
1260 Copyright © 2023 The Korean Society of Radiology

INTRODUCTION

Multiple sclerosis (MS) and neuromyelitis optica spectrum 
disorders (NMOSD) are autoimmune conditions affecting 
the central nervous system (CNS) [1,2]. For decades, these 
diseases have been considered part of the same spectrum, 
with NMOSD classified as an aggressive variant of MS. 
The reason for this is the partial overlap of their clinical 
manifestations, which in both cases include inflammatory 
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Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially 
contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the 
understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications 
using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to 
microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application 
of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI 
studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and 
identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and 
NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation 
and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and 
existence of primary or secondary mechanisms of neurodegeneration.
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involvement of the optic nerve and spinal cord, in the form 
of acute optic neuritis and transverse myelitis. However, 
these manifestations are more severe in patients with 
NMOSD. Optic neuritis in NMOSD is often bilateral and long 
(i.e., involving at least 50% of the optic nerve length) 
[2], and is associated with incomplete recovery [3] and 
potential blindness [4]. Similarly, acute myelitis is usually 
longitudinally extensive (i.e., involving at least three 
consecutive vertebral segments) [2] and patients almost 
invariably suffer from residual disabilities [3,4]. The severity 
of acute inflammatory activity in NMOSD leads to multistep 
disability accrual, in which residual disability is gained after 
attacks [4]. 

In contrast, recovery from acute episodes is usually good 
in patients with MS, but approximately 85% eventually 
develop secondary disability progression, in which motor 
worsening occurs irrespective of inflammatory episodes 
[5]. Table 1 summarizes the main clinical differences and 
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protocols for optimal diagnostic framing of MS and 
treatment monitoring [9,10]. At the time of diagnosis, 
emphasis is placed on the comprehensive acquisition of brain 
images, which must include contrast administration [9,10]. 
Although not recommended in the past, the latest guidelines 
highlight the importance of studying the spinal cord at 
initial evaluation [10]. However, longitudinal evaluation 
is currently not recommended, unless the patient is 
symptomatic for myelitis [10]. Advanced MRI sequences are 
usually considered optional, although atrophy measurement 
is becoming increasingly popular in MS, given its prognostic 
implications and the growing availability of automated 
software for its quantification [10]. However, it is worth 
mentioning that the application of these tools, especially 
in a longitudinal setting, should rely on the acquisition of 
three-dimensional (3D) images (better if isotropic) with 
multiple contrasts and should always be accompanied by 
the segmentation of lesions (because they can influence 
atrophy measurement). Centers should test these tools on a 
standard test dataset [11].

No specific recommendations are currently available 
for NMOSD; however, it is reasonable to assume that most 
principles applied to MS can also be translated to this 
disease. However, a body of evidence suggests that routine 
MRI acquisition for monitoring patients with asymptomatic 
NMOSD may not be recommended because asymptomatic 
lesion development is rare [12]. Our proposed optimal MRI 
protocol for the clinical management of MS and NMOSD is 
presented in Table 2.

similarities between patients with MS and NMOSD.
These clinical differences can be explained by the novel 

discovery of an antibody in the serum of patients with 
NMOSD that is not present in patients with MS or other 
neurological diseases [6]. This antibody targets aquaporin-4 
(AQP4), a water channel protein highly expressed on 
astrocyte endfeet in the blood-brain barrier [7]. It belongs 
to the immunoglobin G1 (IgG1) subclass and can activate 
the complement cascade, leading to astrocyte death and 
secondary oligodendrocyte damage with demyelination [8]. 

This pathophysiological cascade differs from that of MS, a 
cell-mediated disorder in which autoreactive T cells promote 
primary damage to myelin, assisted by antigen-presenting 
cells (B cells, macrophages, dendritic cells, and microglia) 
through mechanisms that are still poorly understood [5].

Clinical Contribution of MRI 

Most recommendations on the optimal magnetic 
resonance imaging (MRI) protocol for the clinical 
management of CNS autoimmune disorders come from 
the experience with MS, where MRI provides a substantial 
contribution to both diagnosis and treatment monitoring. 
Indeed, in clinical practice (as well as in research), MRI 
protocols are affected by high inter-center variability, which 
can limit the interpretation of results (i.e., differences 
in sequences acquired) and affect the standard of care. 
Therefore, international recommendations have been updated 
over the years to provide guidelines and standardized 

Table 1. Main clinical and laboratory features of MS and NMOSD

Variables MS NMOSD
Age at onset, yr 20–40 30–50 
Female/male ratio 2–3/1 4–9/1
Secondary progression Common Rare
CSF features

Oligoclonal bands Common Rare
Pleocytosis Mild Moderate-Severe
High proteins Rare Common

Clinical manifestations Heterogeneous (optic neuritis, transverse myelitis, 
hemispheric, brainstem)

Mainly optic neuritis, transverse myelitis, and 
area postrema syndrome

Optic neuritis
Bilateral Rare Common
Recovery Usually good Partial

Transverse myelitis
Longitudinally extensive Rare Common
Recovery Usually good Partial

MS = multiple sclerosis, NMOSD = neuromyelitis optica spectrum disorders, CSF = cerebrospinal fluid
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Table 2. Suggested MRI protocol for the diagnosis and monitoring of MS and NMOSD 

               Sequence
MS NMOSD

Diagnosis Monitoring Diagnosis Monitoring
Brain

T2-w Yes Yes Yes If cerebral attack
FLAIR (preferably 3D) Yes Yes Yes If cerebral attack
Pre-contrast T1-w (2D) Yes Optional Yes Optional
Post-contrast T1-w (2D) Yes Optional Yes If cerebral attack
DIR or PSIR* Yes Optional Optional No
High-resolution T1-w (3D)† Optional Optional Optional Optional
SWI‡ Optional Optional Optional No
DTI Optional Optional Optional Optional

Optic nerve
Fat-Sat T2-w/FLAIR/STIR§ Optional If optic neuritis Yes If optic neuritis
Fat-Sat post-contrast T1-w Optional If optic neuritis Optional If optic neuritis

Spinal cord
≥ 2 Sagittal T2-w Yes Yes Yes If myelitis
Axial T2-w Yes Yes Yes If myelitis
Sagittal pre-contrast T1-w Optional No Optional No
Sagittal post-contrast T1-w Yes If myelitis Yes If myelitis
Axial post-contrast T1-w Optional Optional Optional Optional
High-resolution T1-w (3D)† Optional Optional Optional Optional

