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The role of extracellular matrix 
in mouse and human corneal 
neovascularization
M. Barbariga1, F. Vallone2, E. Mosca   3, F. Bignami1, C. Magagnotti   2, P. Fonteyne1, 
F. Chiappori   3, L. Milanesi   3, P. Rama1, A. Andolfo2 & G. Ferrari1

Corneal neo-vascularization (CNV) is a highly prevalent medical condition which impairs visual acuity. 
The role of specific proteins in modulating CNV has been extensively reported, although no studies have 
described the entire human proteome in CNV corneas. In this paper, we performed a proteomic analysis 
of vascularized vs healthy corneal stroma, in a CNV mouse model and in CNV-affected patients, with a 
specific focus on extracellular matrix (ECM) proteins. We identified and quantified 2315 murine proteins, 
691 human proteins and validated 5 proteins which are differentially expressed in vascularized samples 
and conserved in mice and humans: tenascin-C and fibronectin-1 were upregulated, while decorin, 
lumican and collagen-VI were downregulated in CNV samples. Interestingly, among CNV patients, 
those affected with Acanthamoeba keratitis showed the highest levels of fibronectin-1 and tenascin-C, 
suggesting a specific role of these two proteins in Acanthamoeba driven corneal CNV. On a broader 
picture, our findings support the hypothesis that the corneal stroma in CNV samples is disorganized and 
less compact. We are confident that the dissection of the human corneal proteome may shed new light 
on the complex pathophysiology of human CNV, and finally lead to improved treatments.

Proper vision requires corneal avascularity1. This is a finely regulated process, and relies on constitutive expres-
sion of anti-angiogenic molecules2,3, while pro-angiogenic factors are inhibited4,5.

Corneal neo-vascularization (CNV) is the second cause of blindness worldwide6 even if, being a consequence 
of several primary pathologies, its prevalence is still under debate7. In any case, it is the result of a multitude 
of ocular and systemic diseases, which interrupt the corneal angiogenic privilege. Clinical conditions causing 
CNV include trauma, infections, autoimmunity and allergies8–11. When CNV has developed and vision has been 
impaired, corneal transplantation can be attempted to restore corneal transparency. Pre-existing CNV, however, 
significantly reduces the survival of the corneal graft12. In summary, CNV is a significant clinical problem and a 
better understanding of its pathophysiology is needed to develop effective treatments.

The corneal proteome has been studied during angiogenesis, although limitedly to: animal models, during the 
acute phase of CNV, and not in the isolated corneal stroma. Previous works13,14 have elucidated the role of soluble 
factors in CNV, including VEGFs15, thrombospondin-1 and -2 (THBS-1 and -2)16, metalloproteases (MMPs)17, 
basic fibroblast growth factor (bFGF)4 and pigment epithelium-derived factor (PEDF)14.

The role of the extracellular matrix (ECM) in CNV, instead, is less studied, and the contribution of specific 
ECM proteins to human CNV remains unclear. A key role for ECM proteins in CNV is suggested by many obser-
vations. First, they can modulate the activity of both pro-angiogenic molecules and anti-angiogenic factors18–20. 
Second, ECM could control corneal biomechanics, by interacting with MMPs and promote angiogenesis17,21. 
Among mechanical properties of the cornea, tissue rigidity22 is fundamental to control endothelial cell invasion 
and the development of neovessels, as it occurs in tumors23. Finally, ECM degradation can release soluble factors 
which exacerbate inflammation and vessel growth24.

We have previously published that intra-stromal application of sutures in mice is a robust and highly repro-
ducible CNV model, which permits imaging and exact quantification of both blood and lymphangiogenesis25. 
In addition, this model is well suited to study not only the growth phase of CNV, but also its regression, which 
approximates this model to the clinical course of CNV.
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In this paper, we compared the protein expression profile between acute and chronically vascularized vs 
healthy corneal stroma in mice and humans. We specifically focused on ECM proteins, in order to elucidate their 
contribution to CNV pathophysiology and with the final aim of finding novel therapeutic targets.

