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Abstract: Biliary tumors are rare diseases with major clinical unmet needs. Standard imaging modali-
ties provide neither a conclusive diagnosis nor robust biomarkers to drive treatment planning. In
several neoplasms, texture analyses non-invasively unveiled tumor characteristics and aggressiveness.
The present manuscript aims to summarize the available evidence about the role of radiomics in
the management of biliary tumors. A systematic review was carried out through the most relevant
databases. Original, English-language articles published before May 2021 were considered. Three
main outcome measures were evaluated: prediction of pathology data; prediction of survival; and
differential diagnosis. Twenty-seven studies, including a total of 3605 subjects, were identified. Mass-
forming intrahepatic cholangiocarcinoma (ICC) was the subject of most studies (n = 21). Radiomics
reliably predicted lymph node metastases (range, AUC = 0.729–0.900, accuracy = 0.69–0.83), tumor
grading (AUC = 0.680–0.890, accuracy = 0.70–0.82), and survival (C-index = 0.673–0.889). Textural fea-
tures allowed for the accurate differentiation of ICC from HCC, mixed HCC-ICC, and inflammatory
masses (AUC > 0.800). For all endpoints (pathology/survival/diagnosis), the predictive/prognostic
models combining radiomic and clinical data outperformed the standard clinical models. Some
limitations must be acknowledged: all studies are retrospective; the analyzed imaging modalities
and phases are heterogeneous; the adoption of signatures/scores limits the interpretability and
applicability of results. In conclusion, radiomics may play a relevant role in the management of
biliary tumors, from diagnosis to treatment planning. It provides new non-invasive biomarkers,
which are complementary to the standard clinical biomarkers; however, further studies are needed
for their implementation in clinical practice.

Keywords: radiomics; texture analysis; biliary tumors; cholangiocarcinoma; prognosis

1. Introduction

Biliary tumors are rare neoplasms (incidence: 0.3–6 cases per 100,000 inhabitants per
year) with a poor prognosis, i.e., a median survival shorter than one year if unresectable
and a five-year survival rate ranging from 10 to 40% if undergoing complete resection [1–3].
They encompass a wide range of diseases—from intrahepatic cholangiocarcinoma to peri-
hilar, gallbladder, and distal bile duct cancers—that have some distinctions: they differ in
terms of epidemiology, cells of origin, genetics, clinical presentation and management, and
prognosis [2]. Nevertheless, biliary tumors share some common characteristics [1,2]. In
detail, complete surgery is their only potentially curative treatment, but most patients are
diagnosed at an advanced stage and are unresectable [3–6]. Current systemic therapies have
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limited efficacy, while new promising targeted therapies and immunotherapies are under
evaluation [1,7]. When managing biliary tumors, clinicians have to face some major unmet
needs, first and foremost, the diagnosis. Standard imaging modalities cannot provide a con-
clusive differentiation between intrahepatic cholangiocarcinoma (ICC) and HCC, with few
exceptions [8–10]. In patients with biliary stenoses, the differential diagnosis between in-
flammatory diseases and malignant diseases is uncertain and sometimes remains unsolved,
even after percutaneous or endoluminal biopsies [11,12]. Second, in the current clinical
practice, reliable non-invasive biomarkers that predict tumor aggressiveness and the bene-
fits for patients from loco-regional treatment, namely surgery, are lacking [1–3,13,14]. The
selection of candidates for resection relies on the morphology of the neoplasms during imag-
ing, which scarcely correlates with their biology [3,15]. The most relevant prognosticators
can be evaluated only a posteriori on the surgical specimen [4,13,14].

In recent years, new approaches to medical imaging have been developed, based on
the analysis of the raw data of these images [16]. Among those, radiomics has been used
most broadly due to its easy application and high reproducibility [17]. Radiomics is the
high-throughput extraction of textural features from any imaging modality [17,18]. It relies
on the quantitative analysis of the texture and features of a segmented region of interest
through semi-automatic or automatic software. Radiomics translates imaging data into
indices derived from grey-level histograms, shape analyses, and second-order matrices.
The radiomic features of several tumors, based on patterns of pixels and voxels, have
demonstrated a strong association with the pathology data and prognosis [19–21]. Even if
the clinical applications of radiomic analyses are yet to be standardized, they could be a
breakthrough in the near future.

The present systematic review aims to summarize and critically analyze the available
evidence about the performance and potential clinical role of radiomics of biliary tumors.
We will focus on differential diagnosis, non-invasive assessment of the pathology data, and
prediction of long-term outcomes.

2. Materials and Methods

The authors performed a systematic search of articles pertinent to radiomics of biliary
tumors in PubMed, Science Citation Index, Embase, clinicaltrial.gov databases, and web
sources (Google Scholar). The following keywords were used: “cholangiocarcinoma” or
“biliary tumor” combined with “radiomics” or “textural analysis” or “texture analysis”
or “radiological features” or “voxel patterns”. All articles published before 30 April
2021 (including online first papers) were considered. The list of articles was screened for
duplicates; if present, these were removed. Titles and abstracts of the identified articles were
reviewed, and the following exclusion criteria were used: (a) full text in languages other
than English; (b) topic out of the scope of the present review; (c) preclinical studies with no
translational aspects (i.e., no experiments on human subjects); (d) phantom, analytical, or
simulation studies; (e) case reports; (f) editorials, commentaries, and reviews; (g) conference
proceedings. The studies including biliary tumors together with other tumors or mixed
forms (e.g., HCC/ICC) were retained only if the results of radiomics for biliary tumors
were separately provided. The full text of the selected articles was retrieved. If multiple
publications from the same research group/institution with significant overlap in terms
of aim(s) and population (>50%) were identified, only the study with the largest cohort
was included. The reference list of the selected articles was screened for potentially eligible
studies. The reference list of case reports, editorials, commentaries and reviews was also
screened for the same purpose. Two authors (FF and MS) evaluated all manuscripts; in
cases of discordance, a consensus was reached after discussion with a third author (LV).

