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Abstract
Background and purpose: Thalamic alterations have been reported as a major feature 
in presymptomatic and symptomatic patients carrying the C9orf72 mutation across the 
frontotemporal dementia–amyotrophic lateral sclerosis (ALS) spectrum. Specifically, the 
pulvinar, a high-order thalamic nucleus and timekeeper for large-scale cortical networks, 
has been hypothesized to be involved in C9orf72-related neurodegenerative diseases. 
We investigated whether pulvinar volume can be useful for differential diagnosis in ALS 
C9orf72 mutation carriers and noncarriers and how underlying functional connectivity 
changes affect this region.
Methods: We studied 19 ALS C9orf72 mutation carriers (ALSC9+) accurately matched 
with wild-type ALS (ALSC9−) and ALS mimic (ALSmimic) patients using structural and 
resting-state functional magnetic resonance imaging data. Pulvinar volume was com-
puted using automatic segmentation. Seed-to-voxel functional connectivity analyses 
were performed using seeds from a pulvinar functional parcellation.
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INTRODUC TION

Amyotrophic lateral sclerosis (ALS) is a progressive neurode-
generative disease associated with the impairment of lower and 
upper motor neurons and some associated pathways [1]. ALS is 
a multifaceted disease, with different clinical and neuropsycho-
logical symptoms. Hexanucleotide GGGGCC repeat expansion in 
the C9orf72 gene is the most frequent genetic cause of ALS and 
frontotemporal dementia (FTD) [2, 3] and occurs in 20%–40% of 
familiar and 3%–8% of sporadic cases [4, 5]. C9orf72 mutation car-
riers are associated with more severe forms of ALS that increase 
the disease heterogeneity. When compared with non-mutated 
carriers, patients carrying the C9orf72 hexanucleotide repeat 
expansion showed an earlier disease onset [6–8], higher odds of 
bulbar onset [6, 9], and a higher disease progression, which also 
determines a shorter survival [6–8].

Neuroimaging studies reported thalamic alterations as a main 
feature of presymptomatic and symptomatic ALS and FTD patients 
carrying the C9orf72 mutation [10–12]. In particular, a specific vol-
ume decrease has been observed in the pulvinar nucleus (i.e., the 
largest and most posterior thalamic nucleus) in presymptomatic and 
FTD C9orf72 mutation carriers when compared with healthy con-
trols [13–16]. A similar trend was also observed in two ALS patients 
affected by the C9orf72 mutation [15], supporting the hypothesis 
that a specific involvement of this region in C9orf72-related neuro-
degenerative diseases may occur across the FTD–ALS spectrum [14, 
15, 17].

The pulvinar is a higher order nucleus of the thalamus implicated 
in various functions such as attention, emotion and social recogni-
tion, voluntary actions, and saccades [18, 19]. It is considered a time-
keeper for large-scale cortical networks [20], supporting a central 
role in the coordination of cortico-subcortical processes [19, 21].

Previous studies reported that pulvinar–cortical feedforward 
and feedback pathways increased the computational capabilities of 
otherwise isolated cognitive cortical circuits, allowing for additional 
control and flexibility [20, 22]. Interestingly, the pulvinar itself has 

been indicated to be functionally heterogeneous [19, 21]. A recent 
study, using a data-driven method, identified five distinct functional 
subregions of the pulvinar to which different pulvinar–cortical con-
nectivity fingerprints and cognitive domains are associated [21]. This 
partitioning largely overlaps with the anatomical classification based 
on cytoarchitectonic areas [21].

To elucidate the involvement of the pulvinar nucleus in the 
pathophysiology of C9orf72 mutation-driven ALS, 19 ALS C9orf72 
mutation carriers were matched with wild-type ALS and ALS mimic 
patients. The purpose of this study is twofold: (i) to assess whether 
the structural integrity of the pulvinar discriminates between ALS 
C9orf72 mutation carriers and non-carriers for a differential diagno-
sis; and (ii) to evaluate the underlying changes in pulvinar functional 
connectivity among patients, according to its known distinct func-
tional profiles. We suggest a distinct role of the pulvinar region in the 
anatomo–functional pathological profile of C9orf72-mediated ALS 
versus non-carriers. If this relationship is proven to be significant, 
structural and functional features of the pulvinar nucleus could be 
used as a biomarker of C9orf72 mutation carriers.

