logarithmic scale.
The produced graphs provide easy evaluation of produced
interval distributions on the whole range of intervals
including long tails containing few events.

Power-law fitting of interval distributions

To fit our interval distributions to power laws and
estimating the exponent, we adopted discrete and
continuous maximum-likelihood fitting together with
a goodness-of-fit based approach to set the lower
cut-off for the scaling region, according to the method
described by Clauset et al. (2007). Let x be a vector of
observations of some quantity to which the power-law
distribution P(x) ~ x~% must be fitted for x > x,,;n. The
algorithm automatically detects whether x consists of
real or integer values and adopts the most appropriate
method. In the first place, for each possible xpin, o is
estimated through the maximum-likelihood method,
and the Kolmogorov-Smirnov goodness-of-fit statistic
D is computed. Then, the value of x, giving the
minimum D was selected as the lower bound of the
power-law behaviour and the obtained « corresponds
to the maximum-likelihood estimate of the scaling
exponent, with L being the log-likelihood of the data
under the fitted power-law.

Quantification of fractal behaviour: periodogram and
Allan factor

We selected two separate methods for the quantification
of fractal behaviour, the periodogram (PG) and the
Allan factor (AF). Besides being the most reliable
and accurate methods reported in literature for the
quantitative estimation of fractal exponents (Lowen &
Teich, 2005), these were already adopted for analysis of
non-linear features in a temporal series of quantal release
(Lamanna et al,, 2011, 2012, 2015; Lowen et al., 1997).
Periodogram-based quantification was implemented
according to previously published algorithms (Lowen
& Teich, 2005; Thurner et al., 1997). The length of the
series is divided in contiguous windows of length T.
C = L/T series Y; are then obtained, by further dividing
each window in M segments of 0.1 s (fixed resolution)
and counting the number of events falling in each
segment. A periodogram (PG) is then computed for
each windowed series as S, (f) = + Y (f)* where Y(f)
is the discrete Fourier transform of the series Y;. The
obtained PGs are then averaged to obtain the final
count-based PG S(f). For fractal-rate point processes,
the count-based PG follows a power-law of the form f~°¢
in the low-medium frequency range, where « is the fractal
exponent. We estimated apg by linear least-mean-square
regression on a doubly logarithmic scale, logl0(PG) vs.
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log10(f), excluding F = 0 and imposing a fixed
cut-off frequency. The Allan factor is a normalized
version of Allan variance, it was computed as:

(Ziy1 — Zk)z]

2E 1Z1] ®)

AF (1) = E [
where Z; is the count series obtained using a
count window of length 7 (Lowen & Teich, 2005).
The AF for a fractal point process assumes the
power-law form AF(r) ~ 1+ (%)am with fractal onset
time (. Estimating of osp was achieved by linear
least-mean-square regression on doubly logarithmic
scale, logl0(AF) vs. logl0(7), from 7y = 1.

CA3-CA1 hippocampal cultures

Primary postnatal CA3-CAl neuronal cultures were
prepared from Sprague-Dawley rats (2-5 days old) as
previously described (Lamanna et al., 2015; Malgaroli
et al, 1995). Briefly, P2-P5 rats of both sexes were
killed by neck dislocation followed by decapitation and
the CA3-CAl region of hippocampus dissected out.
Dissociated neurons were grown on poly-L-ornithine (10
ng ml~1) and Matrigel (1:50 dilution; BD Biosciences, San
Jose, CA, USA) coated 24 mm glass coverslips in 35 mm
petri dishes (BD Falcon). Neurons were maintained in
a CO, incubator (5% CO,, 37°C; Heraeus Instruments
GmbH, Hanau, Germany) using a modified minimum
essential medium (MEM) with Earle’s salts (Thermo
Fisher Scientific, Waltham, MA, USA) in 5% dialysed
fetal bovine serum (Thermo Fisher Scientific). The
MEM was supplemented with insulin (30 mg I~!), biotin
(0.1 mg 171, vitamin B12 (1.5 mg 17!), L-ascorbic acid
(100 mg 171), transferrin (100 mg 17!'; Merck KGaA,
Darmstadt, Germany), Glutamax (100 mg 17!; Thermo
Fisher Scientific), p-glucose (6 g 17!), HEPES (3.6 g
1I7!), gentamicin (2 mg 1™!). Every 3 days one-third of
the culture medium was replaced with fresh medium
supplemented with cytosine pB-D-arabinofuranoside
(ARA-C; 2.5-5 uM) to prevent excessive glial cells
proliferation. If not otherwise indicated, salts and
chemicals were obtained from Sigma-Aldrich (St Louis,
MO, USA).

Electrophysiological recordings

CA3-CAl cultured neurons were used for electro-
physiological experiments 10-21 days after plating. All
electrophysiological recordings were performed at room
temperature (24°C) and neurons were continuously super-
fused (1-2 ml/min) with a Tyrode solution containing (in
mM): 119 NaCl, 5 KCl, 2 CaCl,, 2 MgCl,, 25 HEPES,
and 30 p-glucose. This solution was supplemented with
the GABA, receptor blocker picrotoxin (PTX; 100 M),

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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tetrodotoxin (TTX), and the NMDA receptor blocker
D-2-amino-phosphonovalerate (APV; 25 uM; Tocris
Cookson, Bristol, UK). Solution osmolarity was adjusted
to 305 mOsm and pH to 7.4.

Synaptic bouton visualization was obtained either
by transduction of cultures with a lentivirus carrying
an eGFP-VAMP2 construct, eGFP-SynaptoZip (Ferro
et al,, 2017; Lamanna, Isotti, et al., 2022) or by staining
for 1-2 min with 10 M FM1-43 dissolved in modified
Tyrode solutions (5 mM CaCl,/no added MgCl,; 25 uM
6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; Tocris),
0.5-1 mM kynurenate (Tocris)). Loose-patch synaptic
recordings were performed as previously described
(Forti et al., 1997). In brief, patch pipette electrodes
for loose patch (resistance 1-2 M) were filled with
a modified extracellular solution (CaCl, 5 mM (no
added MgCl,), picrotoxin 100 uM, APV 25 uM, TTX
0.5 uM). Pipettes were lowered to enclose selected
boutons without suction. Currents were acquired in
voltage clamp (holding potential 0 mV; Axopatch 200B
amplifier; Axon Instruments, Foster City, CA, USA).
Seal resistance (<10 MS2) was monitored by applying
2 mV depolarizing pulses. Current traces were filtered
at 2-5 kHz and digitally acquired at 20 kHz using a
16-bit analog-to-digital interface (HEKA ITC-18; HEKA
Elektronik, Lambrecht/Pfalz, Germany) controlled by
a C/C++ acquisition software developed in house.
Minis were detected semi-automatically using a custom
graphical user interface developed in MATLAB.

