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The class I HLA genotype has been widely recognized as a factor influencing HIV

disease progression in treatment-naïve subjects. However, little is known regarding

its role in HIV disease course and how it influences the size of the viral reservoir

once anti-retroviral therapy (ART) is started. Here, leveraging on cutting-edge bioin-

formatic tools, we explored the relationship between HLA class I and the HIV reser-

voir in a cohort of 90 people living with HIV (PLWH) undergoing ART and who

achieved viral suppression. Analysis of HLA allele distribution among patients with

high and low HIV reservoir allowed us to document a predominant role of HLA-B

and -C genes in regulating the size of HIV reservoir. We then focused on the analysis

of HIV antigen (Ag) repertoire, by investigating immunogenetic parameters such as

the degree of homozygosity, HLA evolutionary distance and Ag load. In particular,

we used two different bioinformatic algorithms, NetMHCpan and MixMHCpred, to

predict HLA presentation of immunogenic HIV-derived peptides and identified

HLA-B*57:01 and HLA-B*58:01 among the highest ranking HLAs in terms of total

load, suggesting that their previously reported protective role against HIV disease

progression might be linked to a more effective viral recognition and presentation to

Cytotoxic T lymphocytes (CTLs). Further, we speculated that some peptide-HLA

complexes, including those produced by the interaction between HLA-B*27 and the

HIV Gag protein, might be particularly relevant for the efficient regulation of HIV

replication and containment of the HIV reservoir. Last, we provide evidence of a

possible synergistic effect between the CCR5 Δ32 mutation and Ag load in control-

ling HIV reservoir.
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1 | INTRODUCTION

Since the start of the pandemic in 1981, Acquired Immu-
nodeficiency Syndrome (AIDS) caused by the Human
Immunodeficiency Virus (HIV) has claimed approxi-
mately 40.1 million lives worldwide. Thanks to the devel-
opment of anti-retroviral therapies (ARTs), the mortality
and morbidity rates associated to HIV-related illnesses
has dramatically slowed down. However, as of 2021,
there are still nearly 38.4 million people living with HIV
(PLWH),1 and the road to HIV eradication continues to
look steep. Identifying methods to eradicate in ART-
treated subjects the persistent viral reservoir, which con-
tains integrated, replication-competent provirus within
host cellular DNA, is currently one of the major hurdles
in the battle against HIV infection. When ART is inter-
rupted, viruses from this reservoir cause rebound virae-
mia and a status of immune dysregulation, which results
in subsequent clinical progression.2

While the development of a sterilizing, drug-based
cure has been traditionally identified and targeted as the
main avenue toward eradication of the HIV reservoir in
PLWH, in recent years we have witnessed increasing
interest in finding a functional cure, aimed at controlling
HIV replication without ART.3 Models of this functional
cure are those individuals defined as “elite controllers,”
who maintain virological suppression without any treat-
ment despite the persistence of replication-competent
viruses, remaining clinically and/or immunologically sta-
ble for years without ART.4 A number of previous studies
have linked HIV control to the presence of specific HLA
alleles5–7 in patients, suggesting that some HLA alleles
may favor immune control of viral replication.

HLA molecules are key players in the immune
response to foreign pathogens and they are responsible, in
particular, for the presentation of viral antigens (Ags) to T
cells. HIV viral control has been associated with HLA class
I molecules and, specifically, with a handful of HLA-B
alleles.8 Class I molecules are expressed on the cell surface
of most nucleated cells, where they present intracellularly
produced Ags to CD8+ cytotoxic T lymphocytes (CTLs),
the major effector cells of the adaptive immune system.9

HLA-B*57:01,10,11,5 HLA-B*2712–14 and HLA-B*58:0115,16

have been shown to be associated to a slower progression
to AIDS and low levels of pro-viral HIV DNA; addition-
ally, they are strongly enriched in cohorts of HIV control-
lers compared to non-controllers, whereas several other
alleles and allele groups, including HLA-B*35-Px,16 HLA-
A*29,17 HLA-B*22,17 and HLA-B*58:02,18 have been linked
to reduced time to progression to AIDS. Several authors
reported also a protective effect of high HLA-C expression
levels on HIV-1 progression,19–21 hinting at a possible
influence of this gene on HIV disease course.

