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Type 1 diabetes (T1D) is an autoimmune disease resulting from the destruction of insulin-
producing beta cells in pancreatic islets. T lymphocytes are the claimed pathogenic
effectors but abnormalities of other immune cell types, including neutrophils, also
characterize T1D development. During human T1D natural history, neutrophils are
reduced in the circulation, while accumulate in the pancreas where release of neutrophil
extracellular traps (NETs), or NETosis, is manifest. Recent-onset T1D patients also
demonstrate activated circulating neutrophils, associated with a unique neutrophil gene
signature. Neutrophils can bind to platelets, leading to the formation of platelet-neutrophil
aggregates (PNAs). PNAs increase in the circulation during the development of human
T1D and provide a mechanism for neutrophil activation andmobilization/recruitment to the
pancreas. In non-obese diabetic or NOD mice, T1D autoimmunity is accompanied by
dynamic changes in neutrophil numbers, activation state, PNAs and/or NETosis/NET
proteins in the circulation, pancreas and/or islets. Such properties differ between stages of
T1D disease and underpin potentially indirect and direct impacts of the innate immune
system in T1D pathogenesis. Supporting the potential for a pathogenic role in T1D, NETs
and extracellular histones can directly damage isolated islets in vitro, a toxicity that can be
prevented by small polyanions. In human T1D, NET-related damage can target the whole
pancreas, including both the endocrine and exocrine components, and contribute to beta
cell destruction, providing evidence for a neutrophil-associated T1D endotype. Future
intervention in T1D could therefore benefit from combined strategies targeting T cells and
accessory destructive elements of activated neutrophils.

Keywords: neutrophils, NETs, platelet-neutrophil aggregates, Type 1 diabetes, islets, exocrine dysfunction
INTRODUCTION TO NETs IN T1D

Type 1 diabetes is an autoimmune disease in which insulin-producing beta cells in pancreatic islets
undergo immune destruction, ultimately resulting in hyperglycemia. The detection of beta cell
autoantigen-reactive T cells in peripheral blood (1, 2) and islet inflammation (insulitis) (3–5) together
with the absence of autoantibody-mediated beta cell damage (6, 7), have supported the concept that T1D
org July 2022 | Volume 13 | Article 9305531
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in humans is T cell-mediated. However, recent evidence has
suggested that cells of the innate immune system, particularly
neutrophils, also participate in T1D development in at least a
subset of individuals. Similarly, differences in islet- infiltrating
immune cell populations have been identified in children who
develop clinical T1D at different ages (8). These and other studies
support the concept that T1D disease is heterogeneous and that
disparities between the disease process in different individuals relate
to distinct endotypes (9–12).

Studies including the NOD mouse model of T1D, have
confirmed multiple roles for activated/NETosing neutrophils in
T1D pathogenesis, with the mechanism of neutrophil activation
appearing to differ between disease initiation and progression.
Although circulating NETs are elevated in recent-onset human
T1D (13), the detection of NETs in the pancreas is infrequent,
possibly due to their rapid degradation by locally produced
exocrine DNAse (14). As a consequence, NET products, e.g.,
myeloperoxidase or MPO, neutrophil elastase (NE) and
citrullinated histones (CitH3), are commonly used as surrogate
markers of NETosis and provide a focus for elucidating the
function(s) of neutrophils in T1D. Strongly supporting a
pathogenic role for neutrophils/NETs in T1D, circulating levels
of indirect markers of neutrophil activation (e.g., PNAs) (15) and
NET proteins (e.g., NE) (13) follow a dynamic pattern
throughout T1D development, largely mirroring levels in islets
in NOD mice at different stages of disease progression (15) or
negatively correlating with glycemic control/beta cell function in
humans (13). Surprisingly, studies of T1D human pancreas
samples have also revealed neutrophil infiltration and NETosis
in exocrine pancreatic tissue (16, 17), exposing T1D as a complex
immune disease of the pancreas which extends beyond
autoimmune damage of islet beta cells (18).
ROLE FOR NEUTROPHILs, NETS AND
PNAs IN THE DEVELOPMENT OF T1D