Synaptic vesicle labelling by horseradish peroxidase
and electron microscopy

Hippocampal cultures were washed with standard
Tyrode solution (37°C) and bathed in the same solution
supplemented with horseradish peroxidase (HRP;
10 mg/ml). Cells were then stimulated at 0.5 Hz for
10 min using platinum field electrodes (1 ms pulses;
20 mV/cm). The morphology of the electrodes, the
distance between anode and cathode and the field
intensity were established, prior to the experiments,
by electrophysiological recordings and FM1-43 (Thermo
Fisher Scientific) synaptic uptake experiments. At the
end of stimulation epochs, to remove extracellular
HRP, neurons were quickly washed a few times with a
Tyrode solution (4°C) supplemented with TTX (1 puM;
Latoxan, Valence, France). For pre-embedding staining
of vesicles containing HRP, neurons were lightly fixed
(2% glutaraldehyde; 10 min) and incubated for 30 min
in a solution containing 0.05% (w/v) diaminobenzidine
(DAB) and 0.01% (v/v) hydrogen peroxide. After a
few wash cycles, neurons were re-exposed to a fixative
solution (2% glutaraldehyde, 4% formaldehyde in 0.1 M
cacodylate buffer) for 45 min. For standard electron
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microscopy analysis the detailed procedure has been
previously described (Bose et al., 2000). In brief, cells
were post-fixed with 2% OsO4. After dehydration in
ethanol and overnight infiltration (75% Epon 812 and
25% ethanol), samples were embedded in Epon and
ultrathin serial sections (~60 nm) obtained. These were
doubly stained with uranyl acetate and lead citrate and
examined with a Hitachi H-7000 microscope. In these
experiments # = 36 synapses with evoked HRP uptake
were reconstructed, and n = 3 could be fully reconstructed
through sections and used for the analyses based on
custom algorithms developed in MATLAB for measuring
vesicles distances from presynaptic membranes. Vesicles
were manually selected to exclude large dense core
vesicles and HRP labelled endosomal structures, the latter
were carefully searched and identified across the serial
sections.

Results

Spontaneous synaptic vesicle motion and recycling:
model development

To develop our model, we simulated a stick and diffuse
process where vesicles: (1) dock to the presynaptic
membrane; (2) fuse spontaneously after a period Tfyge; (3)
are endocytosed to be recycled in a time Tengo0; (4) diffuse
in the presynaptic compartment for a period Tgi, until
they come back to the docking site (Fig. 1A4).

Hence, the series of time intervals between successive
release events from a single vesicle is generated using
the following equation: Ty = Tair + Thuse + Tendo- TO
account for different conditions of vesicle diffusion
in generating Tgqg values, from sub-diffusive to
super-diffusive regimes, including free and directed
motion, we opted for simulating a fractional Brownian
motion (fBm) trajectory with different values of the Hurst
exponent H (see Methods for details). We assumed that
the recently retrieved vesicle moves in the presynaptic
cytoplasm (3D) starting from the presynaptic membrane
surface (2D) and then must return, after a time Ty, to
that surface for docking. Hence, in our model, T4 equals
to the first return time of the 3D fBm to the membrane
surface, which can be simplified as the first return time of a
1D fBm to the origin (i.e. the first zero crossing for ¢ > 0), if
we assume the membrane surface to be flat and orthogonal
to the direction of the 1D fBm, which is reasonable at
least in an area close to the fusion site. Figure 1B shows
the log-binned histograms (a convenient approach for
heavy-tailed distributions; see methods for details) of
Tar values obtained simulating fBm with different H
values (0.25, 0.5 and 0.9), together with exemplar 2D
fBm trajectories. The estimated distributions display a
heavy-tailed power-law profile reminiscent of the Lévy
distribution, a stable distribution. This is not surprising,

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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since the closed-form probability density function (pdf)

for the first return time of the pure Brownian motion

(fBm with H = 0.5) for large t approaches the Lévy
1

stable distribution with location parameter | = 5 and

scale parameter C = 24/D where D > 0 is the diffusion
constant (Sornette, 2006). To simulate Tf,s, we generated
time intervals following the exponential distribution with
mean [, to account for the memoryless and spontaneous
nature of the fusion process. It is worth noting that
Tfuse represents only the final step of our release model,
which is the time interval from vesicle docking to its
fusion. Since accurate experimental estimations of j are
not available, we opted for generating simulations with
different p values (0.1-100 s), indicating experimental
conditions over a broad range of release probability
(exemplar log-binned representation of exponential
distributions for the simulated values of p are shown in

A

N [events/sec]

102 10" 10° 10° 102
Time [s]

Synaptic vesicle diffusion and exocytosis 2879

Fig. 1C). Finally, Tenq, was generated using an exponential
distribution with mean parameter equal to 12 s, a value in
line with was has been obtained experimentally at central
synapses (Chanaday & Kavalali, 2018; Granseth et al,
2006).

For the special case of Brownian motion (H = 0.5),
we obtained a closed-form expression for the pdf of
T'el by convolution. More specifically, Trse+ Tendo follows
the hypoexponential distribution with parameters A;, A,,
Hypo(%, 1), whose pdfis:

(—e_’\lt + e—kzt) )\'1)\2

f1 (x) = N )

x>0AA >0AA >0, (5)

while Tgf for BM (H = 0.5) was modelled with the Lévy
(0.5, C) distribution (Sornette, 2006) whose pdf is:

—_
(=}
~

N [events/sec]
3

-
Lo ]
.l

10 103 102 10" 10° 10'

16’- g === Tiuse+Tendo ~ HYPO(1,0.1)
/ pN === Ty ~ Levy(0.44)
N —— Simulation
10p / S

~ Numerical convolution

- - - Analytical model

Time [s]

Figure 1. Development of a dynamic model of spontaneous synaptic vesicle recycling

A, cartoon illustrating the model transitions, where Ty represents the return time of the vesicle to the release
site by diffusion, Tfyse €quals the time required to spontaneously fuse after docking at the presynaptic membrane,
and Tendo accounts for the time of endocytosis. B, log-binned histograms of simulated Ty for different diffusive
regimes, obtained from 1D fBm with H = 0.25 (blue, sub-diffusion), H = 0.5 (green, Brownian motion), H = 0.9
(red, super-diffusion). C, logarithmic plot of the exponential distributions describing T, for different values of
1 (0.1-100 s). D, log-binned histogram (black line) of simulated T, for H = 0.5 (Brownian motion), with overlaid
probability density function (pdf) of: (1) Tiyse + Tendo ~ Hypo(1, 0.1) (blue dashed line, see eqn 5); (2) Ty ~ Lévy
(0.5, 4/0.44) (dashed red line, see eqgn 6); (3) analytical model of T, with, C = +/0.44, A, = 1 and A, = 0.1
(see eqgn 8). The graph also shows the numerical solution for convolution of the two parental pdfs (green line, see
eqgn 7), which coincides with the analytical model’s pdf. [Colour figure can be viewed at wileyonlinelibrary.com]
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_c2

Ce2x
27 x3/2

f(x)= ,Xx>0AC=2/DAD>0. (6)

Hence, the pdf of T, was obtained by solving the
convolution integral between f;(x) and f,(x):

frd (¥) = Zfl ) fr(x—1)

x CeTi (—e M e ™) aih,
(A1 = A2) V21 (x — 1)*

AA ) C
dt = 172 (—ef’CVn“A'x <erfc (— —i Alx)
2(A1 — A2) 2%

dt =

o=

) C
12V erfe <— +i/A x>>
2% !
+ e IOV —ax (erfc <—C —i k2x>
2%

) C
+ 2CV2haerfe <— + i/ A x>)> . 7
T 2 (7)

The closed-form expression of eqn (7) can be further
simplified as:

AMA . .
fra (x) = . ! 2}\ (—efthe (e’ﬁcmerfc
1— A2

)

: - C
+e **Re <e’ﬂc‘/"7erfc («/7276 + i\/)qx))) (8)

(see appendix for details). From the latter expression
it results that the pdf will assume only real values, as
expected for a biophysical system.

Although this analytical solution represents only a
partial prevision (limited to H = 0.5) of the spontaneous
fusion regimes generated by our mol, it gives an idea of the
potential influence of vesicle motion on the overall release
dynamics, which is a power-law decay for large intervals,
whose exponent is —3/2 for the ordinary BM (Rangarajan
& Ding, 2000; Sornette, 2006). Figure 1D shows an overlay
of the three pdfs of eqns (5), (6), and (8) on logarithmic
axes for Ay =1 s!, A= 0.1 s}, and C = /0.44
(corresponding to D = 0.11 um s~ ). In the same panel,
the log-binned histogram of a simulation based on the
sum of random samples from the three distributions is
shown (black line) together with the numerical solution
of the convolution integral (green line) (Fig. 1D). As
can be appreciated from the graph, the analytical model
optimally fits the simulated data and coincides with the
numerical convolution.

