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Abstract: Amputation has a big impact on the functioning of patients, with negative effects on
locomotion and dexterity. In this context, inertial measurement units represent a useful tool in clinical
practice for motion analysis, and in the development of personalized aids to improve a patient’s
function. To date, there is still a gap of knowledge in the scientific literature on the application
of inertial sensors in amputee patients. Thus, the aim of this narrative review was to collect the
current knowledge on this topic and stimulate the publication of further research. Pubmed, Embase,
Scopus, and Cochrane Library publications were screened until November 2022 to identify eligible
studies. Out of 444 results, we selected 26 articles focused on movement analysis, risk of falls, energy
expenditure, and the development of sensor-integrated prostheses. The results showed that the use of
inertial sensors has the potential to improve the quality of life of patients with prostheses, increasing
patient safety through the detection of gait alteration; enhancing the socio-occupational reintegration
through the development of highly technologic and personalized prosthesis; and by monitoring the
patients during daily life to plan a tailored rehabilitation program.

Keywords: amputation; inertial measurement unit; rehabilitation

1. Introduction

Limb amputation has a high impact on a person’s quality of life, affecting the patient’s
independence in activities of daily life, mobility, and sociality [1]. It is estimated that
1.6 million patients live with the loss of a limb, and the rate is continually growing [2].
Limb amputations can be divided in two grades: major limb loss, involving long bones,
such as the humerus, radius, femur or tibia, and minor limb loss, involving at various
levels, the hand or foot. Vascular diseases, trauma, cancer, and congenital abnormalities
are the principal causes of a limb amputation [2]. Although studies on the trend of limb
amputations are sometimes contradictory, amputation remains an issue concerning both
patient care and healthcare costs [3,4], considering that the average hospitalization after
amputation is about 21 days, and rehabilitation can take up to six months for the final
prosthesis [5]. Patient satisfaction, functional utility, and aesthetics are the principal goals
in prosthetic restoration [6]. A mean wearing time of 9.3 ± 5.5 h per day is estimated for
patients with prostheses, thus the correct fitting, function, and education of the patient are
fundamental to increase compliance and functional mobility [7]. On the other hand, many
patients stop using prostheses after the rehabilitation course [6,8] due to the occurrence
of residual limb complications including overuse syndrome, degenerative conditions,
and injuries [9].

In particular, lower limb amputations are known to affect gait and balance in patients
usually presenting several comorbidities, e.g., diabetic neuropathy, ulcers, and older age
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that further increase the risk of falling [9]. Upper limb amputation accounts for approx-
imately 8% of all limb amputations. They are less common than lower limb amputation
since they are frequently related to traumatic events and soft tissue tumors. However, they
have a huge impact on the quality of life since they reduce the ability to interact with the
environment, and perform specific work tasks [10].

A correct prosthesis application and a structured rehabilitation program are essential
to achieve the maximum level of patient functionality [11]. The main focus is to improve
walking in a patient with a lower limb prosthesis or to favor the prosthesis control accu-
racy [12]. The rehabilitation program includes strengthening exercises, gait training, virtual
reality, balance training, and proprioceptive exercises [11]. However, the starting point to
plan a tailored program is represented by the functional evaluation of the patient through
methodological and validated outcome measurement scales, e.g., Trinity Amputation and
Prosthesis Experience Scales (TAPES), ICF, or functional tests, e.g., 6MWT for fall risk
assessment [6,13,14]. In this context, scientific progress has enabled the development of
accessible, small-scale technologies capable of recording body movement in a more sensible
and objective way compared to the ordinal scores of “semi-quantitative” clinical scales [15].
These tools have been successfully utilized in rehabilitation medicine to assess different
aspects of a patient’s daily life and to measure therapeutic interventions. The first applica-
tion to measure human motions is linked to Saunders, in 1953, with the aim of describing
normal and pathological gait [16]. The gold standard of motion analysis is represented by
the optoelectronic system with an infrared camera to capture motion. Often integrated with
surface electromyography and force platforms, they require specially dedicated spaces, and
are usually inapplicable in clinical practice [17].

Moreover, in recent years, emerging technologies have been utilized in movement
analysis, with new and less expensive systems based on RGB and/or RGB-D cameras
(e.g., Microsoft Kinect V2, Microsoft Azure), able to provide a detailed gait and posture
analysis through a markerless approach that facilitates their use in clinical practice [18–20].
However, these systems still present some limitations, e.g., most of them are only validated
on healthy subjects, there is the need of a particular framing of the subject, and only short
walking distances are taken into account [20].

Conversely, Inertial Measurement Units (IMU) are wearable, and a recent systematic
review and meta-analysis demonstrated a good correlation of many kinematic parameters
between IMU and the gold standard [21], and are able to provide information on gait or
limb kinematics, the measurement of joint movement angles [22,23], and the evaluation of
performance in athletes [24,25].

Inertial sensors play a key role especially in the development of new assistive tech-
nologies [26–28], they are classified into two major families: (i) accelerometers that measure
linear acceleration; and (ii) gyroscopes that measure angular velocity. Most accelerometers
and gyroscopes are designed using MEMS (micro-electro-mechanical systems) technology,
which allows a reduction in sensor size and thus a wider range of applications [29,30].
Often these two triaxial sensors are combined into a single measurement unit (six-degree-
of-freedom IMU or 6-DOF IMU) integrating the two types of information. In some cases,
they can be supported by the presence of a magnetic field measurement system that allows
the assessment of body orientation in space (9-DOF IMU or MIMU) [31].

To date, notably in the last 10 years, IMU has been utilized in the evaluation of
amputee patients and the development of technologically advanced prostheses with the
aim of analyzing the patient’s deficits and providing a customized solution, reducing the
whole range of complications related to both amputation, and stump prosthetics; however,
their applications have yet to be clearly delineated. Considering the positive effect that
these smart technologies could have in modifying the overall quality of life of both upper
and lower limb in amputee populations, the aim of this narrative review was to condense
the current state of the art regarding the possible applications of IMU in the amputee
patient population.
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2. Materials and Methods

Two authors examined the following databases: Pubmed, Embase, Scopus, Google
Scholar, and Cochrane Library. The selection of articles was conducted throughout the
search string: “amputee”; “prosthesis”; “artificial limb” [MeSH]; “amputation” [MeSH];
IMU, “inertial sensors”; “accelerometer”, “Monitoring”, “Physiologic”, “instrumentation”
[MeSH], and the Boolean operators AND and OR. We considered only articles published
from 1 January 2010 to 31 November 2022 with the full text. The results of the search yielded
580 results. The selection was determined considering: 1. Patients with mono/bilateral
limb amputation in the upper and/or lower limbs; 2. The use of inertial sensors; and
3. Interventions that could have implications from the clinical point of view and/or quality
of life of the patient. Disagreement in the study selections between the investigators was
solved by a third author.