Modified from Wattjes et al. [10], Lancet Neurol 2021;20:653-670, 2021 MAGNIMS-CMSC-NAIMS consensus recommendations according to 
authors’ personal experience.
*Sequences for cortical lesion detection may be particularly useful at the time of diagnosis given the lack of cortical lesions in NMOSD 
patients, †This sequence should be included if clinicians/researchers are interested in measuring atrophy, ‡Useful for the detection of 
the central vein sign (more common in MS) and for the identification of the paramagnetic rim, §Optional in patients with MS, unless 
suspected with optic neuritis. At the time of diagnosis, evidence of long lesions extending over 50% of the optic nerve or involving the 
optic chiasm, even if not active, may provide clues towards NMOSD diagnosis.
MRI = magnetic resonance imaging, MS = multiple sclerosis, NMOSD = neuromyelitis optica spectrum disorders, MAGNIMS = Magnetic 
Resonance Imaging in Multiple Sclerosis, CMSC = Consortium of Multiple Sclerosis Centres, NAIMS = North American Imaging in Multiple 
Sclerosis, T2-w = T2-weighted sequence, FLAIR = fluid-attenuated inversion recovery, 3D = three dimensional, T1-w = T1-weighted 
sequence, 2D = two dimensional, DIR = double inversion recovery, PSIR = phase-sensitive inversion recovery, SWI = susceptibility-weighted 
imaging, DTI = diffusion-tensor imaging, Fat-Sat = fat suppressed, STIR = short tau inversion recovery

Research Contribution of MRI 

Common key questions when studying the pathogenesis 
of autoimmune CNS disorders are:

1. What is the pathophysiology of focal inflammation?
2. Is the normal-appearing tissue involved?
3. Which are the entry routes of the pathogenic elements 

in the CNS?
4. Is neurodegeneration a primary or a secondary 

phenomenon?
In this review, we provide examples of how structural MRI 

provides substantial evidence to address these open issues. 
A flowchart summarizing the key questions in the study of 
autoimmune disorders and corresponding MRI proxies is 
shown in Figure 1. A brief summary of the main advanced 
techniques discussed in this article and their interpretations 

are presented in Table 3.

What is the Pathophysiology of Focal Inflammation? 
Study of Focal Lesions

Research addressing this question has primarily focused 
on focal lesions. In both MS and NMOSD, lesions are located 
in the brain, spinal cord, and optic nerve, and can involve 
the white matter (WM) or grey matter (GM). Although optic 
nerve imaging can be particularly relevant for differential 
diagnosis, we mainly describe the brain and spinal cord 
findings, given the large amount of available MRI literature.

Conventional Features of Lesions
T2-weighted images (especially when signals from 

the cerebrospinal fluid [CSF] are suppressed using fluid-
attenuated inversion recovery [FLAIR]) are the most 



1263

MRI in Multiple Sclerosis and NMOSD

https://doi.org/10.3348/kjr.2023.0360kjronline.org

Fig. 1. Flowchart summarizing the key questions in the study of autoimmune CNS disorders with corresponding MRI proxies. CNS = central 
nervous system, MRI = magnetic resonance imaging, CSF = cerebrospinal fluid 

Table 3. Summary of the advanced MRI techniques applied in MS and NMOSD and discussed in the current review

Indices Meaning Abnormal
T2-weighted and T1weighted images

T1/T2-weighted ratio Myelin content [200], dendritic density [201], or neurite density [202] ↓
DTI*

Fractional anisotropy (FA) Axonal > myelin integrity ↓
Mean diffusivity (MD) Myelin > axonal integrity ↑
Axial diffusivity (AD) Axonal integrity ↓↑ depending on timing
Radial diffusivity Myelin integrity ↑
Diffusion along perivascular space index Glymphatic function ↓

NODDI†

Neurite density index (NDI) Amount of neurites ↓
Intracellular volume fraction (ICVF) Amount of neurites ↓
Orientation dispersion index (ODI) Variability of neurite orientation (tissue complexity) ↓
Isotropic volume fraction (isoVF) Amount of free water ↑

1H-MRS
Choline (Cho) Cell membrane marker ↑
N-acetylaspartate (NAA) Neuronal marker ↓
Lactate (Lac) Anaerobic metabolism ↑

MT
Magnetization transfer ratio (MTR) Myelin content ↓

*DTI: provides information on tissue integrity based on the movement of water molecules. The principle is that water molecules in the white 
matter do not move randomly but follow a preferential direction (i.e., fractional anisotropy), that overlaps the orientation of the white matter 
tracts [203,204]. The higher the fractional anisotropy, the higher the integrity of axons in the white matter. In addition, the presence of 
macromolecules such as myelin limits the mean diffusion of water molecules, so that increased mean diffusivity is usually considered an index 
of demyelination (although also the presence of the axonal membranes in part limits mean diffusivity) [203,204]. Other indices indicating the 
status of axons and myelin are the axial and the radial diffusivity, respectively [203,204]. However, this model has some limitations, such as 
its poor interpretability in case of crossing fibers or tissue organization (for example, in the cortex), but also the relatively non-specificity of 
findings, †NODDI: this model was recently proposed to overcome the limitations of DTI, and is obtained through the acquisition of multi-shell 
diffusion weighted images with axial echo-planar imaging (EPI) [205]. This is a three-compartmental model where brain tissue as made of an 
intracellular space (i.e., within the neurites membranes), extracellular space (i.e., around neurites, which includes glial cells or neural somas), 
and the cerebrospinal fluid (i.e., free water with isotropic diffusivity) [205].
MRI = magnetic resonance imaging, MS = multiple sclerosis, NMOSD = neuromyelitis optica spectrum disorders, DTI = diffusion-tensor imaging, 
NODDI = neurite orientation dispersion and density imaging, 1H-MRS = portion magnetic resonance spectroscopy, MT = magnetization transfer
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sensitive for detecting hyperintense brain WM lesions [13]. 
A variable proportion of these lesions is hypointense on 
T1-weighted images, where they are called “black holes” 
due to their hypointense signal compared to adjacent WM 
[14], pathologically corresponding to areas of more severe 
axonal loss [15]. More advanced imaging sequences, such 
as double-inversion recovery, phase-sensitive inversion 
recovery, and T1-weighted magnetization-prepared rapid 
gradient-echo are needed to identify cortical lesions [10,16]. 

In MS, brain lesions are invariably present and known 
specifically to involve the periventricular areas (i.e., 
periventricular lesions), U-fibers or the cortex (i.e., 
juxtacortical/cortical lesions), and brainstem or cerebellum 
(i.e., infratentorial lesions) [1,16]. These locations and 
spinal cord involvement are listed for the assessment of 
dissemination in space, according to the MS diagnostic 
criteria [1].

Features of a typical lesion suggestive of MS have been 
identified. Lesions must measure at least 3-mm in size 
[1]. Periventricular lesions are ovoid, with the long axis 
perpendicular to the body of the lateral ventricles in a shape 
termed “Dawson’s fingers” [16]. Cortical lesions are observed 
from the earliest stages of MS [17] and usually follow the 
shape of the cerebral sulci and gyri (i.e., curvilinear/worm-
shaped lesions), or have an oval or wedge shape [16,18]. 
Their identification has so far been hampered by the low 
inter-rater agreement of physicians, despite international 
guidelines [19] and the non-uniform availability of such 
pulse sequences in all clinical centers [10]. Nevertheless, 
their assessment may be particularly relevant for clinical 
outcomes because they represent risk factors for cognitive 
impairment [20] and secondary progression [21].