J Physiol 602.12

Table 1. Mean + SD of the observed « values obtained fitting
the histogram of Ty;s values obtained with 100 fBm simulations
with the selected Hurst parameters (theoretical prediction in
the third column)

Hurst parameter Mean observed « Expected «
0.1 —1.91 (£ 0.097) —1.90
0.25 —1.76 (£ 0.073) —-1.75
0.5 —1.55 (£ 0.039) —1.50
0.75 —1.37 (£ 0.019) —-1.25
0.9 —1.29 (£ 0.125) —-1.10

n = 100,000 fBm samples for each series.

Simulations of spontaneous fusions for synaptic
vesicles with different diffusive regimes and release
probabilities

We then performed the first set of simulations of release
series (Ty) for a single vesicle varying the H parameter
of the fBm in the range 0.1-0.9. Figure 2 shows the
log-binned histograms of simulations with different fusion
probabilities: high probability, © = 0.1 s (Fig. 2A) and
low probability, © = 100 s (Fig. 2B). It is clear from
these graphs that in the former case the fBm produces
power-law behaviour in these release series for larger
intervals (straight line in doubly logarithmic plot), while
for shorter intervals the classical exponential distribution
is predominant. On the contrary, when fusion probability
is low, such behaviour is lost even at very large intervals
(Fig. 2B).

We then analysed the relationship between the H
exponent of the fBm and the slope of the power-law
behaviour observed in interval distributions, P(t) ~ t*,
as the latter is introduced by the fBm dynamics, as
discussed above. To obtain a good estimate, we performed
a maximum likelihood fitting of the scaling exponent « on
the log-binned histograms by applying a goodness-of-fit
based approach (Clauset et al., 2007). Figure 2C shows
three exemplar histograms for high fusion probability
(u = 0.1 s) and fBm with sub-diffusive (H = 0.1),
super-diffusive (H = 0.9) and purely Brownian dynamics
(H = 0.5), together with the fitting curve and obtained
scaling exponent o (intervals longer than 0.1 s; dashed
magenta line indicates fitting curve; estimated values
of « are shown on the graph; Fig. 2C). To obtain the
cleanest form of the relationship between H and o we
also applied the fitting approach to histograms generated
using only Tgis values (the same used for the T, series;
the result of these fittings and the histograms are shown
in Fig. 3A). The numerical o values obtained with this
analysis (Table 1) are in line with the theoretically pre-
dicted ones (¢« = H —2) (Ding & Yang, 1995) and «
is inversely proportional to the Hurst index as expected,

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

85US017 SUOLULIOD A ERID 3[qeatjdde au Aq peun0b a1 BN YO ‘38N JOS3INI 10} AR1G 1T BUIIUO AB]IM UO (SUORIPUOD-PUR-SWLYLIOD" A3 1M ARRIq1BUIIUO//SANY) SUORIPUOD PUe SW L 3L 885 *[7202/90/T2] U0 ARIqITaulluO AoIM ‘ @Reey Ues aepedsO SOOY | - Butrur ] ododer AQ 926782dC/ETTT OT/I0p/wod ] 1mAreiq1iput|uo-a0sAyd)/sdny wo.y pepeojumod ‘ZT Y20z ‘€6LL69rT



J Physiol 602.12

Synaptic vesicle diffusion and exocytosis

A B
10, — H=01
. AR p=0.1s g M=100s — H=0.25
[ 10°¢
L — H=05
10} _ 10} H=075
(&) (&)
@ o 3 H=0.9
» 430 » 3
E 10 4\9 10
g 1} 5 10}
9, 9,
c 101 3 c 1d 3
oL
10 10
102 102 10" 10 10 103 10" 10° 10 102
Time [s] Time [s]
C D
10k .
21 : i
106’ : q]
) e
8 1(?' ;1'8 q}’ :
S 10° T16 ¢ dl '
3 a=-1.152 > ;
=2, o) . Pid
< 10} a=-1.535 214l i
a a=-1.839 S m .
1 121 .7
10° 102 10" 10° 10' 1 1.2 14 16 1.8
Time [s] a predicted [a.u.]
E F
10—1. 102_
102 10"}
8 L
a <C
10% 100
a a, =034
F>G=0.15 AF
10‘2F 10" 10}?| 100 10° 10" T10" 10' 10°
requenc z
G q y [HZ] H au [s]
121 1 —e—J=0.1s
1t —E—p:1s
0.8Ff u=10s
0.8Ff —=—J=100s
_ _ 06
E 0.6 E s
€ 04l =
o] o]
021
0.2 ]
0 —% i\'\i or g*\%\i\i
-0.2— ; ' : — -0.2— : : : —
0 01 0.25 0.5 0.75 09 1 0 0.1 0.25 0.5 0.75 09 1

Hurst parameter [a.u.]

Hurst parameter [a.u.]

Figure 2. Analysis of simulated series of single vesicle fusion with fBm dynamics

A and B, log-binned histograms of T, series with H=0.1-0.9 and . = 0.1 s (A) or 100 s (B). C, three exemplar
histograms (H = 0.1, 0.5, 0.9; i = 0.1 s) with linear fitting for intervals longer than 0.1 s (dashed magenta lines)
of the scaling exponent « (estimated values are shown on the graph). D, relationship between predicted (as a
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function of H) and estimated values of « (fitting on log-binned histograms of Ty series; n = 100 series simulated
for each value of H). E and F, exemplar graphs of periodogram (E) and Allan factor (F) analysis on T series
with © = 0.1 (blue) and 10 s (orange) and H = 0.1; both methods were employed to quantify the fractal or
power-law behaviour (straight lines indicate fitting range). G and H, values of the fractal exponent estimated
using periodogram (apg; G) or Allan factor (aaf; H) from 100 simulated T, series with all tested combinations
of H (0.1, 0.25, 0.5, 0.75, 0.9) and w (0.1, 1, 10, 100). Each simulated T, series included 10,000 fusion events
where the Ty value was obtained from a fBm with 100,000 samples (data shown as means =+ SD). [Colour figure

can be viewed at wileyonlinelibrary.com]

but there is a ceiling effect for H values close to 0.9
(super-diffusive regime) (Fig. 2D). By comparing the
results of o fitting on Ty and Tg histograms, we can
conclude that in the former case the estimated « values
are in line with the predicted ones for all the three
forms of diffusion, at least when the fusion process Tf,s
is fast (u = 0.1 s), i.e. the exponential component of
the distribution does not excessively mask the heavy tail
(Fig. 2B).

From these simulations we can predict that the motion
dynamics of the vesicle before it docks to the presynaptic
membrane can affect the output release series, thus
representing a potential source for power-law and fractal
characteristics broadly found in neuronal signalling. In
addition, the interval distributions produced are in line
with the deviance from a Poisson process that has
been previously observed at single synaptic boutons
(Abenavoli et al.,, 2000; Forti et al., 1997; Lamanna
et al, 2011, 2012). Importantly, if fusion probability
is sufficiently high, also the diffusive properties of the
presynaptic milieu and the directed/undirected motion
features of the vesicle might be well estimated by fitting the
scaling exponent of the interval histogram. The variability
in diffusion regimes and fusion probabilities between
different synaptic boutons might be one of the reasons
why quantal release interval distributions have been fitted
using different approaches over time (e.g. with mono, bi-
and multi-exponential functions (Abenavoli et al., 2002;
Lamanna et al., 2011, 2012), gamma distribution (Lowen
et al, 1997), etc.).

