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SUMMARY

The detection of prostate cancer recurrence after external beam radiotherapy re-
lies on the measurement of a sustained rise of serum prostate-specific antigen
(PSA). However, this biochemical relapse may take years to occur, thereby delay-
ing the delivery of a secondary treatment to patients with recurring tumors. To
address this issue, we propose to use patient-specific forecasts of PSA dynamics
to predict biochemical relapse earlier. Our forecasts are based on a mechanistic
model of prostate cancer response to external beam radiotherapy, which is fit
to patient-specific PSA data collected during standard posttreatment moni-
toring. Our results show a remarkable performance of ourmodel in recapitulating
the observed changes in PSA and yielding short-term predictions over approxi-
mately 1 year (cohort median root mean squared error of 0.10–0.47 ng/mL and
0.13 to 1.39 ng/mL, respectively). Additionally, we identify 3 model-based bio-
markers that enable accurate identification of biochemical relapse (area under
the receiver operating characteristic curve > 0.80) significantly earlier than stan-
dard practice (p < 0.01).

INTRODUCTION

External beam radiotherapy (EBRT) is a standard treatment for prostate cancer (PCa) that is potentially

available for patients of all ages to treat tumors ranging in risk from low to high and very high (Mottet

et al., 2021; Wein et al., 2012; Tang et al., 2020; Gray et al., 2017). During EBRT, the prostate is exposed

to an external source of radiation, which aims at disrupting the DNA in tumor cells’ nuclei. The accumula-

tion of radiation-induced damage along with the multiple genetic alterations underlying the development

of PCa ultimately forces tumor cells to undergo programmed cell death (Alberts et al., 2007). EBRT is usually

delivered as daily fractions of approximately 2–3 Gy until completing a total dose ranging from 60 to 80 Gy.

In particular, the use of daily doses higher than 2 Gy in the recent decades has led to so-called moderate

hypofractionation (Mottet et al., 2021; Wein et al., 2012). This treatment modality requires a lower number

of radiation sessions, which presents pharmacoeconomic advantages. The efficacy of EBRT can be

improved through a combination of neoadjuvant and adjuvant androgen deprivation therapy (ADT) (Mot-

tet et al., 2021). However, because ADT can produce several side effects, it is usually prescribed for inter-

mediate- and high-risk PCa patients only (i.e., those who present a higher risk of metastasis).

After the completion of EBRT, patients are monitored using the serum levels of prostate-specific antigen

(PSA), which is a standard clinical biomarker of PCa (Mottet et al., 2021; Cornford et al., 2021; Wein et al.,

2012). The rationale for using PSA in post-EBRT patient follow-up is that blood levels of PSA tend to rise due

to PCa growth. Thus, if the treatment is successful, radiation-induced tumor cell death should decrease

PSA values to a minimum, which may vary from patient to patient and with prostate size (Ray et al., 2006;

Roehrborn et al., 2000). Otherwise, if EBRT does not eradicate the tumor completely, the surviving

cancerous cells will ultimately drive tumor growth after EBRT conclusion and, hence, produce an increasing

trend in PSA. This phenomenon is termed biochemical relapse, and it is thus indicative of tumor recurrence

(Figure 1). Approximately 20%–50% of PCa patients undergoing radiotherapy as primary curative treatment

will ultimately develop biochemical relapse within 5–10 years after treatment conclusion (Kupelian et al.,

2006; Rosenbaum et al., 2004). Following the detection of biochemical relapse, tumor recurrence

can be confirmed through biopsy and imaging methods, such as magnetic resonance imaging and
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Figure 1. Mechanistic modeling of PSA dynamics after EBRT

This figure illustrates the mechanisms included in our modeling framework of PCa response to EBRT, which assumes that

serum PSA is proportional to the number of cells in the patient’s tumor. The upper row shows the PCa cells in a generic

tumor region at four instants before, during, and after EBRT. The bottom row shows the corresponding PSA evolution up

to each depicted time instant.

(A) Before treatment, we assume that tumor cells grow exponentially at a rate rs, which also describes the characteristic

increase of PSA in untreated PCa (rose solid line).

(B) After the first EBRT dose, a fraction of tumor cells Rd survives to radiation, while the complementary fraction, 1 � Rd , is

irreversibly damaged and will ultimately die. This process will repeat with each consecutive EBRT dose. Hence, our

modeling framework can accommodate patient-specific radiation plans. If the precise dates and dosages of each EBRT

dose are not available, our modeling framework can also assume either a periodic dose plan (periodic dosemodel) or that

EBRT is delivered as an equivalent single dose (single dose model). Importantly, these simplified model versions have a

similar performance as the parent general model, as shown in Lorenzo et al. (2019b).

(C) During EBRT, while the surviving cells may continue to proliferate at a rate rs, the radiation-damaged cells undergo

programmed cell death at a rate rd . This becomes the dominant mechanism during EBRT and produces a decreasing

trend in PSA (gray solid line).

