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Abstract 
Multiple Sclerosis has a highly heterogeneous clinical course and, given the large 

number of available therapies, there is a strong need to identify prognostic markers of 

approach. In the present thesis we investigated clinical, genomic and immunological 

parameters associated with inflammatory activity. To this aim, we enrolled two cohort 

Extended  cohort of ~1,000 subjects that started a 

first-line drug, with available clinical and genetic data, and a  dataset of ~200 

patients with genetic, transcriptomic and immune repertoire information obtained before 

treatment. The patients were observed for 4 years and classified according to the no 

evidence of disease activity status and the time to first relapse criteria. We then tested 

the relationship between the different omics data and disease outcomes and we 

integrated the different layers of information into a prognostic model of disease activity. 

Our results confirmed that a younger age at onset, a shorter disease duration and female 

gender strongly correlate with higher inflammatory activity during follow-up. Besides,  

the genetic study highlighted some suggestive associations near to genes implicated in 

the regulation of coagulation system and vascular permeability as well as in antioxidant 

processes, regulation of oligodendrocyte differentiation and remyelination. These 

findings were strengthened by the results of the transcriptomic and pathway analyses 

that prioritized biological paths involved not only in immune functions but largely in 

cell homeostasis and death as well as neurodegeneration. Moreover, we also found that 

a higher immunological diversity seems to correlate with MS reactivation during 

follow-up. Finally, we applied machine learning algorithms to integrate clinical, genetic 

and immunological data and found that the best predictive performance was obtained 

using clinical information, while the addition of molecular data only slightly improved 

the prediction of disease activity. In conclusions, our findings demonstrated that 

genetic, transcriptomic and immune repertoire data can help in deciphering biological 

processes underlying Multiple Sclerosis pathophysiology and clinical expression but the 

predictive power of models integrating the different layers of information is currently 

not enough for application in clinical practice, probably because of the limited sample 

size of the studied cohort compared also to the number of thousands of features that are 

tested in the predictive model. 
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1 Introduction 
1.1 Multiple Sclerosis 

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central 

nervous system (CNS), with more than 2 million cases worldwide (Feigin et al, 2017). 

It is considered an immune-mediated disease and is characterized by widespread CNS 

inflammation, demyelination and axonal loss (Trapp et al, 1998). It typically affects 

adults between 20 and 40 years of age, mainly females (female-to-male ratio 3:1 

(Dilokthornsakul et al, 2016)), and represents the leading cause of non-traumatic 

neurological disability in young population in Western countries. 

Although its etiology has not yet been defined, it is nowadays acknowledged that both 

genetic and environmental factors play an important role in its pathogenesis. Moreover, 

MS is characterized by a high heterogeneity in term of clinical presentation, disease 

course, magnetic resonance imaging (MRI) and pathological features and response to 

treatment, that stress the need for a highly personalized approach in its management. 

 

1.2 Epidemiology and environmental risk factors 
As already mentioned, both genetic and environmental risk factors contribute to 

MS susceptibility and clinical presentation. The importance of the environment is 

demonstrated by the particular trend in disease prevalence (Kurtzke et al, 1979), that 

increases with latitude (Vukusic et al, 2007; Simpson et al, 2011) (Figure 1.1). Indeed, 

northern Europe and North America show the highest prevalence with >30 cases per 

100.000 inhabitants, while southern Europe and southern United States of America have 

a medium prevalence (5-30 per 100.000) and Asia and South America have fewer cases 

(<5 per 100.000). This geographical distribution can partly be due to genetic factors 

however several studies showed that MS incidence is associated with the country of 

residence during childhood (Elian et al, 1990; Detels et al, 1977; Dean & Kurtzke, 

1971; Alter et al, 1962) and that subjects moving from high-risk to low-risk areas early 

in life show a reduced risk (Kurtzke et al, 1985; Gale & Martyn), stressing the role of 

acquired, environmental factors. 
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Figure 1.1: Geographical distribution of MS. Map showing areas of high versus low 
prevalenceMS (from https://multiplesclerosis.net/, last accessed 2018)  
  

Furthermore, another aspect supporting the key role of the environment is the dramatic 

increase in the female-to-male ratio (Koch-Henriksen & Sørensen, 2010; Orton et al, 

2006), that raised from about 1.5:1 in 1950s to up to 3.1:1 (Dilokthornsakul et al, 2016), 

most likely due to female-specific changes in smoking habit.  

The following paragraphs summarize the available evidences supporting a role for 

environmental factors in MS. 

 

1.2.1 Sun exposure and Vitamin D levels 
Exposure to sunlight, and specifically to ultraviolet B radiation, is the major 

determinant of Vitamin D (VitD) levels that consequently decrease with increasing 

latitudes. Hence, VitD was suggested to b

MS, able to explain its peculiar geographical distribution. 

The association between VitD levels and MS was proved by two nested case-control 

study that showed a higher incidence of MS among subjects with low VitD levels, 

measured before disease onset (Salzer et al, 2012; Munger et al, 2006).  Moreover, 

different studies showed a correlation of VitD levels with disease activity (Fitzgerald et 

al, 2015; Runia et al, 2012; Ascherio et al, 2014), suggesting a beneficial effect 

throughout disease course. For this reason, a recent randomized controlled study 

(Hupperts et al, 2019) evaluated the effect of VitD supplementation when added to 

interferon beta (IFN ) treatment versus IFN  alone: it failed to demonstrate any effect 

on relapse rate and disability worsening, but showed benefit in terms of neuro-

radiological disease activity; specifically, there was a 30% reduction in the number of 
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combined unique active (CUA) lesions  defined as the sum of new gadolinium 

enhancing (Gd+) and/or new/enlarging T2-weighted lesions - at the brain MRI scans 

and a 50% decrease in the occurrence of new, hypointense T1 lesions at 48 weeks in the 

supplementation group. Moreover, additional support came from a mendelian 

randomization analysis that described an increased MS risk in presence of genetic 

variant linked to low VitD levels (Mokry et al, 2015).  

The mechanisms through which VitD lower MS risk are not yet clear, but the active 

form of VitD, 1,25-dihydroxycholecalciferol, has been shown to modulate immune 

functions, mainly on CD4+ T cells, by reducing T helper 1 (Th1) and T helper 17 

(Th17) activity and inducing a shift towards T regulatory (Treg) cells (Hayes et al, 

2015).  

 

1.2.2 Epstein Barr Virus infection   
Due to the immune-mediated pathogenesis of MS, several kinds of pathogens 

have been investigated as possible triggers for disease onset. Among the many 

infectious agents hypothesized to play a role in MS, Epstein Barr Virus (EBV) is the 

most robustly and consistently associated. Late EBV infection in adolescence and early 

adulthood, and a history of infectious mononucleosis have been associated with an 

increased MS risk (Haahr et al, 2004) and, noteworthy, almost 100% of MS patients are 

seropositive for EBV. A very recent longitudinal study that prospectively evaluated 

around 10 million individuals in the US military, of whom 955 developed MS, showed 

that MS risk increases 32-times after EBV infection and that serum neurofilament light 

chain (sNfL) levels also increase after seroconversion, suggesting an active role for the 

virus in MS(Bjornevik et al, 2022). Indeed, high titers of Immunoglobulin G (IgG) 

antibodies directed against the EBV nuclear antigens (EBNA) seem to be most 

predictive of MS development (Munger et al, 2011). The mechanism by which EBV 

infection increase MS risk is not clear but molecular mimicry and presence of cross-

reactive T cells and antibodies have been proposed. A direct EBV infection of the CNS 

has also been hypothesized, but evidence to support it are still missing (Lassmann et al, 

2011). 

hygiene hypothesis  (Bach, 2002), 

which postulates that exposure to infectious stimuli early in life participates to the 
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correct development of the immune system, while a more hygienic setting and later 

infections lead to a dysregulation in Th1/Th2 balance.  

 

1.2.3 Gut microbiota 
Recent researches also suggested that the gut microbiota, that is, the combination of 

bacteria that physiologically colonize the human intestine, is altered in MS patients and 

could regulate T cell activity, possibly contributing to disease pathogenesis (Hindson, 

2017). In the experimental autoimmune encephalomyelitis (EAE), the animal model of 

MS, transgenic mice raised in germ-free conditions appeared to be protected against 

disease development until the introduction of commensal microbiota, suggesting a key 

role played by the commensal gut flora(Berer et al, 2011). Indeed, several studies have 

shown that the microbiota of MS patients is altered compared to controls(Chen et al, 

2016; Tremlett & Waubant, 2018; Jangi et al, 2016), and these differences have also 

been correlated with changes in the immune transcriptome(Jangi et al, 2016). However, 

further studies are needed to prove the causal role of these changes and to investigate 

possible therapeutic interventions aimed at modulating the gut microbiome. 

 

1.2.4 Smoking status 
The risk of MS is higher in cigarette smokers compared to non-smokers, with an 

estimated relative risk of 1.48 [C.I. 1.35 - 1.63](Handel et al, 2011). Moreover, smoking 

habit has also been linked to a higher risk of conversion from a relapsing remitting (RR) 

to a secondary progressive (SP) form of the disease (Healy et al, 2009; Hernán et al, 

2005). A direct toxic effect of some smoke components, as well as an indirect systemic 

effect mediated by the peribronchial lymphatic tissue, have been hypothesized.  

Interestingly, the change in MS female-to-male ratio in the last decades is thought to 

reflect gender-specific changes in the smoking behavior, further supporting a causal 

relationship. Hence, an active campaign supporting smoke cessation could potentially 

help reducing MS burden.  

  

1.2.5 Other environmental risk factors 
Several studies demonstrated that obesity during childhood and early 

adolescence is associated with a 2-fold increase in MS risk (Hedström et al, 2012), with 
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an effect that is more evident for women than men likely due to smaller cohorts and 

reduced statistical power in male studies (Gianfrancesco et al, 2014; Munger et al, 

2013). Among the possible explanations, a reduction in VitD levels in obese individuals 

(Pereira-Santos et al, 2015) has been proposed, but a role for leptin cannot be excluded 

(Matarese et al, 2010).  

A role for melatonin has also been suggested in modulating MS disease course (Farez et 

al, 2015b); melatonin reduces activation of proinflammatory Th17 cells also promoting 

secretion of anti-inflammatory interleukin 10 (IL10) and has been reported to ameliorate 

the murine model of MS (Álvarez-Sánchez et al, 2015).  

Finally, a diet with a high salt intake was proposed to predispose to MS exacerbations 

(Farez et al, 2015a), but the finding was not confirmed by further studies. 

 

1.3 Genetic background 
1.3.1 Familial aggregation 

The first concerns about the presence of a genetic predisposition in MS arose 

with studies showing familial aggregation (Sadovnick & Baird, 1988; Robertson et al, 

1996; Prokopenko et al, 2003; Carton et al, 1997): first, second, and third-degree 

relatives of people with MS have a higher risk to develop the disease compared to the 

general population, which increases with the degree of relatedness.  

Nevertheless, MS is not a classic mendelian disease, where a single gene is responsible 

for disease segregation in families; in fact, the increase in disease risk does not grow 

linearly with the amount of shared DNA, pointing to a multigenic model of inheritance 

(Risch, 1990). The extent of familial aggregation can be best 

obtained dividing the risk of affected siblings by the population risk, which in MS is 

estimated between 20 and 40 (Oksenberg et al, 1996). 

However, a limitation of family studies is that it is often not easy to separate the effect 

of genetics from the influence of a shared environment. For this reason, MS incidence 

in adoptees has been investigated (Ebers et al, 1995): despite identical environmental 

exposure, MS risk in adopted relatives is the same as in general population. Obviously, 

these data do not deny the influence of environmental factors on disease susceptibility 

but demonstrate that familial aggregation is due to a genetic component.  
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Indeed, studies in identical twins led to the same conclusion: concordance rate in 

monozygotic twins is 25%, while in dizygotic twins is 2-5%, confirming the significant 

contribution of genetic factors (Willer et al, 2003; Hansen et al, 2005), that can also 

influence disease phenotype (Sadovnick et al, 2009). Conversely, the remaining, 

relevant proportion of monozygotic twins are discordant for the disease, stressing the 

role of acquired factors. 

 

1.3.2 Genetic discoveries in MS 

1.3.2.1 Major histocompatibility complex (MHC) region 

The first genetic factor associated with MS was discovered through a linkage 

study in 1972, in the human leukocyte antigen (HLA) class I region. The HLA cluster is 

located on chromosome 6p21.3 and encompass more than 200 genes within 4.5 

megabases, with important roles in maturation, maintenance and regulation of the T cell 

repertoire, as well as in other immunological processes.  

The first studies pointed to HLA class I antigens A3 and B7 (Naito et al, 1972; Jersild et 

al, 1972) and were followed by observation that also HLA class II polymorphisms are 

associated with the disease (Jersild et al, 1973). Specifically, the strongest association 

involves the HLA- (Hauser et al, 1989), including HLA DRB1*1501 

and DQB1*0602 that are almost invariantly found together in individual of European 

ancestry. For this reason only with a study in a mixed African and American population 

(Oksenberg et al, 2004) it was possible to demonstrate that the association signal was 

driven by the HLA DRB1*1501, that confers a 3-fold increased risk of MS, and that 

other associations were mostly due to linkage disequilibrium (LD) with it. 

Nevertheless, when accounting for the association signal in this class II antigen, other 

HLA variants resulted to be independently associated with the disease, such as the 

protective HLA A*0201 (Fogdell-Hahn et al, 2000) as well as some non-HLA variants 

in the locus (Sadovnick & Baird, 1988).  

The most recent genome-wide association study (GWAS) in MS (Patsopoulos et al, 

2019), which evaluated 47,351 MS patients and 68,284 healthy controls, identified up to 

32 independent variants associated with MS in the MHC region and also highlighted the 

existence of interaction effects of HLA DRB1*1501 mainly with HLA*DQB1 and 

HLA*DQA1. 
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Overall, the MHC locus alone was estimated to explain 20% of the narrow-sense 

heritability in MS (Patsopoulos et al, 2019), that is, the proportion of MS susceptibility 

variance due to genetic factors. 

 

1.3.2.2 Non MHC regions 

Thanks to technical improvements that allowed to easily genotype the whole 

genome of thousands of individuals, the knowledge of MS genetic architecture has 

advanced extraordinarily. Several case-control GWAS have been performed that 

discovered hundreds of additional non-MHC genetic risk variants (Patsopoulos et al, 

2019). GWAS are particularly successful in identifying new disease variants, because 

they do not require s on disease pathogenesis, as candidate gene 

studies do. In these kind of investigations, single nucleotide polymorphisms (SNPs) 

spread all over the genome are typed and compared in cases and controls to identify 

allelic differences between the two groups: due to the LD structure that links alleles in 

different genetic markers, this allow to identify interesting regions associated with the 

disease; subsequently, fine mapping of the selected regions is used to investigate the 

truly causal variants. Furthermore, GWAS are particularly powerful in detecting 

common alleles (minor allele frequency (MAF)>5%) with modest effect, that are likely 

to play a role in complex diseases. 

The first MS GWAS (Hafler et al, 2007) was performed in 2007 on 931 trio families 

consisting of an MS case and both parents - using 334,923 SNPs: it identified a SNP in 

the interleukin-7 receptor (IL7R) locus (p-value 2.94E 07, OR 1.18) and an additional 

signal in the interleukin-2 receptor (IL2RA) locus (p-value 2.96E-08 OR 1.25) as 

associated with the disease (Lundmark et al, 2007; Gregory et al, 2007). Since then, 

several other GWAS have been performed in MS; in particular, the collaborative efforts 

of the International MS Genetic Consortium (IMSGC) to put together MS cohorts from 

several countries in order to increase the statistical power for detection of significantly 

associated loci, led to a dramatic increase in the number of MS-associated variants. In 

2011, a study that analyzed almost 30,000 individuals, including a discovery and a 

replication cohort (Sawcer et al, 2011), allowed to confirm most of the already known 

risk variants and reported 29 new associated single nucleotide polymorphisms (SNPs). 

Noteworthy, the prioritized genes were enriched in genes involved in lymphocyte 
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functions, such as T cell activation and proliferation, as well as in VitD metabolism. 

Genes representing known targets of MS therapies (e.g. VCAM1 for Natalizumab (NTZ) 

and IL2RA for Daclizumab) were also selected, stressing the benefit of a collaborative 

strategy. 

Interestingly, a significant proportion of MS risk variants are shared with other 

autoimmune diseases (Richard-Miceli & Criswell, 2012), such as type 1 diabetes, 

rheumatoid arthritis and intestinal bowel diseases, implying the existence of common 

genetic basis predisposing to immune dysregulation. Nevertheless, in some instances, 

genetic variant show opposite effect in different autoimmune disorders, increasing the 

risk of a specific disease while being protective for another one. 

This insight prompted the development of a genetic array platform specifically created 

to interrogate ~200,000 immune-related loci, known as ImmunoChip; it was used to 

genotype more than 80,000 individuals of European ancestry and enabled the detection 

of 48 additional MS loci (Beecham et al, 2013). 

Finally, the greatest advancement in the knowledge of MS genetic basis was made 

possible by the recent meta-analysis from the IMSGC (Patsopoulos et al, 2019), that 

involved more than 100,000 individuals and almost doubled the amount of known MS 

risk loci. 

The circos plot in Figure 1.2 gives an overview of the association signals with MS: 200 

autosomal SNPs outside the MHC region and one variant on the X chromosome reached 

the genome-wide threshold and were validated as MS risk variants in the meta-analysis. 

Noteworthy, as previously observed, the prioritized variants are enriched in SNPs 

which, according to gene expression atlas, play a key role in immune cells of both the 

adaptive (T and B cells) and the innate (natural killer (NK) and dendritic cells (DC)) 

compartments; on the other hand no enrichment was found in genes expressed in CNS 

tissues and resident cells apart from microglial cells, suggesting a role for the local 

immune compartment. Similarly, the study of gene expression regulation (eQTL effect) 

and the results of a pathway analysis supported the central role of immune cells. 

In conclusion, the last decade has witnessed an impressive progress in the knowledge of 

MS genetic background but, despite the increasing number of detected risk variants, we 

are still not able to explain the whole amount of estimated heritability in MS.  
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s well known in MS (Lill, 2014) and is 

shared by other complex disorders (Manolio et al, 2009), thus stressing the need for 

complementary approaches to be applied next to GWAS in the coming years.  

Indeed, studies investigating the role of rare/low frequency variants that are not 

adequately captured by GWAS are already ongoing as well as studies investigating the 

presence of gene-gene or gene-environment interactions, that will help broaden our 

understanding of MS genetic complexity. 

 

  
Figure 1.2: MS associated signals throughout the genome from Patsopoulos et al. 
(Patsopoulos et al, 2019). The circus plot gives an idea of the distribution of MS associated 
regions throughout the whole genome. Chromosomes are arranged circularly and are 
annotated with associated genes (outer layer) while the inner circle shows the corresponding 
manhattan plot (genome wide threshold defined by the green background). 
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1.4 MS pathology and pathogenesis 
1.4.1 Histopatological features 

MS is a chronic demyelinating disease of the CNS for whom an autoimmune 

pathogenesis has been proposed and characterized, at the pathological level, by 

inflammation and neurodegeneration (Frohman et al, 2006; Lassmann, 2018).  

Since the first description in the nineteen century (Charcot, 1880), it is known that acute 

MS lesions in the CNS consist of areas of demyelination, blood brain barrier (BBB) 

breakdown, T, B lymphocytes and plasma cell infiltration as well as oligodendrocyte 

loss; activated astrocytes are also present in acute lesions while, in later phases, variable 

degrees of reactive gliosis and axonal degeneration are found. Besides, after the acute 

stage a certain amount of remyelination is also possible (Nait-Oumesmar et al, 2007), 

but highly variable.    