A number of functional mechanisms underlying this
relationship between CTL responses, HLA class I poly-
morphism, and HIV progression have been unveiled,
including T cells polyfunctional capabilities, increased
clonal turnover, and superior functional avidity in
responses to HLA-B-restricted Gag protein-derived
epitopes.22,23

Further, a number of studies has focused on Ag load
as a correlate to HIV-1 clinical outcome,24–27 with the
idea that the capability of an individual to present a
larger array of peptides of viral origin might result in a
broader and stronger immune response.

Building upon these insights, it is important to further
investigate the role of HLA class I molecules in influenc-
ing the HIV reservoir and to explore the potential of the
presented peptidome as a therapeutic target for HIV
treatment.

Leveraging state-of-the-art bioinformatic algorithms,
this study aims to evaluate the relationship between HLA
class I molecules and the HIV reservoir in PLWH by
focusing on patients' HLA genotype diversity and on the
HLA-presented viral peptide repertoire.

2 | METHODS

This is a post-hoc analysis of the Intensively Monitored
Antiretroviral Pause in Chronic HIV-Infected Subjects
with Long-Lasting Suppressed Viremia (APACHE)
study,28 conducted on adult PLWH followed up at IRCCS
San Raffaele Scientific Institute, Milan, Italy. The
APACHE study is registered with ClinicalTrials.gov
(NCT03198325). Inclusion criteria for this particular sub-
group analysis were achievement of long-term virological
suppression, as defined by HIV-1 RNA <50 copies/mL
for at least 10 years, the availability of HIV-1 DNA
quantification in PBMCs at sampling time and HLA-A, -B
and -C low-resolution typing. The San Raffaele Ethics
Committee approved the study protocol (on 17 May 2016;
approval reference number: 31/2016) and the patients
signed written informed consent.

We selected a total of 114 adults with chronic HIV-1
infection, HIV-1 RNA <50 copies/mL for ≥10 years,
absence of plasma residual viremia for ≥5 years without
any viral blips and CD4+ >500 cells/μL, who had been
screened for HIV-1 DNA and typed at one-field resolu-
tion for the HLA-A, -B and -C loci.

Total HIV-1 DNA was amplified as formerly
described29 and quantified in peripheral blood mononu-
clear cells (PBMCs) by Real Time PCR (ABI Prism 7900).
To distinguish between patients with low and high HIV
reservoir, we used the threshold of 100 copies/106 PBMCs
HIV-DNA.
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Low-resolution typing of HLA-A, -B and -C was per-
formed using genomic DNA and sequence-specific oligo-
nucleotide (HISTO SPOT SSO).

Based on availability, HLA and CCR5 genotyping
were performed on N = 60 samples by the DKMS Life
Science Lab applying a high-resolution amplicon-based
approach leveraging Illumina instruments.30 To help
overcome incomplete HLA information on remaining
patients, two-field level genotypes were imputed using
HaploStats (http://www.haplostats.org), a web applica-
tion provided by the National Marrow Donor Program
(NMDP) Bioinformatics group.

Haplostats uses an expectation–maximization algo-
rithm to leverage a large pool of haplotype samples (for
the population of European descent, which represents
the majority of patients in our dataset, 395,676 samples
with full HLA-A, -B and -C typing31). The method takes
as input the population of origin (e.g., “African Ameri-
can” or “Filipino”) and the one-field genotype from more
than one locus of the patient/individual. In our case, one-
field genotype input included HLA-A, -B and -C alleles.
We used as reference the “NMDP full 2011” dataset.

Median likelihood for 2-field imputation was 74.4%
(range 10.8–99.7) (Supplementary Figure 2A). To assess
HaploStats accuracy, we compared predicted HLA geno-
types and high-resolution HLA typing results in patients
with both sets of data available (N = 56). N = 30
patients (54%) had 6/6 matching alleles, N = 13 (23%)
had 5/6 matching alleles, N = 11 (20%) had 4/6, N = 1
(2%) patient had 3/6, N = 1 (2%) had 2/6 and no patients
had less than 2/6 matching alleles between HaploStats
predictions and high-resolution typing results
(Supplementary Figure 2B). We used a linear regression
model to assess the relationship between the number of
matches and the HaploStats likelihood variable, and the
“likelihood” coefficient (estimate = 0.0196, p < 0.001)
indicated a statistically significant positive relationship.
Thus, to ensure the integrity of the imputed HLA alleles
and to minimize the inclusion of less likely predictions, a
stringent threshold was set, and only genotypes that pos-
sessed a predicted likelihood equal to or exceeding 90%
were retained.