(D) After the conclusion of EBRT, the remainder of the radiation-damaged cells die, and PSA continues to progressively

drop. If the treatment does not fully eliminate the tumor, the surviving cells continue proliferating at a rate rs and

ultimately produce a biochemical relapse (red solid line). If the treatment eradicates all tumor cells, then PSA reaches a

plateau (gray dashed line). Our mechanistic modeling framework also enables a quantitative estimation of the PSA nadir

ðPnÞ and the time to PSA nadir since EBRT termination ðDtnÞ. Table S1 in Methods S1 provides a list of model variables and

parameters. See the STAR Methods and Methods S2 for further details on mathematical modeling.
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prostate-specific membrane antigen or choline positron emission tomography/computed tomography. To

treat post-EBRT PCa recurrence, there are several therapeutic strategies that depend on whether the recur-

rence is local or metastatic (Cornford et al., 2021; Wein et al., 2012).

Serum PSA may exhibit natural fluctuations (e.g., due to diet and lifestyle), a smooth increase caused by

benign prostatic enlargement (i.e., benign prostatic hyperplasia), and transient peaks due to ADT termi-

nation or the so-called PSA bounce, which consists of a temporary PSA increase of 0.1–0.5 ng/mL usually

occurring within the first 24 months after EBRT conclusion (Wein et al., 2012; Pinkawa et al., 2010; Frei-

berger et al., 2017; Carobene et al., 2018; Christensson et al., 2011; Roehrborn et al., 2000). These phe-

nomena may hamper the detection of biochemical relapse following EBRT. Thus, the clinical criteria to

identify a biochemical relapse require PSA to exhibit a consistent rising trend over time (Wein et al.,

2012; Cornford et al., 2021). For example, a standard criterion with widespread use in current clinical

practice identifies a biochemical relapse as a PSA increase larger than 2 ng/mL over the detected PSA

nadir (i.e., the minimum PSA value measured for a patient) (Roach et al., 2006; Cornford et al., 2021).

Additionally, multiple studies have been devoted to analyze PSA dynamics after EBRT and its correlation

with the pathological features of tumor recurrence to define further PSA-based markers that improve the

identification and prognostic assessment of biochemical relapse and PCa recurrence. For instance, the

detection of a rapid decline of PSA right after treatment, overall high PSA values during posttreatment
2 iScience 25, 105430, November 18, 2022
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monitoring, an early nadir, a high value of the nadir, and a low PSA doubling time during biochemical

relapse (i.e., the time it would take PSA to exhibit a 2-fold increase) have been correlated with a poorer

prognosis, including metastatic disease and lower patient survival (Freiberger et al., 2017; Zelefsky et al.,

2005; Zumsteg et al., 2015; Ray et al., 2006; Bates et al., 2005; Cheung et al., 2006; Cavanaugh et al., 2004;

Shi et al., 2013; Wein et al., 2012). Alternatively, post-EBRT PSA dynamics has also been analyzed by

fitting empirical equations to patient-specific longitudinal series of PSA values. In particular, very suc-

cessful results have been reported by leveraging a biexponential formula, which consists of the sum

of 2 terms: an exponential decay to capture the usual posttreatment decline in PSA observed in all pa-

tients and a rising exponential to represent biochemical relapse, which vanishes when this empirical

model is fit to data from cured patients (Zagars and Pollack, 1997; Cox et al., 1994; Hanlon et al.,

1998; Vollmer and Montana, 1999; Taylor et al., 2005).

However, the current criteria of biochemical relapse and the majority of PSA-based markers only enable

to assess this event upon its direct observation. Hence, these approaches may ultimately delay the diag-

nosis and treatment of tumor recurrence, thereby potentially reducing the chances of successfully con-

trolling the disease. Additionally, observational metrics and models of PSA dynamics offer a limited rep-

resentation of the underlying tumor dynamics that ultimately regulate the observed changes of PSA in

each patient. To address these limitations, we propose to leverage a mechanistic model of PCa response

to EBRT (Figure 1) in order to forecast PSA dynamics on a patient-specific basis (Lorenzo et al., 2019b).

Our goal is to use this approach to predict the occurrence of biochemical relapse and, hence, ultimately

facilitate an early diagnosis and treatment of tumor recurrence after EBRT. The mechanistic modeling of

tumor growth and therapeutic response is an established approach that aims at mathematically

describing the biophysical mechanisms underlying these phenomena in order to increase our under-

standing of cancer diseases and advance their clinical management on a personalized basis (Yankeelov

et al., 2013; Rockne et al., 2019; Karolak et al., 2018; Jarrett et al., 2020; Mang et al., 2020; Wang et al.,

2009; Lorenzo et al., 2019a; Oden et al., 2016). In particular, these models can be fit to patient-specific

data and then leveraged to render personalized computer forecasts of tumor prognosis and treatment

outcomes capable to assist clinical decision-making (Kazerouni et al., 2020; Lorenzo et al., 2022; Mang

et al., 2020).