Material and Methods
Animals.  Male, 8 week-old BALB/C mice (Charles-River) were used for all experiments (116 mice in total, 
30 as control and 86 sutured). All experimental protocols were approved by the Animal Care and Use Committee 
of the IRCCS San Raffaele Scientific Institute, in accordance with the ARVO Statement for the Use of Animals in 
Ophthalmic and Vision Research. Animals did not show evident signs of distress during the course of the study, 
and their weight remained normal. Animals were allowed to acclimatize in their environment for 1 week before 
experimentation and each animal was deeply anesthetized with intraperitoneal injection of Tribromoethanol 
(250 mg/kg) before all surgical procedures. To induce CNV, mice were anesthetized and sutures were placed 
intra-stromally in the corneas, as previously described with some modifications15. We used 86 bilaterally sutured-
mice: at least 6 corneas per time point for IF analysis (120 in total) and 4 pooled corneas (from 4 different ani-
mals) for proteomics analysis (52 in total). Thanks to a 2-mm corneal trephine placed on the cornea and centred 
on the pupil, three 10.0 nylon sutures were placed intra-stromally 120° apart with knots left unburied. Post-
operatively, all animals received a single dose of Carprofen at 5 mg/kg subcutaneously. Sutures were left in place 
for 14 days (Fig. 1A), during which animals were imaged in vivo every day to track vessel formation. This daily 
imaging procedure is fast and painless for the animals, therefore no anaesthesia was performed. After suture 
removal, mice were monitored up to 10 months to evaluate the persistence of a chronic vascularization phase. 
Setting the day of suture removal as time point 0, different groups of mice were sacrificed during acute CNV at 
−11, −7 and −3 days and during chronic CNV after 3, 7, 14, 30, 60, 90, 120, 180 and 300 days. Carbon dioxide 
inhalation and subsequent cervical dislocation were applied to euthanize the animals; corneas were then removed 
with a sharp scalpel under the stereo microscope and placed in PBS.

Non-vascularized corneas from mice (n = 30) provided controls (8 corneas for IF analysis, and 52 age-matched 
corneas for proteomics analysis, 4 pooled corneas per each time point).

Murine cornea immunohistochemistry.  After microsurgical excision, the corneal stroma and epithe-
lium were separated with 20 mM EDTA in phosphate buffer (PBS) for 30 min at 37 °C. Corneal stroma was then 
fixed for 15 min in ice-cold acetone, washed with PBS and blocked for 1 h with 2% bovine serum albumin (BSA; 
Sigma-Aldrich), 5% normal donkey serum (Sigma-Aldrich) in PBS. Tissue was incubated at 4 °C o/n with pri-
mary antibodies (rat anti-mouse CD31, BioLegend, and rabbit anti-mouse LYVE1, AbCam) in blocking solution, 
followed by secondary antibodies in PBS 2 h at RT (AlexaFluor 594 donkey anti-rat and AlexaFluor 488 donkey 
anti-rabbit, Invitrogen). After washing in PBS, corneas were radially cut and flat mounted on glass slides using 
the Vectashield mounting medium with 4′,6-Diamidino-2-Phenylindole (DAPI, Vector). Images of CNV were 
analyzed using an ImageJ-based system to quantify the total area of the cornea covered by vessels.

Patients.  CNV affected patients (n = 19, see Table 1) planning to undergo corneal transplant were selected, 
after obtaining informed consent and after approval by the San Raffaele Hospital Ethics Committee, by the 
Cornea and Ocular Surface Unit at the San Raffaele Scientific Institute. CNV was quantified by counting the num-
ber of corneal quadrants involved, with a score ranging from 1 (neovessels involving 1 quadrant) to 4 (neovessels 
involving four quadrants) at the time of corneal transplant. CNV patients in this study had an average CNV score 
of 3.05 ± 1.17. Fresh corneal buttons obtained from these patients immediately after keratoplasty were collected 
in Carry-C transport solution (Alchimia) for subsequent proteomics or Western Blot/ELISA analysis. Avascular, 
keratoconic corneas (n = 27, Table 1) were used as avascular controls. Methods used to obtain human data were 
performed in accordance with the relevant guidelines and regulations.

Murine and human cornea protein extraction.  Murine pooled samples and human corneas were pro-
cessed according to the following protocol.

Upon incubation in 20 mM EDTA with protease inhibitor cocktail (Sigma-Aldrich) for 40 min at 37 °C, epi-
thelium was removed from the stroma using forceps with the help of a stereomicroscope. Corneal endothelium 
was not removed from the stroma, since it’s impact on stroma ECM proteomics is negligible26. For the proteomic 
analysis, the stroma was cut in small pieces and put in 100 µl of R3 buffer (urea 5M, thiourea 2M, CHAPS 2% 
w/v, Zwittergent 2% w/v) plus protease inhibitor cocktail. Samples were subsequently homogenized with a plastic 
potter and incubated on a rotating shaker for 1 h at RT. After centrifugation (14,000 × g, for 10 min at RT), super-
natants were used for proteome analysis.