The present project was registered in the PROSPERO database (https://www.crd.
york.ac.uk/prospero/, temporary registration number 288589, last accessed 1 December
2021). The systematic review was carried out according to the PRISMA (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses) guidelines (checklist available as
Supplementary Table S1) [22]. We did not formulate a PICO question because this was an
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explorative review about an innovative topic, and we planned to answer a general question
(the current role of radiomics in biliary tumors) rather than a specific one.

2.1. Quality Assessment

The quality of each study was independently assessed by two reviewers (MS and FF)
using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria [23].
As per QUADAS-2 scoring design, the risk of bias and the applicability were evaluated
for the following domains: “patient selection”, “index test”, and “reference standard”. In
the “flow and timing” domain, only the risk of bias was assessed. Based on the signaling
questions and the match of the paper with the review purpose, we defined both the “risk of
bias” and the “applicability” as “unclear” (0.5 points), “low” (0 points), or “high” (1 point).
In case of discordance, a third reviewer (LV) assessed the paper while blinded to previous
assessments to reach a final decision.

2.2. Data Collection

For each study, we collected the following data: (1) general features, including name of
the authors, institution, country, journal, and year of publication; (2) type of biliary tumor,
i.e., ICC, peri-hilar cholangiocarcinoma, gallbladder cancer, and extrahepatic bile duct
tumor; (3) study characteristics, including study design (e.g., retrospective, prospective,
etc.), sample size, funding, and conflicts of interest; (4) analysis of imaging modality
(ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), or
positron emission tomography-CT) and phases; (5) details of radiomics analysis, including
the software and the extracted features (first- and second-order ones); (6) reference standard;
(7) performances of radiomics. All data were cross-checked by at least three authors.

3. Results

After screening for duplicates and eligibility, 27 studies were included [24–50].
Figure 1 depicts the selection process. Most of the selected papers were published in
the last 18 months (n = 18, 67%), and three-fourths (n = 20) were written by Chinese authors.
All studies had a retrospective design. Regarding the imaging modality, eleven papers
analyzed CT [24,25,32,37,39,42–44,46,48,49], ten MRI [27,28,30,33–35,38,40,45,47], three per-
cutaneous ultrasonography (US) [29,36,50], and three multiple imaging modalities (CT and
MRI) [26,31,41]. Most studies considered ICC (n = 21); the remaining studies analyzed the
following tumor sites: extrahepatic biliary tumor (EBDT, n = 2) [27,30]; peri-hilar cholan-
giocarcinoma (n = 2) [43,45]; gallbladder tumor (n = 1) [50]; and mixed biliary tumors
(n = 1) [48]. The mean number of patients was 133 (range, 17–345), and the treatment of the
analyzed population was surgery in most studies. All studies but one considered both first
and second order radiomic features, and 20 out of 27 (74%) studies provided a validation
of the proposed predictive/prognostic model. The data from the papers are summarized in
Table 1.

For the qualitative synthesis, three groups of studies were identified according to their
subject: (1) prediction of pathology data; (2) prediction of survival; (3) differential diagnosis
between malignant biliary tumors and other diseases. In the first group (prediction of
pathology data), we included one paper analyzing the response to radioembolization [42].
In the second group (prediction of survival), we included one paper focusing on the
prediction of futile surgery (explorative laparotomy or R2 surgery) [37].

Inter-observer and/or intra-observer agreements were mentioned in 13 studies (48%).
Eight studies reported the values of the Cohen’s kappa or intraclass correlation coefficient
with a value over 0.80 in all but one study (range, 0.53–0.98) [26,27,30,34,37,40,44,49].
In six papers, the values of agreement were used to select the radiomics features, with
heterogeneous threshold values for acceptance (range, 0.55–0.90) [39,40,45–48].

Considering the quality assessment, the QUADAS-2 score demonstrated a low risk
of bias and a good applicability across studies. The highest risk of bias was in the patient
selection domain, the risk being high in fifteen studies (56%) and unclear in two (7%).
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No study had a high risk of bias in the index test or in the reference standard domains.
Considering flow and timing, only two studies (7%) had a high risk of bias. The complete
assessment is detailed in Table 2.
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Table 1. Details of the analyzed studies.