MATERIAL S AND METHODS

Participants

Thirty-eight patients diagnosed with ALS (EI Escorial Revised Criteria) 
[23] and 19 ALS mimic patients (ALSmimic) were included in the study 
(enrolment 2011–2019). The retrospective study was carried out in 
accordance with the Declaration of Helsinki, and it was approved 
by the Ethical Committee of the Azienda Ospedaliero-Universitaria 
Citt. della Salute of Turin (Protocol N.0021674–24/02/2022). All 
participants gave their written consent. ALSmimic patients, without 
primary neurodegenerative diseases, were affected by clinical con-
ditions with features resembling those of ALS: cervical spondylotic 
myelopathy (n = 3), myasthenia gravis (n = 9), monomelic amyotrophy 
(Hirayama disease; n = 1), and peripheral motor neuropathy (n = 6). 

Results: Pulvinar structural integrity had high discriminative values for ALSC9+ patients 
compared to ALSmimic (area under the curve [AUC] = 0.86) and ALSC9− (AUC = 0.77) 
patients, yielding a volume cutpoint of approximately 0.23%. Compared to ALSmimic, 
ALSC9− showed increased anterior, inferior, and lateral pulvinar connections with bi-
lateral occipital–temporal–parietal regions, whereas ALSC9+ showed no differences. 
ALSC9+ patients when compared to ALSC9− patients showed reduced pulvinar–occipital 
connectivity for anterior and inferior pulvinar seeds.
Conclusions: Pulvinar volume could be a differential biomarker closely related to the 
C9orf72 mutation. A pulvinar–cortical circuit dysfunction might play a critical role in dis-
ease progression and development, in both the genetic phenotype and ALS wild-type 
patients.

K E Y W O R D S
amyotrophic lateral sclerosis, C9orf72 mutation, fMRI, MRI, pulvinar
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    |  3 of 9PULVINAR IN C9orf72-ALS PATIENTS

All ALSmimic patients were initially recruited as suspected or pos-
sible ALS cases and were later diagnosed as mimics. Comorbidity 
of severe neurological or psychiatric conditions was considered an 
exclusion criteria. Among ALS patients, 19 ALS patients carrying 
C9orf72 expansion (ALSC9+) were paired with 19 wild-type patients 
(ALSC9−). ALSC9+, ALSC9−, and ALSmimic were carefully matched for 
age (±5 years) and sex assigned at birth (female:female, male:male), 
and ALSC9+ and ALSC9− patients were also paired for Amyotrophic 
Lateral Sclerosis Functional Rating Scale - Revised (ALSFRS-R) total 
score at the time of magnetic resonance imaging (MRI; ±5 points) 
and disease duration from the onset (±3 months) using a one-by-one 
pairing technique, as described in previous studies [24, 25]. All pa-
tients included had no mutation in SOD1, TARDBP, and FUS genes. 
Number of body regions involved was assessed using King's stag-
ing system [26]. Exclusion criteria for all participants were any major 
psychiatric or other neurological illnesses, causes of focal or diffuse 
brain damage, including lacunae, and extensive cerebrovascular dis-
orders on routine MRI. Demographic and clinical data are reported 
in Table 1.

MRI acquisition

MRI acquisition was performed with a 1.5-T General Electric Signa 
HD-XT scanner equipped with an eight-channel head coil at the 
Neuroradiology Unit, AOU Città della Salute e della Scienza di 
Torino. For each participant, a three-dimensional T1-weighted ana-
tomical image (repetition time = 11.85 ms, echo time = 4.9 ms, flip 
angle = 12°, matrix size = 512 × 512, number of axial slices = 120, 
voxel size = 0.47 × 0.47 × 1 mm3, whole-brain coverage) and resting-
state functional magnetic resonance (fMRI) images (echo planar im-
aging sequence: repetition time = 2250 ms, echo time = 50 ms, flip 
angle = 90°, matrix size = 64 × 64, voxel size = 3.28 × 3.28 × 5 mm3, 
interslice gap = 1 mm, 25 axial slices, number of volumes = 585) were 
acquired.