Mass Spectrometry and Proteomics analysis.  Proteins were quantified using Bradford assay and BSA 
as standard. Proteins were digested using the FASP (Filter Aided Sample Preparation) protocol27. Briefly, 20 µg of 
total proteins from each sample were diluted to 200 µl with 0.1 M Tris/HCl pH 7.4. Cysteines were reduced with 
45 µl of 0.1 M DTE (1,4-dithioerythritol) in Tris/HCl pH 7.4 and incubated at 95 °C for 5 min; then samples were 
centrifuged on Amicon Ultra-10K at 14,000 × g for 10 min with a solution of urea 8 M. Cysteines were alkylated 
with 100 µl 0.05 M IAA (Iodoacetamide) in urea 8 M added on the filter and laid at RT for 5 min; samples were 
centrifuged on Amicon Ultra-10K at 14,000 × g for 10 min with a solution of urea 8 M and then incubated over-
night at 37 °C in the presence of trypsin 1:50 (w/w), upon dilution of urea up to 2 M with 50 mM ammonium 
bicarbonate buffer.

Peptide mixtures were desalted on homemade Stage Tips C18 and injected in a capillary chromatographic 
system (EASY-nLC™ 1000 Integrated Ultra High Pressure Nano-HPLC System, Proxeon Biosystem) for peptide 
separations on a 75 µm i.d. × 12 cm reverse phase silica capillary column, packed with 1.9 μm ReproSil-Pur 120 
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C18-AQ. A 95 min-gradient of eluents A (pure water with 0.1% v/v formic acid) and B (ACN with 0.1% v/v formic 
acid) was used to achieve separation (from 5% to 50% of B in 88 min, 0.30 μL/min flow rate). MS analyses were 
performed using a Q-Exactive mass spectrometer (Thermo Scientific). Each sample was analyzed in technical trip-
licates. Full scan spectra were acquired with resolution set to 70,000 and mass range from m/z 380 to 1800 Da. The 
ten most intense doubly and triply charged ions were selected to be fragmented (ddMS2). MS/MS spectra were 
acquired with resolution set to 17,500, NCE set to 25 with an isolation window of 2 m/z. All data were analyzed by 
MaxQuant software (v. 1.5.2.8)28 for label-free protein quantification based on the precursor intensity, using the 
following search parameters: UniProtKB_complete_proteome_20161130 as database; up to 2 missed cleavages 