Demyelinating plaques are preferably located in myelin-rich regions such as the white 

matter (WM) of optic nerves, periventricular regions, brainstem and spinal cord; lesions 

usually have an ovoid shape and typically show a perivenous distribution perpendicular 

to the ventricles that give rise to the so called Dawson fingers . Furthermore, gray 

matter (GM) demyelination has been shown in the spinal cord (Gilmore et al, 2006), 

cerebral (Kidd et al, 1999) and cerebellar cortex(Kutzelnigg et al, 2007) as well as at 

subpial level, where it is prevalent in progressive stages of the disease.  

Alongside with focal lesions, widespread damage in normal appearing white matter 

(NAWM) and gray matter (NAGM)(Klaver et al, 2015) is seen, consisting of 

perivascular inflammatory infiltrates, diffuse microglial activation, diffuse axonal injury 

and astrocytic gliosis.  

Noteworthy, four main histopathological patterns of WM lesions have been identified in 

MS patients (Lucchinetti et al, 2000), that remain constant throughout disease stages. 

These findings suggest that at least part of MS phenotypic heterogeneity can be 

explained by distinct pathological backgrounds. 

 

1.4.2 Inflammation 
Inflammation is the key feature of the disease and is present throughout its 

course. During disease reactivation, perivascular inflammation is characterized by 

increased BBB permeability with consequent infiltration of lymphocytes (mostly CD8+ 
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T cell and to a lesser degree CD4+ T cells, B cells and plasma cells) as well as 

macrophages and activated microglia. The acute phase is also associated with the 

expression of inflammatory cytokines, such as interleukin 12 (IL12) and tumor-necrosis 

factor (TNF)(Hofman et al, 1989; Windhagen et al, 1995), and of chemokines and 

adhesion molecules that promote immune cells migration (Holman et al, 2011; Cannella 

& Raine, 1995).  
Owing to the pathological features of acute lesions and their cytokine profile, MS has 

classically been considered a Th1 cell-mediated disease. Nonetheless, recently other cell 

types from both the adaptive immune compartment (e.g. Th17 and B cells) and the 

innate immunity (e.g. NK cells, DCs, and microglia) have been implicated in the 

disease. Indeed, meningeal follicle-like structures associated with prominent B cell 

infiltration and severe demyelination of the underlying cortex have been detected in MS 

brains (Magliozzi et al, 2006). Moreover, chronic active and slowly expanding lesions 

characterized by central demyelination surrounded by a rim of activated microglia and 

macrophages were described in progressive forms (Prineas et al, 2001).  
1.4.3 Neurodegeneration 

The other hallmark of MS is neurodegeneration, characterized by axonal loss 

and primary demyelination without acute inflammatory infiltrates (Henderson et al, 

2009). Whether neurodegeneration is independent or secondary to CNS inflammation is 

still to be elucidated; some works showed evidence of mitochondrial dysfunction, 

oxidative damage and iron brain accumulation in MS suggesting that they could 

represent the common final steps in neurodegeneration (Fischer et al, 2012; Campbell et 

al, 2011; Lassmann et al, 2012). Therefore, additional studies are needed to disentangle 

the relationship between neuronal injury and CNS inflammation. 

A comprehensive description of MS histopathological features can be found elsewhere 

(Lassmann et al, 2007; Kutzelnigg & Lassmann, 2014; Lassmann, 2018) and we will 

not further comment on it because it is beyond the scope of the present thesis.  
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1.5 Clinical presentation 
1.5.1 Clinical manifestations 

Typically, MS presents with acute neurological symptoms, lasting at least 24 

hours and followed by a variable degree of spontaneous recovery. This first clinical 

event, termed clinically isolated syndrome (CIS), can affect one or more sites in the 

CNS and can represent a single, monophasic episode; however, when accompanied by 

WM lesions evident on brain MRI scans it confers a 80% risk of developing a second 

MS attack within 20 years (Fisniku et al, 2008).  

Hence, if the disease is not recognized and effectively treated, several acute relapses can 

follow in the so called RR phase leading to accumulation of neurological impairment; in 

addition eventually, in most people (80%) a more progressive and insidious 

accumulation of disability takes over, independently of relapses, termed SP phase 

(Lublin & Reingold, 1996). A small proportion of MS cases (10-15%) shows a Primary 

Progressive (PP) course with slow and constant disability accumulation since the onset, 

with (progressive relapsing (PR)) or without superimposed relapses(Thompson et al, 

1997). Whether RRMS/SPMS and PPMS represent separate entities or the extreme 

phenotypes of the same pathological process is still disputed. Though, the huge overlap 

in MRI, histopathological (Lassmann et al, 2012) and genetic characteristic (Vyshkina 

et al, 2005; Guaschino et al, 2014) suggests that the latter hypothesis might be true. 

As for the clinical presentation, MS is highly heterogeneous and almost every kind of 

neurological symptoms can occur during an MS relapse, including pyramidal motor 

dysfunction, spasticity, ataxia, optic neuritis, sensory impairment, bladder and bowel 

disturbances, fatigue and cognitive impairment. Conversely the progressive phase is 

characterized by a predominant motor and sensory impairment, usually starting in the 

legs and eventually affecting the upper limbs and bulbar region; predominant cerebellar 

features are also possible.  

We will not enter into further details about the clinical symptoms of MS, because it is 

not in the purpose of the present thesis. 
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1.5.2 Clinical phenotypes 
Recently, the 1996 classification (Lublin & Reingold, 1996) of in RR, SP, PR 

and PP-MS has been revised to include information on disease activity and progression 

during the last year prior to observation (Lublin et al, 2014).  

In the 2013 revision, CIS were included in the spectrum of MS phenotypes while PRMS 

definition was dropped; besides, for each MS subtype, a clinical and neuro-radiological 

assessment of disease activity is now requested at least annually to classify the disease 

into  forms (Figure 1.3). 

For SPMS and PPMS an evaluation of whether a progression of disability has occurred 

over the previous year should also be performed, 

) 

 

 
Figure 1.3: The 1996 vs 2013 MS phenotype descriptions for relapsing disease from Lublin et 
al.(Lublin et al, 2014). *Activity is determined by clinical relapses and/or MRI activity 
(contrast-enhancing lesions; new or unequivocally enlarging T2 lesions assessed at least 

ubsequently 
clinically active and fulfilling current MS diagnostic criteria, becomes relapsing-remitting MS 
(RRMS). 
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Figure 1.4: The 1996 vs 2013 MS phenotype descriptions for progressive disease from Lublin 
et al(Lublin et al, 2014). *Activity determined by clinical relapses assessed at least annually 
and/or MRI activity (contrast-enhancing lesions; new and unequivocally enlarging T2 lesions). 
**Progression measured by clinical evaluation, assessed at least annually. If assessments are 
not available, 
primary progressive; PR = progressive relapsing; SP = secondary progressive. 
 

1.5.3 Diagnostic criteria 
Since the first version of the diagnostic criteria published by Schumacher in 

1956 (Schumacher et al, 1965), MS diagnosis relied on the evidence of dissemination in 

time (DIT) and space (DIS): two or more distinct episodes of neurological dysfunction 

involving different parts of the CNS should be established.  

Originally this could be done only demonstrating the occurrence of two or more clinical 

relapses affecting distinct functional systems but, over the subsequent revisions,  

paraclinical tools such as cerebrospinal fluid (CSF) analysis, MRI and evoked potentials 

(EP) were incorporated into the diagnostic criteria. 

CSF is particularly useful to rule out differential diagnoses and can show the presence 

of liquor specific oligoclonal bands (OCBs) in up to 95% of patients with MS (Link & 

Huang, 2006), representing restricted classes of antibodies that are identified as discrete 

bands on agarose gel.  
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Nevertheless, due to its high specificity and sensitivity, brain MRI is fundamental to 

obtain and support MS diagnosis: MRI can detect new MS lesions 5 to 10 times more 

frequently than clinical evaluation alone (Barkhof et al, 1992). Typical MS lesions are 

located in the periventricular regions, corpus callosum, iuxtacortical and infratentorial 

regions, and less frequently in deep WM and basal ganglia; on MRI their aspect is 

hyperintense on T2-weighted images and active lesions show contrast enhancement on 

T1-weighted sequences after Gd injection, a marker of increased BBB leakage. Brain 

MRI scans can also display persistently hypointense lesions in T1-weighted images (the 

black holes that are associated with severe tissue damage (Filippi & Rocca, 

2011).  

Besides, neurophysiological studies may detect increased conduction latencies thus 

revealing subclinical damage in the motor, sensory, auditory and visual pathways and 

confirming its demyelinating nature (Leocani & Comi, 2014). 

In order to allow an earlier diagnosis, MS diagnostic criteria have been simplified over 

time. The 2010 revised McDonald criteria (Polman et al, 2011), that were applied in the 

present study, are detailed in Table 1.1. However, while patients enrolment was 

ongoing, the latest edition of the MS criteria (2017)(Thompson et al, 2018) has been 

published, which mostly retrace the previous version with further simplifications: 

demonstration of CSF-specific OCBs can now be used to demonstrate DIT; both 

symptomatic and asymptomatic MRI lesions can be considered to fulfill DIS and DIT, 

with the exception of optic nerve lesions in patients presenting with ON; cortical lesions 

are considered in lesion count, together with juxtacortical lesions. 

no of better explanation is fundamental for MS diagnosis, 

since several neurological diseases might mimic MS. Clinical and paraclinical features 

not suggestive of MS, wheneve

alert clinicians to reconsider the differential diagnosis (Geraldes et al, 2018). 
 
 
 
 
 
 
 
 
 
 



26 
 

Table 1.1: The 2010 revised McDonald Criteria for diagnosis of MS adapted from Polman et 
al.(Polman et al, 2011) 

Clinical presentation Additional data needed for MS diagnosis 

 
 

lesions or objective clinical evidence 
of 1 lesion with reasonable 
historical evidence of a prior attack 

None 

 
objective clinical evidence of 1 
lesion 

DIS, demonstrated by one of: 
 -hyperintense lesion in at least 2 of 4 MS-typical 

regions of the CNS (periventricular, juxtacortical, 
infratentorial or spinal cord)*;  

 a further clinical attack implicating a different CNS site 

1 attack;  
 

lesions 

DIT, demonstrated by one of: 
 simultaneous presence of asymptomatic Gd-enhancing and 

nonenhancing lesions at any time;  
 a new T2-hyperintese and/or Gd-enhancing lesion(s) on FU 

MRI, irrespective of its timing with reference to a baseline 
scan; a second clinical attack 

1 attack;  
objective clinical evidence of 1 
lesion (CIS) 

DIS and DIT, demonstrated by: 
For DIS one of:  

 -hyperintense lesion in at least 2 of 4 MS-typical 
regions of the CNS (periventricular, juxtacortical, 
infratentorial or spinal cord)*;  

 a second clinical attack implicating a different CNS site;  
 
For DIT one of:  

 simultaneous presence of asymptomatic Gd-enhancing and 
nonenhancing lesions at any time;  

 a new T2-hyperintense and/or Gd-enhancing lesion(s) on 
FU MRI, irrespective of its timing with reference to a 
baseline scan; 

 a second clinical attack 

Insidious neurological progression 
suggestive of MS (PPMS) 

1 year of disease progression (retrospectively or prospectively 
determined) plus 2 of 3 of the following criteria: 

 -hyperintense 
lesion in the MS-characteristic (periventricular, 
juxtacortical, or infratentorial)* regions 

 - 
hyperintense lesion in the spinal cord 

 Positive CSF (isoelectric focusing evidence of OCBs and/or 
elevated IgG index) 

*Gd enhancing lesions are not required. Symptomatic lesions are excluded from consideration 
in subject with spinal cord or brainstem syndromes 
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1.6 MS therapeutic strategies  
Currently, no cure for MS exists and available treatments typically intend to 

prevent new relapses and to slow disability progression.  

Nonetheless, therapeutic opportunities have recently dramatically increased and more 

than 10 drugs are now licensed for MS treatment, which target distinct biological 

pathways and have different safety profiles. Alongside with these advancements in 

treatment strategies, new challenges arose, such as to identify the best option for 

individual patients; indeed, no validated markers exist to guide treatment selection 

(Teunissen et al, 2015).  

At present, therapeutic choice is mostly empirical, based on the assessment of MS 

activity (attack frequency and severity, MRI parameters), drug availability and cost, 

comorbidities, concomitant m

Moreover, treatment failure is defined by the evidence of breakthrough disease during 

drug intake, thus leading to the risk of disability accumulation. 

In this perspective, in the last years the need for a more personalized approach to MS 

management became urgent and paved the way to several studies, which investigated 

the role of biomarkers in predicting treatment response.  

In the next paragraphs we will give an overview of the available treatments for RRMS. 

 

1.6.1 Management of MS relapses 
Acute treatment for MS relapses is based on use of corticosteroids, usually 

administered as high doses such as 1 g methylprednisolone given intravenously once a 

day for 3 to 5 days, with or without subsequent tapering. Intramuscular and oral 

formulations of steroids are also available (Martinelli et al, 2009), but intravenous 

therapy is preferred for severe symptoms (Beck et al, 1992). In case of poor recovery, 

intravenous immunoglobulins (2 g/kg in five days) or plasma exchange (3 to 5 courses) 

can also be used (Weinshenker et al, 1999). 

 

1.6.2 Disease-modifying treatments 
As already mentioned, more than 10 disease modifying treatments (DMTs) are 

currently approved for RRMS; their use is supported by randomized controlled trial 

(RCTs) and observational studies that demonstrated their efficacy in reducing relapse 
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frequency and MRI activity or in delaying the transition to progressive phases. Several 

studies also demonstrated the utility of an early treatment, since the phase of CIS (Comi 

et al, 2012), in order to prevent further disease evolution. 

Classically, two main strategies are applied in clinical practice: an escalating approach, 

that consists in starting a first-line treatment, which is generally safe, switching to a 

more aggressive therapy in case of breakthrough activity; or a more aggressive 

induction strategy, when more powerful treatments are preferred since the beginning of 

the disease due to the presence of negative prognostic factors, such as a high annualized 

relapse rate (ARR) or a high MRI lesion load (Degenhardt et al, 2009; Filippi et al, 

1994).   

 

1.6.2.1 First-line treatments 

Four main compounds are included in the first-line treatment category, due to 

their good tolerability and safety profile:  

 

1.6.2.1.1 Interferons 

Six IFNßs preparations are approved for RRMS: IFNß 1a by intramuscular 

[Avonex®] or by subcutaneous injection [Rebif-22® and Rebif-44®, Plegridy®] and 

IFNß 1b by subcutaneous injection [Betaferon®, Extavia®].  

The mechanism of action of IFNß is not fully understood, but seems to imply a 

reduction in BBB permeability and the regulation of adaptive immunity (T and B cells) 

and cytokine secretion (Dhib-Jalbut, 2002).   

IFNß reduces clinical relapse rate by about 30%, decreases the number of Gd enhancing 

and new/enlarging T2 lesions, and slows worsening at the expanded disability status 

scale (EDSS) in RRMS (Jacobs et al, 2000; Comi et al, 2012). IFNß 1b was also shown 

to be effective in SPMS, though the benefit was minimal (Kappos & European Study 

Group on interferon beta-1b in secondary progressive MS, 1998).  

IFNß is extremely safe and requires minimal monitoring, but is burdened with a high 

incidence of associated flu-like symptoms and the need for frequent injections that 

 (Giovannoni et al, 2012). Moreover the development of 

IFNß neutralizing antibodies sometimes occurs, that reduces drug efficacy.  
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1.6.2.1.2 Glatiramer acetate 

Glatiramer acetate (GA) preparation for subcutaneous injection [Copaxone®] 

are available for daily (20mg) or 3-times-a-week (40mg) administration.  

It is hypothesized that the immunomodulatory action of GA is dependent on the 

stimulation of regulatory T cells and the shift from Th1 to Th2 phenotype (Dhib-Jalbut, 

2002). 

Its efficacy is comparable to IFNß (Cadavid et al, 2009) and it is equally safe, but 

usually better tolerated. Similarly to IFNß preparation, treatment compliance to GA is 

affected by the need for frequent injections and injection site reactions. 

 

1.6.2.1.3 Teriflunomide 

Teriflunomide (Teri)[Aubagio®] is a once-daily oral drug that works by 

inhibiting the dihydroorotate dehydrogenase, an enzyme required for de novo 

pyrimidine synthesis in proliferating cells (Claussen & Korn, 2012).  

It was evaluated in three phase III, placebo-RCTs (TEMSO et al, 2011a), 

TOWER (Confavreux et al, 2014) and TOPIC (Miller et al, 2014)) and in one active 

comparator study (TENERE (Vermersch et al, 2014)) that demonstrated it efficacy in 

reducing the ARR and disability accumulation by about one third as well as the 

occurrence of new active lesions at MRI.   

Teri has a good tolerability profile, asymptomatic liver enzyme elevation being the most 

reported adverse events. Its prolonged half-life represents a potential advantage in case 

of poor compliance but requires an accelerated elimination procedure with 

cholestyramine in case of adverse events and/or switch to other drugs. 

 

1.6.2.1.4 Dimethylfumarate 

Dimethylfumarate (DMF) [Tecfidera®] is a twice-daily oral DMT whose 

mechanism of action has not yet been completely elucidated, but it is thought to reduce 

oxidative stress by activation of the nuclear-related factor 2 transcriptional pathway, and 

to have anti-inflammatory properties (Linker et al, 2011).  

DMF was evaluated in two pivotal RCTs and proved effective in reducing ARR and 

MRI activity but not disability progression (Fox et al, 2012; Gold et al, 2012).  
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The main side effects of DMF are flushing and gastrointestinal complaints but, overall it 

is well tolerated. Noteworthy, a proportion of patients treated with DMF develop 

moderate-to-severe lymphopenia (Miclea et al, 2016), mainly due to reduction in CD8+ 

cells, that is potentially linked to higher risk of infections and, particularly, of 

progressive multifocal leukoencephalopathy (PML)(Lehmann-Horn et al, 2016). 

 

1.6.2.2 Second-line treatments 

1.6.2.2.1 Natalizumab 

Natalizumab (NTZ) [Tybsari®] is a humanized monoclonal antibody that 

  

expressed on the surface of lymphocytes and monocytes, thus preventing their 

transmigration across the BBB.  

Two RCTs (AFFIRM (Polman et al, 2006) and SENTINEL(Rudick et al, 2006)) 

showed a remarkable efficacy of NTZ on all outcomes, with a 70% reduction in relapse 

rate, a 80% decrease in the occurrence of MRI active lesions and a 40% lower 

probability of disability worsening measured using EDSS, compared to placebo.  

NTZ is usually well tolerated but long-term treatment is hampered by the risk of PML, a 

CNS infection caused by the John Cunningham virus (JCV), for which no cure is 

available. Risk factors for PML include evidence of prior JCV exposure (assessed 

testing the presence of anti-JCV antibodies in serum), duration of NTZ therapy and 

prior use of immunosuppressants (McGuigan et al, 2015). For this reason, a careful 

assessment of the benefit-to-risk ratio is required before starting or continuing NTZ 

treatment, that also take into consideration the risk of disease reactivation after NTZ 

discontinuation (Sangalli et al, 2014; Papeix et al, 2016; Jokubaitis et al, 2014; 

et al, 2011b). 

 

1.6.2.2.2 Fingolimod 

Fingolimod (FTY) [Gylenia®] was the first oral drug to be approved for the 

treatment of RRMS patients with high disease activity and/or that failed first-line drugs.  