2.1. Data Extraction

Cochrane Review Group guidelines were utilized to conduct data extraction with an
Excel document to evaluate inclusion criteria. Full texts were examined, and records were
collected in the document. Authors; publication year; participant characteristics; design of
studies; outcomes; main results, were extracted from the included papers.

2.2. Methodological Assessment

We utilized a modified version of the STROBE criteria to conduct the methodological
assessment, through ten criteria. Disagreements were assessed and solved by consensus. A
numerical categorization (1 if present; 0 if non-present) was utilized for item assessment.
The studies were classified with a high risk of bias with a score of <7 and considered
at low risk of bias with a score of >7. We considered previous guidelines, the research
questions, appropriate evidence, the studies’ qualities, results synthesis, and their correct
interpretation to conduct the clinical review [32,33].

3. Results
3.1. Study Selection

A total of 580 records were identified after the database search, as indicated in the
PRISMA flow diagram in (Figure 1). After duplication deletion, and the assessment of
444 studies, 26 were considered to be eligible, divided into four main topics: (1) the analysis
of movement, (2) the risk of falls, (3) the study of energy expenditure, (4) the development
of sensor-integrated prostheses.

3.2. Main Characteristics of the Studies

Table 1 summarizes the main characteristics of the studies. Twelve out of 26 stud-
ies [34–45] investigated different spatial and temporal parameters of Gait. Specifically, one
study [34] focused on the evolution of kinematic parameters during a 6MWT and found
that the prosthetic limb has greater toe clearance and that this is also more variable. A
study [35] described the use of a new algorithm to be implemented when using inertial
sensors to record gait events in real time with 100% accuracy in recording initial contact and
toe off. On this topic, Wentink et al. [37] also demonstrated how the use of IMUs is reliable
in recording the onset of walking in both the healthy limb and the amputated limb [36].
The study investigated the use of IMUs in joint angle calculation, demonstrating good cor-
relation of measurements with 3D motion detection systems. Two studies [38,39] focused
on the recording of accelerations: Simonetti et al. [38], using a network of five MIMUs,
derived individual SCoMs calculating the BCoM with a moderate to strong correlation
with force platforms; Paradisi et al. [39], used three MIMUs to detect acceleration in three
different body segments (head, thorax, pelvis) demonstrating an alteration of the normal
head-to-pelvis accelerometric gradient in LLP patients and deriving an attenuation coeffi-
cient that could be useful for assessing the mobility of amputee patients. One study [40],
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evaluated flat and slope walking speeds through a single IMU integrated in an MKAP with
a good RMSE in both walking situations.
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Table 1. Main characteristics of the included studies. LLA (lower limb amputees); ULLA (unilateral lower limb amputees); BiLLA (bilateral lower limb
amputees) (TFA (transfemoral amputees); TT (transtibial); TTA (transtibial amputees); BiTTA (bilateralt transtibial amputatees) TKA (through the knee amputees);
LLP (lower-limb prosthesis); TAA (total ankle amputees); TRA (transradial amputees); HlULA (High-level upper limb amputee).

Article Study Design Participants Aim Procedure Outcome

Beausoleil S.
et al., 2019 [34] Case Study 15 LLA Patients

To assess kinematic gait
parameters during 6MWT
and clinical applicability

of IMU.

Post-Rehab assessment of gait,
during 6MWT, with IMU (3D Acc +

3D Gyro) on both feet.

High stance and cadence variability
on both limbs. High and variable

minimal Toe clearance on AL.
Gait kinematic parameters variability

are correlated with future falls.
Relevant IMU applicability in

clinical context.

Maqbool H.F.
et al., 2017 [35] Controlled Clinical Trial 8 Healthy Control, 1 TFA

Patients, 1 TTA Patient

To evaluate the reliability of
RT Gait event detection

algorithm in both flat and
inclined surfaces for

TFA patients.

Patients walked for 10 min at
self-selected walking speed over flat

surfaces and walk up and down a
ramp (5◦ inclination) with a 6-DOF

IMU (Acc + Gyro) fixed on the shank
and insole with footswitches.
The algorithm was written

in MAT-lab.

100% detection accuracy for Initial
Contact and Toe Off with different
prostheses. Reliable algorithm for

gait event detection.

Seel T. et al.,
2014 [36] Case Study 1 TFA Patients

To asses Joint Angle using
IMUs and validate it’s

measure with a 3D
optoelectronic movement
detection system (MDS).

IMUs (Xsense MTw) mounted on
proximal and distal legs as well as

foots. Body marker for 3D MDS
(Vicon V612) mounted on both legs.

Participant is requested to walk 10 m
at self-selected speed. Data are

gathered and confronted
with 3D MDS

Joint angle calculation using
accelerometer and gyroscope showed

high precision and correlation
with 3D MDS (1◦ RMSE for

prosthetic leg and
3◦ for contralateral).

Wentinik E.C.
et al., 2014 [37] Case Study 3 TFA, 3 TKA To detect onset of gait

with IMUs.

Footswitches positioned in the heel
center and under the first metatarsal

head. Two inertial sensors (Xsens,
Acc + Gyro) placed on anterior side
of the proximal and distal leg. sEMG

electrodes placed on residual
muscles of the amputated leg. Each

patient is asked to walk.

IMUs demonstrated reliable in
detecting onset of gait in both
healthy (Gyro) and prosthetic

limb (Acc).
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Table 1. Cont.

Article Study Design Participants Aim Procedure Outcome

Simonetti E.
et al., 2021 [38] Case Study 1 TFA

To use a framework of
MIMUs to evaluate BCoM

acceleration and
instantaneous velocity.

Validate the measure versus
a 3D MDS.

Full body marker set + 7 MIMUs on
feet, shanks, thighs and trunk. The
participant is requested to walk at
self-selected speed through an 8 m

path with 3 force platform
in the middle.

Moderate to Strong correlation
between MIMUs and Force Platform
for SCoMs and BCoM acceleration

and velocity.

Paradisi F.
et al., 2019 [39] Case-Control Study 20 TTA,20 Healthy Control

To investigate upper body
acceleration and how these

propagate from
pelvis to head.

3 MIMUs located at head, sternum,
and lumbo-pelvic segment.

Participants were asked to walk
thorough a 10 m pathway at

self-selected speed.