Several studies have investigated mechanistic models of PCa growth and PSA dynamics in various sce-

narios, including untreated tumor growth (Lorenzo et al., 2016, 2019b; Swanson et al., 2001; Vollmer,

2010; Farhat et al., 2017), hormone therapy (Brady-Nicholls et al., 2021, 2020; Ideta et al., 2008; Hirata

et al., 2010; Jain et al., 2011; Morken et al., 2014; Phan et al., 2019; Jackson, 2004), cytotoxic and antiangio-

genic therapies (West et al., 2018, 2019; Colli et al., 2020, 2021), and after radical prostatectomy (Vollmer

and Humphrey, 2003; Truskinovsky et al., 2005). Since radiotherapy is used for the treatment of many types

of cancer, the study of tumor response to radiation and the forecasting of patient-specific radiotherapeutic

outcomes using mechanistic models constitute a rich area of research (Corwin et al., 2013; Hormuth et al.,

2021; Rockne et al., 2015; Lipková et al., 2019; Lima et al., 2017; Ayala-Hernández et al., 2021; Pérez-Garcı́a

et al., 2015; Zahid et al., 2021; Alfonso et al., 2021; Powathil et al., 2007). Nevertheless, there is a dearth of

mechanistic models providing a coupled description of tumor and PSA dynamics following radiotherapy

(Lorenzo et al., 2019b; Sosa-Marrero et al., 2021; Yamamoto et al., 2016).

In one of our previous studies (Lorenzo et al., 2019b), we presented a mechanistic modeling framework to

describe how the response of PCa to EBRT drives PSA dynamics after treatment and identified promising

model-based biomarkers to detect biochemical relapse. Our modeling framework relies on 5 key assump-

tions, which are illustrated in Figure 1. We assume that PCa cells proliferate following an exponential law

and that PSA is proportional to the number of tumor cells. We further assume that each radiation dose irre-

versibly damages a fraction of the tumor cells that ultimately undergoes programmed cell death, whereas

the complementary fraction survives to EBRT and continues proliferating. Additionally, we consider that

EBRT is delivered either periodically or as an equivalent single dose. This last assumption leads to two alter-

native models namely the periodic dose model and the single-dose model (see Table S1 in Methods S1 for

a list of model variables and parameters, as well as STAR Methods and Methods S2 for further details on

mathematical modeling). In the present work, we focus on the single-dose model, since in our previous

study, [Lorenzo et al., 2019b] we demonstrated that this model version exhibited a similar performance

to the periodic dose model and the general parent model while featuring a simpler formulation (see

STAR Methods and Methods S2). We first validate our model and model-based biomarkers of biochemical
iScience 25, 105430, November 18, 2022 3



Table 1. Summary of patient cohort characteristics

Characteristic

All patients (n = 166) Non-relapsing patients (n = 156) Relapsing patients (n = 10)

Median IQR Range Median IQR Range Median IQR Range

Clinical

Age at diagnosis (y) 73 (68, 76) (49, 83) 73 (68, 76) (49, 83) 73 (68, 76) (65, 79)

Baseline PSA, Pd (ng/mL) 6.3 (4.6, 8.6) (0.6, 81.0) 6.2 (4.5, 8.4) (0.6, 22.0) 9.6 (5.9, 13.1) (4.9, 81.0)

Gleason score 6 (6, 7) (4, 8) 6 (6, 7) (5, 8) 7 (6, 7) (4, 7)

EBRT

Age at EBRT (y) 74 (68, 77) (49, 84) 74 (68, 77) (49, 84) 75 (73, 76) (66, 80)

Total dose (Gy) 74.2 (71.4, 74.2) (65.8, 77.4) 74.2 (71.4, 74.2) (71.4, 77.4) 74.2 (71.4, 74.2) (65.8, 74.2)

Dose per fraction (Gy) 2.65 (2.55, 2.65) (2.35, 2.76) 2.65 (2.55, 2.65) (2.55, 2.76) 2.65 (2.55, 2.65) (2.35, 2.65)

Duration (mo) 1.3 (1.3, 1.4) (1.2, 2.1) 1.3 (1.3, 1.4) (1.2, 2.1) 1.3 (1.3, 1.4) (1.2, 1.7)

Patient monitoring

No. PSA values, nP 11 (8, 13) (6, 25) 11 (8, 13) (6, 25) 14 (10, 19) (7, 22)

Follow-up since EBRT (y) 5.7 (4.5, 7.6) (3.0, 14.0) 5.7 (4.5, 7.5) (3.0, 14.0) 5.7 (4.2, 8.1) (3.3, 11.2)

PSA test frequency (mo) 6.3 (4.0, 10.3) (0.0, 59.4) 6.4 (4.1, 11.4) (0.0, 59.4) 4.9 (3.2, 7.3) (1.0, 20.5)

All patients received a total of nd = 28 radiation doses in their EBRT plan. The number of PSA values ðnPÞ includes the baseline PSA ðPdÞ. The PSA test frequency

refers to post-EBRT monitoring exclusively.