# Author Year Patients Tumor Site
Imaging
Modality Analyzed Series Second-Order

Features
Study

Design Validation Surgery
Analyzed Outcome

Diagnosis Pathology Prognosis

1 Sadot E [24] 2015 25 ICC CT PVP Y R N N N Y N

2 Choi TW [50] 2018 136 GB polyps US - Y R N Y Y N N

3 Liang W [35] 2018 209 ICC MRI AP Y R Y Y N N Y

4 Xu L [38] 2019 148 ICC MRI T1-weighted contrast-enhanced Y R Y Y N Y N

5 Xu L [41] 2019 332 ICC CT/MRI NR Y R Y Y N Y Y

6 Ji GW [48] 2019 274 Mixed CT PVP Y R Y Y N Y Y

7 Lewis S [33] 2019 17 ICC MRI DWI N R N N Y N N

8 Zhao L [34] 2019 47 ICC MRI T2 fat suppr, AP, PVP, LP Y R Y Y N N Y

9 Ji GW [25] 2019 155 ICC CT AP Y R Y Y N Y Y

10 King MJ [26] 2020 73 ICC CT/MRI CT: AP, PVP
MRI: AP, PVP, EP, LP, DWI Y R N Y N Y Y

11 Yang C [27] 2020 100 EBDT MRI T1WI, T2WI, DWI Y R Y Y N Y N

12 Zhang J [28] 2020 98 ICC MRI AP, PVP Y R Y Y N Y Y

13 Peng Y [29] 2020 128 ICC US - Y R Y Y N Y N

14 Yao X [30] 2020 110 EBDT MRI T1WI, T2WI, DWI, ADC Y R Y Y N Y N

15 Zhang J [32] 2020 123 ICC CT AP, PVP Y R Y Y Y N N

16 Peng Y [36] 2020 89 ICC US - Y R Y Y Y N N

17 Mosconi C [42] 2020 55 ICC CT AP, PVP, LP Y R N N N N Y

18 Zhang J [40] 2021 78 ICC MRI AP, PVP, unenhanced T1W1, T2WI, DWI Y R N Y N Y N

19 Qin H [43] 2021 274 PHCC CT AP, PVP, DP, EP Y R Y Y N N Y

20 Chu H [37] 2021 203 ICC CT PVP Y R Y Y N N Y

21 Liu X [31] 2021 24 ICC CT/MRI 4 CT phases + 9 MRI phases Y R N N Y N N

22 Xue B [39] 2021 53 ICC CT AP Y R Y Y Y N N

23 Zhu Y [44] 2021 138 ICC CT Basal, AP, PVP, LP Y R Y Y N Y N

24 Zhao J [45] 2021 184 PHCC MRI AP and PVP Y R Y Y N N Y

25 Xue B [46] 2021 61 ICC CT AP and PVP Y R Y Y Y N N

26 Zhou Y [47] 2021 126 ICC MRI T2 fat suppr, T1 in-phase and opposed
phase, DWI, basal, AP, PVP, DP Y R Y Y N Y N

27 Park HJ [49] 2021 345 ICC CT AP, PVP Y R Y Y N N Y

ICC: intrahepatic cholangiocarcinoma; GB: gallbladder; PHCC: peri-hilar cholangiocarcinoma; EBDT: extrahepatic biliary tumor; CT: computed tomography; MRI: magnetic resonance
imaging; US: ultrasound; Y: yes; N: no; NR: not reported.
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Table 2. QUADAS-2 score of the analyzed studies.

First Author Patient Selection Bias
Risk Index Test Bias Risk Reference Standard

Bias Risk
Flow and Timing Bias

Risk
Patient Selection

Applicability
Index Test

Applicability
Reference Standard

Applicability

Sadot E, 2015 [24] L U U L L L L

Choi TW, 2018 [50] L L L U L L L

Liang W, 2018 [35] H L L U L L L

Xu L, 2019 [38] H L L U L L L

Xu L, 2019 [41] U U U U L U L

Ji GW, 2019 [48] H L L L H L L

Lewis S, 2019 [33] H L L H L H L

Zhao L, 2019 [34] H L L U L L L

Ji GW, 2019 [25] L L L L L L H

King MJ, 2020 [26] H L L H L H L

Yang C, 2020 [27] L L L U L L L

Zhang J, 2020 [28] H U U L L L L

Peng Y, 2020 [29] H U U L L H L

Yao X, 2020 [30] L L L L L L L

Zhang J, 2020 [32] H L L U L L L

Peng Y, 2020 [36] H U U L L H L

Mosconi C, 2020 [42] L L L L H L L

Zhang J, 2021 [40] H U U L L L L

Qin H, 2021 [43] U L L L H L L

Chu H, 2021 [37] H U U L L L L

Liu X, 2021 [31] L L L L L H L

Xue B, 2020 [39] L L L U L U L

Zhu Y, 2021 [44] H L L L L L L

Zhao J, 2021 [45] L L L L L L L

Xue B, 2021 [46] L L L L L L L

Zhou Y, 2021 [47] H U U L H L L

Park HJ, 2021 [49] H L L U L L L

Risk of bias: U, unclear; L, low; H, high.
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3.1. Prediction of Pathology Data

Fourteen papers analyzed pathology data: ten analyzed ICC [24–26,28,29,38,41,42,44,47],
three analyzed EBDT [27,30,48], and one analyzed gallbladder cancers [48]. Six papers con-
sidered the lymph node metastases [25,27,30,38,41,48], four the tumor grading [26,27,29,30],
two the microscopic vascular invasion [29,47], and six the other pathology
data [24,26,28,29,40,44]. One study analyzed the capability of radiomics to predict the
response to transarterial radioembolization (TARE) of ICC [42]. The reference standard
was the surgical specimen in ten papers [25–28,30,38,40,41,44,48], the surgical specimen
or tumor biopsy in two papers [29,47], the biopsy in one paper [24], and the radiological
response evaluated at the post-treatment imaging in one paper (the paper focusing on TARE
for ICC) [42]. Twelve out of the fourteen studies reported the predictive performances of a
radiomic signature/score combining multiple textural features [25,27–30,38,40–42,44,47,48].