In NMOSD, brain MRI was considered normal until recent 
years when studies revealed a significant incidence of T2-
hyperintense lesions in this disease, with a frequency 
between 43%–70% at disease onset [22-24]. Several 
features are considered typical of NMOSD, including 
location along the ependymal layer of the lateral and fourth 
ventricles (periependymal lesions), diencephalic region, 
corticospinal tract, and dorsal brainstem (possibly adjacent 
to the fourth ventricle or including the area postrema). A 
Balo-like appearance has also been described [25], although 
it was recently demonstrated to be rare [26]. Several studies 
have assessed cortical lesions in patients with NMOSD. 
Cortical lesions were not identified in independent cohorts of 
Caucasian and Afro-Caribbean patients at 3.0 T [27,28], 7.0 T 
[29], or pathologically [30], although a few investigations 

reported cortical lesions among Asian patients with NMOSD, 
ranging between 3%–11% [31,32]. A pathological study 
reported that cortical damage occurs in NMOSD with neuronal 
loss, AQP4-changes in astrocytes, and meningeal inflammation 
in the absence of focal cortical demyelination [30].

In terms of lesion-size, NMOSD lesions can be large 
hemispheric (i.e., transverse diameter > 3 cm) or small 
non-specific (< 3 mm) [25]. Their shapes are variable 
and include linear, spindle-like, or radial-shaped aspects, 
following the main WM tracts [25].

Spinal cord lesions can be particularly useful for 
differentiating MS from NMOSD, given their tendency to 
be short in the first disease and long (i.e., extending over 
three contiguous vertebral segments) in the latter [25]. 
Examples of typical lesions and their locations in MS and 
NMOSD are shown in Figure 2.

The utility of lesion location for the differential 
diagnosis of MS and NMOSD was proven by several MRI-
based algorithms, which highlighted the specificity of 
periventricular and juxtacortical/cortical lesions for MS 
and periependymal lesions for NMOSD [28,33,34]. Table 4 
summarizes the typical features of MS and NMOSD lesions 
together with the MRI-based algorithms proposed for the 
differential diagnosis of the two disorders. 

Surveillance MRI to detect new or active lesions over time 
is the most widely used paraclinical tool for the assessment 
of treatment efficacy in MS [35], but not in NMOSD, owing 
to the extremely low rate of asymptomatic lesion (3.4%) 
development [12]. 

Lesion Location
Lesions in MS envelop the perivenular vessels running 

perpendicular to the ventricular system, as revealed by 
pathological studies showing lympho-monocytic infiltrates 
along these venules [36]. From an imaging perspective, 
the implementation of 3D MRI pulse sequences sensitive to 
iron, such as T2*-weighted gradient echo sequences (T2*), 
especially with segmented echo-planar imaging (EPI) and its 
variation susceptibility-weighted imaging (SWI), together 
with post-processing, allows the visualization of veins 
running through MS lesions [37]. Sensitivity to this sign 
can be enhanced by acquisition at a high (3.0 T) or ultra-
high (7.0 T) field strength and by the administration of 
contrast agents [37]. According to the North American 
Imaging in Multiple Sclerosis Cooperative guidelines, the 
“central vein sign” is defined as a thin linear area of T2*-
hypointensity running in the center of a WM lesion on a 
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Fig. 2. Examples of typical lesion locations and appearance at MRI in patients with MS and NMOSD. Lesions are indicated by arrows. 
Unless otherwise specified, brain images are shown on FLAIR (axial view). Optic nerve lesions are visible on double inversion recovery 
(axial view), and spinal cord lesions are shown on short tau inversion recovery (sagittal view). MRI = magnetic resonance imaging, MS = 
multiple sclerosis, NMOSD = neuromyelitis optica spectrum disorders, FLAIR = fluid-attenuated inversion recovery, DIR = double inversion 
recovery, STIR = short tau inversion recovery
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sagittal cut, or a dot-like hypointensity on a transverse cut 
[37]. Numerous studies have evaluated the frequency of 
the central vein sign in different WM disorders, including 
MS, NMOSD, myelin-oligodendrocyte antibody-associated 
disease, chronic small-vessel disease, Sjogren’s syndrome, 
Bechet’s disease, and migraine [38-42]. There is substantial 
agreement that the central vein sign in at least 35%–55% 
[38-41] of lesions identifies patients with MS. Less time-
consuming analyses, such as the detection of at least three 
lesions showing the central vein sign, demonstrated a 
similar diagnostic performance [40,43].

The rarity of the central vein signs in NMOSD lesions is 
evidence of a different pathophysiology of the disorder 
[40,41,44]. Periependymal lesions are the most specific 
type of NMOSD [28]. One study demonstrated that the 
periependymal region is characterized by high AQP4 
expression, suggesting that lesion location in NMOSD is, 
at least in part, due to differential expression of a target 
antigen across CNS regions [45]. However, this does not 
apply to lesions in the corticospinal tract, which is conversely 
known to be an AQP4-poor region of the brain [25]. This 
may be due to the concomitant presence of other favorable 

factors, such as complement expression, in areas with a high 
probability of brain lesions [46].

Microstructural Damage and Evolution of WM and Spinal 
Cord Lesions

The characterization of lesions using multimodal MRI 
pulse sequences has revealed a high degree of heterogeneity 
in tissue disruption and repair. Conventional imaging (e.g., 
T2- and pre-/post-contrast T1-weighted quantitative or 
non-quantitative images) and advanced imaging (e.g., 
magnetization transfer [MT], diffusion-weighted imaging, 
diffusion-tensor imaging [DTI], T2*-weighted imaging, EPI, 
and proton magnetic resonance spectroscopy [1H-MRS]) 
have been used for this purpose in MS. Despite technical 
heterogeneity, there is substantial consensus regarding the 
dynamics and characterization of lesional changes. 

Four stages are recognized in the natural history of 
MS lesions: 1) pre-clinical, 2) acute, 3) reparative (with 
different efficiency of recovery mechanisms), and 4) chronic. 
During the pre-clinical stage, no tissue abnormalities were 
visible with conventional non-quantitative sequences. 
Nevertheless, pre-lesional changes can be measured in 
normal-appearing WM at the site of an upcoming lesion, 
months to weeks before its appearance. These are mainly 
represented by perfusion/permeability changes and 
demyelination, as suggested by increased perfusion [47], 
increased diffusivity (apparent diffusion coefficient and 
mean diffusivity [MD]) [48,49], decreased magnetization 
transfer ratio [MTR] [50], and increased choline levels (Cho, 
at 1H-MRS) [51,52]. 