EBRT, external beam radiotherapy; IQR, interquartile range; PSA, prostate-specific antigen.
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relapse from our previous study [Lorenzo et al., 2019b] in a new cohort, whose main characteristics are sum-

marized in Table 1 (see STAR Methods for further details). To this end, we perform a global fitting study in

which we parameterize our model with all PSA data available for each individual patient (i.e., if there are nP
values collected for a certain patient, all the nP values are used to personalize the model). Then, we assess

the predictive performance of our model in a series of fitting-forecasting scenarios. Each scenario lever-

ages an increasing number of PSA values collected for each patient for model fitting, which is followed

by a corresponding personalized model forecast of PSA dynamics that we compare against the remainder

of the patient’s PSA data. This approach would simulate the utilization of our model during actual patient

monitoring: Each newly collected PSA value enables to update the model for a given patient and, hence,

obtain an updated prediction of PSA dynamics on an individual basis. Additionally, we analyze the ability of

our model-based biomarkers as determined in these fitting-forecasting scenarios to identify biochemical

relapse early, and we further assess whether they outperform the standard clinical criteria that were

used in this cohort. Finally, Data S1 in the Supplementary Information further provides the results of these

analyses leveraging the periodic dose model for completeness. These additional results confirm that the

single-dose model suffices to recapitulate and predict PSA dynamics after EBRT, as originally demon-

strated in Lorenzo et al. (2019b).

RESULTS

Mechanistic model recapitulates patient-specific PSA dynamics after EBRT

We begin by performing a global fitting analysis to assess the ability of our mechanistic model in reproduc-

ing the complete longitudinal PSA series collected for each patient in the cohort. To this end, if nP PSA

values were collected for a certain individual patient, all the nP measurements are used to fit the model

and, hence, determine the patient-specific values of the model parameters (see STAR Methods for meth-

odological details). Figure 2 illustrates representative global fitting results for 3 non-relapsing and 3 relaps-

ing patients. Furthermore, Figure S7 in Data S2 shows the global fitting results for the rest of the patients in

the relapsing group. The median and interquartile range of the root mean squared error (RMSE) and the

coefficient of determination ðR2Þ of our model fits are distributed with median and interquartile range of

0.16 (0.07, 0.26) ng/mL and 0.99 (0.98, > 0:99) over the whole cohort (n = 166); 0.15 (0.07, 0.23) ng/mL

and 0.99 (0.98, > 0:99) in the non-relapsing subgroup (n = 156); and 0.53 (0.39, 0.59) ng/mL and 0.95

(0.92, 0.98) in the relapsing subgroup (n = 10), respectively. Thus, the results from global fitting analysis

demonstrate that our mechanistic model successfully recapitulates the observed patient-specific PSA dy-

namics. Additionally, according to two-sided Wilcoxon rank-sum tests, the differences in quality of fit
4 iScience 25, 105430, November 18, 2022
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Figure 2. Mechanistic model reproduces the observed PSA dynamics during post-EBRT monitoring

(A–C) Global fitting results for three non-relapsing patients

(D–F) Similar global fitting results for three patients exhibiting a biochemical relapse. For each patient, the PSA measurements are plotted as red bullet

points and EBRT is represented as a rectangular area shaded in light gray. The fits obtained with our model are depicted as a solid dark blue line, and the

corresponding 95% confidence intervals are depicted as surrounding areas shaded in light blue. Each plot also features the values of the root mean squared

error (RMSE) and the coefficient of determination ðR2Þ to assess the quality of the model fit. Additionally, the prediction of the patient’s PSA nadir using our

model is represented as a blue downward triangle. This figure illustrates the remarkable performance of our mechanistic model to fit patient-specific

longitudinal PSA datasets collected during standard monitoring following EBRT. Table S6 in Data S3 further provides the values of the model parameters

and quantities of interest corresponding to the model fits shown in this figure.
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between the relapsing and the non-relapsing subgroups are significant (RMSE: p< 0:001, R2: p = 0:0027).

Corresponding one-sided tests show that superior fits are achieved for nonrelapsing patients in terms of

significantly lower RMSE and higher R2 (RMSE: p< 0:001, R2: p = 0:0013).
Mechanistic model provides promising biomarkers of biochemical relapse

Following global fitting, we define a panel of model-based quantities of interest to examine their perfor-

mance as biomarkers of biochemical relapse. As in Lorenzo et al. (2019b), this panel is composed of three

groups of quantities. First, we include themodel parameters: the baseline PSA ðP0Þ, the proliferation rate of

tumor cells ðrsÞ, the rate of EBRT-induced death of tumor cells ðrdÞ, and the fraction of tumor cells surviving

to EBRT ðRDÞ. Second, we also consider two nondimensional ratios that represent the ratio or tumor cell

proliferation to EBRT-induced death ðbÞ and EBRT efficacy ðaÞ. Finally, we further use the mechanistic

model to calculate the PSA nadir ðPnÞ and the time to PSA nadir since EBRT termination ðDtnÞ, which are

two common metrics in the analysis of post-EBRT PSA dynamics (Lorenzo et al., 2019b; Freiberger et al.,

2017; Zelefsky et al., 2005; Zumsteg et al., 2015; Ray et al., 2006; Bates et al., 2005; Cheung et al., 2006; Cav-

anaugh et al., 2004; Shi et al., 2013; Wein et al., 2012). The interested reader is referred to the STAR

Methods for further information on the definition of these model-based quantities of interest.
iScience 25, 105430, November 18, 2022 5
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Figure 3. Distributions of the candidate model-based biomarkers of biochemical relapse obtained in the global

fitting study

The boxplots corresponding to the distribution of a model-based quantity of interest over the whole cohort (CH), the non-

relapsing subgroup (NRL), and the relapsing one (RL). Outliers are represented as hollow circles. An asterisk (*) indicates

statistical significance in both two-sided and one-sided Wilcoxon rank-sum tests ðp < 0:05Þ.
(A) Initial PSA, P0.