We then proceeded to verify if the inclusion of
vesicle motion dynamics in our spontaneous neuro-
transmission model not only produces power-law features
and deviation from Poisson interval distributions, but
also power-law/fractal characteristics in quantal release
time series (Lamanna et al., 2015; Lowen et al., 1997). In
addition, we wondered how fusion probability () would
impact the detection and quantification of these fractal
features. PG and the AF methods were applied to the same
T,es series analysed above. A linear scaling was applied
to time series in order to get comparable time scales and
the frequency ranges among different simulations (of H
and p). Figure 2E and F show exemplar graphs of PG
and AF analyses, respectively, which were performed on
a simulation with the same H = 0.1 and low (. = 10 s,
red line) or high (1 = 0.1 s) fusion probabilities. As

can be appreciated from these graphs, the value of the
estimated fractal exponent « is comparable between the
two methods and approaches the predicted one for these
measures (apg = aar = 1 — H) (Lowen & Teich, 2005).
Nevertheless, when fusion probability is lower (1« = 10's),
the obtained value of « is strongly decreased, suggesting
that the final step of fusion masks fractal features in
quantal release series, similarly to what occurs for inter-
val distributions (see above). Both the comparability of
the two methods and the dampening effects of lower
fusion probabilities can be well appreciated by looking
at the graphs in Fig. 2G and H, where the results of
PG and AF analyses are shown, respectively, for all the
investigated combinations of H and p (numerical results
are provided in Tables 2 and 3. Mean and standard error
of the estimated o value (for each method) are computed
over n = 100 realizations of the simulation process (Ttes
series). From these results it can also be appreciated that
the dampening effect of mid-range fusion probability
(. =10s, yellow line in Fig. 2G and H) is lower for BM and
super-diffusive regimes (H > 0.5), while fractal features
are totally lost at © = 100 s.

Graphs showing periodogram and Allan factor
analyses, similar to the ones shown in Fig. 2E and F, but
for all the other combinations of simulation parameters,
are shown in Fig. 3B and C, respectively.

Simulations of spontaneous release series involving
independent vesicles with uniform or different
motion dynamics

We were then interested in evaluating whether the
results described above can be obtained also when a
significant number of vesicles participate simultaneously
to the release process. At first, we superimposed the
simulated release events form n = 20 vesicles to produce
a final series of Tys. We can imagine that such series is
produced by vesicles recycling at the same fusion site,
active zone or synapse, but also vesicles that fuse at
different synaptic boutons targeting the same postsynaptic
neuron (producing a unique series of quantal discharges
that is generally obtained with whole-cell patch clamp
configurations), as these can be reasonably supposed
to act independently from each other at least under
spontaneous fusion conditions. In our first analysis both
H and p were kept fixed for all vesicles, and hence, based
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Figure 3. Fitting power-law and fractal behaviours using interval distribution, periodogram and Allan

A, log-binned histograms of the diffusion time series (Ty) generated using fBm with different values of H (0.1,
0.25, 0.5, 0.75, 0.9) and estimation of the scaling exponent « of the power-law characterizing the distribution’s
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tail. Band C, periodogram (B) and Allan factor (C) analyses are shown for several combinations of H (one value for
each row from top to bottom: 0.25, 0.5, 0.75, 0.9; see Fig. 2E and F for H = 0.1) and u (0.1, 10; same graph).
Straight lines represent the fitting of the power-law function to estimate the scaling exponent (apg, aaf). [Colour

figure can be viewed at wileyonlinelibrary.com]

Table 2. Numerical results (mean = SD) of fractal exponent apg estimations via PG

Hurst parameter

n=0.1s

n="1s

n=10s

nw=100s

0.1 0.81 (+ 0.256)
0.25 0.72 (£ 0.219)
0.5 0.60 (+ 0.173)
0.75 0.40 (+ 0.120)
0.9 0.15 (+ 0.092)

0.76 (+ 0.220)
0.68 (+ 0.186)
0.56 (+ 0.035)

0.34 (+ 0.047)
0.20 (+ 0.065)

0.02 (+ 0.077)
0.05 (+ 0.040)
0.27 (+ 0.079)

0.22 (+ 0.078)
0.14 (+ 0.080)

—0.004 (+

0.029)

—0.003 (+

0.050)

0.008 (+ 0.040)
—0.02 (£ 0.015)
—0.04 (+ 0.030)

The observed values were obtained from 100 simulations (100,000 fBm samples for a maximum of 10,000 fusion events) of one single
vesicle for the selected Hurst parameter and different values of ..

Table 3. Numerical results (mean =+ SD) of fractal exponent aar estimations via AF

u=10s

nw=100s

0.72 (+ 0.079)
0.69 (+ 0.085)
0.61 (+ 0.072)
0.43 (+ 0.059)

Hurst n=0.1s pn=1s
parameter

0.1 0.81 (£ 0.136)

0.25 0.73 (+ 0.079)

0.5 0.64 (+ 0.068)

0.75 0.46 (£ 0.066)

0.9 0.37 (& 0.063)

0.27 (+ 0.01)

0.04 (£ 0.047)
0.05 (£ 0.044)
0.07 (£ 0.053)
0.12 (£ 0.085)
0.16 (£ 0.01)

0.04 (£ 0.002)
0.03 (£ 0.001)
—0.01 (£ 0.041)
—0.05 (£ 0.021)
—0.08 (& 0.057)

The observed values were obtained from 100 simulations (100,000 fBm samples for a maximum of 10,000 fusion events) for the

selected Hurst parameter and different values of .

on the previous considerations, these can be reasonably
assumed located in the same presynaptic environment
and recycling through the same release machinery, but
also recycling at different synaptic boutons with the same
diffusive properties and fusion probabilities (a much
more unlikely case). All the Ty series produced at this
stage were linearly scaled as discussed above to facilitate
comparisons.

Log-binned histograms from these series for © = 0.1 s
and H = 0.1-0.9 are shown in Fig. 4A. From these graphs,
it is still possible to appreciate power-law behaviour at
the interval distribution’s tail, with a slope steepness
that reduces when passing from a sub-diffusive to a
super-diffusive regime, similarly to what was observed for
simulations involving a single vesicle. Figures 3C and 4B
show the PG and AF analyses performed on these series,
respectively. The results of fractal analysis provide us
with trends which are very close to the ones shown in
Fig. 2G and H, although the steepness of the curves
relating the values of H and estimated o is much lower,
indicating a different underlying relationship between
the two parameters in these conditions. Such an effect
is slightly lower for the AF method. As noticed for a

single vesicle series, the reduction of fusion probability
strongly dampens the fractal exponents, but this effect is
weaker than previously observed and, more importantly,
seems independent from the diffusion regime and method
adopted. Furthermore, in order to qualitatively evaluate
the effects of having strongly heterogeneous vesicle pools
contributing to the same release process, we generated
series of fusion events by mixing two pools with
either different diffusion properties or different fusion
probabilities.

As for the former case, Fig. 4D shows log-binned
histograms obtained with high fusion probability
(u = 0.1 s) and different combinations of H for the
two vesicle pools (n = 10 vesicles for each pool; green:
H = 0.1 and 0.5; blue: H = 0.1 and 0.9; red: H = 0.5 and
0.9): by comparing Fig. 4D with Fig. 4A, we can state that
the power-law tail of the interval distribution obtained
with two different H values looks very similar to the one
obtained with a single pool with an average H (e.g. the
mix H = 0.1 and 0.5 looks similar to H = 0.25 = 0.3). On
the other hand, when we analysed the interval histograms
of the T, series with the same combinations of H but low
release probability (u = 10 s), the power-law behaviour
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produced results that were homogeneous among all mixed
simulations (Fig. 4E). In other words, we might argue that
when fusion probability is high, power-law behaviour
observed in experimental spontaneous release series
can still emerge from the diffusion dynamics of many
vesicles from synapses targeting the same postsynaptic
neuron. Nevertheless, we can also predict that the more
synaptic sites with sub-diffusive or Brownian diffusion
properties contribute to the overall process, the less steep
and differentiable those power-law tails will appear in
interval distributions. Interestingly, as it is shown by
histograms in Fig. 4F, when the two pools mixed have the
same fBm properties (blue: H = 0.1; green: H = 0.5; red:
H = 0.9) but both fast and slow fusion kinetics (© = 0.1
and 10 s for the two pools, respectively), the power-law
tails are clearly visible and differentiable. Thus, power-law
features are likely to be well detected in experimental
series provided that a significant fraction of the vesicles
involved fuse with high probability.