Amputees have a larger coefficient of
attenuation of acceleration from

pelvis to sternum, greater
medio-lateral and head acceleration.

Attenuation coefficient may be a
useful index for mobility

assessment in LLA.

Dauriac B.
et al., 2019 [40] Case study 9 TFA

To evaluate the walking
speed by estimating COM

speed during gait cycle using
a single IMU integrated in a
microprocessor-controlled

knee ankle prosthesis.

Several sped and slop conditions
were tested at treadmill

This method estimates the walking
speed with a 9% of RMSE in patients
walking on a treadmill with 0◦ slope.
The RMSE slightly increased when

the slope is taken to
5% (but still acceptable).

Major M.J.
et al., 2016 [41] Controlled Trial

20 LLP (8 TFA, 9 TTA, 2
TT/TTA, 1 TT/TFA),

5 Healthy Control

To asses step length (SL) in
patients with LLP.

A three-axis accelerometer was fixed
at lumbar level in 20 LLP. The

patients were asked to walk in a
20-m pathway from a standing

position to a complete stop.

SL was correlated positively with
previous literature study. Method

was validated only on Healthy
subject but not for LLP users.
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Table 1. Cont.

Article Study Design Participants Aim Procedure Outcome

Howcroft J.
et al., 2014 [42] Case study 11 TTA

To investigate if
accelerometer derivate

measures can differentiate
between dynamic states and
how those data correlate with

clinical measures scores.

Community Balance and Mobility
scales, Balance Berg scales, Prosthesis

Evaluation Questionnaire were
administered to the participants. An

inertial sensor was affixed to the
pelvis and then the participants

walked in two scenarios: a 10-metre
path on level ground (LG) and an

8-metre path covered by foam
mattresses (uneven ground—UG).

Statistically significant differences
were found between LG and UG

walking in TTA participants. Stride
time, vertical and AP acceleration

FFT first quartile and ML Harmonic
ratio were greater in UG than LG.
Vertical acceleration and cadence
were greater in LG than UG. ML

acceleration range, AP acceleration
standard deviation and stride time

were correlated with change in
clinical outcome measures scales.

Lamoth C.J.
et al., 2010 [43] Controlled Trial 8 TFA, 8 Healthy Control

To asses variability and
stability of gait in LLA

patients and healthy subjects.

All participants were equipped with
a tri-axial accelerometer and walked

for 6 min in various context: (i)
indoor walking, (ii) indoor walking

with cognitive dual tasks, (iii)
outside walking (even terrain) in a

square circuit (260 m long), (iv)
outside walking (uneven terrain) in a

square circuit (260 m long).

There was significant statistically
differences in trunk acceleration

(variability on ML acceleration) and
walking speed (LLA patients are
slower than healthy subject) in
amputees’ group. Those two

parameters are directly correlated
with stability of the gait.

Tura A. et al.,
2010 [44] Controlled Trial 10 TFA, 10 Healthy Control

To evaluate a method for
assessing gait regularity and
symmetry of LLP users using

a single accelerometer.

All participants were equipped with
a single tri-axial accelerometer

mounted at thoracic level and foot
insoles. Patients are asked to walk a
straight path 70 m long at natural,
lower and faster speed. Step and

stride regularity and duration were
used to determine symmetry and

regularity of the gait.

Step and stride regularity and step
and stride duration are good index of

regularity and symmetry of gait.
A single accelerometer is capable to

determine these parameters with
good sensibility and specificity.
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Table 1. Cont.

Article Study Design Participants Aim Procedure Outcome

Clemens S.
et al., 2020 [45] Cohort Study 65 TTA, 63 TFA

To evaluate test-retest
reliability of IMU based
measures of segmental

symmetry between lower
limbs and differences

between TTA and TFA in
segmental symmetry score

(SSS) and segmental
repeatability score (SRS).

Participants wore knee sleeves
equipped with 4 IMUs. They were
asked to undergo a 10MWT on a
Zeno Electronic Walkway system.

Using sagittal angular velocities of
thigh and shank SSS and SRS

where calculated.

Good test-retest reliability, can
differentiate between healthy and
AL. Cannot differentiate between

TFA and TTA.

Daines K.J.F.
et al., 2021 [46] Cohort Study

89 LLA (4 BiTTA, 1 TT/TFA,
63 TTA, 18 TFA, 2 TKA, 1

TAA)

To evaluate if the use of a
random forest classificator is

able to classify risk of
fall in LLA.

An android smartphone was placed
in posterior pelvis. All patients
performed a 6MWT in a 20 m

pathway. Data were collected in a
custom-made application installed

on to the smartphone.

Random forest classificator applied
to data collected with a smartphone
showed a good specificity (near 95%),
good accuracy (81.3%) in classifying

risk of fall in LLA patients.

Shawen N.
et al., 2017 [47] Controlled Trial 7 TFA, 10 Healthy Controls

To develop a classifier that
integrates data from healthy
participants to detect falls in

individual with LLA.

All participants carried a Galaxy S4
Smartphone (Acc + Gyro) in natural
position (pocket, hand, waist) during

activities of daily living. 3 LLA
participants took the phone with

them for three days for
quantifying false alarms.

Using a machine learning approach,
data recorded from smartphones

regarding angular and linear
accelerations of healthy subjects can
be used to classify falls risk in LLA

subjects more specifically than a
threshold approach

(2 false alarms vs. 122).

Hordacre B.
et al., 2015 [48] Cohort Study 47 TFA

To asses activity and
participation at home and
various settings both for

fallers and non- fallers LLA.

All participants were equipped with
a stepwatch 3 activity monitor sensor
and a GPS linked to the prosthesis.

The community activity was defined
as counting steps outside the house
in various settings, and the home

activity as counting steps inside the
house. Participation was defined as

an event in which participants had to
leave home.

A statistically significant difference
was demonstrated between LLA

fallers versus non-fallers participants
for commercial activity, recreational
activity and total community activity.
In addition, a statistically significant
difference was found in recreational
and total community participation.
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Table 1. Cont.

Article Study Design Participants Aim Procedure Outcome

Kapti et al.,
2013 [49] Case study 1 Healthy Subject

To investigate the use of
accelerometric data recorded

from TTA for trajectory
control of an experimental

active ankle joint prosthesis

Two acceleration sensors were used
to register AP, ML and Vertical
acceleration on the sound leg.

Data acquired from registration from
the sound leg of a TTA may be used
for controlling the trajectory of an
LLP with active ankle joint users.

Chang M.
et al., 2019 [50] Case Study 4 TTA

To use a fuzzy logic system
for terrain detection and

automatic prosthetic ankle
angle correction.