In the acute phase, a lesion is detectable on T2-
weighted images as a new hyperintense focal area, which 
is usually enhanced on post-contrast T1-weighted images. 
Intralesional damage shows the progression of demyelination 
(increased MD, radial diffusivity [RD], Cho, and lactate, and 
decreased MTR) [51,53-57], development of variable degrees 
of axonal damage (decreased fractional anisotropy [FA] 
and N-acetylaspartate) [51,54-58] and metabolic changes 
(increased lactate) [55,57,59]. Finally, the lesion undergoes 
a phase of progressive tissue recovery [55], with enhanced 
resolution and variable normalization of the abovementioned 
parameters (especially MTR) over seven months [60]. 
Lesions with lower MTR [53] and higher RD [56] are likely to 
become chronic black holes. At the end of this period, the 
lesion appeared smaller on T2-weighted images, but rarely 
disappeared (5%) [61].

The neurite orientation dispersion and density imaging 

Table 4. Typical features of lesions in MS and NMOSD

Lesion features MS NMOSD
Brain

Shape Ovoid (Dawson’s fingers) Variable
Location Periventricular Periependymal

Juxtacortical/Cortical Diencephalic
Corticospinal tract

Brainstem Dorsal brainstem
Central vein sign > 50% of lesions Rare
Iron rim Present Absent

Optic nerve
Site Unilateral Bilateral
Length Short Long‡

Cord
Length Short Long§

Location Peripheral Central
MRI algorithms 1 of 3 criteria* 2 of 5 criteria†

*At least one of the following: (1) lesion adjacent to the body 
of the lateral ventricle and in the inferior temporal lobe, (2) a 
subcortical U-fiber lesion, and (3) a Dawson’s finger-type lesion 
[34], †At least one of the following: (1) longitudinally extensive 
lesion in the spinal cord, (2) periependymal lesion of the lateral 
ventricles; absence of (3) juxtacortical/cortical U-fiber lesions, (4) 
Dawson’s finger-type lesions, and (5) ovoid periventricular lesions 
[28], ‡At least 50% of the optic nerve length, §At least three 
consecutive vertebral segments.
MS = multiple sclerosis, NMOSD = neuromyelitis optica spectrum 
disorders, MRI = magnetic resonance imaging
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(NODDI) technique has so far been applied only cross-
sectionally to lesions, showing a reduced neurite density 
index (NDI) [62,63], orientation dispersion index (ODI) [62], 
and intracellular volume fraction (ICVF) [64], together with 
an increased isotropic volume fraction (isoVF) [62,64]. 

In the chronic phase, > 50% of lesions may reveal 
subtle chronic inflammatory activity with persistent local 
inflammation [65]. These lesions are known as chronic-
active, slowly enlarging or smoldering. On MRI, chronic-
active lesions may show a peripheral paramagnetic rim, 
which usually persists over time [66,67] (although in some 
cases, it disappears after years) [68] and histologically 
corresponds to a layer of iron-rich macrophages at the edge 
of the lesion [66]. Alternatively, they can be automatically 
identified on serial conventional MRI (i.e., T2- and T1-
weighted images) by calculating the Jacobian of the 
nonlinear deformation field between time points [69]. 
Lesions showing a progressive growth identified by a voxel-
wise expansion of at least 12.5% per year are selected 
with this approach [69,70]. However, this methodology 
likely identifies only a subset of lesions with persistent 
paramagnetic rims because progressive enlargement does 
not occur in all lesions and is usually more common in 
patients with progressive disease [70].

These lesions have been observed in patients with worse 
disability or faster progression [69,71], demonstrating 
progressive intralesional tissue damage [72]. Lesions with 
persistent peripheral rim are characterized by more severe 
intralesional damage, with prolonged lesional T1-relaxation 
time [72] and more severe reduction in NDI [63].

Little evidence is available regarding NMOSD, and no 
studies to our knowledge has provided longitudinal data on 
intralesional microstructural abnormalities. Cross-sectional 
studies have demonstrated inconsistent results with NMOSD 
brain lesions characterized by a worse reduction in FA [73], 
milder reduction in axial diffusivity [64,73], MD [64,73], 
and RD compared to MS [64], or no significant changes in FA 
[64] or RD [73] compared to MS or healthy subjects. Using 
NODDI, patients with NMOSD showed reduced ODI, increased 
isoVF, and normal ICVF compared to healthy controls [64]. 
In the cord, increased intralesional RD was found in NMOSD 
compared with that in MS [74]. Figure 3 shows examples 
of lesion appearance on conventional and advanced MRI 
sequences in patients with MS and NMOSD.

Therefore, no conclusions can be drawn regarding NMOSD 
due to a lack of strong evidence, and additional studies 
are needed to improve our understanding of intralesional 

microstructural abnormalities and their dynamics. 
Nevertheless, lesion evolution on conventional imaging 
provides clues about the different pathophysiologies of 
NMOSD. For instance, the frequency of lesion resolution, 
although low, was twice that of MS (10%) [61]. Preliminary 
data highlight that NMOSD lesions do not exhibit a 
peripheral paramagnetic rim at 7.0 T [29,75] and 3.0 T [76], 
suggesting a lack of chronic active inflammation. 

Microstructural Damage of Cortical Lesions
Characterization of the microstructure of cortical lesions 

has long been considered challenging because of the poor 
fit of the DTI model to the disruption of cortical tissue 
within lesions. In fact, a consistent finding among multiple 
independent studies in MS is a paradoxical increase in FA 
compared with a surrounding normal-appearing GM [77-81], 
promoting different hypotheses. Two pathology-MRI studies 
recently resolved this unexplained MRI finding [82,83] by 
demonstrating increased cellular density [82] and tissue 
reorganization [83] within cortical lesions. 

Under physiological conditions, diffusion anisotropy in 
the cortex is mainly due to the normal representation of 
axons perpendicular to the cortical surface (perpendicular 
axons connecting the cortex to the WM) [83]. Remote WM 
lesions can reduce the number of perpendicular axons in the 
cortex through secondary retrograde degeneration, which 
explains the FA reduction observed in normal-appearing 
cortex [83]. Additionally, loss of axons running parallel to 
the cortical surface was observed within cortical lesions. 
Pseudonormalization of the ratio between perpendicular 
and parallel axons results in a paradoxical increase in FA 
compared with non-lesioned tissues [83].

This pathophysiological model was recently replicated in 
a study of the cortex using the NODDI model. The findings 
showed reduced ICVF (a proxy of neurite density) [84] in 
both lesioned- and normal-appearing cortices but reduced 
ODI (i.e., neurite orientation and dendritic arborization 
complexity) [84-86] only within cortical lesions [84].

