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Abstract: Globoid cell leukodystrophy (GLD), or Krabbe disease, is a neurodegenerative sphin-
golipidosis caused by genetic deficiency of lysosomal β-galactosylceramidase (GALC), characterized
by neuroinflammation and demyelination of the central (CNS) and peripheral nervous system. The
acute phase protein long pentraxin-3 (PTX3) is a soluble pattern recognition receptor and a regulator
of innate immunity. Growing evidence points to the involvement of PTX3 in neurodegeneration.
However, the expression and role of PTX3 in the neurodegenerative/neuroinflammatory processes
that characterize GLD remain unexplored. Here, immunohistochemical analysis of brain samples
from Krabbe patients showed that macrophages and globoid cells are intensely immunoreactive
for PTX3. Accordingly, Ptx3 expression increases throughout the course of the disease in the cere-
brum, cerebellum, and spinal cord of GALC-deficient twitcher (Galctwi/twi) mice, an authentic animal
model of GLD. This was paralleled by the upregulation of proinflammatory genes and M1-polarized
macrophage/microglia markers and of the levels of PTX3 protein in CNS and plasma of twitcher
animals. Crossing of Galctwi/twi mice with transgenic PTX3 overexpressing animals (hPTX3 mice)
demonstrated that constitutive PTX3 overexpression reduced the severity of clinical signs and the
upregulation of proinflammatory genes in the spinal cord of P35 hPTX3/Galctwi/twi mice when com-
pared to Galctwi/twi littermates, leading to a limited increase of their life span. However, this occurred
in the absence of a significant impact on the histopathological findings and on the accumulation of the
neurotoxic metabolite psychosine when evaluated at this late time point of the disease. In conclusion,
our results provide the first evidence that PTX3 is produced in the CNS of GALC-deficient Krabbe
patients and twitcher mice. PTX3 may exert a protective role by reducing the neuroinflammatory
response that occurs in the spinal cord of GALC-deficient animals.

Keywords: CNS; GALC; Krabbe disease; neuroinflammation; PTX3; sphingolipidosis

1. Introduction

Globoid cell leukodystrophy (GLD), or Krabbe disease, is an autosomal recessive
neurodegenerative sphingolipidosis caused by genetic deficiency of the lysosomal hy-
drolase β-galactosylceramidase (GALC) [1]. GALC degrades galactosylceramide (a major
component of myelin) and other terminal β-galactose-containing sphingolipids, including
β-galactosylsphingosine (psychosine). The pathogenesis of GLD has been proposed to arise
from the accumulation of the neurotoxic metabolite psychosine present at high levels in the
CNS of Krabbe patients [2–5]. The disease is characterized by neuroinflammation and loss
of oligodendroglia and Schwann cells, leading to demyelination of the brain, spinal cord,
nerve roots and peripheral nerves [6]. A pathognomonic feature of GLD is the presence
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in the white matter of globoid cells [7,8], giant multinucleated cells likely originated from
resident microglia [9]. Clinically, GLD may manifest in early infancy with fatal neurological
dysfunctions [6,10,11]. The standard of care for this disease is hematopoietic stem cell
transplantation [12,13].

The acute phase protein long pentraxin-3 (PTX3) is an important regulator of pe-
ripheral innate immunity and a key mediator of inflammation during cardiovascular and
cerebrovascular diseases [14]. Growing evidence points to the involvement of PTX3 in
neurodegenerative disorders [15]. PTX3 expression is upregulated in the central nervous
system (CNS) following pro-inflammatory cytokine stimulation [16], seizure-induced neu-
rodegeneration [17], and ischemia [18]. Accordingly, peripheral PTX3 levels are increased
after experimental stroke in mice [19], and plasma PTX3 levels correlate with mortality after
ischemic stroke in humans [20]. In addition, serum levels of PTX3 have been proposed as a
novel biochemical marker in Parkinson’s disease [21]. Despite this evidence, no data are
available about the expression and role of PTX3 in sphingolipid disorders, including GLD.

Here, PTX3 production was investigated in the brain of Krabbe patients and in the CNS
of GALC-deficient twitcher (Galctwi/twi) mice, an authentic murine model of GLD [22,23].
Analysis of brain samples from Krabbe patients demonstrated that macrophages and
globoid cells are intensely immunoreactive for PTX3. Accordingly, twitcher mice are charac-
terized by the progressive upregulation of Ptx3 expression along the CNS caudal-rostral
axis. This was paralleled by the upregulation of various proinflammatory genes and
M1-polarized macrophage/microglia markers, with no changes in the peripheral organs.
Crossing of Galctwi/twi mice with transgenic PTX3 overexpressing animals (hPTX3 mice)
caused an amelioration of clinical features and attenuated spinal cord inflammation in
hPTX3/Galctwi/twi offspring when compared to Galctwi/twi littermates at postnatal day P35,
when animals show clear neurologic defects. However, PTX3 overexpression did amelio-
rate the histopathological findings and did not affect psychosine accumulation in the CNS
of GALC-deficient animals when evaluated at this late stage of the disease.

Our results demonstrate that PTX3 is produced in the CNS of GALC-deficient Krabbe
patients and twitcher mice and point to a possible protective role of this immune modulator
by reducing, at least in part, the neuroinflammatory response that characterizes GLD.