It is a sphingosine 1 phosphate (S1P) analogue administered once a day that acts as a 

functional antagonist inducing lymphocytes sequestration into lymph nodes and thus 

reducing their infiltration into the CNS (Cohen & Chun, 2011). 
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Three phase III RCTs (FREEDOMS (Kappos et al, 2010), FREEDOMS II (Calabresi et 

al, 2014) and TRANSFORMS)(Thompson et al, 2018) demonstrated its effectiveness in 

reducing relapse rate by  54% and 48% compared to placebo and by 52% compared to 

IFN 1a. FTY also showed a significant benefit on MRI parameters of disease activity, 

reducing the number of new/enlarging T2 and Gd-enhancing lesions and brain atrophy 

(Kappos et al, 2015).  

FTY is overall well tolerated but requires some special cautions and a 6 hours 

monitoring period after the first administration due to the risk of bradycardia. Moreover 

liver enzyme elevation, macular edema and a higher risk of infections have been 

associated with FTY.  

 

1.6.2.2.3 Ozanimod 

Ozanimod is another S1P modulator more selective compared to FTY that 

specifically targets S1P receptors 1 and 5. It has been evaluated in the RADIANCE 

(Cohen et al, 2019) and SUNBEAM(Comi et al, 2019) trials that demonstrated its 

safety and effectiveness on clinical and MRI parameters, with results similar to FTY. 

Besides, due to its receptor selectivity, ozanimod does not require clinical observation 

after the first dose, unless pre-existing cardiac issues are present.   

 

1.6.2.2.4 Mitoxantrone 

Mitoxantrone [Novantrone®] is an immunosuppressive drug approved for 

rapidly worsening RRMS and SPMS. At standard doses, its use is limited to 2 years 

because of cumulative dose-related cardiomyopathy. Moreover, it is associated with a 

high risk of treatment-related acute leukemia that drastically reduced its use in MS 

(Martinelli et al, 2011). 

 

1.6.2.2.5 Alemtuzumab 

Alemtuzumab [Lemtrada®] is a humanized monoclonal antibody directed 

against the CD52 antigen, that has recently been approved for patients with active 

RRMS. It is administered intravenously once daily for 5 days and then repeated for 3 

days after one year and acts by inducing a long-term depletion of T and B lymphocytes.  
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Three studies evaluated its efficacy (CAMMS223 (Coles et al, 2008), CARE-MS I 

(Cohen et al, 2012) and CARE-MS II (Coles et al, 2012)) showing a significant 

reduction in relapse rate and occurrence of MRI activity in the alemtuzumab arm 

compared to IFNß.  

Its main side-effects include infections and autoimmune adverse events occurring in 

approximately one third of patients, mainly thyroid disorders and less frequently  

immune thrombocytopenia or nephropathy (Havrdova et al, 2015). 

 

1.6.2.2.6 Cladribine 

Cladribine [Mavenclad®] is an oral treatment approved for highly active RRMS. 

It is administered over two short courses one year apart and acts by depleting circulating 

lymphocytes.  

It was evaluated in three RCTs (CLARITY(Giovannoni et al, 2010), CLARITY 

Extension (Giovannoni et al, 2017) and ORACLE MS (Leist et al, 2014)) that 

demonstrated a high proportion of relapse free (80%) patients at 2 years as well as a 

significant reduction in MRI activity.  

The most clinically relevant adverse events reported in clinical trials were lymphopenia 

and herpes zoster infections (Cook et al, 2011).  

 

1.6.2.2.7 Ocrelizumab 

Ocrelizumab [Ocrevus®] is a humanized monoclonal antibody directed against 

CD20-positive B cells. According to two RCTs (Hauser et al, 2017), OPERA I and 

OPERA II, ocrelizumab is superior to IFNß 1a in decreasing relapse rate (45% 

reduction), disability accumulation (40% reduction) and neuro-radiological disease 

activity (95% reduction in the occurrence of new lesions on brain MRI) in RRMS.  

 

1.6.2.3 Treatments for progressive MS 

Up to date no specific treatments with neuroprotective and remyelinating 

properties are available for the treatment of the progressive forms of MS (Villoslada & 

Steinman, 2020; Allanach et al, 2022).  

However three drugs are currently approved for the treatment of PPMS and SPMS 

patients that also display signs of concomitant inflammatory disease activity. 
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Specifically, ocrelizumab was evaluated for the treatment of PPMS in the ORATORIO 

trial (Montalban et al, 2017) and proved effective in reducing the risk of disability 

progression by 24% compared with placebo. Hence it is now the only compound 

approved for the treatment of PPMS patients. 

On the other end, siponimod [Mayzent®], a S1P modulator with enhanced penetration 

in the CNS, was evaluated in the EXPAND trial (Kappos et al, 2018) on SPMS where 

was associated to a 21% reduction in disability progression compared to placebo.    

Besides, a preparation of IFNß 1b [Betaferon®] is also approved for the treatment of 

SPMS patients but not often used due to the possible worsening of spasticity symptoms 

correlated with flu-like side effects. 

 

In addition to the approved treatments listed above, other agents are used off-label to 

treat RR and progressive MS, such as azathioprine, cyclophosphamide [Endoxan®] and 

rituximab [Mabthera®].  

 

1.7 Prognostic marker in MS 
As already mentioned, the amazing increase in the number of therapeutic options 

in MS that occurred in the last decade brought with it a new challenge for MS 

clinicians, that is to identify the most effective treatment for individual patients. In fact, 

MS is highly heterogeneous in terms of clinical presentation, disease course and 

response to treatments. Hence, now more than in the past, there is a huge need for 

markers able to prognosticate disease evolution that can help to select patients to be 

early addressed to highly aggressive therapies. 

Numerous factors can potentially influence disease course such as demographic and 

clinical parameters (age, gender, disease severity and duration, previous treatments) as 

well as underlying pathology and genetic predisposition; several efforts have been made 

to identify such prognostic parameters that are briefly summarized in the following 

paragraphs. 
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1.7.1 Clinical and demographic markers 
Disease characteristics associated with long-term outcomes have recently been 

reviewed (Rotstein & Montalban, 2019) with the aim of promoting a more personalized 

management.  

Among the demographic variables associated with disease outcomes is gender: as 

already mentioned MS is much more common in females compared to males and 

women also have a higher relapses rate (Kalincik et al, 2013), however male patients 

tend to reach the progressive phase earlier in life with an increased risk of disability 

accumulation (Confavreux et al, 2003). 

An earlier age at onset (AAO) has been associated to a higher risk of conversion from 

CIS (Tintore et al, 2015) to MS and to a more active disease (Fromont et al, 2008); 

moreover, patients that are younger at the time of first relapse tend to reach functional 

limitations earlier in life. On the other hand an older AAO is associated to a more rapid 

disability accumulation (Confavreux et al, 2003) and a higher incidence of PPMS. 

Among the other clinical factors associated with a worse prognosis are an incomplete 

remission after the first episode, a short interval between the first and the second 

relapse, multisystemic, cerebellar and spinal cord involvement and the PPMS course 

(Runmarker & Andersen, 1993; Confavreux et al, 2003). 

Moreover, also some environmental risk factors already known to predispose to MS 

development have been correlated to a more severe course of the disease; in particular 

low vitamin D levels were correlated to a higher relapse rate (Munger et al, 2006), a 

higher incidence of new MRI lesions as well as a higher risk of disability progression 

(Ascherio et al, 2014). Similarly, smoking was associated to higher disability and 

conversion to SPMS (Rodgers et al, 2021; Ramanujam et al, 2015) as well as to brain 

atrophy (Graetz et al, 2019).  

 

1.7.2 MRI parameters 
Several MRI measures, both conventional and advanced, have been studied as 

prognostic parameters; first of all the number of T2 lesions on brain MRI is one of the 

main indicators of a high risk of conversion to MS in CIS patients (Brodsky et al, 2008; 

Tintore et al, 2015), moreover lesion load also correlate with disability up to 20 years 

after onset (Fisniku et al, 2008). Likewise, the presence of active Gadolinium-
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enhancing (Gd+) lesions at basal MRI was also predictive of higher risk of long-term 

disability accumulation and conversion to SPMS (Brownlee et al, 2019). 

In addition, the distribution of MRI lesions, whether symptomatic or not, has also been 

linked to disease outcome, infratentorial and spinal cord lesions predicting a poorer 

prognosis (Minneboo et al, 2004; Sombekke et al, 2013).  

Among the more advanced neuro-radiological variables associated with disease 

severity, brain atrophy and the presence of cortical lesions are the most consistently 

associated (Lavorgna et al, 2014; Calabrese et al, 2012; Pérez-Miralles et al, 2013). 

However, their use in clinical practice is limited by the technical requirements and the 

possible confounding factors that can affect their correct assessment. 

 

1.7.3 Paraclinical variables 

1.7.3.1 Oligoclonal bands 

The presence of OCBs detected trough CSF analysis, and even their number, has 

been associated to a higher risk of conversion from CIS to definite MS (Arrambide et 

al, 2018) and also to an increased risk of disability accumulation (Tintore et al, 2015; 

Avasarala et al, 2001). For this reason OCBs have been included in the diagnostic 

criteria of MS as a surrogate for DIT (Thompson et al, 2018). 

 

1.7.3.2 Neurofilament light chain 

Among the serum and CSF biomarkers that have been evaluated as prognostic 

factors in MS (Magliozzi & Cross, 2020), NfLs are the most supported. 

NfL levels in the CSF correlates with neuronal damage and recent technical 

advancements have allowed their detection in the serum with a good correlation to the 

CSF values, thus facilitating their possible implementation in clinical practice. 

Serum NfLs have been associated with relapse occurrence, MRI lesion load and brain 

volume loss (Kuhle et al, 2016; Barro et al, 2018); moreover a study also showed that 

higher serum levels of NfLs predicted disability progression in the following year 

(Barro et al, 2018). 
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1.7.3.3 Retinal nerve fiber layer thickness 

Neurophysiological measures can also provide useful prognostic information; in 

particular, thickness of the retinal nerve fiber layer (RNFL) can be easily measured 

using optical coherence tomography (OCT) and has been proposed as a measure of 

neurodegeneration. A low RNFL thickness has been associated with a higher risk of 

motor disability increase and of cognitive impairment (Toledo et al, 2008; Martinez-

Lapiscina et al, 2016).    

 

1.7.4 Genetic factors 
Fewer studies investigated genetic variants associated with disease severity 

compared to MS susceptibility, but they represent a completing approach to better 

disentangle MS pathological basis. Initially, candidate gene studies investigated the 

effect of known variants and genes implicated in MS susceptibility on disease 

progression but failed to identify any significant correlation (Jensen et al, 2010) apart 

for the HLA-DRB1*1501 allele (Hauser et al, 2000; Barcellos et al, 2003). 

Similarly, a following GWAS (Baranzini et al, 2009) on disease progression showed no 

enrichment of immune-related genes. Indeed, when considering genetic markers 

associated with MRI parameters such as T2 lesion load and brain volume there was an 

enrichment of genes related to neuronal functions (e.g. GRIN2A, NLGN1). 

Likewise, another GWAS that evaluated brain glutamate concentrations as 

endophenotype (Baranzini et al, 2010) followed by a network analysis, prioritized a 

gene module including genes implicated in glutamate biology that was associated with 

brain volume loss and decrease in N-Acetylaspartate over time, suggesting a possible 

role for excitotoxicity in modulating MS progression. 

Finally, an additional GWAS (Briggs et al, 2011) evaluated polymorphisms associated 

to disability level assessed using the MS severity score (MSSS) and performed a 

pathway analysis that showed an over-representation of genes implicated in neuronal 

processes, axon guidance and signaling as well as with binding of 

receptor and antigen processing and presentation. 

In conclusions, findings from genetic studies investigating markers of MS severity 

suggested a role for neurons-related factors in addition to immune mechanisms in 
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determining disease course; however no single marker was found with enough 

prognostic power to be used in clinical practice. 

 
1.7.5 Defining MS outcome 

One of the biggest problems when trying to identify prognostic markers is to 

have an agreement on the definition of the desired outcome.  

As for today, no consensus exists in this respect and different studies used distinct 

criteria to classify patients. Overall, most studies investigated the prognostic values of 

parameters associated with variable measures of disability progression over time. 

However, disability accumulation frequently occurs in later stages of the disease thus 

requiring studies with large populations and long follow-ups. For this reason, other 

clinical and paraclinical measures of disease inflammatory activity that are associated 

with an increased risk of long-term disability accumulation have also been used as 

surrogate outcomes. 

 

1.7.5.1 Clinical measures 

Clinical parameters indicative of inflammatory activity are mainly based on 

presence of relapses, changes in ARR and time to first relapse (TFR). Conversely, 

disability measures like the EDSS score reflect the occurrence of functional and 

structural damage that can be secondary to inflammatory flares as well as a consequence 

of more insidious disease progression independent from disease activity (Río et al, 

2006; Waubant et al, 2003). 

Unfortunately the ability of these parameters to predict long term outcomes is not clear. 

Various studies demonstrated that a high rate of early relapses positively correlates with 

a high risk of long-term disability (Weinshenker et al, 1989; Confavreux et al, 2003), 

while other works found no clear association (Runmarker & Andersen, 1993; Eriksson 

et al, 2003).  

An additional level of complexity, when considering changes in EDSS

classification strongly depends on the thresholds and timing used to define disease 

progression (Liu & Blumhardt, 2000).  
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1.7.5.2 MRI measures 

MRI is much more sensitive than clinical evaluations in detecting breakthrough 

disease activity (Barkhof et al, 1992) and it is a reliable proxy for underlying disease 

pathology. It has been shown that an active MRI is a risk factor for additional 

subsequent MRI and clinical activity (Jacobs et al, 1996; Simon et al, 1998; Li & Paty, 

1999; Paty & Li, 1993) and some studies also suggested that the frequency of Gd-

enhancing lesions in the early stages of MS correlates with brain atrophy progression 

and future disability status (Fisher et al, 2000; Filippi et al, 1995). However, other 

studies found only little correlation between classical MRI parameters and clinical 

outcomes (Martinelli Boneschi et al, 2004). 

Nowadays, in addition to the number of new T2 and Gd enhancing lesions, other MRI 

parameters can be measured, that potentially better describe the extent of CNS damage 

occurring in MS. Among them, measurement of brain atrophy is a promising tool that 

has already been included as a secondary outcome in randomized control trials (RCTs); 

though, assessment of brain atrophy is not yet been implemented in everyday clinical 

practice.  

 

1.7.5.3 Combined outcomes 

Usually, measures of clinical and MRI activity are integrated to obtain a more 

comprehensive clinical outcome. In the case of MS, different classification systems 

have been proposed (Río et al, 2006, 2009; Rudick et al, 2004; Kappos et al, 2001), 

mainly applied to patients treated with first line therapy, but none of them has been 

validated in a long-term follow-up.  

In recent years, the notion of no evidence of disease activity (NEDA) as a target for MS 

management have gained attention.  

NEDA status, also called NEDA-3, is defined by the absence of clinical relapses, active 

lesions at MRI and disease progression. NEDA status at 2 years was shown to be 

predictive of no disability worsening up to 7 years (Rotstein et al, 2015). However, its 

reliability to predict clinical outcome at longer follow-up is still lacking (Goodin et al, 

2018). 
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Nonetheless, given its widespread use as main outcome in MS clinical trials and the 

simplicity of its calculation, in the present study we used the NEDA-3 criterion as the 

main endpoint in all the analysis and also considered TFR as a complementary outcome.   
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2 Aims of the study 
Due to the recent increase in the therapeutic opportunities for RRMS, there is a 

strong need to identify clinical and biological parameters that can predict disease 

outcome and help in the treatment choice, towards a more personalized approach taking 

. 

To this end, the present study aimed to explore genetic, gene expression and 

immunological markers associated with inflammatory activity in RRMS patients and to 

integrate them into a predictive model that could support clinicians in classifying 

patients according to their clinical and molecular characteristics and in unravelling the 

biological bases of the disease. 

Specifically, we investigated:  

- The presence of demographic, clinical and neuro-radiological parameters 

associated with MS activity at 4 years after the start of a first-line treatment in 2 

cohorts of RRMS patients;  

- The existence of genetic markers associated with the explored clinical outcomes, 

by means of a GWAS meta-analysis of the 2 above-mentioned cohorts; 

- Genes differentially expressed by RRMS patients with or without inflammatory 

disease activity during follow-up; 

- Biological pathways enriched of signals associated with disease severity; 

- The correlation between immune repertoire characteristics and the clinical 

endpoints of interest; 

- The integration of all these different layers of information to build a predictive 

model of disease activity. 

The first point is elaborated in the clinical analysis, described in section 3.2 and 5.1, the 

second, third and fourth tasks are detailed in the genomic analysis in section 3.3 and 5.2, 

while the fifth aim is illustrated in the immune repertoire analysis (section 3.4 and 5.3) 

and the last one in the following predictive model section (section 3.5 and 5.4). 

The present project was made possible thanks to the funding and support of the Italian 

Ministry of Health [grant project: GR-2019-12368672]  
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3 Results 
3.1 Overall study design 

Two cohorts of RRMS patients were included in the present study:  

- a Core cohort (CC) of around 200 individuals who were sampled before the start 

of a first-line drug in order to generate genetic, gene expression and T cell 

receptor (TCR) sequencing data and who were followed for up to 4 years after 

treatment start; 

- a larger Extended cohort (EC) of around 1000 RRMS patients with available 

genetic data that were generated in the context of previous projects; this cohort 

was included in order to increase the statistical power of the genetic analysis. 

For this cohort we retrospectively collected demographic and clinical 

information at the time of a first-line treatment start and for the following 4 

years. 

Patients of the two cohorts were classified according to the occurrence of disease 

activity during the 4-year observation period. Figure 3.1 synthetically illustrates the 

study design. 

The study protocol was approved by the local Ethical Committee of Ospedale San 

Raffaele (OSR) and all patients signed a written informed consent before undergoing 

blood sampling.   

 
Figure 3.1: Study design. The study included a larger Extended cohort of about 1000 RRMS 
patients, with available clinical and genetic data, and a Core cohort of about 200 RRMS 
patients, for whom also transcriptomic and immune repertoire data were generated. All patients 
were characterized according to occurrence of disease activity at the end of the 4-year 
observation period. 
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3.2 Clinical analysis 
In the clinical analysis we explored the association between baseline 

demographic, clinical and MRI parameters and the occurrence of MS inflammatory 

activity at 4 years in RRMS patients treated with a first-line drug.  

We enrolled in the CC 208 RRMS patients who were sampled before the start of a first-

line therapy between September 2011 and March 2016.   

Moreover, genetic information of 1086 MS patients treated with first-line drugs were 

already available at the Laboratory of Genetics of Human Neurological Disorder, OSR, 

generated in the context of previous projects, and were included in the EC. Due to its 

retrospective nature, patients included in the EC started a first line treatment between 

January 1994 and February 2016, in an earlier period compared to the CC.   

Baseline clinical and demographic characteristics of the two cohorts are detailed in 

Table 3.1. 
 
Table 3.1: Baseline clinical and demographic characteristics of RRMS patients included in 
the study, divided into CC and EC 

Baseline demographic and clinical characteristics of patients included in the study, divided into 
CC and EC. For continuous variables, the mean value ± standard deviation (SD) is reported. P-
value refers to the comparison between EC and CC. EDSS: Expanded Disability Status Scale; 
IFN-b: interferon beta; GA: glatiramer acetate; DMF: dimethyl fumarate; Teri: teriflunomide; 
No tp: no therapy. 
 