Synaptic vesicle diffusion and exocytosis 2885

Experimental and predicted distributions of distances
from the active zone for vesicle with a recent history
of exocytosis

In order to evaluate the consistency of our diffusion-based
model with the real dynamics of vesicle motion, we
conducted ultrastructural analysis of recycling vesicles
at central synaptic boutons. Vesicles actively involved in
endo-exocytotic cycles were stained using horseradish
peroxidase uptake during field electrical stimulation
(0.5 Hz for 10 min; 300 stimuli; 20 mV/cm). Electron
microscopy image stacks (6 images per stack) were
acquired to identify all stained vesicles from single
synaptic boutons. The acquisition procedure allowed us
to obtain horizontal sections of the bouton where the
presynaptic membrane could be always clearly identified
as a line (juxtaposed to an electron dense postsynaptic
region), with a more electron dense region reminiscent
of the active zone (AZ). For each vesicle in each section
(red dots in Fig. 5A and B), we measured the minimum
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Figure 4. Analysis of simulated series of multiple vesicles’ fusion with homogeneous or heterogeneous

diffusive properties and fusion probabilities

A, log-binned histograms of T, fusion series generated by n = 20 vesicles undergoing fBm diffusion with homo-
geneous H (range 0.1-0.9) and the same fusion probability © = 0.1 s. B and C, values of the fractal exponent
estimated using periodogram (apg; B) or Allan factor (aaf; H) from T, series generated by a homogeneous pool
of n =20 vesicles for all tested combinations of H (0.1, 0.25, 0.5, 0.75, 0.9) and w (0.1, 1, 10, 100). D—F, exemplar
log-binned histograms of T, fusion series generated by two pools of vesicles (n = 10 vesicles for each pool) with
heterogeneous properties: different values of H (green: H = 0.1 and 0.5; blue: H = 0.1 and 0.9; red: H = 0.5
and 0.9) and same fusion probability (u = 0.1 s, D; u = 10 s, E); different values of fusion probability (1 = 0.1
and 10 s) and same value of H (blue: H=0.1; green: H = 0.5; red: H = 0.9) (F). [Colour figure can be viewed at

wileyonlinelibrary.com]
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distance (yellow dashed line) from the whole presynaptic
membrane (purple dashed line; Fig. 5A) and from the
AZ (green dashed line; Fig. 5B) separately, on the section
plane. An exemplar histogram of synaptic vesicle distances
obtained from a single synapse is shown in Fig. 5C (n = 44
vesicles; distance from cleft = 236 £ 170 nm, left plot;
distance from AZ = 245 &+ 167 nm; mean =+ SD, right
plot; Fig. 5C). The histograms for pooled data are shown

J Physiol 602.12

in Fig. 5D (n = 98 vesicles from 3 boutons; distance from
cleft = 176 £ 145 nm, left plot; distance from AZ = 185
=+ 146 nm, right plot; mean £ SD; Fig. 5D). The pooled
histogram suggests that the underlying distribution is
right-skewed, with a slow decaying right tail.

To make a comparison between real distances and
our model’s predictions, we simulated the flight of 100
vesicles with the same diffusion properties (fBm with
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Figure 5. Experimental and predicted distributions of distances from the active zone for vesicle with a

recent history of exocytosis

A and B, serial electron microscopy images showing parallel sections of central synaptic boutons. Vesicles (red
dots) were stained using HRP (10 mg/ml) uptake during field electrical stimulation (10 min; 0.5 Hz; 20 mV/cm)
of cultured hippocampal neurons (fixed with 4 % paraformaldehyde). Vesicles” minimum distance (yellow dashed
line) from presynaptic membrane (purple dashed line; A) and active zone (AZ; B) was measured on each section
(bar = 50 nm). C and D, histograms of vesicles distance from cleft (pale green, left plot) and AZ (pale blue, right
plot) are shown for an exemplar synaptic bouton (C) and for pooled data (n = 98 vesicles from 3 boutons; D).
E, histograms of vesicles distance for different diffusive regimes (fBm with H = 0.1-0.9; left plot) simulated in
the same experimental conditions described above (0.5 Hz stimulation, 10 min). Right plot provides a comparison
between the pooled vesicle distances from the experimental boutons (green) and the best-fitting histogram from
simulations (H = 0.9). [Colour figure can be viewed at wileyonlinelibrary.com]
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H = 0.1-0.9), assuming that each vesicle fused at least
once during the stimulation epoch (the first fusion time
was randomly selected from the 300 stimulation times in a
10 min epoch). If the vesicle flight ends at the presynaptic
membrane (x = 0) before one of the remaining stimuli,
then it fuses again with p = 1 at the next stimulus time
and a new flight is simulated (if the vesicle reaches x = 0
after the last stimulus, that will be the final position). The
final distance of all vesicles from presynaptic membrane
(x =0) is computed at the end of the epoch and the related
histogram is shown in Fig. 5E (left plot) with different
colour for different values of H. We then compared these
simulation histograms with the experimental one (pooled
vesicles) and identified the more similar one (minimum
mean square error), the one generated with H = 0.9
(Fig. 5E, right plot). As can be appreciated by looking
at the superimposition of the two histograms in Fig. 5E,
our simulation provides a very good prediction (in shape)
of real vesicles distance data and suggests that, at least
for these synapses, a super-diffusive regime is met, which
might be related to molecular motors involved in the
motion dynamics of vesicles involved in action potential
evoked endo-exocytosis (Peng et al., 2012).

Fitting the diffusion-based model of spontaneous
release with electrophysiological recordings from
single synaptic boutons

In order to directly test the performance of our model
in describing the dynamics of real spontaneous release,
we collected and analysed quantal release series gathered
using the loose-patch (LP) recording technique (Forti
et al., 1997). Figure 6A shows a scheme of the recording
technique. Synaptic boutons are visually identified using
a fluorescent probe (FM-1-43 or eGFP-SynaptoZip),
then electrically isolated in the tip of the pipette by
applying mild suction. Figure 6B shows exemplar
traces of a LP recording (inward currents are positive
as it is an extracellular recording). Such recordings
still provide the finest and lowest scale information,
which is currently achievable with high temporal
precision, about quantal release dynamics. Indeed,
real-time super-resolution imaging approaches still
cannot provide precise information about the time of
release. Nevertheless, based on this approach, we cannot
distinguish between the fusion times of different vesicles
in the same bouton.

For this reason, we will assume that either (1) most
fusion times are generated by the same vesicle during a
recording epoch or (2) vesicles alternate in their fusion
activity but have very similar diffusional properties, as
well as similar fusion probabilities. The second possibility
is much more likely since the presynaptic environment,
including the AZ and the fusion machinery, is shared

Synaptic vesicle diffusion and exocytosis 2887

(and it is generally assumed in quantal analysis models).
As we showed before (Fig. 4), our model produces
similar features of the release series in terms of inter-
val distributions, PG and AE, even when n = 20
vesicles independently contribute to the process. Thus,
we can reasonably test the performance of our modelling
approach on LP series. To achieve this aim, we developed
a custom data fitting approach.