2. Results
2.1. PTX3 Immunoreactivity in the Brain of Krabbe Patients

To assess whether GALC deficiency may cause PTX3 upregulation in human CNS,
we analyzed autopsy brain cortex samples from nine Krabbe patients (Table S1) and two
matched controls. Most of the Krabbe samples showed the classical histopathological
hallmarks of the disease, such as diffuse demyelination along with marked loss of oligo-
dendrocytes, intense reactive gliosis evidenced by the diffuse immunoreactivity of the
astrocytic marker GFAP, and infiltration of globoid cells (Figure 1A). Previous observations
had shown that activated astrocytes and microglia represent a major source of PTX3 in
the brain [16,24]. Accordingly, single immunostains indicated that GLD macrophages and
globoid cells are diffusely and intensely immunoreactive for PTX3. Double immunostains
confirmed that PTX3 is mainly expressed within macrophages and globoid cells in Krabbe
samples, its positivity being related to the extent of pathology (i.e., presence of perivascular
globoid cells) and of GFAP-positive astrocytic gliosis (Table 1), while GFAP/PTX3 double
positive astrocytes were barely detected. Control brain samples did not show double posi-
tive PTX3 immunoreactive cells (Figure 1B). Overall, these findings demonstrate that PTX3
is upregulated in the brain of GLD patients, its immunoreactivity being mainly expressed
in monocyte-derived cells and related to the extent of the pathology.
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Figure 1. PTX3 immunolocalization in the brain of Krabbe patients. (A) Representative images from
Krabbe brain cortex specimens showing the classical histopathological hallmarks of the disease in
the white matter, with diffuse infiltration of macrophages (globoid cells) mainly distributed around
the blood vessels (left image, H&E). Immunostains for PTX3 (brown) and GFAP (brown, middle
and right images, respectively) show intense and diffuse immunoreactivity of PTX3 and gliosis.
(B) Double immunostainings from Krabbe and control brain cortex samples. The large majority of
CD68+ monocyte-derived cells (blue) are intensely immunoreactive for PTX3 (brown) within the
white matter of Krabbe patients (left image), while reactive GFAP+ astrocytes (blue) expressing PTX3
(brown) are barely detected (middle left image; asterisk). Conversely, no PTX3+ or CD68+ cells were
detected in these samples, except for rare circulating CD68-PTX3+ monocytes within the vessels
(middle right image), and PTX3 was not detected in resident GFAP+ astrocytes from control matched
brains (right image). Original magnification: 40× (A); 60× (B). Scale bars: 50 µm (A); 30 µm (B).

Table 1. GFAP/PTX3 immunostaining in Krabbe patients.

Deidentified Case ID * Pathology § GFAP+ § PTX3+

CW16 064 3 (severe) 2 (gliosis) 2 (mainly in perivascular globoid cells)

CW17 060 3 (severe) 2 (gliosis) 2 (mainly in perivascular globoid cells)

CW18 060 3 (severe) 2 (gliosis) 2 (mainly in perivascular globoid cells)

CW16 066 3 (severe) 2 (gliosis) 2 (mainly in perivascular globoid cells)

CW16 061 2 (moderate) 2 (gliosis) 2 (mainly in perivascular globoid cells)

CW16 065 1 (mild to moderate) 2 (gliosis) 1 (mainly in perivascular globoid cells)

CW18 064 1 (modest) 2 (gliosis) 1 (only few inflammatory cells)

CW16 062 0 (no evidence) 1 (moderate gliosis) 1 (only few inflammatory cells)

CW15 103 0 (no evidence) 1 (mild gliosis) 0 (no inflammatory cells)

* Perivascular globoid cells: 0, no cells; 1, rare cells; 2, moderate number of cells; 3, high number of cells.
§ GFAP and PTX3 semiquantitative immunoreactivity score: 0, no immunoreactivity; 1, mild immunoreactivity;
2, moderate immunoreactivity.

2.2. Ptx3 Upregulation in Twitcher CNS

Based on the data obtained in Krabbe patients, the expression of Ptx3 was investigated
in the CNS of GALC-deficient twitcher (Galctwi/twi) mice, an authentic murine model of
GLD [22,23]. In a first set of experiments, Ptx3 expression was assessed by qPCR analysis
in the cerebrum of littermate Galcwt and homozygous Galctwi/twi mice. Measurements were
performed at postnatal day P15 before the onset of evident neurologic signs, at P24 when
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pathologic alterations were occasionally detectable, and at P35 when Galctwi/twi mice showed
clear neurologic defects, including tremor and hind limb paralysis [23,25,26]. As shown
in Figure 2A, the brain levels of Ptx3 transcripts were already increased at P15, to further
increase at P24 and P35. This was paralleled by the upregulation of the inflammatory
cytokines Tnfα, Cxcl1 and Il1α and of the CCAAT/enhancer binding protein delta (Cebpd)
gene, which encodes for a transcription factor mediating PTX3 expression in astrocytes
during neuroinflammation [27]. Accordingly, a progressive increase in the levels of the
astrocytic marker of gliosis Gfap and the microglial marker ionized calcium-binding adaptor
molecule-1 (Iba1) [28] occurred in Galctwi/twi cerebrum when compared to controls.
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Figure 2. Ptx3 and proinflammatory gene expression in the cerebrum and spinal cord of twitcher mice.
Steady state mRNA levels of the indicated genes were evaluated by qPCR in the cerebrum (A) and
spinal cord (B) of Galcwt and Galctwi/twi mice harvested at P15, P24 and P35. Data were normalized to
Gapdh expression and are the mean ± S.D. of 3–6 animals per group, * p < 0.05; # p < 0.01; § p < 0.001,
Galcwt versus Galctwi/twi mice, Student’s t-test.