Structural MRI data analysis

T1-weighted anatomical images were segmented with FreeSurfer 
(v7, http://​surfer.​nmr.​mgh.​harva​rd.​edu/​) [27]. After the “recon-all” 
pipeline, the thalamic nuclei segmentation module was applied [28].

Estimated total intracranial volume, thalamus, and pulvinar sub-
nuclei volume were extracted for each participant using the same 
tool [28]. Pulvinar and thalamus volumes were expressed as a per-
centage of total intracranial volume.

Resting-state fMRI data analysis

The CONN toolbox (version 20.b, Matlab R2023a) [29] imple-
mented in SPM12 was used to perform resting-state fMRI images 
data analyses. CONN's “default_MNI” preprocessing pipeline was 

used. The following processing steps were performed: realignment 
to the first functional image and unwarping slice-timing correction 
(slice order = interleaved, bottom-up); outlier identification with 
the Artifact Rejection Toolbox (framewise displacement > 1.1 mm; 
global blood oxigenation level dependent signal changes > 5); direct 
segmentation in gray matter, white matter, and cerebrospinal fluid 
tissue classes; registration and normalization of resting-state fMRI 
images and T1-weighted images into standard Montreal Neurological 
Institute (MNI) space [30]; resting-state fMRI image data resampling 
to 2-mm isotropic voxels, and T1-weighted image resampling to 
1-mm isotropic voxels; smoothing with a full width at half maximum 
6 × 6 × 6-mm [3] Gaussian kernel. Data denoising was performed 
with the anatomical component-based noise correction (aCompCor) 
to extract mean physiological noise signals from white matter and 
cerebrospinal fluid maps [31]. For each participant, realignment, out-
lier volumes scrubbing parameters, physiological noise signals from 
white matter and cerebrospinal fluid, and “effect of rest” (initial mag-
netization transient effects) were entered as nuisance covariates in 
the first-level analysis [32]. Subsequently, a 0.008–0.1-Hz bandpass 
filter was applied to the time series to remove low-frequency drifts 
and high-frequency noise.

Statistical analyses

To test between-group differences (i.e., ALSC9+, ALSC9−, and 
ALSmimic) for demographic and clinical variables, two-sample in-
dependent t-test/one-way analysis of variance (ANOVA; for age, 
disease duration, survival, ALSFRS-R score, ALSFRS-R slope, King's 
staging) and chi-squared (for sex assigned at birth and onset type) 
tests were used, after determining the normality of data distribution 
with the Kolmogorov–Smirnov test. All results were considered sig-
nificant at p ≤ 0.05 and adjusted for multiple comparisons.

The interquartile range method was used to identify outliers for 
each group in volumes of pulvinar region; a measure is declared an 
outlier if it is 1.5 times higher or 1.5 times lower than its interquartile 
range. A Pearson correlation was applied to assess significant asso-
ciations between the pulvinar volume in each group and the clinical 
variables (age, disease duration, and ALSFRS-R score).

Using a set of logistic regression models, we investigated the re-
lationship between the volume of the pulvinar (predictor variable) 
and the diagnosis (response variable). To this end, we determined 
whether this measure could discriminate between (i) the diagnosis of 
ALSC9+ and ALSmimic, (ii) the diagnosis of ALSC9− and ALSmimic, and 
(iii) the diagnosis of ALSC9+ and ALSC9−. Preliminary analyses were 
performed to check for multicollinearity between age, sex assigned 
at birth, and pulvinar volume. Covariates were included if the vari-
ance inflation factor was <10. For each model, the odds ratios (ORs) 
and corresponding p-values, after Holm–Bonferroni correction for 
multiple comparisons, were calculated. The area under the receiver 
operating characteristic curve (AUC) was used to measure the diag-
nostic discrimination accuracy of each multiple logistic regression 
model, and the optimal volume cutpoint value was computed. We 
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estimated the interquartile range around the volume cutpoint using 
a bootstrap test (1000 iterations).