Radiomics predicted lymph nodes metastases with good performances, with AUC
ranging from 0.729 to 0.900 and accuracy from 0.690 to 0.830 [27,30,38]. In a series of
155 ICC patients, Ji et al. observed that the radiomic model performed better than the
clinical one (AUC = 0.871 vs. 0.722) [25]. Three studies, including the previous one (155 ICC,
148 ICC, and 274 mixed biliary tumors, respectively), considered a model combining
radiomics with clinical and/or radiological data (Ca19-9 value + N status at CT [25], Ca
19-9 value + N status at MRI [38], or N status at CT [48]). All combined models had high
AUC values (0.892, 0.870, and 0.800, respectively), and outperformed the pure clinical
models (AUC = 0.722, 0.787, and 0.730) with a clinical net benefit.

Considering tumor grading, the results were discordant. King et al. observed no
association [26], while three studies reported an adequate AUC and accuracy of radiomic
scores (AUC = 0.680–0.890, accuracy = 0.70–0.82) [27,29,30]. Considering microvascular
invasion, radiomics extracted from US had poor performances (AUC = 0.699) [29], while
those extracted from MRI had much better results (126 ICC patients, AUC = 0.873 and
accuracy = 0.850) [47]. Table 3 summarizes the models and results of the analyzed studies.

Radiomics have also been associated with IDH1 and IDH2 status, PD-1 and PDL1,
VEGF, EGFR status, and immunophenotype [24,28,29,40,44]. Data are summarized in
Supplementary Table S2. One Italian study [42] reported that the textural features extracted
from the arterial phase (mean of grey levels and GLCM homogeneity) and delayed phase
(skewness, kurtosis, and GLCM dissimilarity) of pre-TARE CT may predict the response to
treatment with a good performances (AUC = 0.896).
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Table 3. Pathology data: lymph node metastases, tumor grading and microscopic vascular invasion.

Radiomic model Combined Model

Author
Diagnosis

Imaging
N◦ Patients Radiomic Features AUC (95% CI)

Training/Validation
Accuracy (95% CI)

Training/Validation Variables AUC (95% CI)
Training/Validation

Accuracy (95% CI)
Training/Validation

Lymph Node Metastases

Ji GW, 2019 [25]
ICC

CT
N = 155

Score (kurtosis,
GLDM_SDE,

GLCM_Contrast,
RLNU, and GLNU)

0.823
(0.739–0.907)/0.871

(0.775–0.968)

Radiomics + Ca19-9 +
N status at CT

0.846
(0.768–0.925)/0.892

(0.810–0.975)

Yang C, 2020 [27]
EBDT

MRI
N = 100 Signature (no details) 0.880/0.900 0.814/0.833

Yao X, 2020 [30]
EBDT

MRI
N = 110 Signature (no details) 0.904/0.889 0.836/0.812

Xu L, 2019 [38]
ICC

MRI
N = 148

Score (GLCM, GLSZM
wavelet transforms)

0.788
(0.698–0.862)/0.787

(0.634–0.898)
0.736/0.691 Radiomics + Ca19-9 +

N status at MRI

0.842
(0.758–0.906)/0.870

(0.730–0.953)
0.726/0.786

Xu L, 2019 [41]
ICC

CT/MRI
N = 332

Signature (no
significant features) 0.704/0.729

Ji GW, 2019 [48]
Mixed BT

CT
N = 274

Signature
(shape_MinorAxis,

firstorder_Skewness,
glszm_ZoneEntropy)

0.790
(0.730–0.860)/0.770

(0.660–0.880)

Radiomics +
N status at CT

0.810
(0.750–0.870)/0.800

(0.700–0.900)

Tumor grading

King MJ, 2020 [26]
ICC

CT/MRI
N = 73 No association

Yang C, 2020 [27]
EBDT

MRI
N = 100 Signature (no details) 0.780/0.800 0.699/0.710

Peng Y 2020 [29]

ICC

US
N = 128

Score (kurtosis,
skewness) 0.732/0.712 0.735/0.722

Yao X, 2020 [30] EBDT MRI
N = 110 Signature (no details) 0.891/0.846 0.826/0.809

Microscopic vascular invasion

Peng Y, 2020 [29]
ICC

US
N = 128 Score (IQRs) 0.699/0.756 0.848/0.684

Zhou Y, 2021 [47]
ICC

MRI
N = 126

Score (GLDM, ZP,
GLRLM, skewness, and

mean)

0.873
(0.796–0.950)/0.850

(0.709–0.991)
0.863/0.868

ICC: intrahepatic cholangiocarcinoma; EBDT: extrahepatic biliary tumor; BT: biliary tumors; CT: computed tomography; MRI: magnetic resonance imaging; US: ultrasound; AUC: area
under the curve; CI: confidence intervals.
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3.2. Prediction of Survival

Thirteen studies analyzed the role of radiomics in predicting the survival of patients
with biliary tumors. Of those, eight focused on overall survival [25,26,28,40,42,45,48,49], five
on recurrence-free survival [25,26,42,48,49], and four on early recurrence risk [34,35,41,43].
One additional paper analyzed the capability of radiomics to predict futile surgery, i.e.,
R2 resection or explorative laparotomy in candidates to surgery [37]. All studies analyzed
the performances of a radiomic signature/score combining multiple textural features into
a single parameter. Seven papers demonstrated that radiomics leads to a clinical net
benefit [25,28,34,35,43,48,49].