In keeping with the neuroinflammatory response that occurs in twitcher brain, we
observed an increase in the levels of expression of the classical M1 macrophage polariza-
tion/microglia markers Fc receptor, IgG, low affinity III and II (Fcgr3/CD16 and Fcgr2/CD32) [29]
with no changes in the expression of the alternative M2 macrophage polarization markers
arginase-1 (Arg1) and mannose receptor C-type1 (Mrc1/CD206) [30]. A similar transcriptional
profile was observed in the cerebellum (Figure S1) and spinal cord (Figure 2B) of Galctwi/twi

mice that also showed an increase in the M2 polarization markers Arg1 and CD206. Notably,
Ptx3 mRNA levels in the spinal cord of Galctwi/twi mice were significantly higher than those
measured in the cerebrum and cerebellum counterparts at all time points investigated.

Ptx3 upregulation in the CNS of twitcher mice resulted in high levels of PTX3 protein
in the cerebrum, cerebellum, and spinal cord of P35 twitcher mice when compared to control
littermates as assessed by immunohistochemistry and Western blot analysis (Figure 3A–C).
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In addition, the levels of PTX3 in the blood of P35 twitcher mice were significantly increased
when compared to Galcwt animals (Figure 3D).
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Figure 3. PTX3 protein levels in twitcher mice. (A) Immunohistochemical analysis shows an increased
PTX3 immunoreactivity (brown) in the CNS of P35 Galctwi/twi mice when compared to control
littermates; 20× magnification; scale bar: 100 µm. (B) Image analysis of PTX3 positive area. Data are
the mean ± S.D. of 3 samples per experimental group (5 fields/sample). (C) Western blot analysis
of PTX3 immunoreactivity in the CNS of Galcwt and Galctwi/twi mice at P35. Vinculin was used as a
loading control. (D) Blood samples were collected from Galcwt (n = 22) and Galctwi/twi mice (n = 27) at
P28–34. Then, serum levels of PTX3 were assessed by ELISA. Each point represents one animal. Data
are shown as mean ± S.D. ** p < 0.01; *** p < 0.001, Student’s t test.

On this basis, immunohistochemical analysis was performed to identify PTX3-positive
cells in the CNS of twitcher animals. As shown in Figure 4, double immunostains indicated
that PTX3 immunoreactivity was prevalently detectable in IBA1-positive globoid cells in
the white matter of the brain cortex and spinal cord of Galctwi/twi animals, no significant
immunoreactivity being observed in control samples. In addition, PTX3 immunoreactivity
was also present in GFAP-positive astrocytes of the gray matter of the CNS of twitcher
mice, but not of Galcwt animals that lacked signs of gliosis (Figure 4). Similar results were
obtained in twitcher cerebellum samples (Figure S2).

At variance with the results obtained by the analysis of the twitcher CNS, no Ptx3
upregulation occur in the peripheral tissues of Galctwi/twi mice, including kidney, liver,
and lungs, in which only limited psychosine accumulation and inflammatory responses
occur because of GALC deficiency [23,25,31–33] (Figure S3). Nevertheless, in keeping
with the observation that the serum levels of PTX3 are increased after stroke [19,20] and
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in Parkinson’s disease [21], the levels of PTX3 in the blood of P35 twitcher mice were
significantly increased when compared to Galcwt animals (Figure 3D).
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Figure 4. PTX3 immunolocalization in the CNS of twitcher mice. Paraffin-embedded sections of
the white and gray matter of the brain cortex (A) and spinal cord (B) of P35 Galctwi/twi mice were
double-immunostained with anti-PTX3/GFAP or anti-PTX3/IBA1 antibodies. Inserts show enlarged
areas marked by dashed squares. Scale bar, 50 µm; scale bar in inserts, 5 µm.

2.3. PTX3 Overexpression Reduces Clinical Symptoms and Spinal Cord Inflammation in
Twitcher Mice

TgN(Tie2-hPTX3) mice (hPTX3 mice) ubiquitously express human PTX3 under the
control of the Tie2 promoter, leading to a significant accumulation of the PTX3 protein
in serum and tissues that occurs from birth throughout the whole life of the transgenic
mice [34]. The constitutive hPTX3 expression does not result in apparent defects in embry-
onic development; adult animals are normal and fertile, and no macroscopic or microscopic
morphological abnormalities were observed in organs and tissues of hPTX3 mice [34].

On this basis, to assess a possible impact of the constitutive PTX3 overexpression in
twitcher mice, syngeneic PTX3-overexpressing hPTX3 male mice were crossed with female
Galctwi/+ animals to obtain hPTX3/Galctwi/+ breeders that were then crossed to generate
hPTX3/Galcwt and hPTX3/Galctwi/twi animals. Next, hPTX3/Galcwt and hPTX3/Galctwi/twi mice
were compared to the corresponding Galcwt and Galctwi/twi littermates. qPCR analysis using
oligonucleotide primers designed to recognize simultaneously both human and murine
PTX3 transcripts (Table S2) indicated that the levels of hPTX3 mRNA in the cerebrum of
hPTX3/Galcwt mice were like the levels of the murine Ptx3 transcripts measured in Galctwi/twi
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mice at P35. In addition, hPTX3 overexpression together with the upregulation of its murine
counterpart resulted in a cumulative increase in their mRNA levels in the brain of P35
hPTX3/Galctwi/twi mice when compared to Galctwi/twi littermates (Figure S4A).