At first, we fitted the power-law heavy-tail, if present,
using a linear fitting of the log-binned histogram for
intervals longer than 1 s, which provides the power-law
exponent «. In Fig. 6C-E, the log-binned histograms
from three exemplar recordings are shown together with
the fitting of the « (blue line). These recordings are
reminiscent of the three canonical diffusive regimes:
super-diffusive (¢ = —1.09; Fig. 6C), Brownian motion
(o = —1.51; Fig. 6D) and sub-diffusive (@ = —1.66;
Fig. 6E). Above each histogram, the time course of
release events from the related recording is shown.
Importantly, all the n = 17 recordings analysed show
a clear power law in the distribution tail which can be
easily fitted on the log-binned histogram. This result
indicates that our model captures an important (always
present) feature of the release process which is not pre-
dicted by the other modelling approaches, such as mono-
or hyper-exponential models.

The exemplar recording whose time course and
log-binned interval histogram are show in in Figs 5I
and 6F, respectively, will be used to describe the successive
steps of our fitting algorithm. We estimated A, A,, the
parameters that in our model describe fusion and end-
ocytosis timings, respectively, using the hypo-exponential
pdf of eqn (5), applied to intervals lower than the
cutoft of 1 s (red line in Fig. 6I). Starting from A;, A,
and « (H = o + 2), we were thus able to simulate
a release series using our computational model based
on fBm as above. The time course and the log-binned
histogram of the simulated series are shown in Figs 5]
and 6G, respectively, together with o fitting. The results are
appreciably good. Then, we obtained a numerical solution
of the convolution between eqn (5) and a generalization of
eqn (6), where the power-law exponent was changed from
—1.5 (Lévy distribution) to a generic «. Although this is
an approximated solution of the final pdf of our model,
it seems reasonable for modelling first return times of
fBm at long intervals (Rangarajan & Ding, 2000; Sornette,
2006). We then fitted this pdf to our data using maximum
likelihood estimation (mle) and imposing fixed values of
A1, Xy and o, which guaranteed convergence of the mle
algorithm. This allowed us to obtain an estimate of C
and then of the diffusion constant D. We then obtained
a simulated series from the full model (A1, A,, o and C
parameters) using Monte Carlo sampling: the time course
and the log-binned interval histogram of this simulation
are shown in Fig. 6K, together with the numerical pdf
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Figure 6. Analysis of electrophysiological recordings from single synaptic boutons

A, scheme of the recording technique. Synaptic boutons are visually identified using a fluorescent probe
(eGFP-SynaptoZip fluorescence in white; bar = 5 um), then electrically isolated in the tip of the pipette (blue)
by applying mild suction. B, exemplar current traces showing a few mePSCs. C-£, exemplar log-binned histograms
of mEPSCs interval distributions from three recordings with different values of « (fitted by the blue line) reminiscent
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of the three diffusive regimes: super-diffusive (« = —1.09; C), Brownian motion (¢« = —1.51; D) and sub-diffusive
(a = —1.66; E). Above each histogram, the time-course of release events from the related recording is shown.

F-K, an exemplar experiment is analysed and fitted using the diffusion-based model. Time-courses are shown
for the real series (F), a series simulated with the fBm algorithm (G), and a series simulated using a numerical
solution of the diffusion-based model pdf (H; see text for details). Log-binned histograms of the series in F, G
and H are shown in /, J, and K, respectively, together with fitting curves: hypo-exponential model (egn (5); red
line; A1 and Ay; ); power-law heavy tail (blue, «; I-K); diffusion-based model pdf (green; C and D parameters). L,
histograms showing the frequency distribution of the estimated parameters for all recordings, from left to right:
average inter-mini interval, &, A1, A2, D, error in & when simulated using fBm (e fgm) and the diffusion-based
model (&errmodel)- [Colour figure can be viewed at wileyonlinelibrary.com]

(green line). Beside increasing the qualitative goodness of
the simulation, this step provided us with an estimation
of the diffusion constant based on our model and the
mEPSCs data, which represents a very interesting tool.
However, direct validation of this approach will require
simultaneous loose-patch recordings and single vesicle
tracking using real-time super-resolution microscopy, a
very challenging task. Histograms in Fig. 6L show the
frequency distribution of the estimated parameters for all
recordings, including «, A1, A5, D, as well as the computed
errors in o when the release series is simulated using fBm
(XerrfBm) and the diffusion-based model (errmoder)- These
latter indices suggest that the simulation approach based
on the full model pdf (i.e. without generation of fBm flight
series) might be less biased in terms of reproduction of the
power-law heavy-tail.

Effects of vesicle diffusion dynamics on action
potential evoked release based on a dynamic readily
releasable pool

We next decided to investigate whether the diffusion
dynamics of synaptic vesicles occurring before they dock
to the presynaptic membrane can affect the process of
evoked release as well. We can assume that whenever an
action potential reaches the presynaptic bouton and the
active site of release, a fraction of the recycling vesicles will
be found docked and ready to be released (the so-called
readily releasable pool, RRP). Based on the considerations
discussed at the very beginning of this article, we argued
that the RRP can increase over time due to diffusive vesicle
motions that lead to their docking to the AZ or can be
reduced by spontaneous vesicle fusions. The processes of
molecular priming that are supposed to occur between
docking and maturation of the vesicle in the RRP will
be neglected here because, besides being still debated,
they are thought to be very fast, in the order of milli-
seconds (and promoted by calcium entrance) (Neher &
Brose, 2018; Silva et al., 2021), and thus much faster
than the diffusion/release dynamics modelled here and the
stimulation frequency that will be adopted (0.5 Hz). The
same reasoning can be applied to the possible loose state of
the docking process that is supposed to allow the random
undocking of vesicles (Neher & Brose, 2018).

Based on these assumptions, in order to simulate
evoked fusion, we exploited a dataset of spontaneous
release series generated by the recycling process of n = 20
vesicles, with three different values of mean spontaneous
fusion time (Tfye; £ = 0.1, 1, 10 s), and five different values
of the Hurst exponent for the fBm (H =0.1, 0.25, 0.5, 0.75,
0.9). We then computed the putative RRP every 2 s, which
is the action potential stimulation period (Sim = 2 s):
RRP increases by 1 unit whenever a vesicle docks to the
membrane after its fBm diffusion, while it decreases by
1 unit after a vesicle spontaneously fuses. The resulting
time-varying RRP (named tRRP) will oscillate around an
average value, and these oscillations are likely to reflect the
power-law features of the fBm. We then generated evoked
release series with different evoked fusion probability
(p = 0.25, 0.5, 0.75) by using three different approaches:
(1) a standard binomial model where n was set as the
average tRRP; (2) an instantaneous binomial model where
N was equal to tRRP at the time of evoked release; and
(3) a direct fusion process where the number of released
vesicles equals tRRP, i.e. the same as setting p = 1. The
latter aims at modelling a hypothetical condition where all
the variability in quantal output is ascribed to the temporal
dynamics of the diffusion process: we wondered whether
such a model would be able to produce quantal analysis
results close to the ones produced by a classical binomial
model, providing specific characteristics of the fBm.