Thus, for all analyses carried out on 2-field HLA
genotypes, a total of N = 73 patients from our study
cohort were used, for N = 60 of which we had high-
resolution HLA typing data.

Odds ratio (OR) analysis was performed by fitting a
generalized linear model to our data (using the function
or_plot() from R package finalfit32), when considering as
independent variables all HLAs present in at least 10 indi-
viduals of our cohort.

Evolutionary divergence of HLA-A, -B, and -C diplo-
types was estimated using the Grantham Distance33,34

(GD). We define the HLA class I GD for an individual as
the average of their HLA-A, HLA-B and HLA-C GDs.

For Ag load calculation, we downloaded the HIV-1 M
group subtype B reference proteome (NCBI accession
number NC_001802.1). In-house generated scripts were
used to create from all annotated HIV proteins a list com-
prising all possible peptides of length 8 to 11, which is
the typical length of peptides binding into HLA class I
molecules' binding groove. The R package antigengar-
nish35 was then used to filter out peptides characterized
by a low dissimilarity to the human genome or low simi-
larity to epitopes known for their immunogenic proper-
ties (the latter, also known as foreignness), as we
hypothesized that these characteristics would increase
the likelihood of a given peptide to be under tolerance
and therefore to be less immunogenic.36 Based on the dis-
tribution of both parameters across all HIV-derived pep-
tides, we selected peptides with dissimilarity >0.45 or
foreignness >0.3 (Supplementary Figure 1).

Peptide HLA-presentation predictions for each HLA
two-field allele were performed using NetMHCpan ver-
sion 4.137 and MixMHCpred version 2.1.38 Strong Binders
(SB) were defined by a % Elution Rank ≤0.5 for both pre-
dictors. Antigen load (Ag load) was calculated for each
patient as the total number of SBs, obtained by adding up
the number of SBs for each of the patient's HLA class I
alleles.

Statistical analyses were carried out in R, version
4.2.1, except for values reported in Table 2 (difference of
the means, Hedge's g effect sizes and associated 95%
confidence intervals), which were determined using the
calculator available at https://www.cem.org/effect-size-
calculator, after verifying that Ag loads for the two HIV-
DNA groups calculated with NetMHCpan and
MixMHCpred followed normal distributions (Shapiro–
Wilk test) and had equal variance (F-test). The finalfit32

R package was used for data table generation (Table 1)
and Odds Ratio (OR) analysis; corrplot39 for visualization
of correlation matrices and ggplot40 for data
visualization.

3 | RESULTS

Out of the total 114 PLWH evaluated, N = 36 (32%) fea-
tured HIV-1 DNA <100 copies/106 peripheral blood
mononuclear cells (PBMCs), while N = 78 (68%) had
HIV-1 DNA ≥100 copies/106 PBMCs. Overall, N = 80
(70%) were male, N = 34 (30%) were female. N = 110
(96%) were European Caucasian, N = 3 (3%) were South
or Central American Hispanic, and N = 1 (1%) was
Caribbean Hispanic, according to HaploStats nomencla-
ture.31 Median age at HIV diagnosis was 32 (IQR 25–39)
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years, median exposure to HIV infection was 20 (17–23)
years and to ART 18 (16–20) years. Median time from
HIV diagnosis to ART initiation was 8 (2–45) months.
Median time spent with HIV-1 RNA <50 copies/mL was
12 (11–14) years; median CD4 count at HIV-1 DNA
determination was 790 (644–938) cells/μL. These statis-
tics are summarized in Table 1. Generally, HIV-DNA
group correlated poorly with the demographic and clini-
cal variables we collected. Partial exceptions were gender
(p-value = 0.04) and time spent with HIV-1 RNA <50
copies/mL (p-value = 0.04).