As shown in the table, patients in the CC had a slightly later AAO and higher age at the 

baseline visit compared to the EC, as well as a lower mean EDSS; moreover, the 

 

 

CC 

n = 208 

EC 

n = 1086 
P-value 

Gender (Females:Males) 133:75 762:324 ns 

Age at onset 30.62 ± 9.28 28.37 ± 8.85 0.001 

Age at baseline 36.25 ± 9.71 33.77 ± 9.69 0.0006 

Disease duration 5.64 ± 6.55 5.4 ± 5.90 ns 

EDSS at baseline 1.6 ± 0.7 1.8 ± 0.9 0.007 

First line therapy, n (%) 

IFN : 95 (45.7%) 

GA: 68 (32.7%) 

DMF: 43 (20.7%) 

Teri: 2 (0.9%) 

IFN : 807 (74.3%) 

GA: 277 (25.5%) 

DMF: 2 (0.2%) 

 

<0.001 
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distribution of first-line drugs started in the 2 cohorts is very different, due to the later 

period of enrolment for the CC. Indeed, patients belonging to the EC started a therapy 

before the marketing authorization of DMF and Teri and were mostly treated with  

or GA. Conversely, around 20% of patients in the more recent CC were treated with 

DMF, that was approved in 2014. 

In order to identify clinical parameters associated with the occurrence of inflammatory 

disease activity during follow-up, that will be used as covariates in the genetic analyses, 

we tested the correlation between clinico-demographic variables and NEDA-3 at 4 years 

and TFR, both in the CC and EC; a meta-analysis was then performed to integrate the 

results obtained in the two datasets.   

 

3.2.1 NEDA-3 
Overall, 205 patients in the CC and 954 in the EC were classifiable according to 

the NEDA-3 criterion. As expected for patients treated with a first-line drug and due to 

the medium term follow-up, most of them showed some degree of disease reactivation 

during the analyzed period; exactly 69% of patients in the CC and 84% of patients in 

the EC had evidence of inflammatory activity. The slightly higher proportion of active 

patients in the EC compared to the CC is explained by the different period of treatment 

start. Indeed, the majority of patients belonging to the EC started a first-line treatment 

when few second-line drugs were available on the market; for this reason also subjects 

with a medium-to-high level of baseline disease activity started a first-line treatment 

leading to a higher rate of breakthrough disease activity during the observation period. 

On the contrary, due to the availability of highly effective and well-tolerated second-

line drugs, such as fingolimod (Cohen et al, 2010), starting from 2012 patients showing 

a moderate level of disease activity were rather addressed to more aggressive treatments 

and were not included in the present analysis. 

Table 3.2 shows the clinical variables associated with evidence of disease activity 

(EDA-3) during the 4 year observation period in the CC and EC, according to a 

univariable and multivariable setting, as well as the results of the meta-analysis. 

AAO was the parameter more strongly and consistently associated to EDA during 

follow-up, both in CC and EC (odds ratio (OR): 0.94, p-value: 0.0007 and OR: 0.96, p-

value <0.0001, respectively); precisely, a younger AAO was associated with a higher 
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risk of breakthrough inflammatory activity with an OR of 0.95 (p-value<0.0001) in the 

meta-analysis). Similarly, a shorter disease duration (DD) was also significantly 

correlated with a higher risk of disease activity in the CC and the meta-analysis (OR: 

0.93, p-value: 0.0031 and OR: 0.95, p-value: 0.0007, respectively) and there was also a 

nominally significant association in the EC (OR: 0.97, p-value: 0.033). Finally, a trend 

for association was also detected for gender, females having an almost 50% increased 

risk of reactivation (OR: 1.45, p-value: 0.028), and baseline EDSS, with increasing 

likelihood of EDA for higher scores (OR: 1.29, p-value: 0.017). 
 

Table 3.2: Baseline characteristics associated to EDA-3 in the CC, EC and the meta-analysis.  
 CC EC 

Univariable analysis 

 OR 95% CI P Value OR 95% CI P Value 

Gender (F) 1.37 0.74-2.51 0.313 1.4 0.97-2.00 0.071 

AAO 0.95 0.92-0.98 0.004 0.97 0.95-0.98 0.0003 

Disease duration 0.95 0.91-1 0.030 0.99 0.97-1.02 0.652 

Baseline EDSS 0.71 0.47-1.06 0.099 1.28 1.04-1.61 0.025 

 Multivariable analysis 

 OR 95% CI P Value OR 95% CI P Value 

Gender (F) 1.28 0.66-2.43 0.460 1.52 1.03-2.23 0.034 

AAO 0.94 0.9-0.97 0.0007 0.96 0.94-0.98 <0.0001 

Disease duration 0.93 0.88-0.97 0.003 0.97 0.93-1.00 0.033 

Baseline EDSS 0.89 0.57-1.42 0.623 1.42 1.13-1.81 0.003 
    

  Meta-analysis  

 OR 95% CI P Value 

Gender (F) 1.45 1.04-2.02 0.028 

AAO 0.95 0.94-0.97 <0.0001 

Disease duration 0.95 0.93-0.98 0.0007 

Baseline EDSS 1.29 1.05-1.58 0.017 

Table 3.2 shows the association of different baseline parameters with evidence of disease 
activity (EDA-3) at 4 years. Results are shown for the CC and EC (upper section) and the meta-
analysis (bottom panel). Odds ratio (OR) with 95% confidence intervals (CI) and relative p-
value are reported for associated baseline variables. AAO: age at onset; EDSS: Expanded 
Disability Status Scale. 
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3.2.2 Time to first relapse (TFR) 
In the EC, 640 patients faced at least a clinical relapse during the 4 years 

observation period while 80 patients experienced new or worsening symptoms during 

follow up in the CC. 

The analysis of clinical parameters associated with the TFR (Table 3.3) yielded similar 

results as for the NEDA-3 outcome. 
 
Table 3.3: Baseline characteristics associated to TFR in the CC, EC and the meta-analysis.  

 CC EC 

Univariable analysis 

 HR 95% CI P Value HR 95% CI P Value 

Gender (F) 1.68 1.03-2.74 0.039 1.29 1.08-1.53 0.005 

AAO 0.98 0.96-1 0.11 0.99 0.98-1 0.003 

Disease duration 0.95 0.92-0.99 0.021 0.99 0.97-1 0.047 

Baseline EDSS 1.22 0.93-1.6 0.159 1.04 0.95-1.14 0.402 

 Multivariable analysis 

 HR 95% CI P Value HR 95% CI P Value 

Gender (F) 1.51 0.92-2.48 0.101 1.35 1.1-1.67 0.005 

AAO 0.97 0.94-0.99 0.008 0.98 0.97-0.99 0.0001 

Disease duration 0.93 0.9-0.97 0.002 0.97 0.96-0.99 0.002 

Baseline EDSS 1.41 1.07-1.84 0.013 1.09 0.99-1.2 0.072 

    

  Meta-analysis  

 HR 95% CI P Value 

Gender (F) 1.38 1.15-1.67 0.001 

AAO 0.98 0.97-0.99 <0.0001 

Disease duration 0.97 0.96-0.98 <0.0001 

Baseline EDSS 1.12 1.03-1.23 0.012 

Table 3.3 shows the association of different baseline parameters with the time to first relapse 
(TFR). Results are shown for the CC and EC (upper section) and the meta-analysis (bottom 
panel). Hazard ratio (HR) with 95% confidence intervals (CI) and relative p-value are reported 
for associated baseline variables. AAO: age at onset; EDSS: Expanded Disability Status Scale.  
 
 

Specifically, a younger AAO was again linked to a higher risk of early relapse during 

the observation period in the meta-analysis (hazard ratio (HR): 0.98, p-value <0.0001) 
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and when considering the CC and EC separately (OR: 0.97, p-value: 0.008 and OR: 

0.98, p-value: 0.0001, respectively). Besides, a longer DD was associated with later 

relapses in the CC (HR: 0.93, p-value: 0.002), EC (HR: 0.97, p-value: 0.002) and meta-

analysis (HR: 0.97, p-value<0.0001). Female gender was correlated with a worse 

clinical outcome in the EC (HR: 1.35, p-value: 0.005) and not in the CC, even if the 

direction and magnitude of the effect was consistent in the two datasets (HR: 1.51, p-

value: 0.101); when meta-analyzing the two cohorts the association was still present and 

statistically significant (HR: 1.38, p-value: 0.001). 

Noteworthy, a trend of association was present also for the baseline EDSS, higher 

scores being correlated to a higher risk of early relapse (HR of 1.12, p-value: 0.012), 

similarly to what already described for the NEDA-3 outcome. 
  
3.2.3 Considerations 

In this first part of the study, we performed the characterization of the two 

enrolled cohorts of RRMS and completed the clinical classification according to the 

selected endpoints NEDA-3 and TFR.  

The two datasets had slightly different baseline characteristics in terms of AAO, age at 

baseline visit and EDSS and, most importantly, differed according to the type of first-

line treatment started at baseline. This imbalance is explained by the fact that the CC 

has been included in a later period, when more first-line drugs were available. The same 

reason also explains the variability in the proportion of patients showing disease 

reactivation during follow-up in the two cohorts; the accessibility of new drugs in more 

recent years has allowed for a more accurate selection of patients to be addressed to 

highly-active treatments, leading to an improvement in the rate of treatment response 

which is reflected by the better outcomes obtained in the CC compared to the EC.  

Taking these differences into consideration, we decided to perform the analyses 

separately in the two datasets and then meta-analyze the results. By doing so, we were 

able to identify demographic and clinical parameters strongly associated with 

breakthrough inflammatory activity during follow-up. Specifically, a younger AAO and 

a shorter disease duration were associated with a higher risk of disease reactivation 

measured using both the NEDA-3 criterion and the TFR.  Moreover, female gender was 

strongly associated to a higher likelihood of experiencing a clinical relapse during the 

observation period and there was also a trend of association when considering the 
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NEDA-3 outcome. These data are in line with previous reports and what expected by 

clinical practice; indeed, previous studies reported that an older AAO correlated with 

less inflammatory flares in patients treated with IFN beta (Fromont et al, 2008), while 

an early onset was associated to an increased risk of evolution from CIS (Tintore et al, 

2015) or RIS (Lebrun-Frénay et al, 2021) to definite MS. Moreover, another study 

(Kalincik et al, 2013) showed that female gender was linked to a higher level of 

inflammatory activity and that disease activity tended to decrease with age.  

In conclusion, these results suggest that our cohorts are representative of the overall MS 

population and that our meta-analytic approach is valid and allows to identify 

meaningful association with the outcomes of interests. The clinical parameters that were 

found to be strongly associated with EDA and TFR in this first substudy were included 

as covariates in the genetic analyses, in order to adjust for potential confounding factors. 

 

3.3 Genomic analysis 
In this study section we went on to investigate the presence of genetic variants 

and genes associated with the clinical activity endpoints and to explore the biological 

pathways they are involved in, with the purpose of highlighting functional paths that 

play an important role in determining disease activity. 

Indeed, the genetic predisposition to MS susceptibility is well established, with more 

than 200 autosomal and 30 MHC variants associated with the disease. Nonetheless, 

fewer studies have also shown a possible contribution of genetic variation, mainly 

focusing on the MHC, with disease course and phenotype (Isobe et al, 2016; Hauser et 

al, 2000; Barcellos et al, 2003); hence it is reasonable to hypothesize that the genetic 

background, together with epigenetic changes, could also influence disease activity.  

We believe that the identification of genetic polymorphisms and/or transcriptional 

changes correlated with breakthrough inflammation in MS holds a great potential to 

guide in patients stratification, toward a more personalized management. Moreover, it 

could also possibly lead to the detection of new, interesting therapeutic targets.   
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3.3.1 Genetic study  
3.3.1.1 Genome-wide association study on NEDA-3 outcome  

3.3.1.1.1 CC 

Among the 208 patients of the CC included in the clinical study, 8 patients were 

excluded due to low call rate leading to poor imputation quality, 1 subject was discarded 

for high heterozygosity, 1 for sex-mismatch and 3 were excluded after the 

multidimensional scaling (MDS) analysis. As a results, after stringent per sample and 

per single nucleotide polymorphisms (SNPs) filtering, a total of 195 individuals and 

6,952,445 SNPs were evaluated for association with NEDA-3 

Figure 3.2 illustrates the results of the association analysis with NEDA-3 in the CC.  

 

 
Figure 3.2: QQ plot and Manhattan plot showing results of the association with NEDA-3 in 
the CC. A: Quantile-quantile plot plotting the log10(p-value) distribution of our analysis 
versus a theoretical normal distribution. B: Manhattan plot showing association p-value for 

 
 

The quantile-quantile (QQ) plot on the left panel, where the distribution of actual p-

values from the analysis are plotted against expected values, reports a genomic inflation 

factor ( ) (Devlin & Roeder, 1999) of 1.006 suggesting a negligible amount of 

population stratification; moreover it also shows a downward deflection suggesting that 

the analysis is likely underpowered, as expected due to the low number of patients. 

Indeed, the Manhattan plot in Figure 3.2 B displays no genome-wide significant 

associations, however 4 signals exhibited some evidence of association with EDA, one 

on chromosome (Chr) 6, Chr 8, Chr 11 and Chr 1 each.  We will not explore these 

associations further because we intended to concentrate on signals prioritized by the 

meta-analysis as supported in both cohorts; however, it is interestingly to note that 
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among the top variants with suggestive association are SNPs intronic to neuregulin 1, 

NRG1, coding for a myelin-related growth factor which promotes proliferation of 

oligodendrocytes and has been found to be downregulated in MS lesions, suggesting a 

possible role of NRG1 in MS pathogenesis (Viehover et al, 2001; Kataria et al, 2021).  

The top-10 associated SNPs for this analysis are shown in Table 3.4. 
 

Table 3.4: Top 10 results of the analysis of association with NEDA-3 in the CC 
SNP Chr Gene BP A1 MAF OR 95%-CI P Value 

rs2144219 6 RP11-557H15.3 134817135 T 0.20 0.21 0.11-0.4 2.82E-06 

rs9389186 6 RP11-557H15.3 134813324 T 0.20 0.21 0.11-0.4 2.82E-06 

rs57424335 6 RP11-557H15.3 134812488 A 0.20 0.21 0.11-0.41 3.76E-06 

rs72980343 6 RP11-557H15.3 134810991 A 0.20 0.21 0.11-0.41 3.76E-06 

rs10765518 11 FAT3  91800709 G 0.44 0.25 0.14-0.45 4.62E-06 

rs10954845 8 NRG1 32319842 G 0.22 0.22 0.12-0.43 4.67E-06 

rs4733124 8 NRG1 32371798 C 0.18 0.22 0.12-0.43 5.56E-06 

rs17122212 1 NFIA 61903554 T 0.19 6.94 2.94-16.34 9.42E-06 

rs12549090 8 NRG1 32373385 C 0.20 0.24 0.13-0.46 9.91E-06 

rs13277678 8 NRG1 32373112 C 0.20 0.24 0.13-0.46 9.91E-06 

SNP: variant name; Chr: chromosome; Gene: gene the variant is mapped to, when variant is 
intergenic the name of the closest coding gene and direction is reported; BP: physical position 
of the SNP in build 37; A1: minor allele; MAF: minor allele frequency in the European 
population of 1000 Genome project; OR: odds-ratio, 95%-CI: confidence interval for the odds 
ratio; P: association p-value. 
 

3.3.1.1.2 EC 

For the EC, we started from 1086 patients included in the clinical analysis and 

excluded 162 samples from the imputation due to poor coverage. We then applied 

standard quality checks as for the CC and rejected additional 14 patients due to high 

heterozygosity and 8 subjects who were outliers at the MDS analysis; eventually, 902 

individuals and 6,952,978 passed filters and quality controls (QCs) and entered the 

analysis. 

Figure 3.3 shows the results for the NEDA-3 analysis in this cohort.   
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Figure 3.3: QQ plot and Manhattan plot showing results of the association with NEDA-3 in 
the EC. A: Quantile-quantile plot plotting the log10(p-value) distribution of our analysis 
versus a theoretical normal distribution. B: Manhattan plot showing association p-value for 

 
 

Again, the QQ plot in Figure 3.3 A rules out the presence of unusual enrichment due to 

genetic stratification, with a lambda value of 1.007, while the Manhattan plot in Figure 

3.3 B shows the results of the association analysis: no genome wide significant hits 

were identified. 
 

Table 3.5: Top 10 results of the analysis of association with NEDA-3 in the EC 

SNP: variant name; Chr: chromosome; Gene: gene the variant is mapped to, when variant is 
intergenic the name of the closest coding gene and direction is reported; BP: physical position 
of the SNP in build 37; A1: minor allele; MAF: minor allele frequency in the European 
population of 1000 Genome project; OR: odds-ratio, 95%-CI: confidence interval for the odds 
ratio; P: association p-value. 

SNP Chr Gene BP A1 MAF OR 95%-CI P Value 

rs12678159 8 SAMD12 119436865 G 0.39 2.10 1.56-2.83 1.05E-06 

rs147168207 3 CADPS 62717754 G 0.01 0.07 0.02-0.2 1.23E-06 

rs34441860 14 AL163953.3 53839846 C 0.03 0.19 0.1-0.37 1.44E-06 

rs12679873 8 SAMD12 119436711 T 0.38 2.08 1.54-2.81 1.79E-06 

rs13269591 8 SAMD12 119436240 T 0.38 2.07 1.53-2.79 2.01E-06 

rs2262245 6 C6orf106 34567694 C 0.33 0.50 0.37-0.67 2.78E-06 

rs62028536 16 MMP2 55448622 C 0.02 0.24 0.13-0.44 4.14E-06 

rs6912327 6 UHRF1BP1 34764922 C 0.24 0.49 0.36-0.67 6.42E-06 

rs114220770 2 SLC8A1 40729223 A 0.02 0.14 0.06-0.33 6.71E-06 

rs11689046 2 SERPINE2  225022528 G 0.13 0.42 0.29-0.61 6.91E-06 



51 
 

3.3.1.1.3 Meta-analysis 

We then integrated the results obtained in the two datasets by means of a fixed 

effect model which was deemed appropriate given the homogeneity of the cohorts 

including patients of European ancestry. Overall 6,521,446 common variants were 

present in both datasets and were explored in the meta-analysis. 

Figure 3.4 displays the corresponding QQ and Manhattan plots. 

 

 
Figure 3.4: QQ and Manhattan plot showing results of the association with NEDA-3 in the 
meta-analysis. A: Quantile-quantile plot plotting the log10(p-value) distribution of our 
association analysis versus a theoretical normal distribution. B: Manhattan plot showing p-
value of association for e . 
 

As illustrated in the Manhattan plot (Fig 3.4 B and Table 3.6), no variants reached the 

Bonferroni genome-wide significant threshold; nonetheless, some suggestive signals of 

association were present, in particular on Chr 2 and 7. 

The top-associated variant, rs11689046 (OR 0.42, p-value 3.6e-7), is an intergenic SNP 

mapped to Chr 2:225022528 SERPINE2 gene. Besides, 

other 5 variants among the top ones, are in very high LD (r2~1) with it and represent the 

same association signal, as displayed in the corresponding regional plot (Figure 3.5).  
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Figure 3.5: Regional association plot for the rs11689046 locus in the Meta-analysis. 
Illustration of the chr2q36 region centered on rs11689046, with the local recombination rate 
plotted in light blue. Each point represents a SNP; the most associated SNP in the meta-
analysis, rs11689046, is marked in purple. The color of each dot represents the extent of LD 
with rs11689046 according to the legend on the right. Physical positions are based on build 37 
of the human genome. 
 

The rs11689046G  is a common allele (minor allele frequency (MAF) of 0.13 in the 

European population from 1000 Genome project) that seems to be associated with a 

protective effect towards the occurrence of disease activity (OR 0.42, p-value 0.018 and 

OR 0.42, p-value 6.69e-6 respectively in the CC and EC); indeed in both the CC and 

EC, a higher proportion of G carriers showed disease stability during the 4 years 

observation period compared to the TT subjects (Figure 3.6). 
 