As shown in Figure S4C,D, constitutive hPTX3 overexpression did not affect the
body weight gain of both hPTX3/Galcwt and hPTX3/Galctwi/twi mice when compared to
the corresponding control Galcwt and Galctwi/twi animals, with Galc deficiency leading to a
similar decrease in body weight starting from approximately day P20 and P28 both in the
absence or in the presence of constitutive hPTX3 overexpression in male and female animals,
respectively. Nevertheless, hPTX3 overexpression resulted in statistically significant, albeit
limited 4-day increases in the overall survival of twitcher animals, extending their life span
from 42 to 46 days (p < 0.001) (Figure 5A), thus suggesting that PTX3 may exert an impact
on the disease course. Indeed, when compared to Galctwi/twi animals, hPTX3/Galctwi/twi mice
showed a reduced frequency and severity of twitching, which appeared around day P22 in
both groups of animals (Figure 5B,C). In addition, hPTX3/Galctwi/twi mice displayed a less
severe atypical tail suspension reflex (hind limbs clenching) (Figure 5D). No animal death
and appearance of clinical symptoms were instead observed in hPTX3/Galcwt and Galcwt

mice during the same investigation period.
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Figure 5. Impact of hPTX3 overexpression on the clinical features of twitcher mice. (A) The life
span of hPTX3/Galctwi/twi mice (n = 15) was compared to that of Galctwi/twi mice (n = 11). hPTX3
overexpressing animals had a significant extension of life span compared to control twitcher mice.
p < 0.001, Gehan–Breslow–Wilcoxon test. (B–D) The extent of frequency (B) and severity (C) of
twitching and hind limbs clenching frequency (D) were scored in hPTX3/Galctwi/twi mice (n = 15)
and Galctwi/twi mice (n = 11). No neurological signs were observed before day P20 in both groups of
animals. No animal death and clinical symptoms were observed in hPTX3/Galcwt and Galcwt mice
throughout the whole experimental period. * p < 0.05; # p < 0.01; § p < 0.001, Student’s t-test.

On this basis, we assessed the levels of expression of the microglial marker Iba1, of
the astrocytic marker of gliosis Gfap, and of the myelin basic protein-encoding gene mbp in
the cerebrum, cerebellum, and spinal cord of the different experimental groups at P35. As
shown in Figure 6A, GALC deficiency caused a similar upregulation of Iba1 and Gfap genes
and downregulation of mbp in the CNS of hPTX3/Galctwi/twi and Galctwi/twi mice at this late
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stage of the disease when compared to Galcwt and hPTX3/Galcwt animals. Accordingly,
immunohistochemical analysis demonstrated that the IBA1-positive microglia infiltrate,
GFAP-positive gliosis, and myelin degradation of MBP-positive fibers were present to a
similar extent in the CNS of P35 hPTX3/Galctwi/twi and Galctwi/twi mice (Figure 6B).
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Figure 6. Impact of hPTX3 overexpression on histopathological features of twitcher mice.
(A) mRNA levels of the indicated genes were evaluated by qPCR in the CNS of P35 hPTX3/Galcwt and
hPTX3/Galctwi/twi mice and compared to the corresponding control Galcwt and Galctwi/twi animals. Data
were normalized to Gapdh expression and are the mean ± SEM of 7–10 animals per group. n.s., not
significant for Galctwi/twi versus hPTX3/Galctwi/twi mice; ◦ p < 0.05, # p < 0.01, § p < 0.001 for Galcwt versus
Galctwi/twi mice or for hPTX3/Galcwt versus hPTX3/Galctwi/twi mice. One-way ANOVA with post hoc
comparisons with adjustment for multiple comparisons (Sidak). (B) Immunohistochemical analysis
shows similar IBA1, GFAP and MBP immunoreactivity (brown) in the CNS of P35 hPTX3/Galctwi/twi

mice when compared to Galctwi/twi animals; 20× magnification; scale bar: 100 µm.

In keeping with the lack of a significant impact of constitutive hPTX3 overexpression
on the histopathological features of the CNS of GALC-deficient animals, the levels of the
neurotoxic GALC substrate psychosine were increased to a similar extent in the CNS of
Galctwi/twi and hPTX3/Galctwi/twi animals (Table 2).
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Table 2. Psychosine levels in the CNS of GALC-deficient mice.

Cerebrum * Spinal Cord *

hPTX3 mice. 5.7 ± 2.8 1.5 ± 0.8

Galctwi/twi mice 514.4 ± 288.1 281.6 ± 38.1

hPTX3/Galctwi/twi mice 552.0 ± 90.9 393.2 ± 170.1

* Psychosine levels were assessed at P35 and normalized to the levels measured in Galcwt mice. Data are the
mean ± S.E.M. of 3 animals per group.