We first investigated whether the immune response
to HIV infection could be influenced by a specific HLA
locus or allele. No significant global imbalance of HLA-A,
B or -C alleles (Chi-squared test, p-value = 0.37) could be
detected between HIV-1 DNA groups in our cohort
(Figure 1A). However, after assessing frequencies of HLA
Class I alleles for each HIV-1 DNA group, Odds Ratio
(OR) analysis of most frequent (N ≥ 10) individual alleles
in our cohort identified HLA-A*01 (uncorrected p-
value = 0.016), HLA-A*32 (0.018), HLA-B*07 (0.005),
HLA-B*18 (0.02), and HLA-B*44 (0.002) as associated to
disease progression, mostly in agreement with existing
literature,6,19 and HLA-C*02 (0.004), HLA-C*04 (0.036),
HLA-C*05 (0.002), HLA-C*07 (0.007) and HLA-C*12

(0.012) as protective toward a lower viral burden, in
accordance with known evidence of the importance of
HLA-C in HIV control19 (Figure 1B).

When focusing on specific HLA Class I alleles
reported to be protective in HIV disease progression, in
our cohort HLA-B*27 was found in 5/31 (16.1%) patients
with HIV-1 DNA <100 copies/106 PBMCs and in 3/42
(7.1%) with HIV-1 DNA ≥100 copies/106 PBMCs (p-
value = 0.2721, Fisher's exact test), HLA B*57:01 in
0 (0%) and in 3/42 (7.1%, p-value = 0.2568), while HLA
B*58:01 in 2/31 (6.5%) and in 2/42 (4.8%, p-value>0.99,
Figure 1C).

An efficient adaptive response to infection by intracel-
lular pathogens, such as HIV, largely depends on the
ability of an individual's immune system to recognize
pathogen-derived peptides and trigger a specific response.
Thus, diversity and breadth of the repertoire of HLA-
presented peptides is key to an efficient viral clearance.
Individuals that are heterozygous for a given HLA locus
are more likely to present a broader array of peptides
than their homozygous counterparts.41 Similarly, a
higher sequence divergence and a consequent increased
structural heterogeneity of an individual's HLA allele rep-
ertoire can, in principle, further boost the ability to pre-
sent a wider range of antigens to immune effector cells.42

TABLE 1 Patient characteristics. Demographic and clinical characteristics of patients included in the study, separated by HIV-DNA

group.

Variable N Overall, N = 114a

HIV-DNA group

p-
valueb

<100 copies/106

PBMCs, N = 36a
>100 copies/106

PBMCs, N = 78a

Gender 114 0.037

F 34 (30%) 6 (17%) 28 (36%)

M 80 (70%) 30 (83%) 50 (64%)

Origin 114 0.48

CARHIS 1 (0.9%) 0 (0%) 1 (1.3%)

EURCAU 110 (96%) 34 (94%) 76 (97%)

SCAHIS 3 (2.6%) 2 (5.6%) 1 (1.3%)

Age at diagnosis 112 32 (25, 39) 34 (29, 40) 31 (25, 38) 0.27

Exposure to HIV (years) 112 20.2 (16.7, 23.4) 19.4 (16.6, 22.4) 20.9 (16.8, 24.9) 0.27

ART duration (years) 114 18.3 (16.0, 19.8) 18.2 (15.2, 19.1) 18.4 (16.4, 20.1) 0.37

Time from HIV diagnosis to ART
initiation (months)

112 8 (2, 45) 6 (2, 29) 12 (2, 55) 0.48

Time with HIV-1 RNA < 50 copies/
mL (years)

114 11.94 (10.63, 14.23) 13.72 (10.98, 15.69) 11.47 (10.60, 13.09) 0.036

CD4 count (cells/μL) 113 790 (644, 938) 744 (596, 924) 800 (661, 946) 0.26

Note: Counts are shown as N (%) for categorical variables and Median (IQR) for continuous variables.

Abbreviations: CARHIS, Caribbean Hispanic; EURCAU, European Caucasian; SCAHIS, Hispanic–South or Central American.
aMedian (IQR) or Frequency (%).
bPearson's Chi-squared test; Fisher's exact test; Wilcoxon rank sum test.
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FIGURE 1 Legend on next page.
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Indeed, HLA-B and HLA-C heterozygosity, as well as,
HLA-B allele divergence have been recently demon-
strated to be negatively associated with pre-treatment
HIV-1 viral load, thanks to a broader array of HLA-
bound peptides.26

To investigate these aspects in our cohort, we com-
pared the fraction of patients that were homozygous for
the HLA loci and calculated the distribution of mean
HLA class I Grantham Distance (GD) in our two HIV-
DNA groups.

To carry out both these analyses at a two-field resolu-
tion, we combined available high resolution HLA-typing
information and two-field HLA allele imputation using
the webtool HaploStats,31 for a total of N = 73 patients in
our cohort (See Methods section).