(B) Fraction of tumor cells surviving to EBRT, RD (see STAR Methods).

(C) Rate of EBRT-induced death of tumor cells, rd .

(D) Proliferation rate of tumor cells, rs.

(E) Non-dimensional ratio a, representing EBRT efficiency (see STAR Methods).

(F) Non-dimensional ratio b, representing the ratio of tumor cell proliferation to EBRT-induced death (see STARMethods).

(G) PSA nadir, Pn.

(H) Time to PSA nadir since EBRT termination, Dtn. Table S7 in Data S3 further provides the median, interquartile range,

and full range of the distribution of global fitting values for all the model-based quantities of interest.
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Figure 3 shows the boxplots of the distributions of all model-based quantities of interest across the cohort

as well as the subgroups of non-relapsing and relapsing patients. Two-sidedWilcoxon rank-sum tests iden-

tify significant differences in the values obtained for P0, rs, b, and Pn (p = 0:0098, < 0:001, < 0:001, and

< 0:001, respectively). Corresponding one-sided tests further show that relapsing patients exhibit higher

P0, rs, b, and Pn than non-relapsing patients (p = 0:0049, < 0:001, < 0:001, and < 0:001, respectively). Addi-

tionally, a two-sided Wilcoxon rank-sum test identifies significant differences in Dtn ðp = 0:040Þ, and cor-

responding one-sided testing results in significantly lower values of Dtn for relapsing patients ðp = 0:020Þ.
As a result of this statistical analysis, we henceforth define rs, b, Pn, and Dtn as model-based biomarkers of

biochemical relapse. We do not consider P0 for two reasons. First, the baseline PSA measured in the clinic

and reported in Table 1 ðPdÞ was already significantly higher in relapsing patients (two-sided Wilcoxon

rank-sum test p = 0:017). Additionally, P0 is bound to take values close to Pd as result of model fitting

(see Figure 2 and Lorenzo et al., 2019b), thereby providing a limited contribution to the sequential pa-

tient-specific predictions of PSA dynamics and biochemical relapse obtained during the fitting-forecasting

study.

Figure 4 shows the receiver operating characteristic (ROC) curves and corresponding optimal performance

points for the model-based biomarkers identified from the analysis of the global fitting study results. For

each biomarker, Table 2 further provides the area under the ROC curve (AUC) along with the optimal per-

formance point threshold, sensitivity, and specificity. The shape of the ROC curves, the AUC, and the

optimal performance points show that rs exhibited the best performance in identifying relapsing patients,
6 iScience 25, 105430, November 18, 2022
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Figure 4. ROC curves for the model-based biomarkers of biochemical relapse identified in the analysis of the global fitting study results

The ROC curves and 95% bootstrap confidence intervals (CI) for each biomarker constructed using the global fitting results. In each plot, the vertical axis

quantifies the true positive rate (TPR, i.e., sensitivity), while the horizontal axis measures the false positive rate (FPR, i.e., 1-specificity). The solid black line

represents the unity line. The optimal performance point and corresponding 95% bootstrap confidence intervals along both axes are depicted as a red solid

point and errorbars, respectively.

(A) Proliferation rate of tumor cells, rs.

(B) Non-dimensional ratio b, representing the ratio of tumor cell proliferation to EBRT-induced death (see STAR Methods).

(C) PSA nadir, Pn.

(D) Time to PSA nadir since EBRT termination, Dtn.
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followed closely by b, then Pn, and finally Dtn, which only shows a mildly satisfactory performance. Notice

that rs operates as a perfect classifier, yielding maximal AUC along with 100% sensitivity and specificity at

an optimal performance point. This result can also be hinted in the boxplots of this biomarker shown in Fig-

ure 3, where a straight line could separate the values of rs obtained for relapsing and non-relapsing

patients.

To assess the predictive potential of the model-based biomarkers of biochemical relapse identified in the

global fitting study, we first analyze the accuracy of the predictions of PSA dynamics obtained with our

mechanistic model. To this end, we run a fitting-forecasting study as follows: First, we estimate the model

parameters by fitting them to a subset of the earliest PSA values for each patient, we then calculate the

corresponding personalized model forecasts of PSA dynamics, and we finally compare each of these pre-

dictions to the remainder of the patient’s PSA data in posterior dates. For each patient, we perform this

calculation in a collection of sequential scenarios: We start using a minimum of five PSA values for fitting

ðnP;fit = 5Þ including the baseline PSA at diagnosis ðPdÞ, and we progressively increase nP;fit until only 1

PSA value is left for assessing the model predictions (i.e., nP;fit = 5;.;nP � 1 for each patient; see STAR

Methods for further methodological details). Additionally, in this study, we consider a maximum nP;fit =

21, since this is the last scenario for which there is at least 1 relapsing and 1 non-relapsing patient with

at least 1 remaining PSA value to assess the model forecasts.