Number Age Sex Diagnosis Infection
CNV 
score

Used 
For

CONTROLS

#1 67 F Keratoconus No / MS, WB

#2 33 F Keratoconus No / MS, WB

#3 37 M Keratoconus No / MS, WB

#4 42 M Keratoconus No / MS, WB

#5 35 M Keratoconus No / MS, WB

#6 42 M Keratoconus No / MS, WB

#7 40 F Keratoconus No / MS, WB

#8 39 M Keratoconus No / MS, WB

#9 57 F Keratoconus No / ELISA

#10 43 F Keratoconus No / ELISA

#11 68 F Keratoconus No / ELISA

#12 54 F Keratoconus No / ELISA

#13 64 M Keratoconus No / ELISA

#14 64 F Keratoconus No / ELISA

#15 53 M Keratoconus No / ELISA

#16 68 M Keratoconus No / ELISA

#17 52 F Keratoconus No / ELISA

#18 59 F Keratoconus No / ELISA

#19 28 M Keratoconus No / ELISA

#20 55 F Keratoconus No / ELISA

#21 45 F Keratoconus No / ELISA

#22 51 F Keratoconus No / ELISA

#23 22 M Keratoconus No / ELISA

#24 18 M Keratoconus No / ELISA

#25 23 M Keratoconus No / ELISA

#26 42 M Keratoconus No / ELISA

#27 46 M Keratoconus No / ELISA

CNV

#28 51 F Aniridia No 4 MS, WB

#29 48 M Perforating keratoplasty graft rejection No 4 MS, WB

#30 69 M Herpetic keratitis, leucoma Yes 2 MS, WB

#31 63 F Herpetic keratitis, lipid degeneration Yes 4 MS, WB

#32 41 M Contact lens abuse, Lasik No 2 MS, WB

#33 48 M Micotic keratitis, leucoma Yes 2 MS, WB

#34 46 F Allergic conjunctivitis No 4 MS, WB

#35 49 M Perforating keratoplasty graft rejection No 4 MS, WB

#36 58 M Perforating keratoplasty graft rejection No 2 MS, WB

#37 62 M Lens abuse, blefaritis, glaucoma Yes 4 MS, WB

#38 40 M Perforating keratoplasty graft rejection No 4 ELISA

#39 57 F Acanthamoeba keratitis Yes 4 ELISA

#40 70 F Herpetic keratouveitis Yes 4 ELISA

#41 27 F Herpetic keratitis, corneal perforation Yes 2 ELISA

#42 63 M Contact lens abuse No 1 ELISA

#43 45 F Acanthamoeba keratitis Yes 2 ELISA

#44 77 F Perforating keratoplasty graft rejection Yes 4 ELISA

#45 69 M Perforating keratoplasty graft rejection No 1 ELISA

#46 32 M Acanthamoeba keratitis Yes 4 ELISA

Table 1.  Patient data. Table showing controls and CNV patients’ demographics. The type of analysis performed 
on the cornea is reported in the right column.
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allowed; carbamidomethylation of cysteine as fixed modification; N-terminus-acetylation and Methionine oxi-
dation as variable modifications; ±5 ppm and ±20 ppm for precursor and fragment ions mass tolerance, respec-
tively. The proteins identified in murine and human stroma were subsequently compared with the ECM protein 
database Matrisome29 to confirm the prevalent presence of stromal proteins in the analysed samples.

Human stromal samples were lysed as above reported for the murine samples. The only difference was the 
digestion with dextranase from Penicillum sp. 1 U/µl (Sigma-Aldrich) in 0.05 M KH2PO4 buffer pH 6 at 37 °C 
overnight prior to the Bradford assay. In details, human stromal proteins were incubated with dextranase in 1:4.5 
(v/v) in order to hydrolyze the dextran, which derived from the medium used for cornea conservation. Proteins 
were subsequently digested using the FASP protocol and analyzed by mass spectrometry.

Data Normalization and differential expression assessment.  Protein identifiers were converted to 
Entrez Gene identifiers, and Homologene30 was used to pair mouse and human proteins by homology. The map-
ping yielded proteins with a homologue available in both species and for which we detected valid (not null) pro-
teomic measurements in all samples. Proteomics measurements were normalized using weighted-trimmed mean 
of M-values31 and differential expression was assessed by means of the moderated t test32, two approaches initially 
proposed for gene expression data, but shown to be useful also for proteomics data33,34. Nominal p values were 
corrected using the BH procedure. The R programming environment35 and its packages limma36 and edgeR37 
were used to carry out normalization, differential expression and multiple testing correction. Proteins were con-
sidered differentially expressed at absolute values of log2 Fold Change (LFC) greater than 0.58, corresponding to 
FC less than 2/3 or greater than 3/2, and False Discovery Rate (FDR) less than 0.2.

ELISA.  Human corneal stromas were cut in small pieces and resuspended in 100 µl PBS with protease inhib-
itor cocktail (Sigma-Aldrich). Samples were homogenized with a T110 homogenizer (IKA), 30 sec (power 5, 3 
times on ice) and centrifuged at 12,000 × g for 10 min to remove tissue debris. Supernatants were quantified with 
Bradford protein assay (Thermo scientific, Waltham, Massachusetts, USA and 5 µg of total proteins were analyzed 
in triplicate with TNC and FN1 Elisa KITs (Cayman), following manufacturer’s instructions.

Western blot.  Five μg of proteins from control or CNV stromas were re-suspended in NuPAGE LDS reduc-
ing Sample Buffer (Thermo Fisher), resolved on NuPAGE 4–12% Bis-Tris Protein Gels (Thermo Fisher) and 
electro-transferred to nitrocellulose membranes (Amersham, Little Chalfont, UK) for Western blot (WB) anal-
ysis. Protein transfer was evaluated by red Ponceau S staining (Sigma-Aldrich). Membranes were blocked in a 
Tris buffered solution (TBS) 5% milk, 0.1% Tween 20 and incubated overnight with primary antibodies: mouse 
anti-human decorin (MAB143), rabbit anti-human lumican and anti-human collagen-VI α1 (NBP1-87726 and 
NB120-6588, Novus Biologicals) at 4 °C under gentle shaking. Subsequently, membranes were incubated at RT for 
1 h with anti-mouse or anti-rabbit HRP-conjugated secondary antibodies (NA9310V and NA9340V respectively, 
Ge Healthcare) followed by chemiluminescence reaction performed with ECL detection reagent (Ge Healthcare) 
and film exposure. The protein band optical density was finally measured with the UVITEC imaging system. 
Expression of β-actin revealed with an HRP conjugated mouse monoclonal antibody (ab49900, Abcam) was used 
as loading control.