3.2.1. Overall Survival

Of the eight studies about overall survival, six concerned ICC [25,26,28,40,42,49], one
peri-hilar tumors [45], and one mixed biliary cancers [48]. Two papers failed to demonstrate
an association between textural features and survival [26,42]. The remaining six papers
demonstrated the prognostic value of radiomics but reported heterogeneous data: three
studies detailed the C-index of the radiomic model, with intermediate performances re-
ported in two studies (98 and 78 ICC patients with MRI-based data, C-index = 0.673 and
0.700, respectively) [28,40] and a high performance in one study (184 peri-hilar cholan-
giocarcinoma patients with MRI-based data, C-index = 0.877 in the training dataset and
0.756 in the validation one) [45]; two studies mentioned the radiomic signatures as inde-
pendent prognosticators (hazard ratio) but did not detail the C-index of the model [25,48];
and one study reported neither the C-index nor the hazard ratio [49].

Three studies [28,45,49] compared the performances of the radiomic model with those
of the models combining radiomics with clinical, radiological, and pathology data. The
first two studies concerned ICC: (1) Zhang et al. (98 patients) demonstrated a preopera-
tive model considering radiomic features extracted from MRI and imaging classification
(parenchymal/ductal tumor); the CEA values had performances similar to the pathology-
based model (PD-1 and PD-L1 expression, C-index = 0.721) [28]; (2) Park et al. (345 patients)
reported that a clinical-radiological model based on tumor contour, tumor multiplicity,
periductal tumor infiltration, extrahepatic organ invasion, and suspicion of LN metastases
had similar performances to the radiomic study based on CT, but the combination of the two
led to better performances (C-index = 0.680, +0.06) [49]. For peri-hilar tumors, Zhao et al.
(184 patients) demonstrated that the addition of radiomics extracted from MRI to standard
prognosticators (preoperative CEA values, radiological N stage, and invasion of hepatic
artery at imaging) increased the C-index of the prognostic model (+0.12 in the training
dataset and +0.06 in the validation one, C-index = 0.962 and 0.814, respectively) [45].

Table 4 summarizes the models and results of the analyzed studies.

3.2.2. Recurrence-Free Survival

Of the five studies concerning recurrence-free survival (RFS), four considered
ICC [25,26,42,49] and one gallbladder cancer and EBDT [48]. All studies reported an
association between textural features and RFS, but only one study mentioned the C-index
(0.690) [49]. The latter study (345 ICC patients, CT-based radiomics) compared the per-
formances of the radiomic model with those of a combined clinical, radiological, and
radiomic model [49]. As observed for overall survival, the clinical–radiological model
(tumor contour, tumor multiplicity, periductal tumor infiltration and extrahepatic organ
invasion, suspicion of LN metastases) had similar performances to the radiomic model, but
the combination of the two led to an increase in the C-index value (+0.06 in both the training
and validation datasets, C-index = 0.750 and 0.710, respectively). Table 4 summarizes the
models and results of the analyzed studies.

3.2.3. Early Recurrence

Of the four studies concerning early recurrence after the surgery of biliary tumors,
three considered ICC [34,35,41] and one peri-hilar cholangiocarcinoma [43]. Early recur-
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rence was defined as any recurrence that occurred within 2 years [34,35] or within 1 year
from surgery [41,43]. In all studies, radiomics achieved good performances, with the
AUC ranging from 0.742 to 0.889. Zhao L et al. (47 ICC patients) demonstrated that
the clinical model (enhancement pattern at MRI + VEGFR) had the lowest performance
(AUC = 0.798, accuracy = 0.702), the radiomic model had an intermediate performance
(0.889 and 0.809, respectively), and the combination of the two has the highest performance
(0.949 and 0.872, respectively) [34]. Two additional studies (209 ICC patients with MRI-
based radiomics; and 274 peri-hilar cholangiocarcinoma patients with CT-based radiomics,
respectively) reported higher performances of the model combining clinical and radiomic
data in comparison with both the radiomic-only and clinical-only models (at external
validation, AUC = 0.860 and 0.861, respectively) [35,43]. Table 5 summarizes the models
and results of the analyzed studies.

3.3. Differential Diagnosis

Seven studies analyzed the role of radiomics in the differential diagnosis of biliary
tumors from other diseases [31–33,36,39,46,50]. Six papers considered ICC [31–33,36,39,46],
and one focused on gallbladder polyps [50]. Three studies analyzed CT [32,39,46], two
percutaneous US [36,50], one MRI [33], and one both CT and MRI [31]. The standard for
reference was the surgical specimen in five papers [32,36,39,46,50], and the liver biopsy in
two [31,33].

Three studies focused on the differential diagnosis between HCC and ICC/mixed
HCC–ICC [31,33,36], while three studies focused on the differential diagnosis between
ICC and mixed HCC–ICC [31,32,36]. Radiomics achieved good performances with AUC
ranging from 0.700 to 0.854. Two studies compared the performances of the radiomic model
with those of a combined clinical, radiological, and radiomic model: (1) Lewis et al. (17 ICC
vs. 36 HCC, MRI-based radiomics) reported an AUC increase of 0.100 in the differential
diagnosis of ICC from HCC by adding radiomics to the patient’s gender and LI-RADS
criteria (AUC = 0.900, accuracy = 0.800) [33]; (2) Zhang et al. (123 ICC vs. 66 mixed HCC–
ICC, CT-based radiomics) reported an AUC increase of 0.140 for the differential diagnosis
of mixed HCC-ICC by adding radiomics to the patients’ gender, AFP value, presence of
hepatitis B viral infection, and intratumoral necrosis (AUC = 0.942) [32]. The combined
model had superior performances to both clinical- and radiomic-only models.