Figure 5 illustrates representative results from the fitting-forecasting study for the relapsing and non-re-

lapsing patients considered in Figure 2 in the global fitting study. Additionally, Figure S8 in Data S2 shows

similar results for the other patients in the relapsing subgroup. The results in Figure 5 show that our model

can accurately predict PSA in the short term after the date of the last PSA used in model fitting. This is the

case for both non-relapsing and relapsing patients across the different nP;fit scenarios considered in our

analysis. While the prediction of the long-term PSA plateau in the non-relapsing subgroup is accurate

even with a low nP;fit (Figures 5A–5C), our model may require exposition to an incipient rising trend to accu-

rately identify a biochemical relapse and estimate long-term PSA values (Figures 5D–5F versus Figures 5G–

5I). However, Figures 5G–5I further show that our model forecasts are able to identify rising PSA dynamics

in relapsing patients earlier than standard clinical detection methods (e.g., using the nadir+2 ng/mL crite-

rion). Comparing Figures 5 and 2, we also observe that, as the number of PSA values used for model fitting

increases (i.e., for higher nP;fit ), the uncertainty in the model predictions of PSA decreases accordingly and

progressively approaches the level of uncertainty obtained in the global fitting scenario.

To analyze the distribution of the global RMSE values across all the fitting and forecasting scenarios, we

pool the corresponding results obtained for all nP;fit cases run for each patient in the cohort. Since our
iScience 25, 105430, November 18, 2022 7



Table 2. Analysis of the ROC curves of the model-based biomarkers of biochemical relapse identified in the global

fitting study

Metric

Biomarker

rs b Pn Dtn

AUC 1.00 [1.00, 1.00] 0.98 [0.94, 1.00] 0.88 [0.71, 0.95] 0.69 [0.47, 0.87]

Optimal performance point

Sensitivity 1.00 [1.00, 1.00] 1.00 [0.92, 1.00] 0.80 [0.50, 0.91] 0.70 [0.33, 1.00]

Specificity 1.00 [1.00, 1.00] 0.90 [0.82, 0.96] 0.87 [0.68, 0.97] 0.77 [0.12, 0.85]

Value 14.7 [13.9, 14.7] ,10� 3/mo 9.0 [7.6, 23.4] ,10� 3 0.6 [0.4, 0.9] ng/mL 19.8 [16.2, 54.7] mo

Mechanistic model accurately forecasts short-term PSA dynamics after EBRT. Values in brackets are 95% bootstrap confi-

dence intervals of the reported metrics.

AUC, area under the ROC curve; ROC, receiver operating characteristic; EBRT, external beam radiotherapy; PSA, prostate-

specific antigen.
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mechanistic model provides an accurate prediction of short-term dynamics in both non-relapsing and re-

lapsing patients, we will focus the analysis of the forecasting results on the subsequent two PSA values that

were not used in model fitting in each nP;fit scenario for each patient. Hence, this two-value forecast corre-

sponds to a short-term prediction of PSA dynamics over approximately a 1-year horizon according to the

PSA test frequency in our cohort (Table 1). Note that not all patients for whom it is possible to fit nP;fit PSA

values are eligible for a short-term prediction of two PSA values because of limited PSA data for forecast

validation. The median and interquartile range of the RMSE of the model fits are 0.15 (0.08, 0.25) ng/mL

across the whole cohort ðn = 1043Þ, 0.14 (0.07, 0.22) ng/mL in the non-relapsing subgroup ðn = 949Þ,
and 0.34 (0.17, 0.72) ng/mL in the relapsing subgroup ðn = 94Þ. The RMSE of the ensuing short-term

forecasts of PSA exhibits a median and interquartile range of 0.18 (0.08, 0.34) ng/mL across the whole

cohort ðn = 878Þ, 0.16 (0.07, 0.31) ng/mL in the non-relapsing subgroup ðn = 794Þ, and 0.63 (0.22,

1.19) ng/mL in the relapsing subgroup ðn = 84Þ. These RMSE results demonstrate that our model can

reproduce the observed PSA dynamics and that the resulting personalized model can yield a reasonably

accurate prediction of PSA to inform the monitoring strategy for each patient (see discussion). For the

sake of completeness, Figure S9 in Data S4 further depicts the boxplots of the RMSE for model fitting

and short-term PSA prediction in each fitting-forecasting scenario across the whole cohort ðnP;fit = 5;.;

21Þ. Additionally, Tables S9 and S10 in Data S4 summarize these RMSE distributions for the whole cohort

as well as the non-relapsing and relapsing subgroups.

Considering the pooled results across all nP;fit cases, the RMSE values of the model fits and the short-term

PSA predictions obtained for non-relapsing patients were significantly lower than those obtained for re-

lapsing patients (p< 0:001 in all corresponding two- and one-sided Wilcoxon rank-sum tests). Using two-

sided Wilcoxon rank-sum test to compare the global RMSE distributions obtained for model fits against

those calculated for the short-term PSA predictions, we obtain significant differences across the whole

cohort, the non-relapsing subgroup, and the relapsing subgroup (p< 0:001, p< 0:001, and p = 0:025,

respectively). Corresponding one-sided tests further confirm that the RMSE values for the model fits are

significantly lower than those of the short-term PSA predictions (p< 0:001, p< 0:001, and p = 0:013,

respectively).