In our cohort, N = 9 (12%), N = 0 (0%) and N = 2
(3%) patients were homozygous for one, two and three
loci, respectively while N = 62 (85%) had no homozygous
locus at a one-field level (Figure 2A). No statistical differ-
ence was present among the two HIV-DNA groups
(Fisher's test, p-value>0.99).

The median GD was 6.742 (IQR 5.82–7.844, range 0–
9.354) for HIV-DNA <100 copies/106 PBMCs group, and
7.137 (IQR 5.962–7.801, range 0–10.341) for HIV-1 DNA
≥100 copies/106 PBMCs group, with no statistically sig-
nificant difference between the two (p-value = 0.8104 by
Mann–Whitney test, Figure 2B).

Finally, we asked whether the effective control
achieved over HIV viral replication could be related to
the number of highly immunogenic peptides presented
to host T cells.

From a reference HIV genome, we derived a pool of
all possible peptides of length ranging from 8 to 11 amino
acids (N = 12,268 unique peptides). We then selected
peptides with high dissimilarity to the human self-
peptidome or high similarity to known immunogenic epi-
topes (foreignness), in order to derive a list of peptides
with a higher probability of eliciting an immunological
response.43 This resulted in N = 4356 total peptides. We
then used two state-of-the-art bioinformatic tools,
NetMHCpan4.137 and MixMHCpred2.1,38 to predict in
silico binding likelihoods between these peptides and
HLA alleles present in our cohort, along with the most
frequent HLA alleles in the Italian population44

(frequency ≥ 1%). In total, we obtained N = 2225 strong

binders according to NetMHCpan, and N = 3077 for
MixMHCpred (out of N = 357,192 possible peptide-HLA
pairs). Interestingly, we documented a higher amount of
predicted strong binding peptides for protective alleles
HLA-B*57:01 and HLA-B*58:01 compared to other HLA
class I alleles with both predictors (Figure 3A,B),
although this was not the case for HLA-B*27:05 and
HLA-B*27:02, found to be protective in other studies.6

The association between HLA-B*27 and the immune con-
trol of HIV-1 has been linked, in particular, to the target-
ing of Gag specific epitopes. To verify this relationship in
our study, we calculated Ag load of HLA-B alleles only
considering Gag-derived peptides (Figure 3C). Interest-
ingly, neither HLA-B*27:05 or HLA-B*27:02 were charac-
terized by a higher Ag load. Nonetheless, supporting
previous evidence that the association between HLA-B*27
and the immune control of HIV-1 is linked to the target-
ing of Gag specific epitopes by CTLs,22 Gag peptide
KRWIILGLNK (KK10)45 was predicted to be a strong
binder for HLA-B*27:05 both by NetMHCpan (%EL
rank = 0.149) and MixMHCpred (%EL rank = 0.2), while
HLA-B*27:02 showed strong binding properties to KK10
according to MixMHCpred (%EL rank = 0.4) and weak
binding properties according to NetMHCpan (%EL
rank = 0.824).

Finally, Ag load values in patients stratified by HIV-
DNA group were compared. Neither NetMHCpan4.1
(Kruskal–Wallis test, p-value = 0.89) (Figure 3D), nor
MixMHCpred2.1 (p-value = 0.86) (Figure 3E) predicted
Ag load as significantly different between the two HIV-
DNA groups. This was further confirmed by the absence
of a significant linear correlation between HIV-DNA
levels and Ag load (R = 0.053 for NetMHCpan and
R = 0.051 for MixMHCpred) (Figure 3F,G).

A key factor in determining HIV infection susceptibil-
ity and disease progression is CCR5, a chemokine recep-
tor that acts as a coreceptor for HIV entry into immune
cells.46 Individuals homozygous for a 32-bp deletion
(Δ32/Δ32) in CCR5 are resistant to HIV,47 and individ-
uals heterozygous for CCR5 Δ32 have a slower progres-
sion to AIDS.48 To assess whether differences observed in
HIV reservoir depth in our cohort could be influenced by
CCR5 mutational status, HIV-1 tropism and CCR5 geno-
type were assessed. In our cohort, N = 77/114 (68%) indi-
viduals had a CCR5-tropic infection, and N = 8/57 (14%)