Human T1D
Both innate and adaptive immunity participate in T1D pathogenesis
in humans. Neutrophils, the most abundant phagocytic cell in
human blood (19), display heterogeneous functions and flexibility,
developing different profiles in response to different disorders,
including autoimmune diseases (20). A role for neutrophils has
been consistently shown in human T1D (15–17, 21). Circulating
neutrophil counts are reduced to the lower limits of the normal
range in patients with recent-onset T1D; first‐degree relatives of
T1D patients with 2 or more autoantibodies (i.e., pre-symptomatic
or pre-T1D) also exhibit a lower circulating neutrophil count which
parallels the development of beta cell dysfunction (16). This
neutrophil abnormality is not attributed to neutrophil cell death,
impaired differentiation or targeting by anti-neutrophil antibodies
(16), suggesting that the fate of neutrophils in pre-T1D may be to
exit the circulation and infiltrate the pancreas. The decrease in
circulating neutrophil counts is stable for up to 1 year after the onset
of T1D (22), with normal levels returning thereafter (13).
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Neutrophils from T1D and pre‐symptomatic subjects display
an interferon (IFN) pro‐inflammatory signature (17), resembling
other autoimmune diseases such as rheumatoid arthritis (23) and
systemic lupus erythematosus (SLE) (24). Neutrophils from T1D
patients are altered in their phenotype and function. Post-T1D
onset, they display reduced migration and chemotaxis (25),
paralleling the sharp decline in circulating PNA levels (15).
They also exhibit impaired phagocytic capacity, leading to
reduced clearance of bacteria (26) and to hyperglycemia-
dependent increased susceptibility to infections (27).

Activated neutrophils release a variety of serine proteases from
intracellular granules, including NE and proteinase 3 (PR‐3), which
help to eliminate microorganisms and regulate immune responses
during inflammation (28). Circulating levels of NE and PR3 are
increased in patients with T1D and correlate with numbers and
titres of autoantibodies (13). Furthermore, MPO, an enzyme
involved in microbial killing (29), is similarly increased, regardless
of T1D duration (30). Despite the uncertain mechanism underlying
neutrophil-mediated development of islet autoimmunity in
humans, NE, PR‐3 and MPO may each contribute to T1D
pathogenesis, possibly targeting beta cells, resident pancreatic cells,
or have other roles, as revealed in NOD mice.

Besides phagocytosis and degranulation, neutrophils can
damage host tissues by the release of NETs. NETs are
extracellular web-like structures composed of cytosolic and
granule proteins assembled on decondensed chromatin (31).
Normally the function of NETs is to neutralize and kill
microorganisms. If dysregulated, NETs can contribute to the
pathogenesis of immune-mediated diseases (32). Enhanced
NETs have been described in the circulation of T1D patients
(13), where they display an altered composition compared to
healthy individuals and induce Th1 polarization (33). Notably,
peptidyl arginine deiminase‐4 (PAD4), the enzyme responsible
for histone citrullination and NET formation (34), is increased in
neutrophils of patients with T1D and T2D, leading to increased
NETosis upon stimulation (35). While increased NET formation
is triggered by hyperglycemia after T1D-onset, NETosis also
occurs in pre-T1D individuals, as suggested by deposition of
NET products (CitH3, MPO) in the pancreas (17).

Altered numbers and function of neutrophils have been
described not only in the circulation, but also in the pancreas
of patients with T1D. Indeed we have identified neutrophils and
decondensed DNA decorated with MPO and citrullinated
histones, indicating the presence of pancreas-residing
neutrophils releasing NETs, in both pre-T1D and T1D
individuals (16, 17). Furthermore, we have recently
demonstrated that extracellular histones damage human islets
in vitro (15), providing a putative mechanism for neutrophil-
mediated islet cell damage. Of note, methyl cellobiose sulfate
(mCBS), a small polyanionic drug that neutralizes the high
positive charge of histones, prevented islet cell death (15, 36).
Thus, mCBS could offer potential, in combination with other
agents, for delaying T1D progression. These findings corroborate
the hypothesis that neutrophils play an ancillary role in the
development of islet autoimmunity and beta cell damage during
the pathogenesis of T1D.
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How neutrophils are activated to release NETs in T1D is not
completely understood. Activated platelets can bind neutrophils
through an interaction between platelet cell surface CD62P (P-
selectin) and neutrophil P-selectin binding glycoprotein ligand 1
(PSGL1) (32, 37), which triggers the release of NETs (32, 38). In
this setting, initial platelet activation could occur via the binding
of citrullinated histones to platelet TLR2/TLR4 (39), supporting
a vicious cycle of platelet and neutrophil activation, or potentially
by autoantigen-IgG immune complexes binding to platelet
FcgRIIA (40). Platelets have been shown to direct neutrophil
trafficking (41) and P-selectin interactions with PSGL-1 at the
vessel wall guide neutrophil extravasation (42). We have recently
shown that PNAs are elevated in some pre-T1D individuals and
new-onset T1D patients, and that a lower circulating neutrophil
count correlates with a higher proportion of PNAs (15).
Furthermore, we revealed platelet hyperreactivity in PNAs
preceding T1D onset (15). These data support the hypothesis
that neutrophils are reduced in the circulation prior to the
development of T1D because they are bound to activated
platelets, with this interaction promoting neutrophil activation,
trafficking to the pancreas, subsequent NET release and islet
damage/beta cell impairment. Altogether, these data provide
evidence for the potential contribution of innate immune
responses to T1D disease progression in humans.