Is the Normal-Appearing Tissue Involved? Study of 
Microstructural Abnormalities

Microstructural abnormalities can be detected using MRI 
pulse sequences, which can interrogate the microstructural 
features of tissues (Table 3). In MS, microstructural 
abnormalities involve both lesioned and normal-appearing 
tissues, with evidence of different degrees of demyelination 
(i.e., increased MD) and axonal damage (i.e., decreased FA) 
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Fig. 3. Examples of MRI lesions on conventional and advanced sequences in patients with MS and NMOSD. Lesions are indicated by 
white arrows and shown in axial view. Black arrows indicate increase or decrease. Black horizontal line indicates inconsistent change.
MS: hyperintense periventricular lesion on FLAIR, with corresponding hypointensity on T1-w; periventricular lesion with peripheral rim on 
SWI; periventricular lesion with reduced signal on MT map; extensive white matter lesion showing decreased FA; periventricular lesions 
with increased MD, increased RD, and decreased ICVF; juxtacortical lesion with decreased ODI. NMOSD: Diencephalic lesion hyperintense 
on FLAIR, with corresponding T1-hypointensity. The lesion does not show any paramagnetic effect on SWI and is hypointense on the MT 
map. The thalamic lesion shows decreased FA, periaqueductal lesion showing increased MD and RD, bilateral diencephalic lesion showing 
reduced ODI, and reduction of ICVF only on the left side. MRI = magnetic resonance imaging, MS = multiple sclerosis, NMOSD = neuromyelitis 
optica spectrum disorders, FLAIR = fluid-attenuated inversion recovery, T1-w = T1-weighted sequence, SWI = susceptibility-weighted 
imaging, MT = magnetization transfer, FA = fractional anisotropy, MD = mean diffusivity, RD = radial diffusivity, ICVF = intracellular volume 
fraction, ODI = orientation dispersion index, NODDI = neurite orientation dispersion and density imaging, DTI = diffusion-tensor imaging 
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[48,87-90]. Similar findings have been reported in the spinal 
cord, independent of lesions [91]. Neuroaxonal damage 
(decreased ICVF and NDI) [63,92] and loss of physiological 
architecture in the normal-appearing white matter (NAWM) 
(ODI reduction) [92] were also significant in MS patients [92] 
with NODDI. 

Normal-appearing WM abnormalities are controversial in 
NMOSD, where studies have found either diffuse damage 
[73,93], abnormalities restricted to the WM tracts potentially 
undergoing secondary degeneration (i.e., in the visual 
pathway and sensorimotor system) [94], or no damage [95]. 
In the spinal cord, patients with NMOSD showed reduced 
FA, increased MD, and reduced MTR compared with those in 
healthy controls, but are similar to MS [91]. Although the 
study did not consider lesioned and non-lesioned tissues 
separately, these abnormalities were absent in patients with 
no corresponding spinal cord lesions [91]. Table 5 and Figure 
4 summarize these studies.

CSF-in Gradient of Damage
Although brain microstructural abnormalities are diffuse 

in MS, several independent investigations have demonstrated 
that such damage is more severe closer to periventricular 
areas. This was proven using different techniques, including 
the MTR [96-98], DTI [73,99,100], and T1/T2-weighted ratio 
[100], both in normal-appearing WM [73,96-99] and in the 
thalamus [100] (Fig. 5).

Abnormalities have been detected from the earliest 
phases of MS, including in patients with clinically isolated 

syndrome [99] and pediatric MS [100,101], and are more 
severe in patients with CSF-restricted oligoclonal bands 
[99]. Similarly, using T2*-weighted images on 7.0 T MRI, 
researchers found a progressive gradient of demyelination, 
starting from the external layers of the cortex and expanding 
to the deeper cortical layers [102]. 

These findings reinforce the hypothesis that the pathogenic 
element of damage in MS is found in the CSF, which is in 
contact with the periventricular areas and external cortex 
[103]. To the best of our knowledge, only one DTI study 
has investigated a gradient of damage similar to MS in 
patients with NMOSD and detected diffuse abnormalities 
(increased MD and reduced T1/T2-weighted ratio, but normal 
FA) in the periventricular normal-appearing WM with no 
clear regional distribution [73]. Other independent studies 
have demonstrated abnormalities in the NAWM in terms of 
diffusivity (mean, axial, and radial) without FA reduction 
[64,93]. These findings are in line with a recent pathological 
investigation, which showed that NMOSD-associated 
astrocytopathy is diffuse and not restricted to lesioned 
tissues [104] without diffuse axonal damage. 

Abnormal CSF Production and Drainage
Following these observations, the choroid plexus, one 

of the main elements of the blood-CSF barrier [105], has 
recently gained attention. The choroid plexus is deputed 
to CSF production, is located along the floor of the lateral 
ventricles and roof of the third and fourth ventricles, and 
regulates immune trafficking within the CNS [106]. It can be 

Table 5. Microstructural damage and atrophy in MS and NMOSD

Features MS NMOSD
Microstructural damage

Present Yes Yes
Affecting the normal-appearing tissue Yes Controversial
Type of abnormalities

Axonal damage Yes Potentially
Demyelination Yes Controversial

Distribution Diffuse (CSF-in gradient) Diffuse or restricted to secondary neurodegeneration
Atrophy

Present Yes Yes
Distribution

White matter Yes Controversial
Grey matter Yes Controversial
Cortex Yes Yes (secondary neurodegeneration)
Hippocampus Yes Yes
Thalamus Yes Yes

MS = multiple sclerosis, NMOSD = neuromyelitis optica spectrum disorders, CSF = cerebrospinal fluid
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Fig. 4. Examples of MRI showing microstructural damage and atrophy in patients with MS and NMOSD. Top row of multiple sclerosis and 
neuromyelitis optica spectrum disorder: Microstructural damage is shown using the result of a prototypical between-group comparison 
of white matter damage in patients compared to a group of matched healthy controls using TBSS. Images are shown in axial view. MS: 
patients with MS have widespread reduction of FA (red) and increased MD (blue) compared to those in controls. NMOSD: patients with 
NMOSD have normal FA and diffuse increase of MD (yellow to orange). Bottom row of multiple sclerosis and neuromyelitis optica spectrum 
disorder: Examples of brain and spinal cord atrophy in patients with MS and NMOSD. Unless otherwise specified, brain images are shown in 
axial view on fluid-attenuated inversion recovery images. MS: significant ventricular enlargement, sulcus widening, and diffuse spinal cord 
atrophy. NMOSD: milder example of brain atrophy with significant focal volume loss in the spinal cord, corresponding to a longstanding 
lesion (arrow). MRI = magnetic resonance imaging, MS = multiple sclerosis, NMOSD = neuromyelitis optica spectrum disorders, TBSS = 
Tract-Based Spatial Statistics, FA = fractional anisotropy, MD = mean diffusivity, 3D-T1 = 3-dimensional T1-weighted image 
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easily measured on high-resolution T1-weighted images with 
excellent interrater agreement [107]. Compared with healthy 
controls, patients with MS have an increased volume of the 
choroid plexus [108-111], even after a first clinical attack 
[112] and during childhood [107]. This alteration seems 
specific to MS, as it has not been observed in patients 
with other neurological disorders, including migraine and 
NMOSD [110]. In most studies, increased choroid plexus 
volume was associated with more severe disability [108, 

109] and relapse [109,111]. From an imaging perspective, 
associations were found between inflammatory and 
neurodegenerative indices, including T2-hyperintense and 
gadolinium-enhancing lesions [107-111], brain atrophy 
[107,108,113], slowly expanding lesions [113], and poor 
periventricular remyelinating capacity, in one positron 
emission tomography (PET)-MRI investigation [114]. These 
results provide additional evidence regarding the pathogenic 
role of CSF in MS-related brain damage. 