Finally, qPCR analysis of cerebrum, cerebellum, and spinal cord of P35 animals was
performed to assess the impact of constitutive hPTX3 overexpression on the inflamma-
tory response of the CNS in GALC-deficient mice. As shown in Figure 7, the expres-
sion of the inflammatory mediators Tnfα, Il1α, and Cxcl1 and of the M1 polarization
macrophage/microglia markers CD16/CD32, albeit still higher than that observed in con-
trol wild type animals, was significantly reduced in the spinal cord of hPTX3/Galctwi/twi

mice when compared to the Galctwi/twi counterpart, whereas Arg1 and CD206 expression
remained unchanged.
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Figure 7. qPCR analysis of the spinal cord of hPTX3/Galcwt and hPTX3/Galctwi/twi mice. Steady state
mRNA levels of the indicated genes were evaluated by qPCR in the spinal cord of hPTX3/Galcwt and
hPTX3/Galctwi/twi mice and compared to those measured in the corresponding control Galcwt and
Galctwi/twi mice harvested at P35. Data were normalized to Gapdh expression and are the mean ± SEM
of 7–10 animals per group. n.s., not significant; * p < 0.1; ** p < 0.05; *** p < 0.01, **** p < 0.001
for Galctwi/twi versus hPTX3/Galctwi/twi mice; §, p < 0.001 for Galcwt versus Galctwi/twi mice or for
hPTX3/Galcwt versus hPTX3/Galctwi/twi animals. One-way ANOVA with post hoc comparisons with
adjustment for multiple comparisons (Sidak).

At variance, no differences in gene expression were detected in the cerebrum and
cerebellum of the two groups of animals, the only exceptions being represented by a
slight increase in the expression of TNFα in the cerebrum of hPTX3/Galctwi/twi mice when
compared to Galctwi/twi animals and a decreased cerebellar expression of the M2 polarization
markers Arg1 and CD206 that occurred also in hPTX3/Galcwt mice, possibly due to the
PTX3 upregulation present in both groups (Figure S5). In keeping with these observations,
the levels of transcription factor Cebpd were significantly reduced in the spinal cord of
hPTX3/Galctwi/twi mice when compared to Galctwi/twi animals (Figure 7), no differences being
instead observed between the two groups in the cerebrum and cerebellum (Figure S5).
Accordingly, the levels of murine Ptx3 transcript were reduced only in the spinal cord
of hPTX3/Galctwi/twi animals (Figure 7). Thus, at variance with what was observed in the
cerebrum (see above), the cumulative levels of the human plus murine PTX3 transcripts
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were reduced in the spinal cord of hPTX3/Galctwi/twi animals relative to the levels of murine
Ptx3 mRNA in Galctwi/twi mice (see Figure S4B).

3. Discussion

In humans, genetic deficiency of the sphingolipid-metabolizing enzyme GALC leads
to Krabbe disease, a neuroinflammatory degenerative disorder. Here, we demonstrated
that the soluble pattern recognition receptor PTX3 was expressed by monocyte-derived
cells in brain specimens from Krabbe patients, its immunoreactivity being related to the
extent of the pathology and gliosis. In keeping with these observations, twitcher mice,
an authentic model of Krabbe disease [22,23], were characterized by the progressive up-
regulation of PTX3 along the CNS caudal-rostral axis, with no changes in the peripheral
organs. The upregulation of the Ptx3 transcript levels in cerebrum, cerebellum, and spinal
cord of twitcher mice resulted in an increase in PTX3 protein levels in the affected tissues
and plasma.

Ptx3 expression can be induced in the CNS following stimulation by LPS or pro-
inflammatory cytokines [16]. Accordingly, Ptx3 upregulation is observed in mice un-
der various experimental neuroinflammatory conditions, including neurotrauma [35],
ischemia [18], limbic seizure [17] and autoimmune encephalomyelitis [36]. In addition,
serum levels of PTX3 are increased in patients affected by neurodegenerative disorders,
including Parkinson’s disease [21], ischemic stroke [20], and multiple sclerosis [36].

Our data extend these observations to Krabbe patients and demonstrate for the first
time that Ptx3 upregulation occurs in the CNS of twitcher mice in parallel with an increased
expression of neuroinflammation-related genes, including various cytokines/chemokines,
the marker of gliosis Gfap, the microglial marker Iba1, and the M1 macrophage polariza-
tion/microglia markers CD16/CD32. These changes were detectable at postnatal day P15,
before the onset of evident neurologic signs, and were increased at P24, when pathologic
alterations were occasionally noticeable, and at P35, when clear neurologic defects oc-
curred, including tremor and hind limb paralysis [23,25,26]. These findings indicate that
the inflammatory environment progressively established after birth in the CNS of GALC-
deficient mice drives the expression of Ptx3, as confirmed by the observed upregulation
of Cebpd, a transcription factor known to mediate PTX3 expression in astrocytes during
neuroinflammation [27].

Previous findings had shown that PTX3 can be expressed by neurons, astrocytes,
and/or microglia following cytokine stimulation or under neuroinflammatory condi-
tions, depending on the specific disorder and acute versus chronic phase of the disease
(see [15,35,36] and references therein). Here, immunohistochemical analysis demonstrated
that autopsy brain specimens from Krabbe infants were characterized by an intense gliosis
and PTX3 immunoreactivity that was detectable in macrophages and globoid cells, a hall-
mark of Krabbe disease [9]. These observations were confirmed by the analysis of Galctwi/twi

mice, in which PTX3 immunoreactivity was prevalently detectable in IBA1-positive globoid
cells of the white matter of the brain cortex, cerebellum, and spinal cord of these animals,
as well as in GFAP-positive astrocytes of the gray matter.