NOD Mouse Model of T1D
Studies in theNODmousemodel of autoimmuneT1Dhave revealed
possible ancillary and effector roles for neutrophils in the initiation
and progression of T1D disease. During the initiation of T1D
autoimmunity, a transient elevation in neutrophil numbers in the
islets of 3-4 week old NOD mice (43, 44) was accompanied by the
activation of neutrophils by antibodies against beta cell DNA (anti-
DNA Ig), CRAMP (anti-microbial peptide) release and occasional
peri-isletNETosis (43).The invivodepletionofneutrophils andother
leukocyte populations in young NOD mice prevented later T1D-
onset and were considered to define a local accessory role for
neutrophils in activating plasmacytoid dendritic cells (DCs) and
the local production of IFNa. Such neutrophil interactions may
indirectly promote autoantigen presentation by conventional DCs in
pancreatic lymph nodes, activating autoreactive T cells and initiating
early autoimmune damage of beta cells (43).

In contrast, evidence for prolonged systemic neutrophil
activation was found in longitudinal studies of NOD mice
from 2-30 weeks of age. NE and PR3 activities were elevated in
the circulation for > 10 weeks in only NOD mice which
progressed to T1D (13). These findings suggested that
circulating neutrophils may contribute to both the initiation
and progression of T1D disease, potentially either by
degranulation in the bloodstream and release of granule-
derived enzymes or from the expulsion of such enzymes
during NETosis. By treating young NOD mice with
pharmacological or genetically engineered inhibitors of NE,
Shu et al. reported NE-induced islet inflammation throughout
T1D development, inferring an indirect role for activated
neutrophils in autoimmune damage of beta cells (45). NOD
mouse models have further identified an inter-relationship
between certain gut microbiota, increased gut permeability,
Frontiers in Immunology | www.frontiersin.org 3
neutrophil numbers/NETosis and T1D (46, 47). In particular,
gut leakage of abnormal microbiota/lipopolysaccharide (LPS)
has been reported to stimulate local NETosis in NOD mice,
resulting in NET-assisted activation of enteric CD4 T cells which,
upon migration, can enhance T1D autoimmunity (47). Such
studies provide a possible indirect link between neutrophils/
NETs and adaptive immunity in T1D.

Similar to studies of human pancreata (16, 17) and young
NODmice (44), we recently reported a significant increase in the
immunohistochemical localization of islet-associated NET
products (MPO and CitH3) in the pancreas of adult pre-T1D
(10-12 weeks of age) and T1D-onset NOD mice (15) (Figure 1).
In parallel, calf thymus histones and NETs were found to be toxic
for isolated mouse islets, with NET- as well as histone-induced
islet damage being prevented by short-term culture with mCBS
(15, 36). Collectively, these findings suggested that citrullinated
histones released from NETosing neutrophils could directly
contribute to islet/beta cell damage during T1D development,
most likely by inducing pores in the plasma membrane of islet/
beta cells (15, 36, 49, 50).

The reason underlying the recruitment of neutrophils to the
pancreas during the initiation of T1D autoimmunity in very young
NOD mice has been attributed to a physiological wave of beta cell
apoptosis that occurs during pancreas differentiation (51). This
process is envisaged to prompt an acute inflammatory response to
islets, triggered especially by chemokines (CXCL1, CXCL2) released
from damaged beta cells and/or intra-islet macrophages (43, 52).
Endothelial cells inadvertently injured during this early
inflammatory response and neutrophil (PSGL1)-endothelial (P-
Selectin or CD62P) interactions could facilitate neutrophil influx
into the pancreas (44) and the appearance of activated neutrophils
in the islet microenvironment (43).