Fig. 5. Schematic representation and brief explanation of CSF- and BBB-associated measures cited in the manuscript. Colors at first row 
indicate brain tissue bands. Damage gradient measurement can be done by dividing the brain tissue into concentric bands, starting from 
the CSF-parenchymal interface estimated as a function of the geodesic distance from the ventricular system; as shown in the graph, in 
MS parenchymal damage is more severe closer to the CSF compartment. Glymphatic function can be assessed by measuring the DTIALPS 
index: SWI is used to identify the brain slice where periventricular veins run perpendicular to the ventricular system. Two ROIs are then 
placed on projection and associative fibers on the corresponding slice of a color-coded principal diffusion direction map. The DTIALPS index 
is calculated as the ratio between diffusivities perpendicular to fibers and parallel to veins, and those perpendicular to both fibers and 
veins [118]. The example provided refers only to the ROI on projective fibers. The T2-relaxation time measures the constant magnetization 
decay on the transverse plane, which may be used as a proxy for water content. It can be calculated using at least dual-echo sequences, 
assuming a monoexponential decay. Red, green and blue arrows at middle row indicate directions perpendicular (x and y) and parallel (z) 
to projective fibers. CSF = cerebrospinal fluid, BBB = blood-brain barrier, MS = multiple sclerosis, DTIALPS = diffusion along perivascular 
spaces index, SWI = susceptibility-weighted imaging, ROI = region of interest, DTI = diffusion-tensor imaging, proj = projective, assoc = 
associative, PD = proton density, T2-w = T2-weighted image, T2rt = T2-relaxation time, TE = echo time
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Another hypothesis is that CSF-mediated damage is 
favored by impaired drainage through the glymphatic 
system. This clearance system runs through the 
periventricular spaces, where CSF reaches the periarteriolar 
spaces, flows in the brain interstitium, and is then collected 
back at the perivenular level to eventually drain into the 
meningeal vessels [115]. A few studies have investigated 
the glymphatic function in MS using PET imaging [116], 
or the DTI-based method [117] developed by Taoka et al. 
[118], which measures an index of diffusivity along the 
perivascular spaces. This methodology is based on two 
assumptions. First, the glymphatic system runs along vessels 
that can be visualized with MRI using SWI. Second, water 
diffusivity in the brain parenchyma follows the main direction 
of WM tracts. Therefore, diffusivity along veins can be easily 
measured on brain slices where veins are perpendicular to 
the ventricular bodies and there are two major WM tracts 
(the associative and projective fibers) that cross a plane 
orthogonal to the veins [118] (Fig. 5).

Patients with MS have reduced glymphatic functioning 
[116,117], especially progressive patients [117], which 
is correlated with more severe disability, longer disease 
duration, greater WM lesion volume, and brain atrophy 
[117]. Using a similar approach, reduced glymphatic 
function was observed in two independent cohorts of 
patients with NMOSD [119]. In this case, it was associated 
with more severe disability and the disease itself, but not 
with disease duration or measures of brain atrophy [119]. 
The similarities and discrepancies between these two 
studies highlight the fact that glymphatic function may 
be impaired in inflammatory CNS disorders. However, they 
also demonstrated that this process worsens over time in 
MS, suggesting that it might be secondary to inflammatory 
damage (e.g., lymphocyte infiltrates and astrocyte damage 
within a lesioned tissue). It promotes a vicious circle of 
inflammation and neurodegeneration by increasing the time 
of contact between the brain tissue and pathogenic factors 
originating from CSF, cytokines, and reactive oxygen species. 

Glymphatic impairment is likely primarily associated with 
the disease itself in NMOSD. In fact, AQP4 water channels 
are the main drivers of fluid transport from the perivascular 
compartment to the brain interstitium, and their absence 
is associated with a 60% reduction in glymphatic flow 
[120,121]. Therefore, AQP4 loss observed in the tissues of 
patients with NMOSD [122] may lead to primary glymphatic 
impairment. However, it is worth mentioning that glymphatic 
impairment was reported in numerous neurological 

conditions, such as Parkinson’s disease, Alzheimer’s disease, 
and idiopathic normotensive hydrocephalus [123]. Therefore, 
this finding is not specific to CNS inflammation. Furthermore, 
the existence of a glymphatic system in humans remains a 
topic of debate, and such diffusion abnormalities may be 
related to other processes.

Which are the Entry Routes of Pathogenic Elements in 
the CNS? Study of CNS-barriers

Besides the CSF, breakdown of the main CNS barriers, such 
as the blood-brain barrier and blood-meningeal barrier, are 
considered possible entry routes of pathogens into the CNS. 

Blood-Brain Barrier Damage
Damage to the blood-brain barrier is a possible entry route 

for autoreactive cells or antibodies into the CNS. The blood-
brain barrier is a multilayer structure that encompasses 
endothelial cells, lamina basale, pericytes, and astrocytes 
[124].

According to the most recent hypothesis, the pathogenesis 
of MS is biphasic. First, there is a pulsed blood-brain barrier 
breakdown, which accounts for CNS invasion by autoreactive 
T cells (“outside-in stage”). Further, changes to the blood-
brain barrier cause a compartmentalization of inflammation 
within the CNS (“compartmentalized” stage) [5]. This stage 
is believed to favor neurodegeneration and may play a role 
in the transition to a secondary progressive phase of MS. 