 
Figure 3.6: Proportion of patients with ED or stable disease NEDA at 4 years according to 
genotype at rs11689046 in the CC and EC. On the y-axis is the proportion of patients with no 
evidence of disease activity (NEDA, blue) or EDA (light blue). On the x-axis are the genotypes 
at the rs11689046 variant. 
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Leveraging the information available in public databases, we found that rs11689046 has 

an expression quantitative trait loci (eQTL) effect on SCG2 gene in CD4 T cells 

(Schmiedel et al, 2018) (p-value 2.1e-5),  WDFY1 in monocytes (Ota et al, 2021) (p-

value 0.002) and SERPINE2 in whole blood (p-value 0.007), that is, genetic 

polymorphisms in this position are correlated with changes in the expression of the 

above mentioned genes. Among these genes SERPINE2 also known as Nexin-1, is a 

particularly interesting candidate for association with MS disease activity. Indeed, it 

encodes for a glycoprotein which represents the most abundant thrombin inhibitor in the 

brain, being secreted by glial cells and neurons (Reinhard et al, 1994), and it has been 

demonstrated that the coagulation system is activated in the animal model of MS, the 

experimental autoimmune encephalomyelitis (EAE). Previous studies demonstrated that 

in the preclinical phase of EAE, at day 8 post-immunization, SERPINE2 is more 

expressed in brain homogenates from EAE mice compared to controls (Beilin et al, 

2005) and other works reported a clinical improvement following treatment by 

coagulation inhibitors, such as heparin or dermatan sulfate (Chelmicka Szorc & 

Arnason, 1972; Inaba et al, 1999), suggesting a possible role of SERPINE2 in disease 

pathogenesis, even if it is not clear whether its action is neuroprotective or damaging 

(Meins et al, 2001; Houenou et al, 1995).  

 

The second top-hit for the NEDA-3 analysis, is rs12704796 on Chr 7: 95065850 that 

maps to PON2 gene (Figure 3.7).  

The A allele at this variant has a MAF of 0.21 in the European population, and is 

associated with a lower risk of disease reactivation in both the CC, EC and meta-

analysis (OR 0.31 and p-value 4.27e-4, OR 0.57 and p-value 3.43e-4, OR 0.51 and p-

value 1.98e-6 respectively): Figure 3.8 illustrates a growing percentage of patients with 

NEDA during the observation period in subjects heterozygous or homozygous for the 

protective A allele, in the CC as well as the EC.  
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Figure 3.7: Regional association plot for the rs12704796 locus in the Meta-analysis. 
Illustration of the chr2q36 region centered on rs12704796, with the local recombination rate 
plotted in light blue. Each point represents a SNP; the most associated SNP in the meta-
analysis, rs12704796, is marked in purple. The color of each dot represents the extent of LD 
with rs12704796 according to the legend on the right. Physical positions are based on build 37 
of the human genome. 
 
 

 
Figure 3.8: Proportion of patients with evidence of disease activity (EDA) or stable disease 
(NEDA) at 4 years according to genotype at rs12704796 in the CC and EC. On the y-axis is 
the proportion of patients with no evidence of disease activity (NEDA, blue) or EDA (light 
blue). On the x-axis are the genotypes at the rs12704796 variant. 
 

Rs12704796 PON2, in a regulatory region 

that acts as a weak enhancer in CD34+ primary cell, and regulates its expression in 

several tissue, among which nerve, muscle, pancreas and intestines 

(https://gtexportal.org (Lonsdale et al, 2013)); the A allele is associated with a higher 

expression of PON2. This gene codes for a member of the paraoxonase family, that has 
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antioxidant properties and has been associated with a higher risk of atherosclerosis 

(Devarajan et al, 2011) and vascular diseases (Slowik et al, 2007) as well as 

neurodegenerative disease (Erlich et al, 2006). Besides, it has been suggested that 

oxidative damage plays an important role in MS, active demyelinating lesions being 

enriched in oxidized lipids and DNA (Haider et al, 2011). For these reasons, the PON2 

locus represent an interesting candidate for association with disease activity in MS, even 

if previous studies evaluating the association between its homologous PON1 and MS 

have shown negative results (Martínez et al, 2010). 

 

3.3.1.2 Genome-wide association study on TFR  

3.3.1.2.1 CC 

We then moved on to analyze the genetic associations with TFR, starting with 

the 195 patients of the CC. As for the NEDA-3 analysis, we included in the model the 

clinical covariates Figure 3.9 illustrates the overall results of the GWA study in this 

smaller cohort and Table 3.7 lists the 10 most associated variants.  
 

 
Figure 3.9: QQ plot and Manhattan plot showing results of the association with TFR in the 
CC. A: Quantile-quantile plot plotting the log10(p-value) distribution of our analysis versus a 
theoretical normal distribution. B: Manhattan plot showing association p-value for each SNPs 

. 
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Table 3.7: Top 10 results of the analysis of association with TFR in the CC 
SNP Chr Gene BP A1 MAF HR 95%-CI P Value 

rs143333775 22 PI4KA, 
SERPIND1 21142349 T 0.01 14.54 6.06-34.86 1.99E-09 

rs113378225 15 MYO5C 52554644 T 0.02 11.14 4.94-25.13 6.14E-09 

rs140303816 9 GDA 74770266 A 0.01 9.02 4.24-19.21 1.16E-08 

rs6033206 20 BTBD3 (5') 11699643 C 0.02 27.34 8.63-86.63 1.89E-08 

rs11595815 10 COL13A1 71568335 A 0.12 3.55 2.26-5.59 4.21E-08 

rs6946816 7 COBL (5') 51523734 A 0.45 2.85 1.95-4.17 6.58E-08 

rs150600742 15 SPESP1 69199776 A 0.01 23.23 7.37-73.19 7.75E-08 

rs117167631 7 C7orf66 (5') 108803509 A 0.02 15.45 5.64-42.37 1.04E-07 

rs118077222 7 C7orf66 (5') 108860728 A 0.02 15.45 5.64-42.37 1.04E-07 

rs148930293 7 C7orf66 (5') 108886272 T 0.01 15.45 5.64-42.37 1.04E-07 
SNP: variant name; Chr: chromosome; Gene: gene the variant is mapped to, when variant is 
intergenic the name of the closest coding gene and direction is reported; BP: physical position 
of the SNP in build 37; A1: minor allele; MAF: minor allele frequency in the European 
population of 1000 Genome project; HR: hazard-ratio, 95%-CI: confidence interval for the 
hazard ratio; P: association p-value. 
 
Several variants passed the Bonferroni-corrected p-value threshold for association, 

however in most cases the signals were quite isolated (Figure 3.9 B) and involved low 

frequency variants, suggesting the possibility of spurious association. Also the QQ plot 

in Figure 3.9 A displayed an accentuated upward deflection suggesting an enrichment of 

positive association. Indeed, it is well known that the time-to-event analysis holds a 

higher power to identify truly significant associations compared to case-control studies 

(Hughey et al, 2019), however this type of approach has also been linked to a higher 

rate of type I error, mainly when dealing with rare variants and few events (Bi et al, 

2020). Therefore, our meta-analytic approach can help mitigate this issue by selecting 

variants whose association with TFR is supported by two independent cohorts of RRMS 

patients. 

 

3.3.1.2.2 EC 

The QQplot and corresponding Manhattan plot for the TFR analysis in the EC 

are shown in Figure 3.10: also in this dataset, applying a cox regression model we were 

able to identify some genome-wide significant variants (Table 3.8). However, as 

expected due to the larger sample size and the corresponding number of events, the 
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association signals showed in Figure 3.10 B are more defined and not isolated, 

suggesting a true association. Seemingly, the distribution of the observed p-value is 

consistent with the presence of few associated causal polymorphism.   

Noteworthy, among the top is a signal mapping to chromosome 3 to the region coding 

for SCL9A9, previously associated to response to IFN  by a work from our group. 

 

 
Figure 3.10: QQ plot and Manhattan plot showing results of the association with TFR in the 
EC. A: Quantile-quantile plot plotting the log10(p-value) distribution of our analysis versus a 
theoretical normal distribution. B: Manhattan plot showing association p-value for each SNPs 

 
 
 
Table 3.8: Top 10 results of the analysis of association with TFR in the EC 

SNP Chr Gene BP A1 MAF HR 95%-CI P Value 

rs62167313 2 SNAR-H (5') 78230161 A 0.01 2.98 2.05-4.33 9.33E-09 

rs72817223 2 SNAR-H (5') 78216423 T 0.01 2.98 2.05-4.33 9.33E-09 

rs76110433 3 SLC9A9 143292904 C 0.04 2.61 1.85-3.67 3.76E-08 

rs62164743 2 SNAR-H (5') 78182091 T 0.01 2.91 1.99-4.25 3.92E-08 

rs146659751 8 CAMTA1 140881285 C 0.02 3.17 2.09-4.81 6.16E-08 

rs6784766 3 SLC9A9 143262448 T 0.04 2.49 1.78-3.49 1.22E-07 

rs116410651 1 CAMTA1 7340079 T 0.02 4.22 2.47-7.2 1.37E-07 

rs72815190 2 AC073628.1 78148685 C 0.01 2.83 1.92-4.17 1.56E-07 

rs62163506 2 SNAR-H (5') 78131966 T 0.01 2.81 1.91-4.15 1.73E-07 

rs76314865 5 ACTBL2 56863619 A 0.03 2.34 1.68-3.27 6.38E-07 
SNP: variant name; Chr: chromosome; Gene: gene the variant is mapped to, when variant is 
intergenic the name of the closest coding gene and direction is reported; BP: physical position 
of the SNP in build 37; A1: minor allele; MAF: minor allele frequency in the European 
population of 1000 Genome project; HR: hazard-ratio, 95%-CI: confidence interval for the 
hazard ratio; P: association p-value. 
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3.3.1.2.3 Meta-analysis 

We finally combined the results from the two datasets by means of a fixed-effect 

meta-analysis, whose results are shown in Figure 3.11 and Table 3.9.   

 

 
Figure 3.11: QQ plot and Manhattan plot showing results of the meta-analysis for TFR. A: 
Quantile-quantile plot plotting the log10(p-value) distribution of our analysis versus a 
theoretical normal distribution. B: Manhattan plot showing association p-value for each SNPs 
across different chromosome  
 

There are no variants beyond the genome-wide significant Bonferroni threshold, 

however some signals with a suggestive level of association are present. 

 

 
Figure 3.12: Regional association plot for the rs73418792 locus in the Meta-analysis. 
Illustration of the chr7p11 region centered on rs73418792, with the local recombination rate 
plotted in light blue. Each point represents a SNP; the most associated SNP in the meta-
analysis, rs73418792, is marked in purple. The color of each dot represents the extent of LD 
with rs73418792 according to the legend on the right. Physical positions are based on build 37 
of the human genome. 
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Specifically, the top-associated variant is rs73418792 on chromosome 7: 55070106 that 

shows a p-value very close to the genome-wide cut-off (p-value 7.39e-8, Figure 3.12); 

at this SNP the C allele is correlated with a higher risk of early relapse (HR 2.73 in the 

meta-analysis; HR 3.12 and p-value 0.033 in the CC; HR 2.68 and p-value 7.49e-7 in 

the EC, Figure 3.13). 

Rs73418792 is a very interesting variant because it is located very close to the EGFR 

regulatory region.  

In several reports, the EGFR has been implicate in remyelinating processes (Aguirre et 

al, 2007; Palazuelos et al, 2015) and a reduction in the expression of EGF receptors in 

MS brain compared to controls has been reported (Nicoletti et al, 2019). Besides, 

treatment with EGF was able to improve the clinical features of an EAE model, thus 

supporting its role in disease mechanisms. Indeed, EGFR seems to interact with and 

mediate the activity of LINGO1 (Lee et al, 2014), a molecule known to be involved in 

oligodendrocyte differentiation and myelination that has been proposed as a treatment to 

promote tissue repair in MS (Tran et al, 2014; Klistorner et al, 2018).  

 

 
Figure 3.13: Kaplan Meier survival curves illustrating the proportion of patients free from 
clinical activity in the CC and EC, stratified according to rs73418792 genotype. The x-axis 
indicates months from baseline visit; Y-axis indicate the proportion of relapse-free patients. 
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Another noteworthy result is represented by the signal on chromosome 3 in the region 

coding for SLC9A9, where the most associated variant is rs76110433 (HR 2.47 p-value 

9.24E-08). This gene, that encodes a Na(+) -H(+) exchanger, has previously been 

implicated with the response to IFNbeta in RRMS by a previous work of our group 

(Esposito et al, 2015) in a cohort of patients partially overlapping with the EC. 

Interestingly, the identified signal does not correspond to the previously reported one 

but seems to support the involvement of this region in modulating disease activity rather 

than the response to a specific treatment. However the association signal was 

completely driven by the results in the EC and it was not present in the CC (HR 2.61 

and p-value 3.76e-8, HR 0.96 and p-value 0.957 respectively), likely due to the small 

sample size and very low MAF (0.04), so that it is not fully supported by the results of 

the meta-analysis. 

 

On the contrary, the signal on chromosome 16:57007652 leaded by rs11644475 is 

highly significant in the EC (HR 2.44 p-value 8.52e-7) but showed the same direction of 

effect and a trend towards significance in the CC (2.95 p-value 0.087). Therefore its 

association was reinforced by the meta-analysis (Figure 3.14) that confirmed a 

significantly increased risk of early relapse in patients carrying the G allele (2.48 p-

value 1.94e-7, Figure 3.15).  

This variant is intronic to the gene coding for cholesteryl ester transfer protein, CETP, 

that is involved in the transfer of lipids among lipoprotein particles, and rs11644475 

also has an eQTL effect on its expression in adipose tissue. Interestingly, genetic 

variants in this gene have been associated with the level of circulating lipoproteins and 

also with Vitamin D levels (Sinnott-Armstrong et al, 2021). Specifically rs9939224G, 

that is in high li

rs11644475G, has been associated with a decrease in serum Vitamin D levels that is a 

well-known risk factor for MS development and disease activity (Ascherio et al, 2014). 

Moreover, a small recent study also correlated genetic polymorphisms in CETP with the 

risk of optic neuritis development (Gedvilaite et al, 2019). 
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Figure 3.14: Regional association plot for the rs11644475 locus in the Meta-analysis. 
Illustration of the chr16q13 region centered on rs11644475, with the local recombination rate 
plotted in light blue. Each point represents a SNP; the most associated SNP in the meta-
analysis, rs11644475, is marked in purple. The color of each dot represents the extent of LD 
with rs11644475 according to the legend on the right. Physical positions are based on build 37 
of the human genome. 
 

 

 
Figure 3.15: Kaplan Meier survival curves illustrating the proportion of patients free from 
clinical activity in the CC and EC, stratified according to rs11644475 genotype. The x-axis 
indicates months from baseline visit; Y-axis indicate the proportion of relapse-free patients. 

 

3.3.1.3 Gene-based and pathway analysis 

3.3.1.3.1 NEDA-3 

In order to ease the interpretation of the genetic results and allow for the 

identification of possibly converging biological effects spread all over the genome, we 

proceeded with the gene-based and pathway analysis. First, we generated a gene-wise p-
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value using the online tool VEGAS2 (Mishra & Macgregor, 2015) for 23,750 genes and 

we set the Bonferroni adjusted threshold to 2.1e-6. Table 3.10 lists the ten most 

associated genes and their relative p-value. There are no genes passing the corrected p-

value threshold but, interestingly, the results seems to point to a region on chromosome 

11, around the top-SNP rs4939517, that was not highlighted by the meta-analysis (p-

value of genetic association 8.66e-5). This association with this region is remarkable 

given that it is a region coding for several genes among which also CD5 and CD6, 

previously associated with MS susceptibility (Patsopoulos et al, 2019). Indeed, 

rs4939517 rs11230624 that shows an eQTL effect 

on CD5 in brain (Lonsdale et al, 2013). 
 

 Table 3.10: Top 10 genes associated with NEDA-3 in the meta-analysis 
CHR GENE Gene_P nSNPs Leading-SNP 

11 TMEM138 5 5.40E-05 rs4939517 

11 CYB561A3 5 7.10E-05 rs4939517 

5 ACTBL2 117 7.50E-05 rs10940562 

6 C6orf106 268 7.50E-05 rs2262245 

11 DAK 6 7.60E-05 rs4939517 

11 DDB1 6 0.000176 rs35723406 

6 SNRPC 170 0.000193 rs1998702 

6 UHRF1BP1 301 0.000223 rs1998702 

11 VWCE 8 0.000232 rs4274208 

11 TMEM216 16 0.000251 rs7118316 

CHR: chromosome; Gene_P: gene-wise p-value; nSNPs: number of SNPs included in the 
computation of gene-wise p-value; Leading_SNP: most associated SNP in the gene. 
  

We then went further on to test the biological pathways that are more likely to be 

implicated with the occurrence of disease activity and, starting from the gene-based p-

values we performed a gene-set enrichment analysis using the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) repositories as reference. Table 3.11 lists the top enriched 

pathways. Once again there are no results surviving multiple testing correction but 

among the topmost nominally associated pathways several are immune-related and 

include NOD-like receptor signaling pathway

- suggesting that, as expected, 
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immunological processes play a key role in determining breakthrough inflammation 

during disease course.   

 
Table 3.11: KEGG biological pathways most enriched in genes associated with NEDA-3  

KEGG pathway Size LE ES NES PValue FDR 

NOD-like receptor signaling pathway 160 66 0.49 1.24 0.001 0.707 

Autoimmune thyroid disease 48 18 0.59 1.40 0.006 0.598 

Hepatitis B 140 46 0.50 1.24 0.006 0.742 

Renin-angiotensin system 20 8 0.66 1.47 0.006 0.307 

Riboflavin metabolism 8 2 0.77 1.51 0.012 0.322 

Nicotinate and nicotinamide metabolism 29 10 0.61 1.40 0.016 0.451 

Toll-like receptor signaling pathway 96 34 0.49 1.22 0.021 0.694 

Bile secretion 70 35 0.51 1.25 0.024 0.765 

Taste transduction 80 44 0.49 1.20 0.039 0.763 

Cytosolic DNA-sensing pathway 59 19 0.51 1.24 0.043 0.690 

Biological pathways enriched in genes associated with NEDA-3, based on the KEGG database. 
LE: number of leading edges; ES: enrichment score; NES: normalized enrichment score; FDR: 
false discovery rate. Results are listed according to the nominal p-value. 
 

3.3.1.3.2 TFR 

We then repeated the same process for the TFR analysis. Table 3.12 shows the 

10 genes with the highest association to TFR and Table 3.13 lists the top pathways 

enriched for genes associated with TFR. 

Again, among the top-associated pathways, most were related to immune functions such 

RIG-I-like receptor signaling pathway -Barr virus 

-

supporting the main role played by inflammatory pathways in mediating inflammatory 

disease activity. Besides, there were also some results pointing to pathways involved in 

Inositol phosphate metabolism , 

Pantothenate and CoA biosynthesis

Nicotinate and nicotinamide metabolism -3). 
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Table 3.12: Top 10 genes associated with TFR in the meta-analysis 
CHR GENE Gene_P nSNPs Leading-SNP 

19 MUM1 1.40E-05 79 rs11668543 

3 TOPAZ1 1.70E-05 254 rs10510741 

6 LOC100506804 8.60E-05 52 rs171263 

2 FBXO48 1.02E-04 72 rs112407290 

12 LOH12CR1 1.03E-04 376 rs35908046 

19 NDUFS7 1.14E-04 72 rs11668809 

11 MIR4492 1.17E-04 51 rs12282752 

11 BCL9L 1.31E-04 70 rs12282752 

3 TCAIM 1.98E-04 187 rs36051440 

6 LOC101929239 2.33E-04 121 rs1830735 

CHR: chromosome; Gene_P: gene-wise p-value; nSNPs: number of SNPs included in the 
computation of gene-wise p-value; Leading_SNP: most associated SNP in the gene. 
 