Statistics.  Corneal vascularization rate over time was analyzed by One-Way ANOVA analysis, following 
Tukey multiple comparison tests. Unpaired t-test was used to evaluate the differences in WB band intensity and 
ELISA values between control and CNV patients. A p value < 0.05 was considered to be statistically significant. 
The statistical software GraphPad Prism 5.0 (GraphPad) was used for all analyses. All methods were performed 
in accordance with the relevant guidelines and regulations.

Results
Acute and chronic corneal neovascularization induced by intra-stromal suture.  Quantification 
of the blood and lymphatic vascularization, measured as CD31 and Lyve1 positive area respectively, confirmed 
a rapid growth of vessels in sutured corneas. The density of blood vessels was significantly higher 7 days after 
suture implantation (Fig. 1B, day −7, vascularized area 15.3% ± SEM 4.3% p < 0.0001), while lymphatic vessel 
density reached significance 14 days after surgery (Fig. 1C, day 0, +6.69% ± SEM 2.8%, p < 0.0001). Hem- and 
lymph-angiogenesis reached the maximum extension just before suture removal (Fig. 1A, day 0, +35.15% ± SEM 
6.1%, p < 0.0001 and Fig. 1C +6.69% ± SEM 2.8%, p < 0.0001 for blood and lymphatic vessels respectively). After 
suture removal, vessel regression was observed; however, sutured corneas remained significantly more vascular-
ized compared to control corneas for the following 2 months (Fig. 1B, day 30, +15.1% ± SEM 3.44%, p < 0.0001 
and Fig. 1C, +3.52% ± SEM 1.4%, p < 0.01 for blood and lymphatic vessels respectively). Figure 1D shows rep-
resentative immunofluorescence pictures of blood (upper pictures) and lymphatic (bottom pictures) vasculari-
zation in sutured corneas.

Murine and human CNV proteomics.  Mass spectrometry (MS) analysis of murine corneal stroma 
throughout the entire vascularization period allowed us to identify and quantify a total number of 2315 pro-
teins. We excluded the 180 days endpoint from our dataset for the proteomic analysis, because the number of 
the identified proteins was particularly small compared to the other time points. This was probably the conse-
quence of a technical problem occurred during sample preparation. In any case, we did not see any significant 
difference of CNV extension at this time point by means of immunofluorescence. In human samples (8 controls 
vs 10 CNV), 691 proteins were detected. Interrogation of the ECM protein-database Matrisome retrieved 115 
matrisome-associated proteins (Supplemental Fig. S1A, Supplemental Table S1), in particular 69 ECM regula-
tors, 28 ECM affiliated proteins and 18 secreted factors in mouse corneas. When comparing our data with the 
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core matrisome of ECM, 103 proteins were found, of which 66 belong to ECM glycoproteins, 25 to the collagen 
family and 12 to ECM proteoglycans (Supplemental Fig. S1B, Supplemental Table S1). In human samples, the 
comparison identified 74 matrisome-associated proteins with 43 ECM regulator proteins, 14 ECM affiliated pro-
teins and 17 secreted factors (Supplemental Tables S1C, S2); out of the 93 proteins identified as part of the human 
core matrisome, 60 were ECM glycoproteins, 21 collagens and 12 ECM proteoglycans (Supplemental Fig. S1D, 
Supplemental Table S2). This data indicates a good coverage of the stroma proteome, both in murine (20%) and 
human (16%) samples, as expected when compared to the entire species-specific matrisome. Moreover, we could 
confirm the good technical extraction of ECM proteins by our tissue protein extraction method.

Among the 110 proteins resulting from homology mapping between the two species (Supplemental Table S3), 
26 proteins were differentially expressed (|log2(FC)| >0.58 and FDR <0.2) between sutured animals and controls 
all over the time (Fig. 2A) and 44 (|log2(FC)| >0.58 and FDR <0.2) between 10 CNV patients and 8 controls 
(Fig. 2B).