Gadolinium enhancement of lesions on post-contrast T1-
weighted images is the MRI correlate of blood-brain barrier 
disruption in new lesions [125], and is typical of patients 
with relapsing-remitting MS, especially in young patients 
[126] and those with short disease duration [127]. Acute 
blood-brain barrier dysfunction is usually transient and has a 
median duration of two weeks [128]. Advanced post-contrast 
imaging, such as dynamic contrast enhancement (DCE)-
MRI, which is more sensitive to subclinical levels of blood-
brain barrier leakage, has demonstrated increased blood-
brain barrier permeability, even in the normal-appearing 
WM of clinically isolated syndrome patients [129] and 
in patients with progressive MS [130]. In patients with 
clinically isolated syndrome, it was associated with an 8.5 
times greater risk of conversion to MS over two years [129]. 
The main patterns of gadolinium enhancement classically 
described in MS lesions are ring-like (especially open ring) 
and nodular [131]. Additionally, DCE-MRI can be used to 
assess the dynamics of gadolinium enhancement patterns 
over time by collecting multiple postcontrast images. In line 
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with the lack of histological differences between nodular- 
and ring-enhancing lesions, this technique showed that 
these enhancement patterns do not represent different 
pathophysiological processes, but depend on the timing 
of image acquisition relative to gadolinium injection and 
lesion size [127]. On the time of a single MRI acquisition, 
smaller lesions usually demonstrate a pattern of nodular 
enhancement with centrifugal expansion, while larger 
lesions have a ring-like pattern of enhancement, spreading 
centripetally and becoming nodular (in the case of small 
lesions) or nearly nodular (with a centrally spared core) 
within minutes [127]. When enhancing lesions are followed-
up with a subsequent scan over five days, initially nodular 
lesions with centrifugal enhancement usually grow in size 
and show a pattern of centripetal enhancement. Based 
on these observations, the authors postulated that the 
earliest blood-brain barrier damage occurs in the central 
vein, as seen on MRI as centrifugal enhancement in small 
nodular lesions. Using a 7.0 T scanner, the central vein 
was confirmed as the starting point of blood-brain barrier 
leakage by demonstrating that the central vein sign was 
present in most lesions showing centrifugal enhancement 
(73%) [132]. Later, as the lesion grows, the blood-brain 
barrier opens in the corresponding peripheral vessels at 
the edge of the lesion, with a consequent switch in the 
enhancement pattern from centrifugal to centripetal. The 
disappearance of centrifugal enhancement at this stage 
is likely due to closure of the blood-brain barrier around 
the central vein or hypoperfusion of the lesion core, which 
limits the quantity of gadolinium reaching the center 
of the lesion. Tissue damage within the lesion allows 
gadolinium to diffuse into the lesion [127]. However, 
switching from centrifugal to centripetal enhancement is 
not a requisite process and occurs in approximately 50% 
of lesions [66]. Concomitant acquisition of susceptibility-
weighted phase images at 7T demonstrated that the ring of 
centripetal enhancement is colocalized with the peripheral 
paramagnetic rim [66,133], which can be transient (i.e., 
resolves within three months after the disappearance of 
enhancement) or persistent over time (55% of lesions with 
centripetal enhancement). Paramagnetic rim persistence is 
a hallmark of chronic inflammation at the edge of a lesion, 
which helps identify the subset of chronic active lesions 
that are believed to be involved in disease progression 
[66]. Therefore, gadolinium enhancement not only indicates 
increased blood-brain barrier permeability but also a link 
between acute lesion formation and compartmentalized 

inflammation.
As previously mentioned, NMOSD is a primary 

astrocytopathy with secondary demyelination caused by an 
autoantibody targeting AQP4. Astrocytes are constituents of 
the blood-brain barrier [124], and the AQP4 water channel 
is the main regulator of CNS water homeostasis [134]. 
According to pathological studies, astrocyte abnormalities are 
not restricted to lesioned tissues, but are diffusively present 
[104]. Given the involvement of both astrocytes and AQP4 
in NMOSD, it is evident that blood-brain barrier permeability 
and water homeostasis may be impaired by astrocyte damage 
or death and AQP4 downregulation or loss [73]. 

In line with this, sera from patients with NMOSD can 
disrupt the blood-brain barrier in experimental models 
[135]. From an imaging perspective, NMOSD gadolinium-
enhancement patterns on brain post-contrast T1-weighted 
images usually differ from those of MS. In the brain 
parenchyma, enhancement can have a linear shape following 
the ependymal layer (periependymal enhancement) or be 
poorly marginated, patchy, or inhomogeneous, the so-called 
“cloud-like” enhancement [25,136]. Asymptomatic optic 
nerve enhancement has been reported in 17% of patients 
with NMOSD, mainly at the site of prior optic neuritis [137]. 
Increased blood-brain barrier permeability in small vessels 
and subclinical or intermittent blood-brain barrier leakage 
have been suggested as pathophysiological explanations 
[136,137]. During the acute phase of NMOSD, additional 
radiological findings suggesting increased blood-brain 
barrier permeability can be observed on conventional MRI 
sequences, such as the posterior reversible encephalopathy 
syndrome [138] and brighter-spotty lesions in the spinal 
cord, characterized by a T2-signal intensity that is at least 
equal to that of the CSF [139,140]. In both cases, lesions 
mostly disappear with resolution of the attack [138,139], 
indicating a transient acute process rather than tissue 
disruption.

No studies applying DCE-MRI to measure blood-brain 
barrier permeability have been conducted in patients 
with NMOSD. However, brain water content was indirectly 
measured in patients with NMOSD and compared to healthy 
controls by measuring the T2-relaxation time (i.e., the 
constant magnetization decay on the transverse plane, 
which reflects the movement of water protons and increases 
with higher water content) [141,142] (Fig. 5). Patients with 
NMOSD had a subclinical increase in brain water in normal-
appearing WM, GM, and the deepest GM nuclei [142]. 
When patients were divided into two groups according to 
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disease activity, active patients (those who had a relapse 
within one month before or after MRI acquisition) showed 
higher levels of brain water in the normal-appearing WM and 
GM. The T2-relaxation time (i.e., water content) in normal-
appearing WM was the only predictor of disease activity 
[142]. In this study, the T2-relaxation time closely acted 
like serum glial fibrillary acidic protein (GFAP, a marker of 
astrocyte damage) in patients with NMOSD enrolled in the 
N-MOmentum trial, whose levels increased within a week 
prior to relapse [143]. Although this might support the 
association between astrocytic damage at the blood-brain 
barrier and water imbalance, studies correlating T2-relaxation 
time with GFAP levels are needed to confirm this hypothesis. 

Blood-meningeal Barrier Damage
The origin of cortical demyelination in MS has long been 

debated. In a study assessing the type and dynamics of 
gadolinium enhancement in acute MS lesions, enhancing 
lesions showed no enhancement corresponding to the 
GM, leading to open-ring patterns of enhancement in 
juxtacortical lesions [127]. The lack of enhancement at 
the cortical edge supported the hypothesis that blood-
brain barrier disruption does not significantly contribute 
to cortical lesion formation, which is likely associated 
with subpial demyelination in the context of meningeal 
inflammation [144].

Leptomeningeal enhancement, which corresponds to blood-
leptomeningeal barrier breakdown, is a relatively common 
but non-specific finding in MS [145]. It can be visualized on 
post-contrast T2-FLAIR images, or to a lesser extent, on post-
contrast T1-weighted images; increasing field strengths from 
1.5 to 7.0 T improve its detectability [146]. The appearance 
of leptomeningeal enhancement can be nodular or laminar/
spread-and-fill [146], which is not observed in healthy 
controls [147]. Only one study has assessed the pathological 
correlates of this imaging feature and described subpial 
demyelination with foci of leptomeningeal perivascular 
inflammation and lymphomacrophagic infiltrates in areas of 
enhancement [148].

Using quantitative T2* imaging at 7.0 T, another group 
found a gradient of cortical damage involving the outer 
cortical layers at early disease stages that progressively 
expanded to the deep cortex [102], which could be 
potentially related to meningeal inflammation [149]. 