PTX3 is an important mediator of innate immune responses, produced locally at the
site of inflammation [37]. In CNS, PTX3 modulates the activity of microglia by inhibiting
phagocytosis of apoptotic cells and favoring the uptake of pathogens [24]. PTX3 binding
helps the rescue of neurons from phagocytic clearance by macrophages [27] and protects
them from ischemic damage [19,38], trauma [39], and in Parkinson’s disease [40]. Accord-
ingly, neurogenesis and angiogenesis were inhibited after cerebral ischemia in Ptx3 null
mice, and neuronal damage was increased after limbic seizure when Ptx3 deficient animals
were compared to controls [17,18]. Together, these data point to a protective role of PTX3
during neuroinflammation.

Our data demonstrate that the constitutive overexpression of hPTX3 that occurs from
birth throughout the whole life of hPTX3/Galctwi/twi mice attenuates the severity of clinical
signs, such as twitching and hind limbs clenching, and causes a significant, albeit limited,
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increase in their life span. However, when assessed at the late P35 stage of the disease,
hPTX3 overexpression did not exert any significant effect on the CNS of GALC-deficient
mice in terms of IBA1-positive microglia infiltrate, GFAP-positive gliosis, and myelin
degradation of MBP-positive fibers. In addition, a similar accumulation of the neurotoxic
GALC substrate psychosine was observed in the cerebrum and spinal cord of Galctwi/twi

and hPTX3/Galctwi/twi mice at this time point. These data appear to be in keeping with
previous observations indicating that PTX3 is unable to exert a significant impact on the
histopathological damage that occurs in mice after experimental neurotrauma or to affect
the course of experimental autoimmune encephalomyelitis [35,36]. Nevertheless, we found
that hPTX3 overexpression reduced the upregulation of proinflammatory genes in the
spinal cord of P35 hPTX3/Galctwi/twi mice when compared to Galctwi/twi animals, including
endogenous Ptx3 and its transcription factor Cebpd, with no effect on the neuroinflammatory
response observed in the cerebrum and cerebellum of these animals. Relevant to this point,
neurohistopathological and neurochemical alterations caused by GALC deficiency in the
CNS of twitcher mice arise in a temporal and region-dependent fashion, the first alterations
being observed in the spinal cord to progress along the caudal-rostral axis in the cerebellum
and cerebrum (see [41] and references therein). In addition, spinal cord alterations were
already observed in 18–21-week-old GLD fetuses [42,43]. Thus, the spinal cord represents
the earliest tissue affected by GALC deficiency in murine and human CNS and appears to
be more prone to a protective effect exerted by PTX3 on the neuroinflammatory response
that occurs in twitcher mice.

Different hypotheses can be raised to attempt to explain why the spinal cord is more
responsive to the partial protecting role exerted by genetic, constitutive hPTX3 upregulation
in GALC-deficient mice. The ubiquitous production of PTX3 in hPTX3 animals is under
the control of the Tie2 promoter [34] that drives the vascular expression of the transgene
throughout embryogenesis and adulthood [44]. Thus, the early and long-lasting PTX3
overexpression that occurs in hPTX3/Galctwi/twi animals may prevent, at least in part, the
first lesions that arise in the spinal cord of GALC-deficient mice, being instead less effective
against the later CNS lesions (further experiments performed on hPTX3/Galctwi/twi mice
at earlier stages of the disease will be required to elucidate this point). In addition, the
metabolic alterations that occur in parallel with the progression of gliosis, neurodegen-
eration, microglial activation, and apoptosis along the rostral-caudal axis in a regional
and age-dependent fashion [41] may exert a different impact on the protective activity of
PTX3 in hPTX3/Galctwi/twi mice. A further hypothesis can be based on the fact that PTX3
may also exert detrimental effects following CNS damage (see [15] and references therein),
indicating that the activity of PTX3 in neuroinflammation may represent the result of a fine
tuning in different areas of the CNS between pro- and anti-neurodegenerative mechanisms
of action that remain poorly defined. Finally, other members of the long pentraxin fam-
ily, represented by the neuronal pentraxins NP1, NP2 and NPR, may exert an impact on
neurodegeneration and interfere with PTX3 activity [35]. Experiments performed in a Ptx3
null background would be useful to assess these hypotheses. However, due to the female
infertility of Ptx3 null mice [45] and the early lethality of Galctwi/twi animals, the generation
of double Ptx3−/−/Galctwi/twi mice would require a breeding program with a very large
number of animals, incompatible with the rules of the local and national ethical committees.

The neurotoxic GALC substrate psychosine has been used as a biomarker to identify
patients with infantile GLD, and possibly late onset GLD patients, and to monitor the
timing and efficacy of hematopoietic stem cell transplantation in these patients [46]. Our
data demonstrate that serum levels of PTX3 increase in twitcher mice. Further studies will be
required to assess whether longitudinal blood measurement of PTX3 levels may represent
a novel biomarker more sensitive than psychosine to predict onset after newborn screening
and to follow disease progression in transplanted and/or late-onset GLD patients.