Analyses were performed with SciPy [33] and Statsmodels [34] 
running on Python3, and the Cutpointr package [35] implemented 
in R.

Seed-to-voxel resting-state functional connectivity

To identify functional alterations of the pulvinar region among 
groups, we performed a seed-to-voxel functional connectivity 
analysis. The pulvinar nucleus functional parcellation by Guedj and 

Vuilleumier [21] was used to define five bilateral seeds: dorsome-
dial, ventromedial, lateral, anterior, and inferior pulvinar. The authors 
used a data-driven method to partition the pulvinar into distinct 
subregions according to their functional connectivity profiles with 
the rest of the brain. This parcellation allows us to assess functional 
changes in patients taking into account the heterogeneity of the 
pulvinar's functional organization [19, 21].

At the first-level analyses, whole-brain bivariate correlations 
were performed between the time series of each bilateral seed 
(i.e., average signal across all voxels within the left hemispheric 
and right hemispheric seeds) and the time series of all the other 
brain voxels. Voxelwise correlation coefficients were subsequently 

TA B L E  1 Demographic and clinical characteristics of patients.

Characteristic ALSC9+, n = 19 ALSC9−, n = 19 ALSmimic, n = 19 pa

Male/female ratio 10/9 10/9 10/9 1

Bulbar/spinal onset 13/6 11/8 - 0.68

Median (IQR) Median (IQR) pb

Age, years 55.50 (51.15–69.70) 59.50 (53.45–66.05) 60.00 (53.00–69.00) 0.99

ALSFRS-R score 43.00 (38.50–45.00) 43.00 (37.50–45.00) - 0.95

Disease duration, months 11.0 (8.00–14.50) 11.0 (9.00–13.50) - 0.94

Overall survival, years 2.57 (2.19–3.17) 2.70 (2.13–3.40) [4 alive] - 0.91

Disease progression, 
ΔALSFRS-R

0.53 (0.28–0.78) 0.56 (0.27–0.91) - 0.67

Number of body regions 
involved

2.57 (2.19–3.17) 2.00 (1.00–2.00) - 0.74

Weight loss, kg/month 0 (0–0.35) 0.23 (0.12–0.89) - 0.09

FVC, % 91 (86–104) 91 (84–104) - 1

n n

Onset of symptoms

Motor 18 18 - 1

Cognitive 1 1 -

Cognitive classification

Normal cognition 7 13 - 0.28

ALSbi 1 2 -

ALSci 2 1 -

ALScbi 1 0 -

ALS–FTD 5 1 -

Unknown 3 2 -

Psychiatric symptomsc

No 16 15 - 1

Yes 1 psychosis
2 depression

2 anxiety and depression
2 depression

-

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSbi, behavioural impairment; ALSci, cognitive impairment; ALScbi, cognitive and behavioural 
impairment; ALSC9−, ALS patients not carrying C9orf72 expansion; ALSC9+, ALS patients carrying C9orf72 expansion; ALSFRS-R, Amyotrophic 
Lateral Sclerosis Functional Rating Scale–Revised; ALSmimic, ALS mimic patients; FTD, frontotemporal dementia; FVC, forced vital capacity; IQR, 
interquartile range.
aResults for chi-square test among ALSC9+, ALSC9−, and ALSmimic.
bResults for two-sample independent t-test between ALSC9+ and ALSC9− and for one-way analysis of variance among ALSC9+, ALSC9−, and 
ALSmimic.
cAll patients with psychiatric symptoms were undergoing pharmacological treatment, except for one ALS patient with depression. Weight loss was 
calculated as the ratio of weight kilograms lost and months elapsed between the onset and diagnosis of the disease.
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    |  5 of 9PULVINAR IN C9orf72-ALS PATIENTS

R- to Z-score converted. Second-level general linear model analyses 
were performed to compare the functional connectivity profiles of 
each bilateral pulvinar seed among groups (ALSC9+, ALSC9−, and 
ALSmimic). Age, sex assigned at birth, and whole thalamus volume 
were included as nuisance covariates. The following contrasts 
were investigated: (i) ALSC9− versus ALSmimic, (ii) ALSC9+ versus 
ALSmimic, and (iii) ALSC9+ versus ALSC9−. For all the contrasts, 
the significance threshold was kept at CONN 20b's default set-
tings using both voxel and cluster thresholds: voxel p-uncorrected 
< 0.005 and cluster false discovery rate-corrected p for multiple 
comparisons < 0.05.