According to a recent meta-analysis, the frequency of 
leptomeningeal enhancement in MS is approximately 30%, 
which is almost twice higher in progressive MS (39%) 

than in relapsing-remitting MS (19%) [146]. The foci of 
leptomeningeal enhancement usually persist over time 
[148,150-153], and are not significantly altered by the 
administration of disease-modifying drugs [151-153].

Overall, their associations with older age or longer 
disease duration [148,150,154], worse motor disability 
[148,154,155], and more severe cortical atrophy 
[147,154,156-159] are mainly consistent across different 
studies, whereas their correlation with cortical lesions is 
controversial [157,159]. 

Together, these observations suggest a role for 
leptomeningeal enhancement in chronic and diffuse 
meningocortical damage that is likely independent of focal 
cortical demyelination [160]. 

Few studies have investigated leptomeningeal 
enhancement in NMOSD using similar pulse sequences. In 
NMOSD, leptomeningeal enhancement is linear or extensive, 
can involve either the brain or spinal cord, and has 
invariably been observed during acute relapses [161,162], 
usually associated with contiguous periependymal or 
parenchymal enhancement [161]. In contrast to MS, 
in which leptomeningeal enhancement is longstanding 
and not modified by treatment (see above, earlier in the 
same paragraph), its association with the acute phase 
of NMOSD is further supported by its disappearance after 
therapy [162]. The prevalence of this finding was 6%, 
which was significantly lower than in MS [146]. The CSF 
of NMOSD patients with leptomeningeal enhancement was 
characterized by pleocytosis [161]. Positive AQP4-IgG was 
found in patients with this radiological finding [161,163], 
suggesting that the breakdown of the blood-meningeal 
barrier may be an additional route for antibody entry into 
the CNS.

Is Neurodegeneration a Primary or a Secondary 
Phenomenon? Study of Atrophy

Inflammation and neurodegeneration eventually lead to 
brain atrophy, which has been extensively reported in several 
neurological disorders. The normal physiological rate of brain 
volume loss with aging is estimated to be between 0.1%–
0.3% per year [164]. Higher rates of atrophy (0.46%–1% per 
year) have been observed in patients with MS [165-167], 
leading to the emerging concept of accelerated brain aging 
[168]. 

In MS, atrophy involves both the WM and GM, with 
higher rates in GM associated with disability progression 
[169,170]. The hippocampi [171-175] and thalami 
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[101,176-178] are among the structures that suffer from 
volume loss since the earliest phases of the disease, often 
with detrimental implications for cognition [171,175] and 
disability [179,180]. Atrophy development in MS is at least 
partly due to the presence of WM lesions [181], although 
evidence of its amount and extent from the earliest stages 
of the disease [182] suggests concomitant participation of 
a primary neurodegenerative process. Similarly, spinal cord 
atrophy, which is relevant to motor disability, has been 
extensively demonstrated in patients with MS [91,183-186], 
with only a partial overlap with the presence and location 
of lesions [91,185].

The huge number of studies on brain atrophy in MS have 
prevented a comprehensive summary of the literature. For 
the purposes of this review, we focused on a phenomenon 
with important implications for clinical trials: evidence 
of volumetric variations in response to inflammation. 
Pseudohypertrophy has been detected in patients with 
clinically isolated syndromes close to the disease onset [182]. 
In contrast, pseudoatrophy occurs during the first 6–12 
months after the administration of highly effective drugs 
[187,188] and after autologous hematopoietic stem cell 
transplantation [189], partly because of the resolution of 
inflammation and edema. Therefore, a re-assessment of brain 
volume is recommended after treatment initiation [190], 
particularly in studies or trials with neuroprotection as their 
main outcome. Another interesting structure with a potential 
for volumetric variations in response to inflammation is 
the hippocampus, where some studies have detected that 
hypertrophy of the dentate gyrus subfield is positively 
correlated with brain WM lesion volume [173]. Nevertheless, 
other studies have found early atrophy in this subfield 
[172,174], indicating the need for further investigation.

A similar atrophy rate of 0.47% volume loss per year 
has been reported in patients with NMOSD, with rates 
even higher in the GM of patients with long spinal cord 
lesions [191]. It is unclear whether brain atrophy is a 
primary diffuse or a secondary localized neurodegenerative 
phenomenon in NMOSD. In fact, both diffuse and regional 
atrophy in the optic and corticospinal tracts were detected 
in WM [94,192,193], whereas other studies found no 
evidence of WM atrophy [142]. Similarly, the presence of 
GM atrophy is controversial and not detected by all studies 
[119,142,194,195]. 

At the cortical level, cortical anomalies mainly limited to 
the visual [27,94,181,196] and sensorimotor cortices [94] 
have consistently been found, suggesting a mechanism 

of damage resulting from Wallerian degeneration from 
the optic nerve and spinal cord, independent of brain 
lesions [181]. Other investigations have reported the 
involvement of GM structures, such as the thalamus and 
hippocampus, especially in cognitively impaired individuals 
[27,173,192,197], although the abnormalities seem milder 
than in MS. 

Atrophy distribution in the spinal cord supports the idea 
of a secondary neurodegenerative mechanism underlying the 
disease. In fact, spinal cord atrophy not only correlates with 
the number of prior myelitis cases [198] but also co-localizes 
with spinal cord lesions [91,199] and is not found in patients 
without history of myelitis [199]. Table 5 summarizes these 
findings, and examples of brain and spinal cord atrophy in 
patients with MS and NMOSD are shown in Figure 4.

CONCLUSIONS

The application of MRI, especially advanced techniques, 
has significantly enhanced our knowledge of MS and 
NMOSD. In MS, MRI studies highlighted the role of CSF and 
meningeal inflammation in the development and distribution 
of damage. Blood-brain barrier breakdown at the venular 
level is pulsed during the acute phases of the disease and 
leads to lesion formation, whose focal inflammation can 
resolve or become chronic in slowly expanding or chronic-
active lesions. In addition to focal damage, MS pathology 
appears diffuse and involves normal-appearing tissues. 
Similarly, atrophy is diffuse and partially independent of 
lesions, suggesting a concomitant mechanism of primary and 
secondary neurodegeneration.

In NMOSD, summarizing the literature is more challenging, 
owing to inconsistencies among studies. However, only a 
few observations were made. Tissue damage appears to be 
localized within lesions or at sites subjected to secondary 
degenerative phenomena within the visual and sensorimotor 
systems. A diffuse increase in MD (with no evidence of 
axonal damage) has been reported in several studies and 
fits the hypothesis of chronic subtle damage to the blood-
brain barrier. Damage to the blood-meningeal barrier may be 
another route of entry for AQP4-IgGs into the CNS. Finally, 
in contrast to MS, to date, there is no evidence of chronic-
active inflammation in NMOSD, possibly explaining the lack 
of clinical secondary progression despite the severity of 
acute relapses.
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