All participants wore a prosthesis
with smart ankle system (equipped
with an IMU sensor and a load cell
for GRF detection) and walked on

five different terrain condition (flat,
upslope, downslope, upstairs and

downstair) for at least 20 steps.

This fuzzy logic system had a 97.5%
accuracy in terrain detection.

Su B.Y. et al.,
2019 [51] Case Study 1 TFA, 10 Healthy

Participants

To evaluate a new method for
training and intent

recognition system using
Convolutional Neural

Network (CNN) algorithm.

Three IMUs were positioned on
thigh, shank and ankle of the healthy
leg. All participants were instructed
to walk at a comfortable speed and

walked among different motion
states as well as steady state.

CNN can be used effectively for
intent recognition with a system of
3 IMUs, and potentially to control a

powered prosthesis for allowing
natural transition trough

motion states.

Keri MI et al.,
2021 [52] Case Study 1 TFA

To develop a low cost IMU
based vibratory feedback

system and use it to trigger
prosthesis motion illusion
(kinesthetics illusion -KI).

Vibratory feedback system (VFS) was
composed with: an Arduino
microcontroller, two 3-DOF

Gyroscope, a lithium battery, a
vibratory actuator. The accuracy of
the VFS is quantified using an MDS

and commercial IMU. Vibratory
actuator was fixed on thigh and

IMUs to a Robotic arm.

Participant in this study experienced
KI for 16 degrees in knee flexion.

Illusion of motion may improve gait
parameters and reduce risk of falling.
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Table 1. Cont.

Article Study Design Participants Aim Procedure Outcome

Krasoulis A.
et al., 2019 [53] Controlled Trial 12 Healthy controls, 2 TRA

To develop a multi-grip
classification system for

prosthesis control in
TRP users.

For HC 16 EMG-IMU sensors were
placed in two 8 Sensor row on the
forearm. For TRA 12 and 13 sensor

were placed on the stump.
Participants were asked to execute

different grasp for calibration (power
grasp, lateral grasp, tripod grasp,
index pointer and hand opening).

Consequentially they were asked to
pick an object that stimulate a

specific grasp.

Authors developed a multi-grip
classification system using only two
EMG-IMU sensors that can be used

for real time prosthesis control
during grip tasks.

Sharba G.K.
et al., 2019 [54] Controlled Trial 4 Healthy Control, 1 HlULA

To develop a RT shoulder
girdle movement classifier to

help high level ULA to
control a prosthetic hand.

EMG and 3DOF Acc. were fixed on
shoulder girdle of all participants. A
set of five motions were chosen for

classification: (i) elevation, (ii)
depression, (iii) protraction, (iv)
retraction and rest. The above

classification was the used to control
elbow, wrist and fingers of a 3D

printed prosthesis.

Results showed a 92.8% accuracy in
classifying shoulder girdle

movement of the ULA participants.
Classification was used to control a

3D printed UL prosthesis.

Ladlow P.
et al., 2019 [55] Controlled Trial

19 LLA (9 ULLA and 10
BiLLA),

9 Healthy Control

To asses validity of an
algorithm combining data

from accelerometer and HR
(GT3X+ + Polar T31) monitor
to assess energy expenditure
(EE) during Physical Activity

versus Actiheart
Monitor (AHR)

All participants wore a Metamax 3B
mask for Indirect calorimetry and

were equipped with an AHR and a
Polar T31 HR monitor. An Actigraph
GTX3+ (3-DOF Acc) mounted on the
waist near the shortest residual limb.
All participants, then, are asked to

walk on a treadmill at 5 progressive
velocities and two slope (2% and 5%).

Physiological Cost Index is then
calculated (∆HR/Walking speed).

The use of integrated Acc. data and
HR data provided the most valid
estimation of EE in ambulatorial

setting for both amputation group.
Level amputation impacts on

accuracy of predicting EE.
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Table 1. Cont.

Article Study Design Participants Aim Procedure Outcome

Ladlow P.
et al., 2017 [56] Controlled trial 10 ULLA,10 BiLLA, 10

Healthy Control

To assess the impact of
anatomical positioning of
GT3X+ activity monitor in

LLA participants and to
develop algorithm on

predicting EE.

All participants wore a Metamax 3B
mask for Indirect calorimetry and

were equipped with a GT3X+ activity
monitor on either side of the waist

above the hip and at L2 level.
Participants were asked to walk on a

treadmill at 5 progressive speeds.
Moreover, all participants performed
a sitting-based arm crank ergometry.

The anatomical positioning of
accelerometers impacts the ability to

predict EE in LLA.
The positioning that better correlates
with EE is on the amputated side of

the waist, just above the hip.

Smith J.D.
et al., 2021 [57] Cross-sectional Study

23 TTA
9 TFA

3 BiTTA

To determine step count and
step count accuracy with

different activity monitor and
O2 consumption during a

2MWT.

All participants were equipped with
an Actigraph GT9X+ and a Garmin

Vivofit ® 3 both on wrist and ankle of
the non-dominant side. A modus

Stepwatch 4 is placed on the
non-dominant ankle in addition to
the above sensors. All Participants

are fitted with a Polar HR sensor and
a Cosmed 5 portable metabolic

analyzer. After three minutes sitting,
participants performed a 2MWT as

fast and safetly possible.

There were no differences in distance
walked, VO2, HR and RPE between

different amputation level. Step
count and cadence were greater in

TTA vs. TFA.
Stepwatch on the ankle and Vivofit

on the wrist provided the most
accurate step count.
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Table 1. Cont.

Article Study Design Participants Aim Procedure Outcome

Desveaux L.
et al., 2016 [58] Cross-sectional 15 TTA

To asses if TTA patients with
diabetes meet recommended
level of physical activity and

daily steps count. To
investigate if physical

functioning measures are
correlated with objective

measures of physical activity.

Participants were provided with a
Stepwatch activity monitor (SAM)

fixed around the ankle of intact limb.
Participants were asked to wear

SAM for 9 consecutive days.
Physical activity was measured by
steps count and number of minutes

engaging activity involving >90
steps/min. Each participants

underwent a 2MWT and performed
an L test. Activities-specific Balance
Confidence Scale (ABC) and WHO

QoL-Brief Questionnaire
were administered.

Despite improvement in functional
mobility (L test) over 6-month

follow-up, step count were below
6500/day and participants spent

<150 min/week for vigorous
physical activity (>90 steps/min).
These results indicate the needs of
post-rehabilitation intervention to

promote active lifestyles.