Early estimates of model-based biomarkers accurately predict biochemical relapse earlier

than standard practice

The patient-specific model fits obtained for each nP;fit scenario in the fitting-forecasting study provide a set

of values for the model-based biomarkers of biochemical relapse identified during global fitting (i.e., rs, b,

Pn, and Dtn). Since each nP;fit scenario can only be performed once the latest PSA value used for model

fitting is collected, the corresponding estimates of the biomarkers are associated with its collection

date. Thus, we proceed to analyze whether early estimates of our model-based biomarkers enable an ac-

curate identification of relapsing patients and whether they anticipate the detection of relapse with respect

to the standard clinical practice. To further motivate this analysis, we recall that, for the three relapsing pa-

tients shown in Figures 5G–5I, our model predicts a rising PSA trend before the usual nadir+2 ng/mL cri-

terion is satisfied.
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Figure 5. Mechanistic model provides personalized forecasts of PSA dynamics during post-EBRT monitoring

(A–F) An early forecast of the PSA dynamics obtained with our mechanistic model for the same non-relapsing and

relapsing patients considered in Figure 2, respectively. The early model forecasts for the non-relapsing patients

accurately predict both short- and long-term PSA dynamics. However, our early forecasts of PSA are only accurate in the

short term for the relapsing patients.

(G–I) The model forecasts of PSA dynamics obtained at a later date in the course of post-EBRT monitoring for the same

non-relapsing patients (i.e., in a higher nP;fit scenario). In this case, while the model can still predict only the following

short-term PSA values accurately, it can already detect a rising PSA trend earlier than standard clinical practice (e.g., using

the nadir+2 ng/mL criterion). For each patient, the PSA measurements used for model fitting are plotted as red bullet

points, while the remainder PSA data to assess model predictions are represented as hollow red circles. EBRT is

represented as a light gray rectangular area. The fits and forecasts obtained with the mechanistic model are represented

with a solid dark blue line, and the corresponding 95% confidence intervals are depicted as surrounding areas shaded in

light blue. Along with the root mean squared error (RMSE) of the model fit, the forecasting RMSE is also reported for both

all the remaining PSA values and the immediately next two PSA values after the date of the last PSA used for model fitting.

Additionally, each plot also includes the model prediction of the patient’s PSA nadir, which is represented as a blue

downward triangle. Table S8 in Data S4 further provides the values of the model parameters and quantities of interest

corresponding to the model fits shown in this figure.
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To assess the performance of our early model-based biomarker estimates as biochemical relapse classi-

fiers, we perform an ROC curve analysis. We first pool all the values obtained for each biomarker in all

the nP;fit scenarios across all patients. Then, we construct the ROC curve by using each pooled biomarker

value as a threshold that we compare to the corresponding nP;fit values obtained for each patient in the

fitting-forecasting study ðnP;fit = 5;.; nP � 1Þ. If any of these patient-specific nP;fit values satisfies the
iScience 25, 105430, November 18, 2022 9
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Figure 6. ROC curves for the early estimates of the biochemical relapse biomarkers obtained in the fitting-forecasting studies

The ROC curves and 95% bootstrap confidence intervals (CI) for each biomarker constructed using the fitting-forecasting results. In each plot, the vertical

axis quantifies the true positive rate (TPR, i.e., sensitivity), while the horizontal axis measures the false positive rate (FPR, i.e., 1-specificity). The solid black line

represents the unity line. The optimal performance point and corresponding 95% bootstrap confidence intervals along both axes are depicted as a red solid

point and errorbars, respectively. Additionally, the optimal performance point identified during global fitting and corresponding 95% bootstrap confidence

intervals are represented with a pink solid point and errorbars, respectively.

(A) Proliferation rate of tumor cells, rs.

(B) Non-dimensional ratio b, representing the ratio of tumor cell proliferation to EBRT-induced death (see STAR Methods).

(C) PSA nadir, Pn.

(D) Time to PSA nadir since EBRT termination, Dtn.
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classification criterion for the biomarker (i.e., a larger rs, b, and Pn or a lower Dtn), then we identify the pa-

tient as relapsing under the considered threshold. Please refer STAR Methods for further methodological

details.