 
Table 3.13: KEGG biological pathways most enriched in genes associated with TFR  

KEGG pathway Size LE ES NES PValue FDR 

RIG-I-like receptor signaling pathway 66 30 0.54 1.35 0.005 0.639 

PI3K-Akt signaling pathway 339 116 0.43 1.16 0.008 0.679 

Hepatitis B 140 55 0.47 1.23 0.008 0.687 

Epstein-Barr virus infection 192 73 0.46 1.20 0.009 0.670 

Gastric cancer 147 49 0.47 1.22 0.01 0.687 

Toll-like receptor signaling pathway 96 35 0.47 1.22 0.028 0.683 

Herpes simplex infection 171 68 0.44 1.17 0.029 0.683 

Inositol phosphate metabolism 69 26 0.49 1.22 0.033 0.686 

Protein digestion and absorption 84 41 0.47 1.20 0.044 0.669 

Pantothenate and CoA biosynthesis 19 10 0.59 1.35 0.056 0.600 

Biological pathways enriched in genes associated with TFR, based on the KEGG database. LE: 
number of leading edges; ES: enrichment score; NES: normalized enrichment score; FDR: 
false discovery rate. Results are listed according to the nominal p-value. 
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3.3.2 Transcriptomic study  
Four out of 187 samples with available gene expression data were excluded 

because they failed quality control checks on extracted RNA, whereas another sample 

was discarded for the suboptimal quality of library preparation. In the end, gene 

expression information was available for 182 patients with an overall high quality of the 

sequencing data, as shown in Figure 3.16 with a median depth of 54.7 million reads 

(range 39.1 - 602.2). On average 28.4 million reads per patients were mapped to 

GENCODE features, for a total of 55,765 features identified. After filtering, 40,207 

features remained for further processing. 
 

 
Figure 3.16: Quality controls results for RNA sequencing data. The picture illustrates the 
distribution of Phred scores for the sequenced bases for each sample. Phred score is a quality 
score that is logarithmically related to the base-calling error probabilities (Pe), so that when 
Phred score = 20, Pe = 10-2, when Phred score = 30, Pe = 10-3. The x-axis reports the Phred 
score and the y-axis the count of bases with that corresponding score. 
 

A hierarchical clustering and PC analysis were performed to rule out the presence of 

significant impact of library preparation batches, previous treatments and age on gene 

expression signature. On the contrary, we found a strong segregation between females 

and males patients (Figure 3.17), thus we included gender as a covariate in the 

subsequent analyses. Moreover, the analysis of the Cook distance allowed the 

identification of 5 additional samples classified as outliers who were excluded from 

further processing. 
 



68 
 

 
Figure 3.17: Principal component analysis to evaluate the impact of gender on gene 
expression data. The diagram shows a plot of the first 2 principal components (PCs) colored 
according to gender (F= females, M= males) . x-axis and y-axis reports the proportion of 
variance explained by the 1st and 2nd PC respectively.  

 

3.3.2.1 NEDA-3 

Among the 177 patients considered for the differential expression analysis, 60 

(34%) had a stable disease during follow-up while 117 (66%) experienced disease 

reactivation (EDA). Table 3.14 shows the 6 differential expressed genes (DEGs) that 

were detected by the analysis. 

 
Table 3.14: Differentially expressed genes according to NEDA-3 outcome  

DEG Log2FC p-value FDR 

XIST -3,42 1,56E-19 4,34E-15 

HBA2 -1,50 4,28E-10 5,94E-06 

HBA1 -1,35 8,64E-07 7,08E-03 

UTS2 -1,05 2,95E-06 1,64E-02 

PCDHGB2 -0,57 5,11E-06 2,36E-02 

MTRNR2L12 -1,28 6,33E-06 2,51E-02 

DEG: differentially expressed gene; Log2FC: base 2 logarithm of the fold-change; p-value: 
nominal association p-value; FDR: false discovery rate.  
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Among the significant DEGs it is to note PCDHGB2, Protocadherin Gamma Subfamily 

B2, member of a large family of cadherin-related genes that are highly expressed in 

brain; it has been hypothesized to play a role le in cell adhesion, cellular interactions 

and regulation of the brain vasculature (Gabbert et al, 2020).  

 

3.3.2.2 Clinical activity 

Similarly to what done for the NEDA-3 outcome, we compared gene expression 

profiles in 65 patients (37%) that experienced at least one relapse during the 4-year 

observation period and 112 subjects who did not (63%). DEGs that survived multiple 

testing correction are reported in Table 3.15. 
 

Table 3.15: Differentially expressed genes according to clinical activity during follow-up  
DEG Log2FC p-value FDR 

RP11-632C17_A.1 -0,98 1.32E-06 0.03 

CLTB 0,25 2.77E-06 0.03 

HIST1H3J 0,62 3.24E-06 0.03 

RP11-359M6.3 -1,01 5.73E-06 0.04 

HIST1H3G 0,68 8.24E-06 0.04 

HIST1H2AB 0,59 8.67E-06 0.04 

HIST1H2BB 0,58 1.16E-05 0.04 

HIST1H3A 0,31 1.25E-05 0.04 

HIST1H1B 0,51 1.27E-05 0.04 

HIST1H2AI 0,38 1.65E-05 0.05 

DEG: differentially expressed gene; Log2FC: base 2 logarithm of the fold-change; p-value: 
nominal association p-value; FDR: false discovery rate.  
 
It is easily noted that most of the DEGs codes for histones, highly conserved proteins 

that regulate chromatin state thus modulating genes accessibility and expression as well 

as DNA replication. Post-transcriptional histone modifications are key regulators of 

transcriptional activities involved in several biological processes and have also been 

suggested to influence MS pathophysiology (He et al, 2018).   
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3.3.3 Integrated pathway analysis 
As a first step of integration of the different -omics information derived from our 

cohorts, we performed a pathway analysis starting from the results of the previous 

analyses.  The underlying hypothesis is that genes that show a mild-to-moderate genetic 

association and/or differential expression but does not satisfy the stringent threshold for 

multiple testing correction, can possibly interact through common molecular and 

biological processes, thus contributing to disease inflammatory mechanisms. 

Table 3.16 and 3.17 lists the top-10 associated pathways for the NEDA-3 and clinical 

relapse endpoint. 

Systemic lupus 

erythematosus

outcomes, again stressing the key role of immune-relates processes in possibly 

influencing disease activity.  
 
Table 3.16: KEGG biological pathways most enriched in genes associated with NEDA-3 in 
the genetic and/or transcriptomic study  

KEGG pathway Size Ob Ex ER p-value FDR 

Systemic lupus erythematosus 133 31 14.09 2.20 1.59E-05 0.005 

Proteasome 45 13 4.77 2.73 0.001 0.080 

Necroptosis 162 31 17.16 1.81 0.001 0.080 

Natural killer cell mediated cytotoxicity 131 26 13.87 1.87 0.001 0.090 

Renin-angiotensin system 23 8 2.44 3.28 0.002 0.092 

Tuberculosis 179 32 18.96 1.69 0.002 0.092 

Alcoholism 180 32 19.06 1.68 0.002 0.092 

Phagosome 152 28 16.10 1.74 0.002 0.092 

Pathways in cancer 526 76 55.71 1.36 0.003 0.092 
Kaposi sarcoma-associated herpesvirus 

infection 186 32 19.70 1.62 0.004 0.120 

Biological pathways enriched in genes associated with NEDA-3, based on the KEGG database. 
Size: number of genes in the pathway; Ob: number of input genes observed in common with the 
pathway; Ex: expected number of common genes; ER: enrichment ratio; FDR: false discovery 
rate.  
 
Moreover, for the analysis of relapse activity we also found other 7 significantly 

enriched pathways: noteworthy, most of them are involved in processes of cell 
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-  

 
Table 3.17: KEGG biological pathways most enriched in genes associated with relapse 
activity in the genetic and/or transcriptomic study  

KEGG pathway Size Ob Ex ER p-value FDR 

Systemic lupus erythematosus 133 59 16.24 3.63 0.00 0.00 

Alcoholism 180 63 21.98 2.87 8.88E-16 1.45E-13 

Viral carcinogenesis 201 48 24.54 1.96 2.52E-06 2.74E-04 

Proteasome 45 15 5.49 2.73 1.76E-04 0.014 

Huntington disease 193 41 23.57 1.74 2.29E-04 0.015 

Alzheimer disease 171 37 20.88 1.77 3.13E-04 0.017 

ECM-receptor interaction 82 21 10.01 2.10 0.001 0.030 

Necroptosis 162 34 19.78 1.72 0.001 0.039 

Human papillomavirus infection 339 59 41.39 1.43 0.003 0.098 

Transcriptional misregulation in cancer 186 36 22.71 1.59 0.003 0.100 

Biological pathways enriched in genes associated with relapse activity, based on the KEGG 
database. Size: number of genes in the pathway; Ob: number of input genes observed in 
common with the pathway; Ex: expected number of common genes; ER: enrichment ratio; FDR: 
false discovery rate.  
 

3.3.4 Considerations 
Through the genomic analysis exposed in this section we tried to highlight genes 

and biological pathways that are likely to influence the occurrence of inflammatory 

activity in RRMS patients. First of all, we searched for genetic markers associated with 

clinical relapses and overall disease activity (also considering MRI information and 

disability) and, even if we failed to identify genome-wide significant signals after 

multiple testing correction, we found some interesting loci with a suggestive level of 

association. In particular, when analyzing the NEDA-3 outcome we found an interesting 

association on chromosome 2 near the SERPINE2 gene, on which a putative eQTL 

effect has also been reported. Given the role of SERPINE2 in the brain, where it is 

highly expressed and secreted by neurons and glial cells, it represents an attractive 

candidate gene for implication in inflammatory disease activity. Recently, several 

reports have suggested that the coagulation cascade is activated in the brain of MS 

patients and can contribute to the pathogenesis of MS lesions (Parsons et al, 2017; 
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Göbel et al, 2016); indeed, thrombin, a serine-protease with pleiotropic functions that is 

generated as a results of the coagulation cascade activation, has been shown to regulate 

blood brain barrier (BBB) permeability (Sweeney et al, 2018) and can modulate 

immune activation (Jordan et al, 2021). A proteomic study that evaluated CSF markers 

in patients with MS and other neurological diseases found that among the differentially 

expressed proteins there was an enrichment of molecules involved in complement and 

coagulation cascades and platelet degranulation (Shi et al, 2021), further supporting its 

involvement in the disease. Finally, a recently published work found an association 

between genetic polymorphisms in prothromobotic genes and MS (Abbadessa et al, 

2022). Thus, in our opinion, the effect observed on chromosome 2 support further 

investigations and a replication in independent cohorts of RRMS patients to confirm the 

association.  

Another interesting variant that warrants further examination has been identified on 

chromosome 7, close to the EGFR gene, when exploring the TFR outcome. EGFR is a 

member of the ErbB receptors family that has been implicated in demyelination and 

neurodegeneration, also through the induction of necroptosis (Hu et al, 2021). EGFR 

has been shown to mediate neuregulin-1 activity in the regulation of oligodendrocytes 

differentiation (Ding et al, 2021) and also interact with LINGO1 (Lee et al, 2014), 

whose targeted blockage through monoclonal antibodies has been proposed as a 

possible treatment to enhance remyelination in optic neuritis and MS (Klistorner et al, 

2018; Tran et al, 2014). If confirmed in larger independent datasets, this result suggests 

that local processes taking place in the CNS and not directly correlated with immune 

cells infiltration play a key role in modulating the occurrence of inflammatory disease 

activity and, in the long term, can support the evaluation of new therapeutic strategies 

for MS. Indeed, our result is in line with previous reports that investigated genetic 

association with MS phenotype and failed to identify the expected enrichment of 

immune-related genes outside the MHC locus (Jensen et al, 2010), while reporting 

association with genes related to neural processes such as glutamate signaling and axon 

guidance (Baranzini et al, 2009, 2010). 

Similar results were obtained in the transcriptional study. After accounting for the effect 

of gender, that seemed to drive most of the variability of the transcriptomic information 

in our cohort, only few DEGs were identified for both outcomes: among the most 
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interesting elicited genes in the NEDA-3 analysis there was PCDHGB2, that is involved 

in cell-adhesion and regulation of brain vasculature (Gabbert et al, 2020), while DEGs 

from the relapse outcome were enriched in histone proteins, which are key genes for 

gene expression regulation and have been associated with MS susceptibility and 

neurodegeneration. Taken together these findings suggest an important role for non-

immune mechanisms regulating cell survival, remyelination and BBB permeability in 

determining disease activity. 

The same conclusions also derives from the output of the pathway analysis that 

integrated the results obtained from the genetic and transcriptomic studies; not only 

immune- erythematosus

pathways involved in processes of cell regulation, cellular stress response and cell death 

prioritized by the analysis, confirming the importance of these cellular mechanisms for 

MS pathophysiology. 

 

3.4 Immune analysis 
In the immune sub-study we further characterized our patients by evaluating 

their immunological features through TCR sequencing.  

TCR sequencing is a quite novel high throughput technology based on multiplex PCR 

that allows for the detection of tens thousands of rearranged TCR sequences, allowing 

to retrieve highly detailed information on the characteristics of an individual  immune 

repertoire.  

TCR consists of 2 chains, called alfa and beta in the vast majority of cases, each one 

having a constant (C) and a variable region; in turn, the variable region is made of gene 

segments called V, J and, for the beta chain only, D segments.  

Specifically, 52 V, 2 D and 13 J gene segments exist for the beta chain, as well as 

almost 70 V segments and 61 J segments for the alfa chain. During their development in 

the thymus, T cells undergo a genetic rearrangement so that one segment of each V, D 

and J class is selected to be part of the variable region, thus allowing for a great level of 

variety due to the many combinatorial possibilities (Figure 3.18). Moreover, during the 

joining process additional nucleotides are randomly inserted or deleted at the 

rearrangement junctions, further increasing the level of diversity generated by the 
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process (Janeway et al, 2001). In particular, the greatest variability is concentrated in a 

region called hypervariable region 3, or complementarity-determining region 3 (CDR3), 

that is the main responsible for antigen recognition. 

 

 
Figure 3.18: Schematic overview of the V(D)J recombination occurring in the alfa and beta 
chains from Janeway et al. (Janeway et al, 2001). VJ segments are available for the TCR alfa 
chain while VDJ segments were present at the TCRbeta locus.  
 
It is estimated that this process can generate up to 1015-1020 different TCR sequences, 

however the number of actual sequences produced in a single individual, that is, his 

immune repertoire, is not exactly known and is likely much lower, in the range of 107-

108. Moreover, the number and characteristics of the TCR sequences are influenced by 

factors, such as previous infections and diseases (Goronzy et al, 2015), and in turn 

affect the spectrum of antigens that can be recognized by the specific subject (Arnaout 

et al, 2021). 

By retrieving information on the variability of the immune repertoire, TCR sequencing 

represents a new and attractive tool to investigate the immunological status of people 

with MS and other autoimmune disorders (Wu et al, 2021). Several information can be 

derived through TCR sequencing, among which we identify two main types:  1) 

measures of overall repertoire diversity, that is defined using parameters such as 

richness (the number of different TCR sequences identified in a sample), evenness (a 

measure of the homogeneity in TCR sequencing distribution) or combination of these 

two, e.g. Simpson clonality (SC) (Figure 3.19 A, B and C); 2) information on TCR 

specificity, that is, on the exact sequence of the CDR3 region and its characteristics that 

are tightly linked to the spectrum of antigens recognized by the TCR (Figure 8.2 D).  
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In our analysis we focused on SC, as a summary measure of immune repertoire 

characteristics, which has already been associated with MS activity in patients treated 

with autologous stem cell transplantation (ASCT)(Muraro et al, 2014; Hayashi et al, 

2021; Amoriello et al, 2020). 
 
Figure 3.19: Schematic representation of measures of immune-repertoire characteristics 

 
A: Richness is defined by the number of different TCRs identified in a sample, irrespective of 
their frequencies; in the example both repertoire 1 and 2 have a richness of 3. B: Evenness is a 
measure of how homogeneously the TCRs are distributed and ranges from 0, lowest evenness 
possible, to 1 when all the TCRs are equally numerically represented; in the example both 
repertoire 3 and 4 have the same evenness=1. C: simpson clonality is a diversity measure that 
takes into account both richness and evenness in the same index. D: Specificity is related to the 
nucleotidic and aminoacidic sequence and their properties to bind antigens; in the example 
repertoire 5 and 6 have the same richness and the same evenness but completely differ for 
antigen specificity. 
 

Among 187 subject who were sampled before a first-line treatment start to generate 

TCR repertoire data, 4 failed the QCs; a total of 183 patients were included in further 

analyses. At the end, high quality sequencing data were obtained for the included 

samples (89.7% of clusters passing the QC filters). 

Overall, we obtained 20,737,796 productive sequences, on average 113,321 per patient 

(range 33,842  289,477), that correspond to a mean of 76,423 unique clonotypes per 

sample (range 29,229  144,391)(Figure 3.20).  

After the down-sampling procedure, 33,841 productive sequences for each patient were 

considered, corresponding to a mean of 26,762 unique clonotypes per patient (range 

10,883  32,927). 
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Figure 3.20: Distribution of the number of productive clonotypes per sample. The x-axis 
shows the number of unique clonotypes; the y-axis shows the count of samples with a number of 
unique clonotypes included in the interval displayed in the x-axis. 
 
The mean value of SC calculated on the down-sampled dataset was 0.035 (range 0.006 

 0.22)(Figure 3.21): as expected from the general population, the value of SC was 

skewed towards 0. There was a high correlation between the SC calculated on the 

original dataset and the one calculated after down-sampling (r 0.99, p-value <0.0001), 

suggesting that the repertoire size reduction does not bias the diversity estimation. 

 

 
Figure 3.21: Simpson clonality distribution. The x-axis shows the value of Simpson clonality; 
the y-axis shows the count of samples with clonality values included in the interval displayed in 
the x-axis. 
 

We then tested the correlation between SC and the main baseline variables, to identify 

the possible confounders to be included as covariates in the regression model. 

As expected, we found a strong correlation between SC and the age at sampling (rho 

0.37, p-value 2.4 e-7, Figure 3.22 A), with an increase in SC in older patients. We also 

found a significant difference in mean clonality in males (mean SC 0.043) compared to 
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females (mean SC 0.03, p-value 0.02)(Figure 3.22 B). Therefore, gender and age at 

sampling were included as covariates when analyzing the correlation between SC and 

the clinical outcomes. 
 

 
Figure 3.22: Correlation of Simpson clonality with age at sampling and gender. A) SC tends 
to increase with increasing age at sampling; B) The mean value of SC was higher in males 
compared to females patients.  
 

3.4.1 NEDA-3 
First, we evaluated if there was a difference in SC among patients who showed 

disease activity during the 4-year follow-up or had a stable disease and we found that 

NEDA patients had a significantly higher baseline SC compared to subjects with EDA 

(mean SC 0.041 vs 0.033 respectively, p-value 0.0036)(Figure 3.23 A).  

In order to test the prognostic value of SC in predicting disease status at 4-years, we 

then divided 

groups by dividing patients according to the median value of SC. In a univariable 

regression model, SC was predictive of NEDA status at 4-years, the 

group having a lower risk of disease reactivation in the observation period (OR 0.33, 

p:0.001)(Figure 3.23 B). 