RESULTS

Structural pulvinar assessment

No significant difference in demographic and clinical variables were 
found between groups (Table 1).

Only one outlier was identified in the pulvinar volume of the 
ALSC9+ patient group, exceeding its interquartile range by 1.5 times. 
Age was significantly correlated with pulvinar volume in the ALSC9− 
and ALSmimic patients (R = −0.66, p = 0.002; R = −0.58, p = 0.009, 
respectively) but not in the ALSC9+ group (R = −0.26, p = 0.3). No 

significant correlations were observed between the pulvinar volume 
and the other variables (i.e., disease duration and ALSFRS-R score).

Logistic regression models—no covariates were included (vari-
ance inflation factor > 10)—showed that the decrease in volume of 
the bilateral pulvinar (p = 0.003, OR = 0.57, 95% confidence inter-
val [CI] = 0.40–0.82) discriminated ALSC9+ patients from ALSmimic 
subjects. A volume decrease of the same region was able to suc-
cessfully discriminate ALSC9+ from ALSC9− (p = 0.009, OR = 0.49, 
95% CI = 0.49–0.90). Meanwhile, no significant results were found 
in the logistic regression on pulvinar volume between ALSC9− and 
ALSmimic (p = 0.147). The AUC diagnostic accuracy of pulvinar was 
0.86 (95% CI = 0.73–0.96) with a volume cutpoint of 0.23% (95% 
CI = 0.22%–0.26%) between ALSC9+ patients and ALSmimic subjects 
and 0.77 (95% CI = 0.59–0.91) with a volume cutpoint of 0.23% (95% 
CI = 0.21%–0.25%) between ALSC9+ patients and ALSC9− subjects 
(Figure 1).

Seed-to-voxel resting-state functional connectivity: 
ALSC9− versus ALSmimic

Compared to ALSmimic, ALSC9− patients showed significant func-
tional connectivity changes of the anterior, dorsomedial, inferior, 
and lateral pulvinar seeds with posterior cortical regions (Figure 2a, 

F I G U R E  1 Diagnostic accuracy of pulvinar volume. On the left, violin plots and boxplots depict the pulvinar volume distributions 
according to group classification (amyotrophic lateral sclerosis [ALS] mimic patients [ALSmimic], ALS patients not carrying C9orf72 expansion 
[ALSC9−], ALS patients carrying C9orf72 expansion [ALSC9+]). The dashed line indicates the optimal pulvinar volume cutpoint identified 
(0.23%). On the right, receiver operating curves indicate the sensitivity and specificity of pulvinar volume in differentiating ALSC9+ versus 
ALSmimic (0.86) and ALSC9+ versus ALSC9− (0.77) patient groups.
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Table S1). The most extensive functional alterations in ALSC9− pa-
tients compared to ALSmimics were reported for the bilateral infe-
rior pulvinar seed, which showed increased functional connectivity 
in the bilateral lateral–occipital, postcentral, and anterior inferior 
temporal regions. The bilateral anterior seed showed an increase in 
functional connectivity confined to the left lateral occipital cortex, 
whereas the bilateral lateral seed showed an increase in functional 
connectivity in the right lingual gyrus. On the other hand, the bilat-
eral dorsomedial seed showed a decrease in functional connectivity 
in the left lateral occipital region.

Seed-to-voxel resting-state functional connectivity: 
ALSC9+ versus ALSmimic

No significant functional connectivity changes between ALSC9+ and 
ALSmimic were identified in each pulvinar seed.