Comparative analysis of murine and human CNV proteomics.  The comparison of differential 
expression in human and mouse highlighted several proteins with significant expression changes in the same 
direction (cases vs controls) (Fig. 3A, green dots). Protein–protein interaction network of DEGs was constructed 
using the Search Tool for the Retrieval of Interacting Genes (STRING, http://string.embl.de/) database38. This 
procedure allowed us to identify 5 ECM proteins in common between mouse and human (STRING network, 
Fig. 3B), which are strongly related, often cited together in the literature, which interact biologically each other 
or which are part of the same family. Two of these proteins were upregulated in the murine sutured and human 

Figure 1.  Suture induced blood and lymphatic vessel growth in the cornea. (A) Cartoon showing the CNV-
inducing mouse model we designed. Graphs showing the growth rate of blood (panel B) and lymphatic 
(panel C) vessels, measured in acute and chronic phases. (D) Representative pictures of blood and lymphatic 
vascularization over time, in red and green respectively. Asterisks in panel B and C represent the difference 
between suture and controls, graphs represent mean values ± SEM; statistical analysis measured by One-Way 
ANOVA analysis, following Tukey multiple comparison tests (**p < 0.01, ****p < 0.0001).
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CNV samples (Table 2): tenascin-C (TNC, LFC = +5.40, p = 0.0002 in human; LFC = +1.83, p = 5.86 × 10−4 
in mouse;) and fibronectin-1 (FN1, LFC = +1.23, p = 0.0270 in human, LFC = +0.78, p = 0.0059 in mouse). 
The remaining 3 proteins, instead, were downregulated (Table 2): lumican (LUM, LFC = −0.94, p = 0.0250 in 
human; LFC = −0.71, p = 0.0120 in mouse), decorin (DCN, LFC = −1.46 p = 0.0049 in human; LFC −0.88, 

Figure 2.  Z-score hierarchical clustering heat map visualization. (A) Gene names of the proteins identified by 
the proteomics analysis as differentially expressed in sutured and control mice at different time points; PRDX5 
and PRDX6 are reported, twice, since they refer to two different protein isoforms derived from the same gene; 
(B) Gene names of the proteins differentially expressed in human CNV and control corneal stroma. Only 
significant proteins (|log2(FC)| >0.58 and FDR <0.2) are reported; colours represent scaled expression values, 
with blue for low expression and red for the high expression levels.
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p = 0.0112 in mouse), and the three different subunits of collagen-VI (α1, LFC = −2.02, p = 0.0002 in human; 
LFC = −1.43, p = 0.0047 in mouse. α2, LFC = −2.28, p = 0.0002 in human; LFC = −1.50, p = 0.0028 in mouse. 
α3, LFC = −1.14, p = 0.0047 in human; LFC = −1.18, p = 0.0074 in mouse.

Human protein validation.  The differential expression of TNC, FN1, DCN, LUM and COLVI in the 
human corneal stroma was finally validated by WB or ELISA analysis. As shown in Fig. 4A,B, tenascin-C and 
fibronectin-1 levels were increased in CNV patients (+319% p = 0.0009, +102% p = 0.0047 respectively). On 
the other side, the expression of decorin (Fig. 4C), lumican (Fig. 4D) and collagen-VI α1 (Fig. 4E) was reduced 
(−85.8% p = 0.0018, −55.1% p = 0.002 and −59.1%, p = 0.0044 respectively). These data confirm the results 
obtained from the MS analysis of the human corneal stroma. Representative WB images are shown in Fig. 4F. For 
each validated protein, a graph showing the trend over time in the mouse model is reported on the right side of 
the corresponding panel.

Discussion
Corneal neovascularization is a leading cause of blindness worldwide and the need for better treatment is real 
and urgent. To this end, the quantification of the entire human CNV proteome is a useful tool to provide novel 
insights into the pathophysiology of this disease, and generate novel therapeutic targets.

Figure 3.  Comparison of mouse and human proteomics data. (A) Differential expression (expressed as log2 
fold change) of proteins identified in mouse (X axis) and human (Y axis). Yellow dots represent proteins 
differentially expressed in mouse; blue dots represent proteins differentially expressed in human; green dots 
represent proteins differentially expressed (Fisher combined probability test on FDRs <0.2) in the same 
direction in both species. (B) String network displaying experimentally determined interactions, interaction 
from curated database, protein homology, co-expression and co-citation in literature between selected proteins 
(pink, light blue, purple, black and lime connecting lines respectively). Colored nodes represent proteins added 
to the search query, regardless of the color.