In conclusion, our results provide the first evidence that PTX3 is produced in the CNS
of Krabbe patients and GALC-deficient twitcher mice and may exert a partial protective role
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by reducing the neuroinflammatory response that occurs in the spinal cord of Galctwi/twi

animals, with possible implications for GLD management and therapy.

4. Materials and Methods
4.1. Histopathology of Human GLD Biopsies

Autopsy brain specimens of GLD patients (Table S1) were obtained from the Program
for Neurodevelopmental Function in Rare Disorders Brain and Tissue Bank, University of
Pittsburgh School of Medicine. Use of this material was approved by the Committee for
Oversight of Research and Clinical Training Involving Decedents (CORID) protocol No 583.
Two matched control brains from 4-year-old and 11-year-old patients who died from
unrelated non-neurological complications were obtained from the Archive of Pathological
Department of Spedali Civili of Brescia. Their use was approved by the Ethics Board of
Spedali Civili di Brescia (patient consent was not needed for retrospective and exclusively
observational study on archival material obtained for diagnostic purposes (Delibera del
Garante n. 52 del 24/7/2008 and DL 193/2003).

Formalin-fixed, paraffin-embedded tissue sections were submitted to H&E and single
or double immunohistochemical staining. Briefly, sections were de-waxed, rehydrated,
and endogenous peroxidase activity blocked with 0.3% H2O2 in methanol for 20 min.
Antigen retrieval was performed using a microwave oven or thermostatic bath in 1.0 mM
EDTA buffer (pH 8.0). Sections were then washed in TBS (pH 7.4) and incubated for
1 h with the specific primary antibody diluted in TBS 1% bovine serum albumin. Signal
was revealed using the DAKO Envision+System-HRP Labelled Polymer Anti-Mouse or
Anti-Rabbit (Dako Cytomation, Santa Clara, CA, USA), followed by Diaminobenzydine
(DAB) as chromogen and hematoxylin as counterstain.

For double immunostains, after completing the first immune reaction, the second
primary antibody was applied and labelled using MACH 4TM Universal AP Polymer Kit
(Biocare Medical, Pacheco, CA, USA); chromogen reaction was developed with Ferangi
BlueTM Chromogen System (Biocare Medical), and nuclei were faintly counterstained with
Methyl Green. Images were then acquired with an Olympus DP70 camera mounted on
an Olympus Bx60 microscope using AnalySIS imaging software (Soft Imaging System
GmbH, Münster, Germany). The following primary antibodies were used: rabbit anti-PTX3
polyclonal antibody (1:500, kindly provided by B. Bottazzi Humanitas Clinical Institute,
Rozzano, Italy), monoclonal mouse anti human CD68, clone PG-M1 (1:200, Dako Cytoma-
tion), and monoclonal mouse anti human GFAP, clone 6F2 (1:100, Dako Cytomation).

4.2. Animals

Breeder twitcher heterozygous mice (C57BL/6J, Galctwi/+; Jackson Laboratories, Bar
Harbor, ME, USA) were maintained under standard housing conditions. Experiments
were performed according to the Italian laws (D.L. 116/92 and following additions) that
enforce the EU 86/109 Directive and were approved by the local animal ethics committee
(OPBA, Università degli Studi di Brescia, Italy). Twitcher mutation was determined by
polymerase chain reaction (PCR) on DNA extracted from clipped tails [47]. In all of
the experiments, littermate wild type (Galcwt) and homozygous (Galctwi/twi) animals were
used. To generate PTX3-overexpressing twitcher mice, syngeneic TgN(Tie2-hPTX3) male
mice (hPTX3 mice) that ubiquitously express human PTX3 under the control of the Tie2
promoter [34] were bred with female Galctwi/+ mice to obtain hPTX3/Galctwi/+ animals.
Next, hPTX3/Galcwt and hPTX3/Galctwi/twi mice were generated by crossing hPTX3/Galctwi/+

breeder mice that were genotyped for Galc status by PCR and for hPTX3 overexpression
by RT-PCR. For the survival studies, the end point was established for each mouse by the
animal house veterinarian unaware of the animal genotype, according to the rules of the
local ethics committee.
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4.3. Quantitative RT-PCR Analysis

Cerebrum, cerebellum, and spinal cord specimens were analyzed for gene expression
by quantitative RT-PCR (qPCR) at P15, P24 and/or P35, and data were normalized for
Gapdh expression [48]. For this purpose, total RNA was extracted from frozen samples
using TRIzol Reagent according to the manufacturer’s instructions (Invitrogen, Carlsbad,
CA, USA), and contaminating DNA was digested using DNAse (Promega, Madison, WI,
USA). Total RNA (2 µg) was retrotranscribed with MMLV reverse transcriptase (Invitrogen)
using random hexaprimers in a final 20 µL volume. Quantitative PCR was performed
with a ViiATM 7 Real-Time PCR Detection System (Applied Biosystems, Waltham, MA,
USA) using an iQTM SYBR Green Supermix (Biorad, Hercules, CA, USA) according to the
manufacturer’s instructions. Ptx3 expression levels were analyzed by qPCR also in kidneys,
liver, and lungs from Galcwt and Galctwi/twi mice at P35. In each experiment, an arbitrary
value equal to 1.0 was assigned to the levels of expression of the gene(s) measured in one
sample that was used as reference. The specific primers are shown in Table S2.