Kim J. et al.,
2021 [59] Randomized Cross-over Trial 10 TTA

To quantifying metabolic cost,
step count, walking,

perception of mobility and
quality of life between

powered and non-powered
prostheses users.

Participants were randomly assigned
to perform testing with a powered
prosthesis or with an unpowered
prosthesis. All participants were

equipped with two ActiGraph GT9X
Link (one mounted on the prosthetic

foot and one mounted on the
prosthetic pylon) and a GPS enabled
system on their phone active for two
weeks. At the end of the two weeks,
data were collected and participants
underwent a metabolic measurement

with Kosmed K4b2.

Authors did not find any differences
in metabolic cost between

powered prosthesis.
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Ref. [41] investigated the use of accelerometers in the measurement of step length
with no conclusive results in validation with force platforms, while demonstrating a
good correlation with referenced literature measurements. Ref. [42] demonstrated how
the use of accelerometers can differentiate between different states of dynamic stability
(e.g., while walking on level ground or on uneven ground) and correlated the various
differences in accelerometer data with clinical outcomes. As shown by Lamoth CJ et al. [43],
trunk acceleration and walking speed are the main factors influencing gait stability and
variability. Finally, regarding symmetry and regularity, Tura et al. [44] showed that step and
stride duration as well as step and stride regularity are good indices of walking regularity
and symmetry; in conclusion, Clemens S. et al. [45] used various data on lower limb
accelerations to derive two indices (SSS and SRS) that are also useful for assessing gait
symmetry and regularity.

Three out of twenty-six studies [14,47,48] used inertial sensors to classify and assess
the risk of falls. Daines KJF et al. [14] used a random forest classifier and a smartphone
to classify the risk of falls in amputees with interesting results in terms of sensitivity and
specificity. Shawen et al. [47] used a machine learning approach with fewer false alarms
than a threshold algorithm approach. In addition, Hordacre et al. [48] used a Stepwatch
3 activity monitor coupled with a GPS to monitor non-fallers and amputee fallers to
demonstrate a reduced participation in various social contexts.

Six out of twenty-six studies [49–52] investigated the implementation of IMUs in
advanced prostheses to improve their control and fluidity during daily tasks. Four studies
focused on implementing data recorded from IMUs for LLP. Akin, O.K. et al. [49] studied
the movement of healthy limbs using two acceleration sensors and implemented data
collected in an algorithm useful for controlling the trajectory of a mechanical prosthesis.
Chang et al. [50] collected data from an IMU embedded to a prosthesis with mechanical
ankle control and a load cell recording ground reaction forces, for terrain detection using
fuzzy logic systems. Ref. [51] proposed a system made of three IMUs for detecting intent
recognition using a convolutional neural network system. Finally, Ref. [52], using an IMU
and a vibrational feedback system, stimulated an illusion of movement in the prosthetic
limb. Two studies focused on the use of IMU to improve the use of upper limb prostheses.
Krasoulis et al. [53] studied a multigrip classification system through two sEMG-IMUs
sensors in healthy and TRA participants with a potential application in grip control for
upper limb prostheses. Sharba et al. [54] proposed a shoulder movement classification
system through IMUs and sEMG placed on a shoulder girdle with the aim of helping
patients with more proximal amputation controling prosthesis.

Finally, five studies out of twenty-six [55–59] investigated the potential role of IMUs
in deriving energy expenditure. Ladlow et al. in two studies [55,56] validated a system
composed by activity monitor and HR monitor for assessing energy expenditure in LLA
patients by comparing data with indirect calorimetry [55], especially if the activity monitor
is placed on the side of the pelvis above the amputated limb hip [56]. Refs. [57,58] studied
step count on the LLA population. Smith JD et al. confronted different types of sensors and
activity monitor finding that Stepwatch positioned on the ankle and Vivofit on the wrist
provided the most accurate step count. Desveaux et al. [58] demonstrated that LLA patients,
despite a good recovery in mobility, walk less than 6500 steps and tend to avoid vigorous
physical activities. Lastly, Kim et al. [59] found no differences in energy expenditure
between powered prosthesis and non-powered prosthesis patients, although a reported
faster pace with powered prosthesis was observed.

3.3. Methodological Quality

Table 2 reports the methodological quality scores of the studies [29]. The overall
quality of the studies considered was high. Seven studies [34,37,48,55–57,59] had 10 points;
height studies [14,38–41,45,47,58] had nine points; one study had eight points [52]; seven
studies [35,42–44,51,53,54] had seven points; one study [49] had six points; and two stud-
ies [36,50] had five points.



Sensors 2023, 23, 1880 14 of 23

Table 2. Methodological assessment of the included studies.

Articles
Criteria for the Quality Scoring Score

1 2 3 4 5 6 7 8 9 10

Beausoleil S. et al., 2019 [34] 1 1 1 1 1 1 1 1 1 1 10
Maqbool H.F. et al., 2017 [35] 1 1 0 1 1 1 0 1 1 0 7
Seel T. et al., 2014 [36] 1 0 0 1 1 1 0 0 1 0 5
Wentink E.C. et al., 2014 [37] 1 1 1 1 1 1 1 1 1 1 10
Simonetti E. et al., 2021 [38] 1 1 0 1 1 1 1 1 1 1 9
Paradisi F. et al., 2019 [39] 1 1 0 1 1 1 1 1 1 1 9
Dauriac B. et al., 2019 [40] 1 1 0 1 1 1 1 1 1 1 9
Major M.J. et al., 2016 [41] 1 1 0 1 1 1 1 1 1 1 9
Howcroft J. et al., 2014 [42] 1 1 0 1 1 1 1 0 1 0 7
Lamoth C.J. et al., 2010 [43] 1 1 0 1 0 1 1 1 1 0 7
Tura A. et al., 2010 [44] 1 1 0 1 0 1 1 1 1 0 7
Clemens S. et al., 2020 [45] 1 1 1 1 1 1 1 1 1 0 9
Daines K.J.F. et al., 2021 [14] 1 1 0 1 1 1 1 1 1 1 9
Shawen N. et al., 2017 [47] 1 1 1 1 0 1 1 1 1 1 9
Hordacre B. et al., 2015 [48] 1 1 1 1 1 1 1 1 1 1 10
Kapti A.O. et al., 2013 [49] 1 1 0 1 0 0 1 0 1 1 6
Chang M. et al., 2019 [50] 1 1 0 1 0 1 0 0 1 0 5
Su B.Y. et al., 2019 [51] 1 1 0 1 0 1 1 1 1 0 7
Keri MI et al., 2021 [52] 1 1 0 1 0 1 1 1 1 1 8
Krasoulis A. et al., 2019 [53] 1 1 0 1 0 1 1 1 1 0 7
Sharba G.K. et al., 2019 [54] 1 1 0 1 0 0 1 1 1 1 7
Ladlow P. et al., 2019 [55] 1 1 1 1 1 1 1 1 1 1 10
Ladlow P. et al., 2017 [56] 1 1 1 1 1 1 1 1 1 1 10
Smith J.D. et al., 2021 [57] 1 1 1 1 1 1 1 1 1 1 10
Desveaux L. et al., 2016 [58] 1 1 1 1 1 1 1 1 1 0 9
Kim J. et al., 2021 [59] 1 1 1 1 1 1 1 1 1 1 10