In order to account for possible confounders, we the run a multivariable analysis 

including gender and age at sampling as covariates, together with the ARR in the year 

prior to sampling and the number of active lesions at baseline MRI that were associated 

with the clinical outcome. After correction for these parameters, the association of SC 

with the NEDA endpoint was reduced but still statistically significant (OR 0.43, p-value 

0.028). 
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Figure 3.23: Correlation of Simpson clonality with NEDA-3 outcome. A) Patients with NEDA 
have a higher SC compared to patients with disease reactivation during follow-up. B) When 
dividing patients according to the median value of SC, subject  a 
higher risk of disease activity during follow-  subjects. 
 

3.4.2 TFR 
Similarly, when exploring the TFR endpoint we first tested whether patients 

with and without at least one clinical relapse during follow-up differed in terms of SC; 

no statistically significant differences were identified (SC value 0.031 vs 0.037 in 

patients with and without relapses, p-value 0.39).  

Even if SC was not predictive of the occurrence and/or time to relapse, we did find a 

(HR 0.76, p-value 0.27 in the 

univariable analysis)(Figure 3.24). 
 

 
Figure 3.24: Trend towards an earlier TFR in low clonality. 
group showed a non-significant trend towards an earlier time to first relapse compared to 
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3.4.3 HLADRB1*1501 association with Simpson clonality 
Finally, given the known association of the HLADRB1*1501 with MS 

susceptibility (Patsopoulos et al, 2013) and disease activity (Barcellos et al, 2003), we 

tested its relationship with SC. We took advantage of the availability of genetic data for 

the CC and extracted genotype information on rs3135388, the tagging SNP for 

HLADRB1*1501. We then grouped the carriers of the A allele and compared their 

mean value of SC with that of GG subjects: A carriers showed a slightly lower 

repertoire diversity compared to non-carriers (SC value 0.04 vs 0.03 in A carriers vs CC 

individuals, p-value 0.05)(Figure 3.25). 

 

 
Figure 3.25: Association of Simpson clonality with HLADRB1*1501. Carriers of the A allele 
in rs3135388 showed a higher mean value of SC compared to GG subjects. 
 

When including the HLADRB1*1501 in the prognostic model, the association between 

SC and NEDA-3 status was still significant (OR 0.42, p-value 0.027). 

 
3.4.4 Considerations 

In this study section we explored the relationship between immune diversity and 

MS inflammatory disease activity. TCR repertoire diversity indexes have been shown to 

correlate with MS status (Hayashi et al, 2021) as well as with the effect of MS 

treatments (Harris et al, 2020; Muraro et al, 2014; Amoriello et al, 2020). Hence, in the 

present work we focused on SC that is an established and concise measure of TCR 

repertoire heterogeneity. 

As expected, we found that SC correlates with the age at the time of blood sampling; 

indeed, it is well known that clonality is higher in older individuals as a consequence of 



80 
 

reduced thymic output and immune senescence (Qi et al, 2014; Britanova et al, 2014). 

Moreover, we found a correlation with gender, females showing a more diverse 

repertoire, which was already reported in previous investigations (Britanova et al, 

2016). Therefore, we took into account these possibly confounding factors and we 

found that repertoire diversity was associated with the occurrence of breakthrough 

disease activity at 4-years as measured using the NEDA-3 criterion. Indeed patients 

with clinical stability during observation retrospectively showed a higher mean value of 

SC compared to patients with EDA. Moreover, when evaluating the prognostic value of 

SC we confirmed that patients with lower clonality displayed a significantly higher risk 

of inflammation during follow-up (79% vs 56%), both in the univariable and 

multivariable analysis. On the other hand, no statistically significant associations were 

found between SC and TFR but, qualitatively, there was a trend towards a higher risk of 

early relapses in patients with more diverse repertoires, as shown in Figure 8.6. Besides, 

the association was still present when accounting for the presence or absence of the risk 

allele HLADRB1*1501, which in turn can influence immune repertoire diversity by 

restricting the spectrum of recognized antigens. 

These results seem to suggest that immune repertoire characteristics are in some way 

related to the risk of disease reactivation and can potentially help in patients 

stratification. Noteworthy, our results are in line with previous reports showing a more 

diverse repertoire in MS patients compared to controls (Hayashi et al, 2021; Alves 

Sousa et al, 2019). Besides, other works that analyzed the immune repertoire of MS 

patients treated with different DMTs also showed a shrinkage in TCR diversity during 

treatment that is consistent with our findings (Jones et al, 2013; Ruck et al, 2018; 

Chiarini et al, 2015; Warnke et al, 2013). Indeed, treatment with highly active drugs 

that act with different mechanisms of action, such as alemtuzumab, natalizumab and 

fingolimod have all been demonstrated to induce a reduction in TCR repertoire 

expansion.  

It has been suggested that the reduction in immune repertoire diversity can reflect a 

decrease in the recognition of CNS auto-antigens and antigen spreading induced by  

treatment leading to a reduced T-cell expansions both in CSF and peripheral blood.  

Interestingly, for both NTZ (Warnke et al, 2013) and ALEM (Jones et al, 2013; Ruck et 

al, 2018), these changes in TCR repertoire dynamics have also been associated with the 
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risk of developing adverse events, such as PML during NTZ and secondary autoimmune 

disorders in ALEM; clonally restricted repertoires can be associated with a reduced 

immune surveillance increasing the risks of infections, or be linked to hyper-expansion 

of auto-reactive clones associated with autoimmune manifestations. 

In conclusions, all these findings suggest that immunological profiling of RRMS could 

help in stratifying patients according to their risk of disease recurrence and can also aid 

in the identification of subjects that are at higher risk of developing side effects from 

specific drugs.  

 
3.5 Predictive model 

In this last part of the study, thanks to a collaboration with the University of 

Milan, we used machine learning (ML) techniques to integrate the different layers of 

information collected on the two cohorts, in order to test their contribution in predicting 

disease activity at 4 years. 

The features selection procedure allowed to identify 63 and 66 variants that were 

selected in at least 3 of 5 hold-outs in the EC and CC respectively, which represented 

the input for the ML algorithm. Among these, 4 and 13 variants were selected in all the 

5 hold-outs in the EC and CC respectively.   

We then evaluated the performances obtained applying four classifiers: linear support 

vector machine (LSVM), decision trees (DTs), random forests (RFs) and Multi-layer 

perceptron (MLP) classifiers.  

 

 
Figure 3.26: AUROC and AUPRC of the models tested on 5 hold-outs in the CC. AUROC and 
AUPRC values calculated on 5 hold-outs of the CC using both clinical and genetic data.  
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Figure 3.27: AUROC and AUPRC of the models tested on 5 hold-outs in the EC. AUROC and 
AUPRC values calculated on 5 hold-outs of the EC using both clinical and molecular data.   
As expected, model predictivity in terms of area under the receiver operating 

characteristics (AUROC) and area under the precision-recall curve (AUPRC) was better 

in the larger EC compared to CC (Figure 3.26 and 3.27). 

At first glance, RF models trained in clinical and molecular data seem to obtain the best 

predictivity according to the AUROC but the variance of estimated performance is quite 

large (Figure 3.26 A and 3.27 A); hence we selected as more predictive the LSVM 

classifier, based on its results in terms of AUPRC (Figure 3.26 B and 3.27 B). 
 
Table 3.18: Performance of the LSVM classifier applied to clinical, genetic and integrated 
data 

Cohort Model Accuracy AUROC AUPRC 

CC 

Clinical 0,62±0,019 0,66±0,019 0,55±0,022 

Genetic 0,54±0.034 0,56±0,032 0,49±0,026 

Ensemble WA 0,54±0,034 0,56±0,031 0,48±0,026 

Ensemble PR 0,62±0,093 0,57±0,028 0,46±0,023 

Combined 0,56±0,033 0,65±0,045 0,57±0,036 

EC 

Clinical 0,87±0,001 0,62±0,016 0,27±0,014 

Genetic 0,70±0,031 0,60±0,016 0,22±0,018 

Ensemble WA 0,70±0,031 0,60±0,015 0,22±0,018 

Ensemble PR 0,70±0,031 0,60±0,017 0,23±0,014 

Combined 0,70±0,033 0,61±0,016 0,24±0,019 

The table displays predictivity metrics for the LSVM classifier applied on clinical, genetic and 
integrated data. The performance was evaluated on 5 hold-outs obtained splitting the cohorts 
with a 80-20% ratio. Ensemble WA: weighted average ensemble; Ensemble PR: perceptron-
based ensemble; Combined: model obtained by simply aggregating clinical and molecular data. 
  
Table 3.18 reports the predictive metrics of the LSVM classifier applied to clinical and 

genetic data as well as their combination, obtained through simple aggregation or 

ensembles approach. 
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The best predictive performance is obtained by applying LSVM to the clinical data 

alone while genetic data alone have a modest prognostic power. Also the integration of 

clinical with molecular data does not confer a significant increase in the predictive 

power, irrespective of the method used for data integration (aggregation vs ensembles 

approach). 

However, it is worth noting that when aggregating clinical, immunological and genetic 

data (combined approach) in the CC dataset, for which we also have immune repertoire 

data, the overall predictivity is comparable to the clinical-only model but there is an 

increase in the AUPRC, suggesting a modest benefit from the integration of molecular 

data. 
 
3.5.1 Considerations 

In this last section of the study we tried to combine the different layers of 

clinical, genetic and immunological information into an integrated model to predict 

disease activity. To this end, we applied ML methodologies testing different statistical 

models and diverse ways to combine omics data. 

In our analysis simpler models such as LSVM, that perform linear classification, 

achieved the best predictive performance and the highest accuracy was obtained 

considering clinical parameters alone. Overall, the addition of molecular features 

seemed not to provide a benefit on model predictivity; however, in the CC, the 

aggregation of clinical and molecular data led to a slight increase in the performance 

evaluated using AUPRC compared to the clinical model, suggesting a possible 

advantage with the inclusion of genetic and immunological parameters. 

Recently, due to the advancements in artificial intelligence (AI) methodologies, several 

studies have applied ML to the MS field, in particular to MRI data to perform lesion and 

tissue segmentation (Danelakis et al, 2018; Gabr et al, 2020) and to aid in the 

differential diagnosis with other CNS diseases (Eshaghi et al, 2015, 2016; Kim et al, 

2020).  

A few studies applied AI to clinical data, mainly derived from electronic health records, 

in order to predict disease activity and progression; these works evaluated different 

statistical models reporting predictive performances that are very similar to ours 

(AUROC ~0.65-0.70)(Ahuja et al, 2021; Walsh et al, 2022; De Brouwer et al, 2022), 

confirming the importance of taking into account disease history and characteristics 
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when assessing MS patients. A study that aimed to predict the conversion to SPMS and 

the accumulation of severe disability at 6 and 10 years from first evaluation (Pinto et al, 

2020) reported a higher predictive performance, with an AUROC up to 0.86, 

considering longitudinal clinical data. Similarly, another paper investigating predictors 

of conversion to SPMS observed that considering longitudinal clinical information 

provided a significant benefit to the predictive power of the tested models (Seccia et al, 

2020), with the drawback that these types of data are not always available and not 

applicable to newly diagnosed patients in a very early phase of the disease. 

In addition to these clinical studies, a previous paper applied ML to investigate the 

correlation between 113 candidate gene variants and disease progression and selected 

19 associated SNPs located near genes implicated in cytotoxicity of immune cells, 

complement activation and neuronal functions (Jackson et al, 2020), suggesting that AI 

can aid in the identification of meaningful biological variables associated with disease 

pathogenesis. Moreover, another work applied ML methods to genetic data in MS 

patients to predict treatment response in patients treated with GA (Ross et al, 2017): 

specifically, the authors implemented a multivariable bayesian modeling to forecast 

drug response and detected a 4 SNPs signature with a modest predictive performance 

(AUROC 0.66). 

At the best of our knowledge, our study is the first one to apply ML techniques to 

integrate clinical, genetic and TCR repertoire information in MS. Even though our 

results in terms of predictive performance are comparable to previous studies that relied 

on clinical parameters alone, in the CC we identified a slight increase in the AUPRC 

metric when considering also clinical and immune-repertoire data. 

Altogether, these findings suggest that molecular data, such as genetic polymorphisms 

and immune-repertoire metrics, hold the potential to be used together with clinical 

information in order to prognosticate disease course but currently the identified 

signatures does not confer significant advantages over clinical information alone and are 

not accurate enough to be applied in clinical practice. Further studies on larger cohorts, 

including independent datasets for training and testing of the predictive model, are 

required to investigate the presence of robust and reproducible signatures of molecular 

data to be used in the clinical setting. Moreover the inclusion of MRI data, which 

proved useful in discriminating MS subtypes with different evolution (Eshaghi et al, 
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2021; Wottschel et al, 2014), as well as the addition of neurophysiological (Bejarano et 

al, 2011), or other biological metrics such as sNfL (Thebault et al, 2022) and other 

immune repertoire metrics (Ostmeyer et al, 2017) could possibly further improve 

disease activity prediction. 
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4 Discussion  
MS is a complex disorder, with substantial heterogeneity in terms of pathophysiological 

characteristics, clinical presentation and course and response to treatment,that would 

greatly benefit from a more patient-tailored management 

Nowadays, 14 DMTs are approved for MS treatment and several drugs are being 

developed (Dargahi et al, 2017), which target distinct biological pathways and have 

different benefit-to-risk profiles. No definite recommendations are available to guide 

treatment selection and most patients are started on first-line drugs, shifting to more 

effective compounds when showing signs of disease reactivation. Obviously, this 

approach carries the risk of lesions accumulation and worsening disability. 

Therefore, several attempts have been made to identify a prognostic algorithm to predict 

individual disease course that would allow to select the appropriate treatment based on 

the expected disease severity; consequently first-line treatment would be reserved for 

low-risk patients, thus avoiding possible adverse effects of highly active drugs, while 

more aggressive therapy would be started earlier in patients with poor prognostic 

indicators, maximizing treatment effectiveness. Most of the studies focused on clinical 

parameters which are known to be associated with disease outcomes (Rotstein & 

Montalban, 2019) and applied AI methodologies to construct a prognostic model of 

disease progression (Seccia et al, 2021). Some also considered other types of 

information, such as imaging features (Yoo et al, 2017; Wottschel et al, 2014) and  

neurophysiological parameters (Bejarano et al, 2011), suggesting that the integration of 

clinical data with other biologically relevant features can provide a significant benefit to 

disease prediction.  

From this perspective, the recent improvements in -omics technologies offer an unique 

opportunity to evaluate the contribution of molecular biomarkers in modulating disease 

activity and to shed light into biologically important mechanisms implicated in 

inflammatory activity and/or neurodegeneration, without the n

assumption. 

In the present study, we applied a multi-omics approach to investigate clinical, genomic 

and immunological parameters associated with disease activity and to explore the 

biological processes underlying disease expression.   
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First, we explored clinical parameters associated with disease activity, defined using 

NEDA-3 criterion and TFR. As expected, we found that disease history and 

demographic variables are significantly correlated to subsequent disease course; indeed 

female gender, an earlier age at onset and a shorter disease duration were identified as 

significantly associated with breakthrough disease reactivation.    

We then investigated the presence of genetic and transcriptomic markers of 

inflammatory activity: even though no genome-wide significant variants were 

identified, some signals with a suggestive level of association were detected by the 

GWAS meta-analysis. Specifically, when analyzing the NEDA-3 outcome, we found a 

very interesting association on chromosome 2, near the SERPINE2 gene, which is 

implicated in the regulation of the coagulation system and the modulation of vascular 

permeability. Besides, when considering the TFR outcome, the top signal on 

chromosome 7 mapped in a possible regulatory region close to the EGFR gene which 

represents a very appealing candidate gene for implication with MS disease activity due 

to its role in regulating oligodendrocyte differentiation and remyelination. In addition, 

another interesting signal was found on chromosome 16, in the region coding for CETP 

that has been linked to blood VitD levels. Due to the limited sample size of the included 

cohorts, mainly the CC, these results need confirmation in additional independent 

populations, nonetheless they hint to a possible contribution of these processes in 

modulating disease reactivation.  

Moreover, these findings were strengthened by the results observed in the 

transcriptomic and pathway analyses: among the genes that were found to be 

differentially expressed in patients with and without disease activity there was 
PCDHGB2, which, in fact, has been hypothesized to play a role in regulating brain 

vasculature.  

Next, when integrating the results of the genetic and transcriptomic studies by means of 

a pathway analysis, we found that the immune- Systemic lupus 

erythematosus clinical outcomes; nonetheless, 

several other pathway such as  

 the relapse 

outcome, pointing to the involvement of biological path implicated not only in immune 

functions but largely in cell homeostasis and death and neurodegeneration. Though 
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preliminary, these data demonstrate that the integration of different omics can increase 

the chance to identify and confirm meaningful biological information.  

To further broaden our biological insight into disease activity, we also evaluated the 

impact of TCR repertoire characteristics and found that a higher immunological 

diversity measured using SC seems to correlate with MS reactivation during follow-up, 

mainy when analyzing the NEDA-3 outcomeThese findings are in line with previous 

reports and support the idea that immune repertoire features can represent a useful 

prognostic tool not only for predicting disease activity but also to stratify patients 

according to their risk of adverse events during second-line treatments (Ruck et al, 

2018; Jones et al, 2013; Warnke et al, 2013). 

Finally, encouraged by these results, we applied ML algorithms to clinical, genetic and 

immunological data hoping that a multi-layer model could better capture the complex 

mechanisms underlying MS phenotypic expression, thus performing better compared to 

single-modalities models. However, we found that the best predictive performance was 

obtained applying a LSVM model to clinical information alone (AUROC 0.66 and 0.62 

in the CC and EC respectively) and that the addition of genetic and immunological data 

conferred slight improvement in prognosticating MS activity.  

We are aware that the present study has some limitations that could have impacted our 

findings. First of all, the CC dataset that was used for the multi-omics characterization 

is quite small and could have reduced our statistical power to detect significant 

associations; indeed, for the genetic analysis we took advantage of a much larger 

available cohort to overcome this issue that is particularly important for genetic 

investigations, due to the huge number of considered features. On the other hand, the 

limited sample size allowed us to perform a highly detailed characterization of the 

cohort, both from a clinical and molecular point of view, possibly balancing the reduced 

power. Moreover, we did not include longitudinal data that could have improved the 

predictive accuracy of our model (De Brouwer et al, 2022; Seccia et al, 2020). 

Finally, we did not find an overlap between the GWAS results obtained analyzing the 

NEDA-3 and the relapse activity endpoints but, in our opinion, this is not surprising and 

does not diminish the reliability of our findings. Indeed, even though both outcomes are 

used to assess disease activity, they evaluate quite different and complementary aspects: 

the NEDA-3 outcome, that takes into account MRI activity, is more sensitive but does 
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not discriminate the severity of disease reactivation, so that the occurrence of a unique, 

small, asymptomatic lesion at the brain MRI scan is classified in the same way as a 

serious relapse. On the other hand, when considering relapse activity we are indirectly 

taking into account those  still unknown  factors which cause a lesion to be 

symptomatic. Due to these substantial differences, we decided to consider both 

endpoints and we are not surprised by the lack of overlapping signals. 

In conclusions, our findings have demonstrated that genetic, transcriptomic and immune 

repertoire data can help in deciphering biological processes underlying MS 

pathophysiology and clinical expression and that the integration of different omics 

information can increase the chance to find significant results. On the other hand, the 

predictive power of models integrating the different layers of information is not enough 

for application in clinical practice.  

 

4.1 Next steps 
As mentioned before, the results obtained from the single omics analyses are 

preliminary and further studies are needed to confirm them and to better clarify the 

biological meaning of our findings.  

Specifically, we believe that the  signals identified by the GWAS meta-analyses on 

chromosome 2 and 7 are particularly interesting due to the possible link with genes 

implicated in biological functions relevant for MS pathogenesis and are worth of a 

replication effort; first, we plan to increase our sample size with the inclusion of 

additional independent cohorts of MS patients, thanks to the collaboration with other 

groups, and to test the association of the identified regions with disease activity.  