Seed-to-voxel resting-state functional connectivity: 
ALSC9+ versus ALSC9−

Significant pulvinar–occipital functional connectivity changes were 
reported for anterior and inferior pulvinar regions in ALSC9+ patients 
when compared to ALSC9− (Figure 2b, Table S1). The bilateral anterior 
pulvinar seed showed a decrease of functional connectivity with the 
bilateral lateral occipital cortex, left precuneus, and right intracalcar-
ine cortex in ALSC9+ patients. The inferior pulvinar seed exhibited an 
increase of functional connectivity with the right anterior cingulate 
gyrus in ALSC9+ patients, and a decreased functional connectivity 
with the right cuneus and precuneus, and bilateral lingual gyri.

DISCUSSION

In this work, we observed that the pulvinar region has a distinct 
neurofunctional pathological profile in C9orf72-mediated and 
non-mediated ALS. Structural data showed that a decrease in 
whole pulvinar volume could represent a potential marker for dif-
ferential diagnosis. Based on pulvinar atrophy, we were able to 
discriminate mutation carriers from both ALSmimic (AUC = 0.86, 
cutpoint = 0.23%) and wild-type ALS patients with similar disease 
burden (AUC = 0.77, cutpoint = 0.23%). Furthermore, we identi-
fied between-group functional connectivity alterations of pulvi-
nar subregions. Notably, ALSC9− patients, compared to ALSmimic, 
showed mainly increased functional connectivity in inferior, ante-
rior, lateral, and dorsomedial pulvinar with posterior areas, includ-
ing bilateral occipital–temporal–parietal regions, whereas ALSC9+ 
showed no significant functional abnormalities. ALSC9+ patients, 
when compared to ALSC9− patients, presented a decreased oc-
cipital functional connectivity for anterior and inferior pulvinar 
subregions.

Previous literature on the ALS–FTD spectrum mediated by 
the C9orf72 mutation and the specific clinical features of these 
patients largely supports an involvement of the pulvinar in the 
disease in both the presymptomatic [13] and symptomatic phases 
[14, 15].

Remarkably, our structural data confirmed an impaired bilateral 
pulvinar also in C9orf72-carrying ALS patients, in addition to the find-
ings reported in patients with FTD [14, 15]. The volume of this region 
has high diagnostic accuracy in patients who carry the mutation, not 
only when compared to ALS mimics (AUC = 0.86, cutpoint = 0.23), 
but also when compared to wild-type ALS patients (AUC = 0.77, 
cutpoint = 0.23). Previous studies differentiating C9orf72 mutation 

F I G U R E  2 Pulvinar functional connectivity. Significant functional connectivity changes of the anterior, dorsomedial, inferior, and/or 
lateral pulvinar seed in ALSC9− compared to ALSmimic patients (a) and in ALSC9+ compared to ALSC9− patients (b). (c) Pulvinar nucleus 
functional parcellation by Guedj and Vuilleumier [21]. L, left; R, right.
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carriers from sporadic FTD and/or ALS patients reported an AUC 
ranging from 0.68 to 0.82 when considering the whole thalamus 
volume [36, 37] and 0.88 for a combination of the volume of the 
prefrontal and the laterality index of the thalamic occipital subregion 
[36]. Together, these observations suggest that MRI volumetry of 
the thalamus, especially the pulvinar, has a high predictive value for 
identifying C9orf72 mutation carriers. Moreover, although the spe-
cific involvement of the pulvinar nucleus is reported in patients with 
psychiatric disorders [38, 39], we point out that our ALS patients 
affected by the gene mutation do not appear to exhibit more psychi-
atric symptoms than non-carriers.

With respect to the resting-state functional connectivity, we 
observed alterations in both mutation-carrying and non-carrying 
patients.

In ALSC9− patients compared to ALSmimic patients, all the func-
tional subnuclei of the pulvinar, except for the ventromedial, mainly 
showed increased functional connectivity with the posterior cor-
tical regions. Altered cortical areas included mainly the occipital, 
fusiform, and lingual regions, followed by the postcentral gyri and 
anterior temporal region.