Two papers focused on the differential diagnosis between ICC and benign diseases
(intrahepatic lithiasis and inflammatory masses) [39,46]. They compared 53 and 61 patients
affected by ICC with 78 and 84 patients affected by a benign disease, respectively. The
radiomic features were extracted from CT in both studies and had good discriminatory
capabilities (AUC over 0.800 both in training and validation datasets). However, the best
performances were achieved when the radiomic model was combined with the clinical
data (CEA and CA 19-9 in both studies, fever in one), outperforming the clinical- and
radiomic-only models (AUC = 0.879 and 0.843, respectively, in the validation datasets).

One study (136 patients) focused on gallbladder polyps [50]. It reported that the
polyps with a higher skewness (cut-off value = 0.24) and a lower GLCM contrast (cut-off
value = 24.6), evaluated with percutaneous US, had an increased risk of adenocarcinoma.
The presence of at least one radiomic feature led to a diagnostic accuracy of 0.808. When
combined with clinical data (sessile polyp and polyp size), the accuracy increased to
0.885–0.910.
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Table 4. Survival data: overall and recurrence-free survival.

Radiomics Combined Model

Author
Diagnosis

Imaging
N◦ pts Signature/Parameter C-Index (95% CI)

Training/Validation HR (95% CI) Data Details C-Index (95% CI)
Training/Validation Comparison

Overall Survival

Ji GW, 2019 [25]
ICC

CT
N = 155

Score (kurtosis,
GLDM_SDE,

GLCM_Contrast, RLNU,
GLNU)

3.650 (1.950–6.830)

King MJ,2020 [26]
ICC

CT/MRI
N = 73

Measure of correlation
and ADCmin NR NR

Zhang J, 2020 [28]
ICC

MRI
N = 98

AP: LRE, LRHGE,
LRLGE, RLNU, SRE 0.673 3.721 (2.210–6.265) Radiomics + Clinical

Imaging classification
(Parenchymal/ductal)

CEA
0.721 (0.658–0.783)

Combined better than
radiomic and

pathology (PD-1,
PD-L1, CEA)

Zhang J, 2021 [40]
ICC

MRI
N = 78

AP: wavelet-
HLH_firstorder_Median 0.700 (0.570–0.820)

Mosconi C, 2020
[42]
ICC

CT
N = 55 No association

Zhao J, 2021 [45]
PHCC

MRI
N = 184

Score:
AP (Kurtosis, Correlation,

Homogeneity, GLNU,
HGRE, Surfac/Volume)

PVP (Correlation,
SRHGE)

0.877
(0.774–0.979)/0.756

(0.615–0.897)

Radiomics + Clinical
Radiological

CEA, N stage at imaging,
invasion of hepatic artery at

imaging

0.962 (0.905–1)/
0.814 (0.569–1)

Combined better than
clinical and radiomic

(clinical similar to
radiomic)

Ji GW, 2019 [48]
Mixed BT

CT
N = 274

Score (GLSZM_Zone
Entropy, Skewness, Minor

Axis)
3.370 (1.920–5.910)

Park HJ, 2021 [49]
ICC

CT
N = 345

Score (GLCM_Entropy,
GLDZM_HGE, Mean)

Radiomics + Clinical
Radiological

Tumor contour, multiplicity,
periductal tumor infiltration,
extrahepatic organ invasion,
suspicion of LN metastases

0.750/0.680 Combined better than
clinical-radiological

Recurrence-free Survival

Ji GW, 2019 [25]
ICC

CT
N = 155

Score (kurtosis,
GLDM_SDE,

GLCM_Contrast, RLNU,
GLNU

2.770 (1.580–4.840)

King MJ,2020 [26]
ICC

CT/MRI
N = 73 MRI variance 0.550 (0.310–0.970)
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Table 4. Cont.

Radiomics Combined Model

Author
Diagnosis

Imaging
N◦ pts Signature/Parameter C-Index (95% CI)

Training/Validation HR (95% CI) Data Details C-Index (95% CI)
Training/Validation Comparison

Mosconi C, 2020
[42]
ICC

CT
N = 55

Signature (mean, kurtosis,
skewness,

GLCM_Homogeneity,
GLCM_Dissimilarity)

0.460 (0.220–0.950)

Ji GW, 2019 [48]
Mixed BT

CT
N = 274

Score (GLSZM_Zone
Entropy, Skewness, Minor

Axis)
1.980 (1.260–3.120)

Park HJ, 2021 [49]
ICC

CT
N = 345

Score (GLCM_Entropy,
GLDZM_HGE, Mean)

0.690
(0.660–0.750)/0.680

(0.610–0.740)

Radiomics + Clinical
Radiological

Tumor contour, multiplicity,
periductal tumor infiltration,
extrahepatic organ invasion,
suspicion of LN metastases

0.750
(0.720–0.790)/0.710

(0.640–0.770)

Combined better than
radiomic and

clinical-radiologic.
Clinical-radiological
similar to radiomic

ICC: intrahepatic cholangiocarcinoma; PHCC: peri-hilar cholangiocarcinoma; BT: biliary tumors; CT: Computed tomography; MRI: Magnetic resonance imaging; Pts: patients; HR:
hazard ratio; CI: confidence intervals; NR: not reported; AP: arterial phase; LP: late phase.