Figures 7-9 show the results of these simulations
through histograms displaying the frequency of evoked
transmission events for different numbers of vesicles
successfully released from the RRP. The three approaches
adopted are shown with different bars colours to facilitate
comparisons (blue: binomial model with N equal to
average RRP; green: binomial model with N equal to
tRRP; yellow: direct fusion of all tRRP vesicles). Fig. 7
shows the simulation results for the tRRP generated by a
sub-diffusive regime of motion and spontaneous release
(fBm with Hurst exponent H = 0.1), with varying p
(column of the panel) and w values (row of the panel). For
such a diffusive regime, which is very confined, increasing
i tends to saturate the RRP so that with u = 10 s
all recycling vesicles are available for evoked release.
For this reason, the binomial output almost coincides
between the instantaneous and the average RRP cases
for £ = 1 and 10 s (Fig. 7D-I). Nevertheless, when
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@ = 0.1 s a certain degree of mismatch between average
and instantaneous RRP binomials can be appreciated,
supporting the idea that the underlying diffusion and
spontaneous release process can significantly affect evoked
synaptic transmission (Fig. 7A-C). Interestingly, the
histograms obtained in the latter case tend to be very
similar to the one obtained with ‘direct’ fusion (i.e. without
binomial model), in terms of mean, variance and skewness
of the distribution, especially for p = 0.75 (Fig. 7C), thus
supporting the view that binomial variability might be
ascribed only to variability in RRP size, and that this can
account for the level of evoked release probability. Figure 8
shows the simulation results for the tRRP generated by a
Brownian motion and spontaneous release model (fBm
with Hurst exponent H = 0.5), with varying p and p

A B
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values. In this case, saturation is limited to © = 10 s
(Fig. 8G-I). Interestingly, Brownian dynamics seem to
be much more effective (compared to sub-diffusive ones)
in modulating the distribution of evoked release in all
cases (leading to more variability between average and
instantaneous RRP binomials), and this is particularly
appreciable for the lowest p value (0.1 s). For these
simulations it is even more clear that variability in evoked
release output could be well modelled by the dynamic RRP,
especially for P > 0.5 and i = 0.1 and 1 s (Fig. 8B-F),
e.g. for a broader range of physiological cases. Figure 8
shows the simulation results for the tRRP generated by a
super-diffusive regime of motion and spontaneous release
(fBm with Hurst exponent H = 0.9), with varying p and
w values. This case appears as another extreme condition
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Figure 7. Analysis of simulated series of evoked vesicle fusion with dynamic RRP loaded by sub-diffusive

(H = 0.1) vesicle motion

A-I, histograms showing the frequencies of evoked transmission events (stimulation period 2 s) with varying
number of vesicles present in the RRP, whose size is regulated by sub-diffusive motion/docking of 20 vesicles (fBm
with Hurst exponent H = 0.1) and their spontaneous fusion (see text for details). For each graph, blue bars show
data from a binomial model with N equal to the average RRP, green bars show data from a binomial model with
N equal to the instantaneous RRP (tRRP) and yellow bars show data from a p = 1 condition (fused vesicles = tRRP
at stimulation time). A-C, simulations with mean spontaneous fusion time (Ti,) # = 0.1 s and evoked fusion
probability p = 0.25 (A), 0.5 (B), and 0.75 (C). D-F, simulations with mean spontaneous fusion time (Tqse) # =15
and evoked fusion probability p = 0.25 (D), 0.5 (E), and 0.75 (F). G-/, simulations with mean spontaneous fusion
time (Tfyse) # = 10 s and evoked fusion probability p = 0.25 (G), 0.5 (H), and 0.75 (/). [Colour figure can be viewed

at wileyonlinelibrary.com]
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in which, opposite to what is shown in Fig. 7, saturation
toward an empty RRP occurs for u = 0.1 s (Fig. 7A-C).
Nevertheless, reasonably, this time saturation leads to a
higher impact of motion dynamics on evoked fusion: this
is expected since the output is strongly limited by RRP
replenishment. For most of the parameters adopted here,
‘direct’ fusion and binomial outputs almost perfectly over-
lap (e.g. Fig. 8F), or they could, with a shift of the mean
(Fig. 8G-I). In addition, the super-diffusion case produces
the strongest modulatory effect by the spontaneous release
process, as it can be appreciated by comparting blue and
green bars of histograms obtained with 4 =1 and 10 s
(Fig. 8D-I). Figures 10 and 11 show the histograms from
the simulations obtained using intermediate values of the
Hurst exponent H = 0.25 (sub-diffusive, Fig. 10) and 0.75

(super-diftusive, Fig. 11).
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Discussion

In this work, we developed a probabilistic model able
to simultaneously account for non-linear features and
non-homogeneity of the spontaneous synaptic trans-
mission process, based on simple biophysical assumptions
and, most importantly, on the diffusion dynamics of
single synaptic vesicles. To this end, we simulated a
stick and diffuse process where vesicles dock to the
presynaptic membrane, fuse spontaneously after an
exponentially distributed interval, are endocytosed to
be recycled with another exponential delay, and finally
diffuse following a fractional Brownian motion in the
presynaptic compartment, until they come back to the
docking site (Fig. 1A). The use of the fBm process allowed
us to model different conditions of vesicle diffusion,
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Figure 8. Analysis of simulated series of evoked vesicle fusion with dynamic RRP loaded by Brownian
(H = 0.5) vesicle motion

A, histograms showing the frequencies of evoked transmission events (stimulation period 2 s) with varying
number of vesicles present in the RRP, whose size is regulated by sub-diffusive motion/docking of 20 vesicles
(fBm with Hurst exponent H = 0.5, i.e. Brownian motion) and their spontaneous fusion (see text for details). For
each graph, blue bars show data from a binomial model with N equal to the average RRP, green bars show data
from a binomial model with N equal to the instantaneous RRP (tRRP) and yellow bars show data from a p = 1
condition (fused vesicles = tRRP at stimulation time). A-C, simulations with mean spontaneous fusion time (Tf,sa)
w=0.1sand evoked fusion probability p = 0.25 (A), 0.5 (B), and 0.75 (C). D-F, simulations with mean spontaneous
fusion time (Ts,se) 1 = 1 s and evoked fusion probability p = 0.25 (D), 0.5 (E), and 0.75 (F). G-/, simulations with
mean spontaneous fusion time (Ts,s) # = 10 s and evoked fusion probability p = 0.25 (G), 0.5 (H), and 0.75 (/).
[Colour figure can be viewed at wileyonlinelibrary.com]
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from sub-diffusive to super-diffusive regimes, by varying
Hurst exponent H (Fig. 1B). From the simulated series of
spontaneous release, we obtained log-binned histograms
that display clear deviations from the Poisson hypothesis,
with evident heavy tails (Fig. 2A). More specifically,
the resulting interval distributions seem to follow the
exponential case only for shorter intervals and the heavy
tail for longer ones, generating bounces at intermediate
ranges. Importantly, we were able to provide an analytical
derivation of the model in a closed form equation for
the limit case of H = 0.5, i.e. Brownian motion (eqn
(8); Fig. 1D). Such a model clearly demonstrates that
the heavy tail of interval distributions and its power-law
shape are produced by the diffusion process through the
Lévy distribution of vesicle return times. When we super-

J. Lamanna and others
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posed fusion events from several recycling vesicles with
mixed homogeneous or heterogeneous diffusion/fusion
properties (Fig. 3), the complexity of these distributions
even increased. Single bouton series have been previously
modelled as sums of two or three exponential components
(hyper-exponential distribution) (Abenavoli et al., 2000).
However, no exponential component can capture the
power-law heavy tail that we observed in our electro-
physiological recordings of spontaneous transmission at
single synaptic boutons while our model provided super-
ior fitting results (Fig. 6), which might be also valuable for
estimating diffusion properties of the presynaptic milieu.
Our ultrastructural analysis (Fig. 5) further supports
the capabilities of our model in predicting the motion
dynamics of vesicles undergoing fusion.
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Figure 9. Analysis of simulated series of evoked vesicle fusion with dynamic RRP loaded by