Then, in the event of a positive replication, we will perform some functional studies to 

better investigate the biological consequences of the identified variants. For the first 

signal on chromosome 2, if replicated in other datasets, we would test whether the 

eQTL effect previously reported on SERPINE2 in blood is confirmed in our population; 

in fact, even if SERPINE2 is more likely to act in the brain, we know that a great 

proportion of eQTL effects are shared among several tissues and, when the cell type of 

interest is not readily available, considering blood eQTL can ease data interpretation 

(Aguet et al, 2017; Liu et al, 2017). On the other hand, for the signal on chromosome 7, 

close to the EGFR gene, we would like to test the role of the identified SNP in 
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modulating its transcription level. Again, EGFR is supposed to play a role by regulating 

myelination in the brain and is not easily measurable at this level; thus, we would 

perform a luciferase reporter assay using cell lines, to evaluate if the variant of interest 

affects gene expression regulation.  

Overall, these functional studies would allow us to better delineate the link between the 

genetic polymorphisms prioritized in the present study and the molecular processes 

implicated in MS pathogenesis. 

Meanwhile, we will also expand the analysis of TCR sequencing data performing a 

repertoire architecture analysis that not only consider the number of TCR sequences 

present in a sample but also assesses their similarity, which reflects the breadth of 

antigens that can be recognized.     

Finally, we already have ongoing collaborations with other European research groups 

that will allow to collect a larger number of MS patients with clinical and multi-omics 

information to test the application of ML algorithms in predicting disease outcomes. 
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5 Patients and Methods 
5.1 Clinical analysis 
5.1.1 Study population 

Patients belonging to both the CC and the EC entered the clinical analysis.  

The inclusion and exclusion criteria differed slightly for the two cohorts, due to the 

different omics to be considered, and are reported below: 

 
5.1.1.1 Inclusion criteria for the CC 

For enrollment in the CC, patients had to satisfy the subsequent criteria: 

- Age > 18 years; 

- RRMS diagnosed according to the 2010 revised McDonald criteria (Polman et 

al, 2011) or subsequent revisions (Thompson et al, 2018) at the time of 

sampling; 

- No ongoing DMT and planned start of a first-line therapy; 

- Willingness to participate in the study and undergo blood sampling after signing 

a written informed consent. 

 

5.1.1.2 Exclusion criteria for the CC 

- Diagnosis of SPMS or PPMS at the time of enrolment; 

- Steroid therapy in the month before blood sampling.  

 

5.1.1.3 Inclusion criteria for the EC 

To be included in the EC, patients had to satisfy the subsequent criteria: 

- Availability of clinical data from the start of a first-line treatment up to 4 years; 

- Availability of genetic information, generated in the context of previous studies; 

- Diagnosis of RRMS at the time of first-line treatment start. 

 

5.1.1.4 Exclusion criteria for the EC 

- Diagnosis of SPMS or PPMS at the time of first-line treatment start.   
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5.1.2 Clinical data collection 
Demographic and clinical data at baseline and during the 4 years of follow-up 

were collected through the revision of clinical reports and the iMED database in use at 

the MS center of OSR. Baseline was set at the time of blood sampling for the CC (that 

for the majority of patients corresponded to the day of drug initiation) and at the time of 

first-line treatment start for the EC; indeed, only genetic data were generated for the EC, 

allowing us to include also patients whose blood samples have been collected during 

treatment, given that treatment does not have an impact on individual genetic 

information on the contrary to the other omics data explored in the CC. 

As for standard clinical practice at our MS center, during treatment patients underwent 

neurological examinations with EDSS assessment every 3 months and a brain MRI scan 

on average once a year. Additional evaluations were conducted in case of new clinical 

symptoms and suspected relapses.  

During each visit, information regarding new neurological symptoms and side effects 

were collected, as well as the results of brain MRI scans in terms of number of new 

and/or enlarging T2 lesions and Gd+ lesions. A relapse was defined as the occurrence of 

new symptoms or worsening of pre-existing disturbances that lasted at least 24 hours 

without fever or signs of infection. 

 

5.1.3 Disease activity outcomes 
The following outcomes were evaluated at the end of the 4 years observation 

period, that take into account both the occurrence of clinical and neuro-radiological 

disease activity and the presence of disability worsening:   

- NEDA-3 (Bevan & Cree, 2014) status, defined by the absence of relapses, 

new/enlarging T2 lesions and/or Gd+ lesions at brain MRI scans and disability 

progression. Patients with missing information and no evidence of disease 

activity or progression during the available follow up, were not included in this 

analysis since we were not able to correctly classify them; 

- TFR (Sormani et al, 2013), defined as the time elapsed from baseline and the 

occurrence of the first clinical reactivation. For this outcome, patients with an 

observation period shorter than 4 years were censored at the date of the last 

available evaluation.  
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5.1.4 Statistical methods 
In order to identify the clinical parameters associated with the outcomes of 

interest we applied a logistic regression model for the binary endpoint NEDA-3 and a 

Cox proportional hazards regression for the TFR; the analyses were performed in both 

univariable and multivariable settings. The regression analysis was performed 

separately in the two cohorts and the results were then meta-analyzed. A p-value 

threshold of 0.01 was considered strongly significant, in order to select variables that 

will be used as covariates in the genetic analyses. 

Specifically, the following baseline parameters that were available in both the CC and 

EC were tested for association: gender, AAO, DD and baseline EDSS. Information 

regarding the number of relapses and of neuro-radiological activity before treatment 

start were not available for most patients in the EC and were therefore not considered in 

neither cohorts.  

All analyses were carried out within R 3.6.1 statistical environment (www.R-

project.org/); The glm function was used to fit logistic and linear regressions and the 

survival package (Therneau, 2020; Therneau & Grambsch, 2000) for the Cox model 

selection. The meta-analysis was performed using the metafor package (Viechtbauer, 

2010). 

 

5.2 Genomic analysis 
5.2.1 Genetic study 

5.2.1.1 Study population 

For the genetic investigation we considered both the CC and EC, in order to take 

advantage of the largest available sample size and increase the power to detect 

statistically significant associations. As for the clinical analysis, a GWAS was 

performed separately in the two cohorts and the results were meta-analyzed. 

 

5.2.1.2 Disease activity outcomes 

Similarly to what done for the clinical analysis, the occurrence of inflammatory 

disease activity during follow-up was evaluated using the NEDA-3 criterion and TFR, 

as previously described.  
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5.2.1.3 Biological samples collection 

Blood samples for DNA extraction and genotyping were obtained before the 

start of a first-line treatment in patients belonging to the CC and all patients signed a 

written informed consent before undergoing blood withdrawal. Biological samples were 

stored in the INSPE biobank at OSR and handled according to national legal regulations 

and applicable laws. 

For the EC, genetic data had already been generated in the context of previous projects 

and no new biological samples were required from the patients.  

 

5.2.1.4 Genotyping and quality controls 

For the CC, DNA extraction has been performed using a standard phenol-

chloroform protocol or the automated Maxwell® 16 Blood DNA Purification System, 

Promega; DNA quality has been assessed with the NanoDrop spectrophotometer and 

agarose gel electrophoresis to test purity and integrity. Genotyping was then performed 

using the HumanOmniExpress-24 BeadChip kit (Illumina®) and iSCan system.  

On the contrary, for the EC genetic data had previously been generated on different 

Illumina® array platforms: Human-660 Quad array, HumanOmniExpress-12 BeadChip, 

HumanOmniExpress-24 BeadChip and HumanOmni- 2.5 BeadChip and deposited in 

the institutional storage server at OSR. 
In order to harmonize the genetic data derived from different arrays and maximize the 

number of SNPs overlapping between the two cohorts and that will be object of the 

meta-analysis, an imputation step was performed on the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu)(Das et al, 2016) using the Haplotype 

Reference Consortium panel as a reference; only SNPs imputed with high quality, 

defined by an R2 > 0.6, were retained.  

Standard per SNPs and per sample QC checks were performed on the two datasets using 

Plink v1.9beta (www.cog-genomics.org/plink/1.9)(Chang et al, 2015). Specifically,  

variants with MAF < 0.01, genotyping rate < 0.97 and p-value for Hardy-Weinberg 

Equilibrium (HWE) <1 e-4 were excluded, as well as subjects with  a call rate < 0.95, 

showing excess cryptic relatedness, sex mismatch or who were outliers according to a 

MDS analysis.  
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5.2.1.5 Statistical analyses 

The GWAS on the NEDA-3 endpoint was performed by applying a logistic 

regression model as implemented in Plink v1.9 beta (Chang et al, 2015) (--logistic 

function) separately in the CC and EC. For each datasets, the first 3 principal 

components (PCs) were included as covariates, together with the clinical parameters 

that were found to be strongly associated with the outcome in the clinical study, that is, 

AAO and DD. A fixed effect meta-analysis was finally performed in Plink v1.9 beta to 

combine the results obtained in the two cohorts. To note, the occurrence of 

inflammatory activity during the observation period was considered the event of interest 

so, when interpreting the results derived from this type of analysis, an OR > 1 identifies 

a factor associated with a higher risk of evidence of disease activity (EDA). 

On the other hand, to test the association with TFR a survival analysis was executed 

within R3.6.1 statistical environment, using the survival package (Therneau, 2020; 

Therneau & Grambsch, 2000) to perform a cox proportional hazard regression (coxph 

function); an additive model was used, that tested the change in event probability over 

time conferred by each extra reference allele. Also in this case the first 3 principal 

components were included as covariates as well as AAO, DD and gender, that were 

found to be significantly associated in the clinical study. For the meta-analysis, we used 

the R package metaphor (Viechtbauer, 2010) (rma function), that integrates the results 

of different datasets using estimated coefficients and standard errors through an inverse-

variance weighting.  

For both analyses, we pre-defined the genome-wide significant threshold at P value < 

5x10-8, which is the generally accepted cut-off for GWAS (Jannot et al, 2015), and also 

considered a suggestive threshold of association at P value < 1x10-5. 

Finally, to ease data interpretation in a more systemic view, we performed a gene-based 

analysis followed by a pathway analysis to detect functional processes that are more 

likely to be involved in CNS inflammation. Specifically, we first integrated SNP-based 

results with the online tools VEGAS2 (Mishra & Macgregor, 2015), that combine p-

values of single variants into a gene coding region (±20 Kb on each side to include 

putative regulatory sequences) to obtain a gene-wise p-value. Subsequently we 

performed a gene set enrichment analysis using the online tool WebGestalt (Wang et al, 
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2017) and testing biological processes included in KEGG repository. Genes were 

ranked based on the negative logarithm to the base 10 of the gene-base p-value. For 

each pathway, the software returns the following details: the number of genes included 

in the pathway; the ES, that indicate the degree to which a gene set is overrepresented at 

the top or bottom of a ranked list;  the number of LE, that is the number of genes 

contributing most to the ES; the NES, that weights the size of the tested gene set and 

allows comparisons between different pathways; an enrichment p-value; FDR value, 

that corrects for the number of gene sets analyzed. 

 

5.2.2 Transcriptomic study 

5.2.2.1 Study population 

In order to explore from different points of view the genes and biological 

processes implicated in disease activity, as an additional step we performed a 

transcriptomic study to evaluate DEGs between patients with and without evidence of 

inflammatory activity during the observation period.  

Opposite to the genetic information that remain constant throughout the life of an 

individual, gene expression is a dynamic process that is markedly affected not only by 

genetic traits but also by physiological and environmental factors. In particular, it is 

well known that drugs and chemicals can possibly induce changes in the transcriptomic 

profile of tissues and cells. In order to account for these possible confounders, we 

included in the transcriptomic analysis only patients belonging to the CC that were 

sampled while untreated, before the start of a first-line drug, to rule out a possible 

interference of the ongoing treatment; moreover, we also excluded patients treated with 

steroids in the month before blood withdrawal and those that had taken other DMTs 

during the 3 months before sampling. Overall, 21 patients out of the 208 were excluded 

due to previous treatments and the remaining 187 were included in the transcriptional 

analysis. 

 

5.2.2.2 Disease activity outcomes 

In order to perform a differential expression analysis using the DESeq2 tool, as 

detailed below, a dichotomous outcome is required. Therefore the NEDA-3 outcome 

was applied as described for the clinical and genetic analysis, while the TFR endpoint 
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was not amenable to this type of study and was modified into a binary outcome by 

classifying patients into two groups: patients experiencing at least one clinical relapse 

during follow-up, irrespective of the time of onset, and clinically stable patients. 

 

5.2.2.3 RNA extraction and alignment 

Total RNA from whole blood was extracted using the PAXgene blood miRNA 

kit (Qiagen®) followed by RNA quantification and quality checks using Qubit assay 

(ThermoFisher®) and TapeStation (Agilent Technologies®). RNA libraries were 

prepared using the TruSeq Stranded Total RNA with Ribo-Zero Globin kit (Illumina®) 

and paired-end sequencing was performed on the Illumina NovaSeq6000 platform 

pital, Milan. Reads 

Reads were then aligned to the hg19 genome assembly using the STAR software and 

alignment quality was tested using the MultiQC tool. Finally, reads assignment was 

performed with the featureCounts R function using the GENCODE hg19 build for 

annotation (www.gencodegenes.org/human/release_33lift37.html), that also includes 

pseudogenes and non-coding RNAs. 

 

5.2.2.4 Statistical analysis 

Transcripts with low reads counts (<100 reads in the whole dataset) were filtered 

out and a normalization procedure based on median ratios of transcript counts, to 

accommodate for different sequencing depth in samples, was performed; besides, 

samples which resulted to be outliers according to the Cook distance calculation were 

also discarded.  

Before starting the differential gene expression analysis, we explored the presence of 

technical and clinical variables influencing the transcriptomic signature by means of 

PCA analysis and hierarchical clustering, in order to identify the parameters to be 

included in our statistical model. Finally we performed a differential gene expression 

analysis as implemented in the DESeq2 Bioconductor tool (www.bioconductor.org) 

(Love et al, 2014) that assumes a binomial negative distribution. DEGs with a FDR 

<5% were considered significant. 
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5.2.3 Integrated pathway analysis 

5.2.3.1 Statistical analysis 

In order to integrate the results from the genetic and trasncriptomic studies we 

performed an over-representation analysis by means of an hypergeometric test as 

implemented in WebGestalt online tool, using the KEGG pathway database as reference 

repository. For both the NEDA-3 and TFR outcome we selected those genes that were 

nominally associated with the outcome (p<0.05) in the genetic and/or the transcriptomic 

analysis and tested their functional enrichment using pathways derived from the KEGG 

repository. 

 

5.3 Immune analysis 
5.3.1 Study population 

Similarly to the transcriptomic analysis, the investigation of immune repertoire 

characteristics can potentially be influenced by previous DMTs. Hence, for this analysis 

we only considered the 187 patients belonging to the CC that were sampled before the 

start of a first-line drug and at least a month apart from steroids administration. 

 

5.3.2 Disease activity outcomes 
Consistently to what done in previous analyses, patients were classified 

according to NEDA-3 criterion at 4 years of follow-up and to TFR, as already detailed 

elsewhere. 

 

5.3.3 TCR sequencing 
The ImmunoSeq® from Adaptive Biotechnologies was used for sequencing of 

the TCR as per manufacturer instructions; specifically, libraries were generated in 

triplicates starting from 3000 ng of genomic DNA per sample and quality checked using 

Bioanalyzer 2100 (DNA High Sensitivity or DNA 1000 kits, Agilent Biotechnologies) 

or TapeStation 4100 (DNA 1000 ScreenTape kit, Agilent Biotechnologies). 

Sequencing data were transferred to the ImmunoSeq server and underwent QCs and 

demultiplexing for normalization. Data were then available for analysis on the Adaptive 

Analyzer 3.0. 
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5.3.4 Statistical analyses 
TCR sequences data were downloaded from the Adaptive Analyzer 3.0 and 

statistical analysis were performed using the immunarch package in R.  

In order to increase the comparability between samples with variable frequencies of 

TCR sequences, we performed a down-sampling to obtain for every sample an equal 

number of sequences (equal to the size of the smallest repertoire). 

Only productive sequences were considered for further analyses, that is, sequences that 

are in-frame and does not contain stop-codon and lead to the generation of a functional 

TCR. Clonotypes were defined as the ensemble of all TCR sequences that produce the 

same aminoacidic structure. Simpson clonality was then calculated to measure immune 

diversity and its correlation with clinical outcomes was analyzed through regression 

models. 

 

5.4 Predictive model 
5.4.1 Study population 

In this task we considered both the EC and CC separately; in particular, for the 

EC the combined contribution of clinical and genetic data was evaluated while for the 

CC also the repertoire diversity index was included among the input features. 

 

5.4.2 Disease activity outcome 
ML methods were applied to predict the occurrence of disease activity at 4-years 

defined by applying the NEDA-3 criterion. Non-binary outcomes are not suitable to this 

type of analysis so the TFR endpoint was not considered in this section. 

 

5.4.3 Features selection 
In consideration of the huge dimensionality of the genetic data and the resulting 

computational burden, before feeding the genetic features to ML algorithms we 

performed a features selection procedure. First, we performed a genetic pruning in order 

to exclude SNPs highly correlated due to LD; to do so PLINKv1.9 (Chang et al, 2015) 

tool was used to exclude variants in LD with a pairwise r2 > 0.2 considering a sliding 

windows of 50 SNPs at a time. By doing so we retained 107,803 SNPs for the EC and 
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117,397 for the CC respectively. Afterwards, we performed a further univariate 

selection by calculating 4 different statistics for each SNP to test the correlation with the 

NEDA-3 outcome: Pearson correlation, Spearman correlation, Chi-Square statistic and  

the Normalized Mutual Information score. We then selected the K most correlated 

genetic features, where the optimal number of features K was obtained through a grid 

search on the EC, evaluating the performance of both a MLP model with a hidden layer 

of 100 neurons and a LSVM model tested on K values ranging from 2 to 10,000. To 

obtain more robust results, the predictive performances were estimated on 5 hold-out 

samples splitting the dataset into a training and test set with a 80-20% ratio. 

Finally, in addition to the selected genetic features we considered the clinical 

parameters (age, gender, DD, baseline EDSS and, for the CC, ARR in the previous year 

and basal brain MRI information) and, for the CC only, the SC value.  

 

5.4.4 Predictive model construction 
We tested different ML models, including simple linear models such as a LSVM 

as well as DT and RF classifiers and more complex models like a MLP neural network. 

Specifically, the following parameters were set for each model: 

- LSVM  

- DT: max depth = 5 

- RF: number of tree = 100 

- 

batch size = 200, learning rate=0.001, max iterations = 200. 

The models were trained separately on the EC and CC and their performance was 

evaluated on 5 hold-out samples splitting the dataset into training e test sets with a 80-

20% ratio. AUROC, AUPRC and accuracy were calculated to evaluate their predictive 

ability. 

We then evaluated the predictive performance of these models applied on clinical data 

only, on genetic data only or by combining clinical and molecular information. When 

integrating the different layers of clinical and omics data, two approaches have been 

used, by simply aggregating the clinical and molecular features (combined approach), 

or by applying ensemble methods on models separately trained on clinical and genetic 
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data. Two different ensemble methods have been considered: a method that used a 

weighted average to combine the predictions from multiple models (ensemble WA), and 

a perceptron-based ensemble method (ensemble PR). 

To avoid bias in the AUPRC interpretation that requires the minority class to be labelled 

as 1, the outcome was coded as NEDA = 1 and EDA = 0.  

All the analyses were performed with Python, using the scikit-learn, pandas and numpy 

libraries. 
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