FIGURE 1 (A) Correlogram showing the association between HLAs and HIV-DNA groups in our dataset. Color intensity indicates the

absolute value of the correlation coefficients, with shades of blue expressing positive values and shades of red negative ones (anti-

correlation). (B) Forest plot displaying the Odds ratio (OR) between HIV-DNA≥100 copies/106 PBMCs and HIV-DNA < 100 copies/106

PBMCs for individual HLA alleles. Only HLAs with N ≥ 10 were considered in this analysis. (C) Histograms showing the fraction of patients

for each HIV-DNA group with at least one B*27, B*57:01 or B*58:01 allele, respectively.
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were heterozygous for CCR5 Δ32, while no patient was
homozygous for the mutation.

Δ32 heterozygosity was found in 4/27 (15%) patients
with HIV-1 DNA <100 copies/106PBMCs and in 3/23
(12%) with HIV-1 DNA ≥100 copies/106PBMCs
(p-value > 0.99, Chi-square test, Figure 4A). Next, we
compared Ag load obtained from NetMHCpan and
MixMHCpred of both CCR5 wild-type (WT) and Δ32 het-
erozygous individual among HIV DNA groups.

When using NetMHCpan, no difference in the pre-
dicted Ag load could be identified among HIV-DNA
groups, neither in CCR5 Δ32 nor WT patients
(Figure 4B). While similar results were obtained compar-
ing predicted Ag load with MixMHCpred on CCR5 WT
patients (Figure 4C, left panel), heterozygous CCR5 Δ32
patients in the HIV-1 DNA <100 copies/106 PBMCs
group exhibited a slight significantly higher (Kruskal–
Wallis test, p-value = 0.05) Ag load compared to those in
the HIV-1 DNA ≥100 copies/106PBMCs group.

4 | DISCUSSION

By focusing on the quantitative and qualitative properties
of the interaction between HLAs and the HIV-derived
peptide repertoire and utilizing a bioinformatic pipeline
relying on state-of-the-art packages and algorithms, we
studied the potential link between HLA class I molecules
and the HIV reservoir in PLWH. We started from a
cohort of N = 114 patients with a long history of infec-
tion and ART exposure and that have been controlling

the infection (HIV-RNA <50 copies/mL) for ≥10 years.
We used HIV-DNA as a marker for quantification of their
HIV reservoir. Total HIV-DNA level in PBMCs is an
important predictive factor for the risk of progression to
AIDS and death49,50 in PLWH, and it has been tradition-
ally used as a proxy for the total HIV reservoir. We
divided our cohort into two groups, using the threshold
of 100 copies/106 PBMCs to identify patients with low
and high reservoir, and explored differences in HLA and
Ag repertoire between these two subgroups. Ag repertoire
was assessed using proxies such as degree of homozygos-
ity and Grantham Distance and more directly by predict-
ing Ag load. We were able to confirm some previously
published findings, such as the relevance of HLA-C genes
and of the HLA-B*07 allele in HIV viral control. We also
provided a novel putative explanation for the importance
of certain HLA-B alleles, in particular B*57:01 and
B*58:01, in HIV disease progression. Indeed, HLA alleles
that are capable of binding and effectively presenting a
wider range of peptides of viral origin may confer a better
immunological control and slow down the course of HIV
infection. Moreover, we hypothesized that specific
peptide–MHC complexes, such as those obtained from
the interaction between Gag-derived peptides and HLA-
B*27, might be key to successful control of HIV replica-
tion and containment of the HIV reservoir.

Lastly, we observed that patients in our cohort who
were heterozygous for the CCR5 Δ32 mutation and
belonged to the group with a smaller HIV reservoir had
higher Ag loads. Conversely, in patients with the CCR5
wild-type genotype, there was no significant difference in
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FIGURE 2 (A) Bar plot showing the proportion of patients with 1, 2, 3 or no homozygous loci per HIV-DNA group. (B) Raincloud54 plot

displaying GD values for patients, separated by HIV-DNA group. Dots indicate individual raw values; boxplots show median, interquartile

range (IQR) and highest and lowest values (whiskers) excluding outliers; half-violins provide an explicit representation of the distributions.

Lower “mean GD” values point to a less diverse set of HLA alleles for a patient compared to patients with higher “mean GD” values.
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Ag load. Although this could be observed only using
MixMHCpred to predict Ag load, and though the number
of heterozygous CCR5 Δ32 patients in our cohort is very
limited (N = 6), we can speculate that in a setting where
HIV entry in host's cell is more difficult, a stronger HLA-
mediated viral recognition may help control the disease.