Abstract informative and balanced (1); presence of detailed objectives, incorporating the hypotheses of the
study(2); availability of eligibility criteria (3); for the variables of interest, availability of sources of data and
characteristic of measurement methods, and description of methods correspondence (when there are two or more
groups) (4); quantitative variable (5); summaries characteristics of study population (6); key results focuses on
study aim (7); declare limitations (8); careful interpretation of results, based on objectives, similar literature, and
other relevant evidence (9); funding statement (10).

4. Discussion
4.1. Gait Analysis

The importance of walking is particularly evident during daily activities, and highly in-
fluence a patient’s independence and participation [60,61]. Amputation, and consequently
lower limb prosthesis (LLP), profoundly modifies the gait pattern [62]. Furthermore, the
establishment of compensatory movements, in the long term, could generate low back pain
and negatively affect the patient’s quality of life [63]. The main discrepancies in the gait of
patients with lower-limb amputations depend either on malalignment or length differences
with the result of modifying the kinematics of walking and increasing its metabolic cost [62].
Aspects such as the kinematics of the body’s center of mass and its acceleration in space
have crucial importance for the patient’s rehabilitation. The use of portable sensors has
increasingly attracted the curiosity of the scientific community to evaluate the kinematics
of the gait [64], allowing the physician to obtain a detailed assessment of the patient at
the beginning, during and at the end of their rehabilitation program, taking into account
various parameters including linear and angular acceleration, walking speed, step cadence,
and gait events [34,35].

4.1.1. Joint Angle Calculation

Inertial sensors have been successfully studied to assess joint angles in both healthy
and amputee patients. In their study, Seel T. et al. [36] used inertial sensors to infer the
joint angles of a transfemoral amputee patient wearing an articulated knee prosthesis
and compared the results with optoelectronic detection systems. The authors found high
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sensitivity in this measurement, demonstrating that the IMU could potentially be used on
both the healthy and prosthetic limb; however, the small sample considered could affect
the generalizability of the conclusions [36].

4.1.2. Detection of the Onset of Gait

Wentinik et al. [37], by combining data recorded using IMU, insole sensors and surface
EMG (sEMG), assessed the onset of walking in both healthy and prosthetic limbs. The use
of IMUs integrated with sEMG would seem to predict the onset of walking in these patients,
both when the healthy limb and the prosthetic limb advance. In the case of the prosthetic
limb advancing first, the data collected by the accelerometer module were found to be more
accurate, whereas in the case of the healthy limb data collected by the gyroscope module
were more reliable [37]; in addition, sEMG has shown to anticipate the initial movement
prediction, providing an useful information for prostheses control. However, this was valid
only when the prosthetic leg led.

The results of this study pave the way to the development of gait intention detection
systems at the base of future neural-integrated and controlled prostheses [65].

4.1.3. Acceleration and Walking Speed

Simonetti E et al. [38] in a recent case study compared MIMU with optometric gait
evaluation systems and force platforms to validate their accuracy on one subject with
transfemoral amputation. The authors applicated different MIMUs on the seven major
segments (the trunk, thighs, legs, and feet) contributing to 3D Body Center of Mass (BCoM)
acceleration in the transfemoral amputation patient. The patient were asked to walk with a
gait speed of choice on a force plate and calculated the acceleration by integrating the indi-
vidual Segment Center of Mass (SCoM) accelerations, concluding that the use of a network
of five MIMUs shows promising results for measuring the three-dimensional acceleration
of the BCoM and its velocity with a strong correlation to force platforms and optometric
systems [38]. Patients with transtibial amputation and those with transfemoral amputation
have similar gait patterns, characterized by a symmetrical increases in step length and
width, double stance duration, pelvic obliquity, lateral trunk flexion, and anteflexion of
trunk and pelvis. However, patients with transfemoral amputation present a reduction in
stance phase and an increase in swing phase duration of the prosthetic limb. Furthermore,
in these patients, there is an increase in ground reaction forces during the stance phase
and a shift of the center of activity on the intact limb side. Despite the common features,
the level of amputation influences the walking pattern of patient, representing a way to
compensate the lack of ankle joint or knee joint [66]. These compensatory movements,
always asymmetrical, are rarely localized in lower body segments, and usually involve
higher districts of the body such as the trunk and head. In healthy patients, physiologically,
lower body accelerations are transmitted in a decremental caudo-cranial gradient. In a
recent study, Paradisi et al. have investigated how this gradient is modified in patients
with inferior limb amputation placing IMU (1) at the level of the lambdoid suture of the
occipital bone; (2) at the center of the sternum, and (3) at L4-L5 just above the pelvis of the
participants. They found prosthesis-related functional asymmetry due to the inability to
perform plantar-dorsiflexion movements with the prosthetic foot leading to exaggerated
proximal joint kinematics (pronounced pelvic tilt, lumbar hyperlordosis) during stance.
These modifications would then lead to a larger coefficient of attenuation of pelvic-sternal
accelerations in the dynamic phase of stance. In particular, amputees have a higher medi-
olateral acceleration, which influences a reduced deceleration gradient in the substernal
regions but is also responsible for a higher head acceleration [39]. In this study, the authors
utilized sewn pockets to place IMU, that could introduce possible errors, and considered
only indoor environments.

Walking speed represents a relevant indicator of the patients’ performance. Amputees
have a reduced walking speed compared to non-amputees and a higher level of amputation
is related with a lower walking speed that might represent a strategy to increase stability
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and reduce the medio-lateral acceleration that these subjects experience. Due to difficulty to
record directly the walking speed in real life conditions, because of the difficulty to assess
spatial parameters from wearable sensors signals, this parameter is usually estimated
through the cadence, step counts and activity bout duration. Nevertheless, a recent article
of Dauriac et al. proposed a new model to estimate the instantaneous walking speed
of patients with transfemoral amputation obtaining an accuracy of 9% through an IMU
placed on the tibia and body height [40]. However, the validation of this model should be
completed in a real environment and during real-life activities.