Increased or decreased resting-state connectivity in poste-
rior regions, including occipital and temporal lobes, has been re-
ported in ALS patients in several studies [37, 40–42] and associated 
with altered functional connectivity of the thalamus [40, 41, 43]. 
Progressive decreases in functional connectivity have been identi-
fied in sensorimotor, thalamic, and visual networks also longitudi-
nally and with ALSFRS-R decline [44]. This increase in functional 
connectivity could be a compensatory phenomenon in ALS patients. 
This phenomenon may precede the structural alteration and/or 
decrease of functional connectivity that might appear in the later 
stages of the pathology due to neurodegeneration [1, 40, 41, 44]. 
This suggests that functional pulvinar abnormalities may emerge in 
the early stages of ALS and contribute to cognitive and behavioral 
changes with the disease progression [45].

On the other hand, ALSC9+ patients, in the presence of marked 
structural atrophy, showed a functional connectivity decrease in oc-
cipital region and an increase in anterior cingulate for the anterior 
and inferior pulvinar compared to ALSC9− patients, but not ALSmimic 
patients. The anterior seed is mainly related to motor processes, 
whereas the inferior seed is related to cognitive functions, especially 
face recognition and memory [21]. Patients with C9orf72-related 
FTD showed similar reduced functional connectivity changes in the 
anterior pulvinar functional seed—referred to as medial pulvinar in 
previous studies (MNI coordinates fall within our anterior pulvinar 
seed)—compared to non-mutated carriers [17]. In agreement with 
a previous study, these alterations could be the result of a slight re-
duction in connectivity in ALSC9+ and an enhancement in ALSC9− 
(compared to ALSmimic or healthy controls), although not detectable 
in ALSC9+ [17].

Moreover, we observed in our age-matched cohort that the 
pulvinar volume in ALSmimic and ALSC9− patients decreased as their 
age increased, whereas this association was not shown in ALSC9+ 
patients. Hence, structural abnormalities in the pulvinar remained 

consistently reduced throughout the age span examined, without 
worsening with age in mutation carriers. These trends in structural 
and functional alterations reinforce the hypothesis that the struc-
tural alteration of the pulvinar in C9orf carriers could be linked to 
the neurodevelopmental profile [46], which might lead a functional 
adaptation over time, even if reduced in some occipital–parietal re-
gions, as we reported. This hypothesis is corroborated by the lon-
gitudinal observation of presymptomatic C9orf72 carriers in which 
the decrease of thalamic functional connectivity (MNI coordinates 
of thalamic seeds fall within the anterior seed of pulvinar) was stable 
over time [47]. It has been suggested that maintaining the topog-
raphy of functional networks facilitates cognitive resilience in the 
face of ongoing structural changes in presymptomatic patients [16, 
48, 49]. When patients become symptomatic, the integrity of these 
functional networks declines [48].

In addition to its strengths—the sample size and matching for the 
disease burden of patients—this study has some limitations. First, 
it was not possible to include a standard healthy control group. 
However, the inclusion of ALSmimic provided us with a unique oppor-
tunity to highlight important traits of C9orf72 carrier and non-carrier 
ALS patients as compared to patients whose clinical presentation 
may resemble those of ALS patients at the outset. One of the man-
ifold goals of reliable markers of ALS-related alterations is to allow 
early diagnosis with high sensitivity and specificity, notably in the 
differential diagnosis of so-called ALSmimic disorders [50]. Second, 
we could not test the diagnostic accuracy of the pulvinar volume in 
presymptomatic C9orf72 mutation carriers to confirm that this is a 
very early developing endophenotype.

CONCLUSIONS

We identified anatomo-functional alterations of the pulvinar–corti-
cal circuit in ALSC9+ patients. Pulvinar volume, according to the sug-
gested cutpoint, could be a differential biomarker closely related to 
ALS and FTD driven by C9orf72. Furthermore, pulvinar subregions, 
due to their function as timekeepers for large-scale cortical net-
works [20], could play a crucial role in disease development and pro-
gression not only in the genetic phenotype but also in wild-type ALS.
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