Levels of PNAs are elevated in the circulation of young NOD
mice at 4 weeks as well as adult NOD mice at 10-12 weeks (pre-
T1D) and at T1D-onset, largely mimicking increased circulating
PNAs in at-risk Aab-positive and T1D-onset children (15). PNA
levels in NOD islets were similarly increased at 10-12 weeks and
T1D-onset, correlating with a significant rise in the proportion of
islets that were MPO- or CitH3-positive. High expression of CD62P
on platelets within NOD mouse PNAs suggested that CD62P
(platelet)-PSGL1 (neutrophil) interactions are key to PNA
formation and neutrophil activation, similar to human PNAs.
Subsequently, neutrophil mobilization to pancreatic islets, most
likely occurs via platelet-derived proplatelet binding protein
(PPBP) which undergoes cleavage to form CXCL7/NAP2 (a
neutrophil -activating and - recruiting chemokine) (53–55) and
has been found elevated in T1D human blood by serum proteome
analysis (56). Ultimately this pathway results in islet-associated
NETosis (15). Thus, stimulation of neutrophils by activated
platelets could provide a supplementary mechanism driving the
contribution of neutrophils to the initiation of T1D disease.
Thereafter, a pivotal role has been proposed for platelet-activated
neutrophils (via PNAs) in islet-associated NETosis (in NOD mice)
and disease progression to T1D-onset (in both NOD mice and
humans) (15).

From a therapeutic perspective, T1D was prevented by
treatment of adult NOD mice with a broad-acting inhibitor of
July 2022 | Volume 13 | Article 930553
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PADs, which citrullinate proteins. Of these PADs, PAD4
citrullinates nuclear histones, a critical step in NETosis (57).
This report clearly established the importance of citrullination
in T1D autoimmunity, albeit without defining a role for NETs.
In contrast, inhibitors that specifically target enzymatic
products of neutrophils/NETosis (NE, MPO) or that
neutralize NET/histone toxicity have had variable outcomes
on T1D incidence (15, 44, 45), with most approaches failing to
prevent T1D onset (15, 44). However, treatment of NOD mice
from a very young age with NE inhibitors significantly reduced
T1D incidence by dampening islet inflammation (45). Such
interventions at the very onset of autoimmunity in humans are
inevitably unrealistic. Therapies targeting NETs/neutrophil
products in combination with short-term protocols targeting
T cells (58, 59) may therefore provide more robust prevention
of T1D in NOD mice and a basis for an improved clinical
strategy for impeding T1D pathogenesis.
T1D IS A CHRONIC DISEASE OF BOTH
THE ENDOCRINE AND EXOCRINE
PANCREAS

Involvement of the exocrine pancreas in the pathogenesis of
T1D, hypothesized long ago (60), is currently supported by
documented reduction of pancreatic volume (61–63) and
weight (64, 65), tissue damage and infiltration (16, 17, 66, 67)
and subclinical impaired exocrine function (68–71).
Interestingly, many of these exocrine abnormalities arise
during pre-symptomatic T1D stages (17, 61, 64–67, 69–71), in
parallel with the silent progression of endocrine dysfunction.
These properties underpin the novel concept that T1D is a
chronic disease of both the endocrine and exocrine pancreas
Frontiers in Immunology | www.frontiersin.org 4
and is thus an autoimmune or immune -mediated organ-specific
disease, seemingly driven by a unique pathogenic process.

Role of Neutrophils and NETosis in the
Pathogenesis of T1D-Associated Pancreas
Exocrine Disease
In parallel with the mild neutropenia and IFN-associated gene
signature in neutrophils that accompanies T1D pathogenesis (16,
17), neutrophils infiltrate the exocrine tissue of the pancreas (16,
17, 67). This neutrophil influx appears very early, during the pre-
symptomatic stages of T1D, at the time when islet autoantibodies
are detectable, and persists afterwards (17). Notably, a fraction of
pancreas-infiltrating neutrophils has been shown to extrude
NETs (17), a known mechanism of tissue injury (72).
Neutrophils may therefore act as innate immune effectors of
exocrine and endocrine pancreas tissue injury in pre-T1D, with
the formation of PNAs contributing to neutrophil activation,
neutrophil recruitment to the pancreas and NETosis (15, 17).