4.1.4. Step Length

Step length (SL) is also a useful parameter to evaluate gait in patients with lower
limb amputation, providing a measure of the patient’s walking ability and evaluating
the symmetry of the steps and the distance covered. Matthew J. Major et al. [41] tried
to develop an SL measurement system based on accelerometers. In their study, an ac-
celerometer was applied at the level of the fourth lumbar vertebra (BCoM) in healthy
subjects and in subjects with lower-limb amputations (transtibial and transfemoral mono
and bilaterally). In healthy subjects, the inertial measurement system was also considered
with an optometric gait analysis system. Although inertial sensors have a good test-retest
reliability in healthy patients, showed contrasting values in patients with LLP, in prosthetic
patients, the walking distance was generally over- or under-estimated (with an error of
sometimes up to 30%); however, the SL of prosthesis users coincided with the data present
in the literature. This error was greater in those patients with walking compensation
strategies such as circumduction or hip advancement and therefore did not fall within the
sagittal range [41,67–69].

4.1.5. Variability and Stability, Symmetries and Regularity

Amputation affects both motor and sensory functions, altering the lower limb complex
feedback mechanisms regulating the whole gait cycle, including its variability, regularity
and symmetry, and increasing the risk of falling due to the lack of dynamic stability [70,71].
Several approaches have been proposed in the literature, with different IMU localization,
limiting the comparison of the results. To investigate the relationships between dynamic
stability and acceleration, Howcroft, J. et al. [42] recorded acceleration with a single sensor
positioned at pelvic level on two different types of terrain (level ground and uneven
ground). The authors found statistically significant differences in temporal parameters
(stride time and cadence), acceleration data (vertical acceleration range and maximum
vertical acceleration), and the mean-lateral harmonic ratio between walking on level ground
and uneven ground. Moreover, they identified three parameters, ML acceleration, AP
acceleration standard deviation and stride time, that were highly correlated with balance
and mobility clinical scores [42].

Similar results are described by Lamoth, C.J. et al. [43] in a study evaluating trunk
accelerations and stride time, which are indicators, through their variation in time, of
dynamic stability in walking. The study used inertial sensors recording antero-posterior and
medio-lateral accelerations by fixing a tri-axial accelerometer at the level of the third lumbar
vertebra. In this study, they found statistically significant differences between amputees
and healthy patients in trunk accelerations and walking speed [43]. As also described
in other works [72,73], amputees show significantly larger mid-lateral accelerations and,
consequently, larger lateral oscillations, two parameters that represent a reliable method of
analyzing the gait stability of LLP.

In addition, Tura et al. [44] demonstrated, using a single sensor fixed at the level of the
xiphoid process, that step and stride length as well as step and stride duration, can be used
as reliable indices of gait regularity and symmetry [44].

Moreover, in a more recent study, Clemens S. et al. [45] calculated the symmetry
and the repeatability of the walk during the 10 Minutes Walking Test (10 MWT) through
the use of two sensors placed both on the healthy limb and on the prosthetic amputee.
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The authors in this case, by recording angular velocities at the leg and thigh and using
specific algorithms, were able to evaluate the between limbs differences in angular velocity
and summarized them in a score of symmetry (segmental symmetry score—SSS) and
repeatability (segmental repeatability score—SRS). These scores were found to have good
test-retest reliability in detecting differences in movement between the prosthetic leg and
intact leg (in terms of SRS, SSS and angular velocity difference repeatability, AVD-R) with
a limitation in detecting the differences between transfemoral and transtibial amputees.
Trans-tibial amputees presented with greater AVD-R and lesser SRS in the prosthetic leg
side versus the intact leg side. Transfemoral amputee, moreover, presented no differences
in SRS but greater thigh AVD-R in the prosthetic side versus the intact leg side [45].

4.2. Fall Risk Classification

According to the World Health Organization (WHO), falls are the second leading
cause of accidental death [74]. Following the amputation of a lower limb, the risk of falls is
increased [75,76].

However, during daily life, the risk is higher than in the post-surgical phase, estimated
to be three times higher than the rest of the population. This could be influenced by the
development of compensatory strategies that increase the energy consumption during
walking, leading to a premature muscle fatigue and loss of stability. The most important
risk factor is gait variability. In healthy adults there are small and physiological variations
in gait parameters. To the contrary, in patients with diseases that profoundly alter the gait
(i.e., Parkinson’s disease, Alzheimer disease, frailty and amputation), these fluctuations
become more pronounced, putting the patient at risk of accidental falls [76,77]. It should
highlighted that most falls occur within the walls of the home [78] and therefore, it is very
important to evaluate patient not only in an outpatient or gym setting but also during
daily life.

In this context, wearable sensors (including inertial sensors) have been used with the
intent of classifying fall risk in the amputee population, with high heterogeneity of results,
due to the necessity of experienced personnel in their management, the low compliance of
the patient, and the lack of standardized protocols (most studies in this field use different
technologies and algorithms), as shown by Subramaniam, S. et al. [79].

In a recent study, Kyle J.F. Daines et al. [14] proposed the use of a smartphone as an
inertial sensor, since they usually include an inertial sensor and sometimes also a magne-
tometer. In their study, an android smartphone was placed at the level of the posterior
medial portion of the pelvis, and through a dedicated custom application recorded gait
during a six-minute walking test (6MWT), computed with various classification systems,
among which the random forest classifier and a correlation-based selection on the turn step
future showed high specificity but low sensitivity [14]. The use of highly available devices
is interesting but it is still difficult to apply in daily life because of the low replicability of
patient’s sensor positioning [80,81]. In this context, a machine learning approach could
overcome this limitation by considering the positions commonly used during everyday life
(hand, pocket or pouch) extending the observation to the patient home [47].

The flexibility of using accelerometers could lead to an advantage for the clinician, who,
by assessing the patient in their daily life environment, could estimate the risk of falls and act
accordingly (e.g., with balance training). IMUs have been used not only to classify the risk of
falls but also to monitor their impact on everyday life. Hordacre, B. et al. [48] demonstrated,
through the use of a GPS and accelerometer, that amputee patients who experienced falls
reduce their life and community participation, preferring home-based activities [48].