4.4. Immunohistochemical Analysis

Formalin-fixed, paraffin-embedded tissue sections (7 µm) of the brain cortex, cerebel-
lum, and spinal cord from P35 Galcwt, Galctwi/twi, hPTX3/Galcwt and hPTX3/Galctwi/twi mice
were submitted to single or double immunohistochemical staining. For single staining,
sections were incubated overnight at 4◦C with the anti-PTX3 polyclonal antibody, the
anti-Iba1 mouse monoclonal antibody (1:100; Genetex, Irvine, CA, USA), the anti-GFAP
mouse monoclonal antibody, clone 6F2 (1:100; Dako), or the anti-Myelin Basic Protein
MAB386 antibody (1:50, Millipore). Next, sections were incubated for 1 h with anti-Rabbit
or anti-Mouse Envision+System-HRP Labelled Polymer (Dako) or with Rat-on Mouse
HRP-Polymer (Biocare Medical) for myelin staining, followed by Diaminobenzydine (DAB)
as chromogen and hematoxylin as counterstain.

For double immunostains, incubation with the anti-PTX3 polyclonal antibody was
followed by 1 h incubation with biotin anti-rabbit antibody and by 1 h incubation with
streptavidin Alexa Fluor 594. Sections were then incubated for 2 h with anti-GFAP or
anti-Iba1 monoclonal antibody, followed by 1 h incubation with Alexa Fluor 488 anti-mouse
antibody. All tissue sections were incubated for 30 min with DAPI for nuclear staining and
mounted in Dako fluorescent mounting medium.

Images were taken with an Axiovert 200 M microscope equipped with ApoTome
optical sectioning device (Carl Zeiss, Oberkochen, Germany) using the same settings for
comparison of all samples.

4.5. Western Blotting

Cerebrum, cerebellum, and spinal cord specimens from Galcwt and Galctwi/twi mice at
P35 were used for Western blotting analysis. The tissues were homogenized in lysis buffer
(1.0% NP-40, 20 mM Tris-HCl pH 8.0, 137 mM NaCl, 10% glycerol, 2.0 mM EDTA, 1.0 mM
sodium orthovanadate, 10 mg/mL aprotinin, 10 mg/mL leupeptin). For PTX3 protein
level analysis, tissue extracts (40 µg of protein) were probed with an anti-PTX3 polyclonal
antibody. Monoclonal anti-vinculin antibody (Sigma-Aldrich, St Louis, MO, USA) was
used as the loading control.

4.6. Serum PTX3

The blood levels of PTX3 were evaluated by ELISA (R&D Systems, Minneapolis, MN,
USA) using 7.0 µL serum from Galcwt and Galctwi/twi mice at P28–34.

4.7. Assessment of Animal Clinical Features

Body weight, life span, twitching and hind limbs clenching were monitored daily from
day P8 until mice reached a moribund condition. Each mouse was observed for at least
1 min by two trained observers. The extent of frequency and severity of twitching was
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scored as: 1, fine; 2, mild; 3, mild-moderate; 4, moderate; 5, severe. Hind limbs clenching
frequency was scored: 1, rare; 2, mild; 3, intermittent; 4, moderate; 5, severe [49].

4.8. Psychosine Extraction and MS Analysis

Psychosine extraction was performed as previously described [50]. Briefly, 20 mg
of lyophilized brain or spinal cord were extracted with 15 mL of acetone using a Poly-
tron homogenizer to selectively extract psychosine. The extract was filtered through a
Büchner funnel and evaporated to dryness. The dried residue was dissolved in 2.0 mL
chloroform/methanol (2/1 v/v), and the psychosine-enriched fraction was evaporated to
dryness, dissolved in methanol, and further analyzed by mass spectrometry (MS).

All MS analyses were performed at the Unitech OMICs platform (University of Milano,
Italy) using an ExionLC™ AD system connected to TripleTOF™ 6600 System equipped
with Turbo V™ Ion Source with ESI Probe (SCIEX, Framingham, MA, USA). Samples were
separated on a Kinetex® EVO C18 100 (Length) × 2.1 mm (ID) × 1.7 µm (particle size).
The temperature was set at 40 ◦C. The analytes were eluted with the following gradient:
from 60% buffer A (0.01% formic acid in water) to 99% buffer B (0.01% formic acid in
methanol) in 7.5 min. Constant flow rate: 450 µL/min. Total run: 12 min. MS spectra were
collected, in positive polarity, in full-mass scan from 250 to 800 Da (100 ms accumulation
time) and in IDA® mode (information-dependent acquisition) from 100 to 800 Da (40 ms
accumulation time, top 18 spectra per cycle 0.87 s). Nitrogen was used as a nebulizing gas
(GS1, 55 psi), turbo spray gas (GS2, 65 psi), and curtain gas (CUR, 35 psi). Spray voltage
was fixed at 5.0 kV, de-clustering potential (DP) was 50 eV, the collision energy was 30 eV
with a collision energy spread (CES) of 15 eV, and source temperature was 300 ◦C.

The data were analyzed using SCIEX OS 1.4 software (SCIEX™), together with Li-
braryView™ (version 1.0) containing the hexosylsphingosine mass spectra.

4.9. Statistical Analysis

Comparisons among multiple groups were performed using a one-way ANOVA
model, followed by post hoc comparisons with adjustment for multiple comparisons (Sidak
procedure). Comparison between two groups was performed using the Student’s unpaired
t-test.
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