Human

p FDR

mouse

p FDRLFC LFC

TNC 5.40 0.0003 0.0054 1.83 0.0006 0.0320

FN1 1.23 0.0270 0.0940 0.78 0.0059 0.1100

DCN −1.46 0.0049 0.0370 −0.87 0.0112 0.1500

LUM −0.94 0.0250 0.0890 −0.71 0.0120 0.1500

COL6A1 −2.02 0.0002 0.0054 −1.43 0.0046 0.1003

COL6A2 −2.28 0.0002 0.0054 −1.50 0.0028 0.0712

COL6A3 −1.14 0.0047 0.0367 −1.18 0.0074 0.1245

Table 2.  ECM proteins with a common expression changes in mouse and human. Values of log2 fold change 
(LFC), p-value (p) and adjusted p-value (FDR) for each of the proteins with significant expression changes 
in the same direction (cases vs controls). Human and mouse data are reported (left and right columns 
respectively).
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Until today, a few studies focused on the physiological corneal proteome26,39–41, but none of them analysed the 
pathological proteome of human CNV, as we did here.

In order to improve the purity and optimize ECM protein retrieval in CNV mice and humans, we took action 
to reduce variability. Specifically, in order to avoid unwanted dilution of stromal ECM structural proteins, and dif-
ferently from previous studies13,14, we removed the corneal epithelium prior to tissue processing. In addition, our 
suture-induced CNV model allowed us to follow-up animals for a long time (10 months), with less side-effects 
(corneal opacity, infections and perforations) compared to other damage models used in previous studies13,14.

We acknowledge that pooling together murine samples can reduce variability and, hence, be a limitation of 
this study, although this was required for ethical reasons to limit the number of sacrificed animals. On the other 
hand, however, we used completely independent samples and techniques (ELISA and Western Blot) to validate 
our proteomics results. It should also be noted that pooling the samples makes the pool stronger in terms of sta-
bility, because the inter-individual variability is attenuated.

Cursiefen et al. quantified the extent of CNV growth and regression using the same murine model we used42, 
showing long-term persistence of blood vessels (up to 8 months) and total regression of lymphangiogenesis after 
6 months, in the murine cornea. We were able to observe corneal blood and lymphatic vessels until 300 days 
after suture removal. Nonetheless, our data confirm that vessel regression continues over time, with an initial 
one-week, fast regression followed by a second, slower regression phase. It should be noted, however, that CNV 
was quantified differently in the two studies and this may have influenced the results. In fact, we performed 
whole-mount staining and quantified the vascular area on the entire cornea, while Cursiefen et al. performed 
quantification on corneal cross sections.

Our novel approach of CNV proteome analysis at different time points during the entire 10-month period 
increases the relevance of the animal model in terms of clinical translation, since patients affected with 
long-standing CNV are by far more numerous.

The proteomic analysis allowed us to identify, for the first time, five closely related ECM proteins, which are 
differentially expressed in vascularized human corneas.

Specifically, we found that two proteins: tenascin-C and fibronectin-1 were upregulated in the CNV cor-
nea. Tenascin-C is highly conserved in vertebrates43, mostly expressed by stromal cells and leukocytes at sites of 
inflammation, including the cornea after refractive surgery43–47.

Figure 4.  Validation of extracellular matrix proteins differentially expressed in CNV patients. On the 
right, mass spectrometry intensities (log CPM, Counts Per Million) for each protein in murine stroma are 
reported over time, while on the left the human protein level is shown as estimated by ELISA (tenascin-C 
and fibronectin-1, panel A and B) or Western blot (decorin, lumican and collagen-VI α-1, panels C, D and 
E respectively). F) Representative Western blot images cropped from different gels with different exposure. 
Statistical analysis performed by unpaired t-test (**p < 0.01, ***p < 0.001).
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Interestingly, the increased expression of tenascin-C is maintained not only in acute, but also in chronic 
inflammation, where it contributes to disease severity48, which explains its presence in the setting of long stand-
ing CNV in our study. Tenascin-C promotes vascularization by favoring cell spreading and signaling49,50 and 
by reducing tissue rigidity51, which in turns promotes vascular endothelial cell invasion. Tenascin-C targeting 
therapies with RNA interference have been already proposed52,53, even in very recent studies54 for the treatment of 
glioblastoma, impairing the tumor cell migration and invasion. Our findings support a potential use of a similar 
TNC inhibitory approach for CNV treatment.

Fibronectin-1 is a well-known ECM protein that mediates cell adhesion, migration, growth and differentia-
tion55. Of note, TNC and FN1 are expressed during the early phases of wound healing, when neovascularization 
is more intense56. Intriguingly, TNC binds to FN157 and seems to regulate the pro angiogenic effects of FN1 in 
tumors58. FN1, on the other side, binds to and regulates decorin function59.