4.3. Prosthesis Development

Another field of particular interest regarding IMU concerns their potential role on
reproducing a physiological walking pattern in the development of active prostheses that
use technology to support the patient’s walking by reproducing as closely as possible the
kinematics of the contralateral segment [82,83].
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Kapti et al. [49] devised an experimental transtibial prosthesis by combining a servo-
motor and a series of elastic elements to allow plantarflexion and dorsiflexion movements
compatible with a physiological gait cycle, as well as the control of the trajectory of the
ankle joint. They used an inertial sensor positioned at the level of the ankle joint in healthy
participants to obtain a symmetrical movement of the prosthesis and the contralateral limb.
On the other hand, it is limited to patients with a normal biomechanical behavior of the
healthy limb, and the assumption of a symmetrical gait pattern, not valid in amputees [49].
In this context, the IMU could represent a proprioceptive afference signal, measuring joint
angles and prosthesis information [49].

Chang, M. et al. [50], in their study, proposed the use of inertial sensors and algorithms
based on fuzzy logic to design a transtibial prosthesis sensitive to variations in the terrain.
Five different environments were used: flat, upslope, downslope, upstairs and downstairs.
The combination of the smart prosthetic ankle system and the fuzzy logic algorithm resulted
in an accuracy of 97.5% in recognizing and adapting the gait in different settings, only if
the user carefully walked following the authors’ guidelines [50].

One of the most important features of an active prostheses is the smoothness in lo-
comotion changes [84] achieved by several sensors and computational strategies, such as
machine learning. Ben-Yue, Su. et al. [51] attempted to use a different method to record
movement intention in subjects with transfemoral amputation by using IMU. Thirteen
motion states were investigated, such as simple level walking, climbing, or descending
stairs, and changing from climbing stairs to walking on level ground. The data, recorded
in a standardized laboratory setting by the sensors, were finally integrated into a convo-
lutional neural network (CNN), investigating both steady and transitional motion states
with an average accuracy in recognizing movement intention of 94.15% and a maximum
accuracy 97.19% [51].

Another interesting application of IMU in LLP is the integration of the position sense
of the prosthetic limb by using vibratory feedback to trigger the sensation of movement.
Known as kinesthetic illusion (KI). McNiel-Inyani, Keri et al. [52] in their study used a
vibratory feedback system activated by the registration of movements on a single axis to
generate a KI, that participated in the integrity of the tendons through the stimulation of
neuromuscular spindles [52]. However, the sensor drift could result in false triggers, and
the device utilized caused a significant delay in KI.

Moreover, IMUs can also represent an implementation of the information of myoelec-
tric prostheses of the upper limb, consisting of a sensor registering the electrical activity
of the external surface of the stump and a prosthetic hand with motorized fingers which
allows a grip obtained and controlled by the activity of the residual muscles [53].

Krasoulis, A. et al. [53] in their study used a custom-made EMG system integrated
with MIMU for recording the electrical activity of the stump, the acceleration, orientation,
and angular velocity of the stump. Thanks to this combination of sensors, they were able
to record and classify the grip control of hand prostheses in patients with trans-radial
amputation. The number of completions of simple “pick and place” tasks, and the time,
were used to determine the control performance of the prosthetic hand. In addition, data
collected seemed to open new perspectives on the implementation of real-time grip control
systems to minimize unwanted prosthesis activities that would lead to inaccuracies in task
execution [53]. Moreover, for patients with less conservative amputations, and therefore
lacking the whole arm muscles to control their prosthetic hands, Sharba, G.K. et al. [54]
studied a real-time classification system of five classes of shoulder girdle movement using
a system of electromyographic electrodes and accelerometric recordings. Five movements
were selected: (1) elevation; (2) depression; (3) protraction; (4) retraction; and (5) rest. The
movements were recognized in real time with an accuracy of 92.8%, to allow a myoelectric
control of a prosthetic hand in this kind of amputation [54].
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4.4. Energy Expenditure and Metabolism

As mentioned above, amputation leads to increased walking energy expenditure.
Transtibial prosthetic patients have significantly higher (20%) oxygen expenditure than
healthy subjects, and the cost of oxygen consumption increases in proportion to the height
of the amputation (maximum consumption for hemipelvectomies), as gait becomes progres-
sively less efficient. In the last decade, therefore, research on prostheses has also focused
on the development of technologies to reduce energy costs and oxygen consumption in
patients with various levels of amputation [85].

The “gold standard” method for determining energy cost is indirect calorimetry.
However, this method is expensive and impractical for use outside of hospital or clinical
settings [86]. In this context, technology advancement has led to the development of
new multimodal sensors that record both classic inertial data and heartbeat, whih were
successfully utilized to monitor the physical activity of healthy subjects [87]. However,
there is only one study in the literature published by Ladlow, P. et al. [55] validating this
approach on amputee patients, integrating two types of sensors (ActiHeart and GT3X+),
that showed a good correlation with indirect calorimetry [55,56].

Recently, Smith, J.D. et al. [57] utilized a series of integrated sensors (ActiGraph™
GT9X Link; Garmin Vivofit; Modus Stepwatch) placed on the lateral part of the resid-
ual limb, assessing, through the 2-m walking test (2MWT), the step count and oxygen
consumption in patients with single and bilateral transtibial or transfemoral amputation.
They found no differences between tibial and femoral amputees in heart rate, VO2 and
perceived exertion, but there was a statistically significant difference in step count, higher
in transtibial amputees [57], and a higher oxygen demand in patients with transfemoral
amputation [88]. In healthy subjects, the simplest parameter correlating with physical
activity is the daily step count, accounting for 10,000 steps positively correlated with a
reduction in mortality and cardiovascular disorders. For subjects with chronic diseases,
this step count is lower (about 6.500). In particular, lower limb amputees perform much
less physical activity, as evidenced by the study of Desveaux, L. et al. [58], in which they
were estimated, through inertial sensors (Stepwatch monitor) and clinical measures, to
have an alarming step count below 6500 [58].

Moreover, Kim, J et al. [59], addressed the question of whether powered prostheses could
reduce the energy cost of walking in amputees during walking, but they found no differences
in metabolic cost, total number of daily steps, walking speed, and perceived mobility between
patients using powered prostheses and patients wearing non-powered prostheses [59].

5. Conclusions

Taken together, the findings of the present narrative review showed that IMU might
play a key role in monitoring amputee patients. In particular, the detection of gait alteration
could guide the physician during the rehabilitation plan and reduce the risk of falls.
However, most of the studies considered are based on limited sample sizes, utilizing
laboratory conditions and healthy participants. Moreover, there is a high heterogenicity
regarding the type and localization of the IMUs, the algorithm utilized for gait analysis and
movement prediction. On the other hand, the advancement in prosthesis design and the
development of new sensors for myoelectric prostheses could have a positive impact on the
functioning of patients. Further studies are needed to bridge the gap between technologies
and clinical advancement by improving the crosstalk between engineering and medicine.
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