Table 5. Early recurrence.

Author
Diagnosis

Imaging
N◦ pts

Radiomics Combined Model

Signature/Parameter AUC (95% CI)
Training/Validation

Accuracy (95% CI)
Training/Validation Data AUC (95% CI)

Training/Validation
Accuracy (95% CI)

Training/Validation Comparison

Zhao L, 2019 [34]
ICC

MRI
N = 47

Radiomic model (AP skewness; PVP
variance; AP_Cluster-

Shade_AllDirection_offset7_SD;
AP_GLCMEntropy_angle45_offset7)

0.889 (0.783–0.996) 0.809
Radiomics +

Enhancement pattern,
VEGFR

0.949 (0.894–1.000) 0.872 (0.743–0.952)
Combined better than
clinical, radiomics and
pathological models

Liang W, 2018 [35]
ICC

MRI
N = 209

Radiomics score (LRE, HGZE, Mean,
GLCM_energy, and SZE)

0.820 (0.740–0.880)/
0.750 (0.680–0.810) *
0.770 (0.650–0.860) **

Radiomics +
TNM

0.900 (0.830–0.940)/
0.840 (0.780–0.890) *
0.860 (0.760–0.930) **

Combined better than
radiomic model

Xu L, 2019 [41]
ICC

CT/MRI
N = 332 Score (not detailed) 0.742 (0.666–0.809)/

0.789 (0.655/0.889) 0.749/0.743

Qin H, 2021 [43]
PHCC

CT
N = 274

AP: S(3,3)AngScMom,
motion_S(5,5)SumEntrp,
disk_135dr_RLNonUni

PP: S(5,-5)SumEntrp,
motion_S(2,-2)SumEntrp,

motion_S(0,4)Correlat
VP: motion_S(0,5)DifVarnc,

motion_S(2,-2)DifVarnc,
disk_S(3,3)Entropy

0.805/
0.719 *
0.714 **

0.737
0.671 *
0.649 **

Radiomics +
Grading, N status, CA

19-9, Enhancement
pattern

0.883/
0.867 *
0.861 **

0.826/
0.757 *
0.757 **

Combined better than
clinical and radiomic

models

ICC: intrahepatic cholangiocarcinoma; PHCC: peri-hilar cholangiocarcinoma; CT: computed tomography; MRI: magnetic resonance imaging Pts: patients; * internal validation;
** external validation; AP: arterial phase; PP: portal phase; VP: venous phase; AUC: area under the curve; CI: confidence intervals.
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4. Discussion

During the most recent years, the radiomics of the biliary tumors, mainly of ICC, has
been the subject of major research. As previously reported for other neoplasms [16,18–20],
textural features had an association with both pathology data and survival and allowed
for their accurate prediction. The combination of clinical and radiomic data into a single
predictive/prognostic model achieved the best performances, outperforming those of
pure clinical models. Radiomics could also contribute to the differential diagnosis of
ICC from HCC, mixed ICC–HCC, and inflammatory masses. Notwithstanding this, the
heterogeneity of studies (imaging modalities, phases, and software) and the adoption of
radiomic signatures/scores preclude the immediate applicability of results to the current
clinical practice.

The strength of radiomics relies on its capability to easily extract pixel and voxel
patterns from standard imaging modalities, which may predict tumor biology and prog-
nosis [17,51]. Several studies regarding radiomics in oncology have been published, but,
unfortunately, the quality of evidence was very low in most cases [19,20,52]. For biliary
tumors, the present review outlined a more favorable scenario. Even if all the 27 papers
were retrospective, some merits can be highlighted. First, the QUADAS score demonstrated
a low risk of bias. Second, the analyzed studies collected a large number of patients af-
fected by rare diseases (≥100 patients in 16 studies). Third, a publication bias cannot be
excluded, but negative results were also reported [26,42]. Fourth, several analyses provided
a validation of the proposed predictive/prognostic model, even an external one in some
cases [39,46,49]. Finally, ten authors demonstrated a clinical net benefit derived from the
application of radiomics to their cohorts [25,32,34,35,38,39,43,46,48,49].

Radiomics provided a reliable prediction of pathology data and survival in most
studies [25–30,34,35,38,40,41,43,45,47–49]. Evidence mainly concerned ICC. Both CT- and
MRI-based analyses had good performances, and the most informative phases were the
arterial and portal phrases of the two imaging modalities and the diffusion-weighted
imaging of MRI. The heterogeneity of analyzed imaging modalities and textural features
limits the possibility of drawing more specific conclusions, but two additional data deserve
consideration. Firstly, among the first-order features, entropy, kurtosis, and skewness were
the most relevant and commonly reported features [25,29,34,42,43,45,47–50]. Those results
are in line with the literature: in many tumors, entropy and kurtosis have been associated
with tumor aggressiveness [20,53,54]. Entropy reflects the information content of a given
area/volume, i.e., the complexity of values’ distribution in the region of interest. Kurtosis
represents the spread of the Hounsfield values around the median, and a greater kurtosis
indicates a larger spread. Skewness measures the asymmetry of the distribution of the voxel
values. Such parameters depict the tumor heterogeneity and presence of necrotic and hyper-
vascularized areas, which in turn, correlate with ICC aggressiveness [55,56]. In fact, entropy,
kurtosis, and skewness predicted all relevant aspects of the biology of biliary tumors, i.e.,
tumor grading [29], lymph node metastases [25,48], microscopic vascular invasion [47],
and overall and progression-free survival [25,34,42,45,48,49]. Secondly, several studies
demonstrated that the combination of clinical data with radiomic features achieved the best
predictive/prognostic performances, outperforming the clinical-only and radiomic-only
models [25,28,34,35,43,45,48,49]. The textural features integrate and do not replace clinical
data, probably because the two convey different information.