Innate and Adaptive Immunity in the
Course of T1D Endocrine and Exocrine
Pancreatic Disease
How does the accumulating evidence for neutrophils in the exocrine
pancreas during T1D pathogenesis fit with the current knowledge of
the natural history of the disease? The conventional paradigm for
T1D identifies a predisposed genetic background, where some yet
unidentified environmental factors induce an autoimmune
response, marked by the appearance of islet-specific
autoantibodies (single, then multiple), the progressive decline of
beta cell mass due to autoreactive T cells (3, 73), diminishing beta
cell function, finally ensuing in hyperglycemia and clinical T1D
(74). Interestingly, in this model, the measurable immune markers,
autoantibodies and autoreactive T cells, represent an expression of
A B

FIGURE 1 | Islet-associated CitH3 in NOD pancreas. Immunofluorescence detection of insulin (red) (48) and CitH3 (green) (15) (using AF488 donkey anti-rabbit Ig) in
pancreas sections from (A) 4 week-old and (B) 10-12 week-old female NOD mice. Blue unbroken and dotted lines define the islet border in (A) and insulitis,
respectively. DNA is labelled using Hoechst 33342 (white).
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adaptive immunity towards endocrine pancreas. In contrast, there
are no signs of an adaptive immune response against the
exocrine pancreas.

Conversely, neutrophil abnormalities are detectable very early
in the course of T1D: neutropenia, pancreatic infiltration and
elevated circulating PNAs are detectable in pre-symptomatic islet
autoantibody-positive individuals (15, 17), while the IFN-gene
oriented signature in peripheral neutrophils is found even prior
to seroconversion (17). These observations are consistent with a
precocious activation of innate immunity during T1D natural
history, possibly before the activation of adaptive (auto)-
immunity. In such a scenario, exocrine pancreas seems to be
damaged by native immunity (i.e., neutrophils) rather than by
adaptive immunity (e.g., possible bystander T cells (67)), while
the endocrine pancreas is affected by both innate immunity
(neutrophils) and adaptive immunity (autoreactive T cells).
This may account for the different functional outcomes for the
two pancreatic compartments in T1D. While endocrine
dysfunction progresses to beta cell failure and clinical diabetes,
the impairment of exocrine function remains subclinical,
measurable in terms of reduced trypsinogen (71), fecal elastase,
pancreatic amylase and lipase (68–70), but never reaching the
degree of clinical insufficiency requiring pancreatic enzyme
replacement therapy (summarized in Figure 2). How these two
distinct processes influence each other is unknown, and remains
a matter for future investigation of endotype interactions within
T1D (9).
DISCUSSION

Evidence from T1D studies in humans and NOD mice suggests
that neutrophils potentially have multiple roles in the
Frontiers in Immunology | www.frontiersin.org 5
pathogenesis of T1D: (i) indirectly aiding the initiation and
expansion of autoreactive T cells and promoting islet
inflammation by degranulation and/or NETosis, (ii) directly
participating as effectors of islet/beta cell damage via NETs/
NET proteins (extracellular histones) (15) and (iii) directly
injuring pancreatic exocrine tissue. During T1D progression,
neutrophils are rarely identified in islets/insulitis, possibly due to
NETosis, and are more prevalent throughout the exocrine
pancreas (15–17). NET proteins are more readily identified
than NETs in both the endocrine and exocrine pancreas (15–
17). These findings may in part be due to the rapid degradation
of NET DNA by pancreatic DNAse (14) and/or to phagocytosis
by macrophages (75), an activity which may be exacerbated by
islet-associated inflammation (insulitis). Furthermore, NET
proteins are more frequently detected in human exocrine
pancreatic tissue than in islets during T1D progression (16,
17), consistent with the accompanying atrophy of exocrine
tissue and function (18, 61, 63–71). Finally, heterogeneity in
circulating neutrophil/PNA profiles accompanies both pre-
symptomatic stages of T1D autoimmunity and T1D-onset in
humans and NOD mice. Thus, the neutrophil signature in a
subset of T1D and T1D-prone humans lends support to a
neutrophil-associated T1D endotype.
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