Infectious keratitis is a leading cause of CNV. In our study, 3 patients with CNV following Acanthamoeba 
infection were analyzed and we surprisingly found that they showed the highest concentration of FN1 and TNC 
(+116%, p = 0.044 + 49.5% p = 0.012 compared to non-Acanthamoeba CNV patients). In fact, Acanthamoeba, 
can bind to ocular FN1, and this is instrumental to the development of keratitis60. The potential role of FN1 
overexpression in inducing CNV is supported by the finding that FN1 concentration is increased in contact lens 
wearers61, which are both at higher risk of developing CNV62 and Acanthamoeba keratitis63. We are aware that 
drawing conclusions from a population of only 3 patients is speculative: confirmation of our findings in a larger 
cohort of Acanthamoeba keratitis patients will be necessary, in the future, to confirm these findings.

FN1 is produced by pro-angiogenic macrophages64 and stimulates endothelial cell proliferation, micro-vessel 
elongation and angiogenesis65. Finally, and in line with our observation of extensive lymphangiogenesis in mice, 
FN1 is an excellent substrate for lymphatic endothelial cells invasion66, while TNC induces lymphangiogenesis 
in tumors67. Interestingly, several studies have targeted FN1 over-expression in tumors, with therapeutic mol-
ecules or even imaging agents68,69. This approach can be now proposed in CNV, thereby achieving in situ and 
highly-specific vascular inhibition at the site of vessel growth.

On a different note, we found that decorin and lumican were downregulated in vascularized mouse and 
human corneas. These proteins belong to the small leucine-rich proteoglycan family (SLRP) of the ECM70. They 
are expressed in the normal corneal stroma, where they promote corneal transparency, collagen fibril assembly 
and increase tissue rigidity by stabilizing collagen architecture71. Previous reports support the role of decorin in 
acute (up to 14 days) CNV in rabbit72. Further, it is known that deletion or mutations of DCN and LUM can lead 
to corneal dystrophies73–75. However, the relevance of decorin in human and in non-acute CNV has not been 
tested before.

It is known that DCN contributes to the maintenance of proper collagen organization8,76 and increases corneal 
stiffness77. The fact that DCN expression is reduced in CNV supports the concept that decreased tissue rigidity 
is associated with vascular invasion in the cornea, as it occurs in other tissues24,78. In this vein, it has been shown 
that increasing corneal rigidity by corneal crosslinking can inhibit CNV79. In addition to its effects on tissue 
biomechanics, overexpression of DCN retards in rabbits CNV, by down-regulating pro-angiogenic VEGF and 
angiopoietin72. In tumors, DCN-based therapies can promote tissue regeneration and reduce fibrotic scarring80, 
by downregulating several growth factors81.

Similarly to DCN, LUM also promotes collagen deposition, organization82 and stabilization83, therefore pro-
moting tissue rigidity, and hence, a-vascularity. Moreover, lumican inhibits angiogenesis by interfering with α2β1 
activity and downregulating MMPs expression84. In addition, it inhibits the influx of inflammatory cells to the 
cornea85–87, which is instrumental to CNV development88. Our finding confirms the results of a recent study89, 
which showed that LUM derived peptides promote corneal wound healing; this opens up a new promising field 
for the treatment of corneal scarring and CNV.

Finally, we observed reduced expression of collagen-VI, which is constitutively expressed in the corneal 
stroma90. Reduction in COLVI could promote CNV by altering the corneal biomechanics. For instance, COLVI 
depletion in the adipose tissue and tendons results in disorganized tissue morphology91,92. Furthermore, very 
recent studies reported that the C-terminal product of collagen-VI α-3, endotrophin, promotes angiogenesis and 
inflammation through recruitment of macrophages and endothelial cells in tumors93.

In addition to the five proteins whose differential expression is conserved in mouse and human subjects, we 
provide a list of other proteins, which are differentially expressed in mice or in human CNV samples, which will 
be subject of future studies.

In summary, our data globally suggest that the corneal stroma in CNV patients is highly disorganized and less 
rigid. These morphological modifications follow the release of soluble factors from leukocytes94,95, endothelial 
cell invasion and secretion96 -which also contribute to tissue rearrangement- and vascular leakage/edema, with 
lymphatic vessel infiltration97.

In conclusion, in this paper we identify, for the first time, five ECM proteins, which are conserved in humans 
and are differentially expressed in normal vs. vascularized corneas. We suggest that our findings may shed new 
light on the complex pathophysiology of human CNV, and finally lead to improved treatments.
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