The capability of radiomics to predict tumor behavior is clinically relevant because
biliary tumors are aggressive diseases with few non-invasive biomarkers [1,2]. To date,
the selection of candidates for surgery relies on morphological criteria (i.e., number, size,
and pattern of tumors) and tumor markers’ values, which have a limited association with
tumor biology [3,15]. The most relevant prognosticators can be assessed only a posteriori
in the surgical specimen (e.g., microvascular invasion, tumor grading . . . ), precluding
the possibility of defining a priori the best therapeutic strategy [4,13,14]. Radiomics has
the potential to refine and anticipate prognosis estimation and, consequently, personalize
treatment planning. In the near future, the implementation of AI-based software will ease
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the implementation of radiomic analyses into advanced multiparameter predictive models,
fully exploiting their potential.

The clinicians could also benefit from the contribution of radiomics for the differential
diagnosis of liver masses. Even if radiological hallmarks of HCC and ICC were widely
depicted [57–60], a biopsy is still recommended for all hepatic tumors except for those with a
typical HCC pattern (wash-in/wash-out) arising in cirrhotic patients under surveillance [8].
Even this exception has been recently questioned by the evidence of some ICC with
enhancement patterns identical to HCC [9,10,61]. The radiomic analysis of liver tumors
was able not only to distinguish HCC from ICC with adequate performances, which were
excellent when the textural features were combined with the clinical data, but also to
identify mixed ICC–HCC forms [31–33,36]. Lewis et al. reported that tumor radiomics may
improve the discrimination capability of LI-RADS score [33]. A standardized non-invasive
radiomic-based diagnosis is fascinating and should be pursued in future research. Textural
features have been also used to distinguish ICC from inflammatory masses [39,46]. Such
patients are difficult to manage because a liver biopsy cannot completely exclude small
neoplastic foci, and treatment often requires major resections with a non-negligible risk [62].
Radiomics had excellent reliability in distinguishing the two (ICC vs. inflammatory masses),
especially when textural and clinical data were combined (AUC > 0.85) [39,46].

Biliary tumors are often associated with biliary alterations that could influence ra-
diomic analyses. ICC may infiltrate intrahepatic ducts and lead to peripheral biliary dilation.
In the case of large heterogeneous tumors, dilation could be difficult to distinguish from the
neoplasm and could be mistakenly included in the segmented region of interest. The limit
between the tumor and biliary dilation is not an issue for peri-hilar cholangiocarcinoma
and EBDT, but the segmentation of tumors with an infiltrative pattern along the bile ducts
or associated with a severe inflammation could be difficult. Of course, only the imaging
modalities performed before any biliary drainage can be considered. In patients with
multiple stenoses (e.g., those with sclerosing cholangitis), the identification of the target
lesion is also difficult. The presence of stones could be an additional confounder. The role
of radiomics in such patients requires specific evaluations, even if, as mentioned previously,
two preliminary studies reported a good capability of textural features to distinguish in-
flammatory stenoses, intrahepatic lithiasis, and ICC [39,46]. It is certain that such a complex
disease presentation requires segmentation by expert radiologists and likely precludes the
adoption of unsupervised automatic segmentation protocols.

The available studies have some limitations. The term “biliary tumors” encompasses
heterogeneous diseases (intrahepatic cholangiocarcinoma; peri-hilar cholangiocarcinoma;
gallbladder cancer; and distal bile duct cancer), but only a few papers focused on neoplasms
other than ICC (two papers analyzed peri-hilar cholangiocarcinoma, two extrahepatic
tumors, one gallbladder polyps, and one mixed biliary tumors) [27,30,43,45,48,50]. Fur-
thermore, they provided a fragmented picture: three studies demonstrated the association
between radiomics and pathology data in EBDT [27,30,48], while two reported a prognostic
role of textural features in peri-hilar tumors [43,45]. Additional analyses are needed to fill
this gap and to investigate the specific unmet needs associated with the different tumors.

Two additional limitations can be outlined. First, most authors adopted a radiomic
signature or score combining multiple textural features. This approach optimized the
predictive/prognostic contribution of radiomics but limited the interpretability and re-
producibility of data. Second, the textural features were not standardized across studies
and varied according to the adopted software, being an in-house software in most papers.
Finally, different studies analyzed different imaging modalities and phases, precluding any
comparison and meta-analysis of data.

5. Conclusions

Radiomics may have a relevant role in the management of biliary tumors, from diag-
nosis to treatment planning, especially for ICC. Texture analysis provides new non-invasive
biomarkers which are complementary to the standard clinical ones. Future research should
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address the current limitations of the studies to allow the implementation of radiomics in
clinical practice.
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