Our study presents a number of limitations. First,
HLA typing was achieved experimentally at a low-
resolution level for about a half of our cohort, and for
these patients two-field resolution was imputed using a
computational method, HaploStats. To increase typing

reliability, we decided to remove from our dataset
patients whose 2-field imputation likelihood (from Hap-
loStats) was less than 90%. Second, despite recent, signifi-
cant advances, accurate Ag load calculation remains a
difficult task.51 Here, we tried to obviate these difficulties
in two ways: we used two separate algorithms to calcu-
late load (NetMHCpan and MixMHXpred) and, addition-
ally, applied a pre-filtering step for peptide
immunogenicity,35 which should narrow down the num-
ber of peptides to those that are most likely to induce an
immune response. Still, as new data about presentability

FIGURE 3 (A, B) Histograms displaying the total number of strong binding peptides (see Methods) for HLA alleles with a frequency

≥1% in the Italian population, or present in our cohort, split by HLA class I gene and calculated by NetMHCpan (A) and MixMHCpred (B).

HLA alleles for each gene are ordered according to increasing number of strong binders. (C) Number of strong binders predicted for HLA-B

alleles by NetMHCpan (left) and MixMHCpred (right) using peptides derived solely from the HIV Gag protein. Highlighted in red are HLA-

B*27:05 and HLA-B*27:02 (see main text). (D, E) Raincloud plots showing Ag load predicted by NetMHCpan (D) and MixMHCpred (E) for

each patient in our two HIV-DNA groups. (F, G) Dot plot of Ag load (y-axis) predicted by NetMHCpan (F) and MixMHCpred (G) and HIV-

DNA levels (x-axis) in our cohort. Blue line of best fit is obtained by linear regression method and confidence intervals are shown in gray.

Correlation coefficients (R) and p-values are shown at the bottom right of each panel.
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FIGURE 4 (A) Bar plot

showing the proportion of

patients with CCR5 WT and

heterozygous CCR5 Δ per HIV-

DNA group. (B, C) Raincloud

plots depicting predicted Ag load

by NetMHCpan (B) and

MixMHCpred (C) for each

patient in the two HIV-DNA

groups, split by CCR5 status. On

the left, Ag load for WT CCR5

(N = 34), on the right

heterozygous CCR5

Δ32 (N = 6).

TABLE 2 Unstandardized effect size (mean difference) and standardized, unbiased effect size (Hedge's g) with 95% Confidence Intervals

(CI) (see Methods) for the comparison between the two different HIV-DNA groups for Ag load calculated with NetMHCpan or

MicMHCpred, respectively.

Study Mean Diff Lower 95% CI Upper 95% CI Hedge's g Lower 95% CI Upper 95% CI

Ag load (NetMHCpan) 1.06 �8.55 10.67 0.05 �0.41 0.52

Ag load (MixMHCpred) �0.3 �11.54 10.94 �0.01 �0.48 0.45
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and immunogenicity of peptides are being produced and
new methods are being developed, precision in immuno-
peptidome prediction is bound to improve. The major
limitation of our work, however, is the small sample size.
Since this was a post-hoc study, no preliminary power
calculations were performed. Post-hoc power calculations
are known to be directly related to p-values52 and, as
such, to be of little additional value with respect to the
latter. Thus, to provide additional information useful for
interpretation of the Ag load comparisons, we have calcu-
lated 95% confidence intervals for differences between
means and for Hedge's g effect sizes (standardized differ-
ences between means)53 (Table 2, Supplementary
Figure 3). From these calculations we can see that our Ag
load comparisons between different HIV-1 DNA groups
feature rather large confidence intervals, implying that
our results should be further validated on a larger cohort
of patients.

In conclusion, HLA class I genotype has been consis-
tently shown to be one of the strongest genetic factors
influencing HIV disease progression. Its roles range from
the interaction with cells of the innate immune system,
that is, by modulation of natural killer (NK) cell activity,
to interaction with CD4+ and CD8+ T cells. Here, we
provide an immune-informatic approach to shed new
light on the mechanisms underlying HIV immune con-
trol, which could advance the quest for an effective func-
tional cure of HIV or for the design of novel vaccines.
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