super-diffusive (H = 0.9) vesicle motion

A-l, histograms showing the frequencies of evoked transmission events (stimulation period 2 s) with varying
number of vesicles present in the RRP, whose size is regulated by super-diffusive motion/docking of 20 vesicles (fBm
with Hurst exponent H = 0.9) and their spontaneous fusion (see text for details). For each graph, blue bars show
data from a binomial model with N equal to the average RRP, green bars show data from a binomial model with
N equal to the instantaneous RRP (tRRP), and yellow bars show data from a p = 1 condition (fused vesicles = tRRP
at stimulation time). A-C, simulations with mean spontaneous fusion time (Ts,) # = 0.1 s and evoked fusion
probability p = 0.25 (A), 0.5 (B), and 0.75 (C). D-F, simulations with mean spontaneous fusion time (Tqse) # =15
and evoked fusion probability p = 0.25 (D), 0.5 (E), and 0.75 (F). G-/, simulations with mean spontaneous fusion
time (Tfyse) # = 10 s and evoked fusion probability p = 0.25 (G), 0.5 (H), and 0.75 (/). [Colour figure can be viewed

at wileyonlinelibrary.com]
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In addition, by applying fractal analyses, namely the
periodogram and the Allan factor, we obtained variable
degrees of power-law behaviour (Fig. 2E-H), as previously
found for real spontaneous release series (Lamanna
et al., 2011, 2015; Lowen et al., 1997). Hence, based
on our simulations and analyses, this model is able to
reproduce both deviation from the Poisson hypothesis
and power-law features for spontaneous quantal release
series, thus suggesting that both these features could
be related to diffusion processes going on inside the
presynaptic compartment, as was previously suggested
(Lamanna et al., 2015). Importantly, the Hurst exponent,
which can be estimated through our model starting
from experimental series, provides crucial information
about the dynamics of vesicles motion inside the pre-

Synaptic vesicle diffusion and exocytosis
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synaptic terminal. For instance, H > 0.5 (super-diffusion)
suggests that vesicles motion is facilitated by molecular
motors, while H < 0.5 (sub-diffusion) might indicate
an over-crowded environment, possibly characterized by
several vesicle clusters and low mobility, as well as by lack
of active transport.

Finally, we performed simulations of evoked exocytosis
based on a time-varying RRP, whose extension is regulated
by the spontaneous release process described above,
where a population of recycling vesicles intermittently
dock, fuse and diffuse in the presynaptic compartment.
Based on the analysis of synaptic transmission probability
on these evoked transmission series we showed that,
for certain values of the parameters, namely the Hurst
exponent, the average time of spontaneous fusion,
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Figure 10. Analysis of simulated series of evoked vesicle fusion with dynamic RRP loaded by

sub-diffusive (H = 0.25) vesicle motion

A-l, histograms showing the frequencies of evoked transmission events (stimulation period 2 s) with varying
number of vesicles present in the RRP, whose size is regulated by sub-diffusive motion/docking of 20 vesicles (fBm
with Hurst exponent H = 0.25) and their spontaneous fusion (see text for details). For each graph, blue bars show
data from a binomial model with N equal to the average RRP, green bars show data from a binomial model with
N equal to the instantaneous RRP (tRRP) and yellow bars show data from a p = 1 condition (fused vesicles = tRRP
at stimulation time). A-C, simulations with mean spontaneous fusion time (i) # = 0.1 s and evoked fusion
probability p = 0.25 (A), 0.5 (B), and 0.75 (C). D-F, simulations with mean spontaneous fusion time (Tqse) =15
and evoked fusion probability p = 0.25 (D), 0.5 (E), and 0.75 (F). G-/, simulations with mean spontaneous fusion
time (Tfyse) 1 = 10 s and evoked fusion probability p = 0.25 (G), 0.5 (H), and 0.75 (/). [Colour figure can be viewed

at wileyonlinelibrary.com]
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such RRP dynamics might be sufficient to explain
the large quantal variability in synaptic output without
any binomial assumption (i.e. assuming evoked fusion
probability p = 1). We also showed that, even assuming
a binomial model with p < 1 and a time-varying RRP,
the dynamics of the latter due to spontaneous activity
and vesicle diffusion can significantly affect the synaptic
output, and thus the estimation of p and N (where
N is assumed to be stable). More importantly, such a
result has deep implications in terms of emergence of
power-law behaviour and fractal features in synaptic
communication, and thus in neuronal activity in general,
as these features could possibly be ultimately ascribed
to vesicle diffusion, a microscopic-scale and very under-
rated process when dealing with large neuronal networks.

J. Lamanna and others

J Physiol 602.12

In addition, such an alternative viewpoint suggests
that the morphological properties of the presynaptic
milieu, including its crowding level, but also other
biophysical processes influencing vesicle motion, such as
molecular motors (Peng et al., 2012) and vesicle clusters
(Milovanovic & De Camilli, 2017; Reshetniak & Rizzoli,
2021), can have a direct impact on synaptic transmission
probability (Holt et al, 2004; Park et al., 2022). In
this context, several important physiological phenomena
that lead to changes in presynaptic release probability,
such as short-term and long-term potentiation, could
be explained at least partially by relatively durable
modifications of vesicle motion dynamics (Arikkath &
Reichardt, 2008; Bourne et al., 2013; Chenouard et al.,
2020; Schliiter et al., 2006; Staras et al., 2010).
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Figure 11. Analysis of simulated series of evoked vesicle fusion with dynamic RRP loaded by
super-diffusive (H = 0.75) vesicle motion

A-l, histograms showing the frequencies of evoked transmission events (stimulation period 2 s) with varying
number of vesicles present in the RRP, whose size is regulated by super-diffusive motion/docking of 20 vesicles
(fBm with Hurst exponent H = 0.75) and their spontaneous fusion (see text for details). For each graph, blue
bars show data from a binomial model with N equal to the average RRP, green bars show data from a binomial
model with N equal to the instantaneous RRP (tRRP) and yellow bars show data from a p = 1 condition (fused
vesicles = tRRP at stimulation time). A-C, simulations with mean spontaneous fusion time (Tyse) # = 0.1 s and
evoked fusion probability p = 0.25 (A), 0.5 (B), and 0.75 (C). D-F, simulations with mean spontaneous fusion
time (Truse) # = 1 s and evoked fusion probability p = 0.25 (D), 0.5 (E), and 0.75 (F). G-/, simulations with mean
spontaneous fusion time (Tsse) £ = 10 s and evoked fusion probability p = 0.25 (G), 0.5 (H), and 0.75 (/). [Colour
figure can be viewed at wileyonlinelibrary.com]
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Conclusions

In conclusion, we built a model of both spontaneous
and evoked synaptic transmission, based on vesicle
Brownian motions, that can reproduce several features of
experimental synaptic release series, including deviation
from the Poisson hypothesis and power-law behaviour.
These results provide support for a possible physio-
logical explanation of release process characteristics and
dynamics which are still poorly understood. We believe
that our model also supports the idea that the vesicular
diffusive motions in a crowded environment, and the
downstream RRP filling dynamics, are fundamental key
factors regulating the efficacy of synaptic transmission.

Appendix

Synaptic vesicle diffusion and exocytosis 2895

Future routes of investigation will include extending the
range of predictions of our model also to more complex
processes such as short- and long-term synaptic plasticity,
but also testing if different synaptic network topologies
can change the non-linear features of neurotransmission
(Schulte et al., 2018). The vast toolkit of methods now
avajlable to measure and manipulate synaptic trans-
mission will make it feasible to achieve such aims in the
near future (Lamanna, Ferro, et al., 2022). We hope that
our computational results will foster the acquisition of
novel experimental evidence to experimentally prove the
relationship among these players, as well as their effects on
neuronal communication.

Derivation of the closed-closed form expression for the model’s pdf with H = 0.5

The analytical solution to the convolution integral of eqn (7) was obtained using Wolfram Mathematica Integrate function
and assuming A; > 0 A X > 0 AC > 0 A x > 0. Then, a simpler form was derived as follows:
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By applying the Schwarz reflection principle to the complementary error functions with negative imaginary arguments

in eqn (A1), we get:
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which simplifies to the final expression reported in eqn (8):
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