Figure 6 shows the ROC curve and optimal performance point for each biomarker obtained by using the

results of the fitting-forecasting study. Table 3 further reports the corresponding AUC value along with

the optimal performance point threshold, sensitivity, and specificity. Additionally, both Figure 6 and Table 3

represent the ability of the optimal performance point threshold identified in the global fitting study to

classify biochemical relapse using the early biomarker estimates from the fitting-forecasting study. We

identify again that the best-performing biomarkers are rs and b, followed by Pn, and finally Dtn, which ex-

hibits a comparably poorer classifying ability with respect to the other three biomarkers. Comparing the

ROC curve metrics obtained in the global fitting study and the fitting-forecasting study, the AUC is slightly

lower when the biomarkers are assessed to identify biochemical relapse early. While parameter rs acted as

a perfect classifier in the global fitting study, we observe a minor loss of specificity when it is leveraged as an

early biomarker for biochemical relapse. Note also that the optimal threshold required to provide an early

classification of biochemical relapse with rs is notably lower with respect to the one obtained in the global

fitting study. Thus, a less-conservative threshold is needed to provide an early identification of biochemical

relapse using rs. This is also suggested by comparing the model predictions for the relapsing patients (see

Figures 2D–2F and Figures 5G–5I). Conversely, the b ratio exhibits a slightly better performance in the

fitting-forecasting study due to a moderate increase in specificity, and the optimal threshold stays in the

same order of magnitude. This last observation also holds for the PSA nadir Pn, which shows maximal sensi-

tivity in the fitting-forecasting study. However, its specificity to early detect biochemical relapse is lower

than that in the global fitting study. Finally, Dtn also exhibits a lower specificity in the fitting-forecasting

study than in the global fitting scenario.

We further leverage the optimal threshold calculated for the ROC curve of each model-based biomarker in

the fitting-forecasting study to assess whether it may enable an earlier detection of biochemical relapse

than standard clinical criteria (e.g., nadir+2 ng/mL). To this end, we define a metric termed days gained

to biochemical relapse diagnosis (DGBRD) for each biomarker and for every patient in the relapsing sub-

group. This metric is computed as the difference between the reported date of biochemical relapse and

the earliest date in which each biomarker classifies a patient as relapsing according to the optimal

threshold calculated in the ROC curve analysis of the fitting-forecasting study. A positive value of

DGBRD indicates that a biomarker enables the early detection of biochemical relapse with respect to stan-

dard clinical practice. Note that the second date in the DGBRD definition corresponds to one of the dates
10 iScience 25, 105430, November 18, 2022



Table 3. Analysis of the ROC curves of the model-based biomarkers to identify early biochemical relapse using the

fitting-forecasting study results

Metric

Biomarker

rs b Pn Dtn

AUC 0.99 [0.97, 1.00] 0.97 [0.93, 0.99] 0.81 [0.70, 0.90] 0.63 [0.44, 0.78]

Optimal performance point

Fitting-forecasting study

Sensitivity 1.00 [1.00, 1.00] 1.00 [1.00, 1.00] 1.00 [0.86, 1.00] 0.70 [0.14, 0.89]

Specificity 0.96 [0.91, 0.99] 0.91 [0.83, 0.95] 0.61 [0.47, 0.69] 0.65 [0.28, 0.94]

Value 5.7 [2.4, 10.0] ,10� 3/mo 13.3 [7.6, 17.4] ,10� 3 0.6 [0.6, 0.7] ng/mL 18.1 [7.9, 39.6] mo

Global fitting study

Sensitivity 0.30 [0.00, 0.70] 1.00 [1.00, 1.00] 0.90 [0.50, 1.00] 0.70 [0.33, 1.00]

Specificity 0.99 [0.97, 1.00] 0.88 [0.82, 0.93] 0.63 [0.56, 0.71] 0.59 [0.52, 0.67]

Value 14.7 ,10� 3 1/mo 9.0 ,10� 3 0.6 ng/mL 19.8 mo

Values in brackets are 95% bootstrap confidence intervals of the reported metrics. For each biomarker, the global fitting

threshold was fixed to the optimal cutoff reported in Table 2 in order to determine the corresponding 95% bootstrap con-

fidence intervals for its sensitivity and specificity using the fitting-forecasting study results.

AUC: area under the ROC curve; ROC, receiver operating characteristic.
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in which PSA was measured for each relapsing patient, as these are the dates at which we calculate the

model fits in each of the nP;fit scenarios of the fitting-forecasting study.

Figure 7 shows the distribution of the DGBRD for each biomarker, and Table 4 reports the corresponding

median, interquartile range, and full range. The results in Figure 7 and Table 4 show that the DGBRD asso-

ciated with our model-based biomarkers took a non-negative value for the majority of patients in the

relapsing subgroup. This means that our model-based biomarkers provided an earlier detection of

biochemical relapse than standard clinical criteria (e.g., nadir+2 ng/mL). However, there was a minority

of patients for whom the DGBRD was negative, such that standard clinical methods provided an earlier

identification of biochemical relapse. Using one-sided signed-rank Wilcoxon tests on medians larger

than zero, we found that the early estimates of rs, b, and Pn provide a significantly earlier detection of

biochemical relapse than standard clinical practice (p = 0:0029;0:0029, and 0.0098, respectively) for their

calculation. Additionally, we observed that, while rs and b exhibited the best classifier performance in the

ROC curve analysis (see Figure 6 and Table 3), Pn is the biomarker yielding the earliest identification of

biochemical relapse. Indeed, two-sided Wilcoxon signed-rank tests identify significant patient-wise differ-

ences in the DGBRD for Pn with respect to those calculated for rs, b, and Dtn (p = 0.019, 0.019, and 0.016,

respectively). Corresponding one-sided tests confirm that the DGBRD calculated for Pn provided a signif-

icantly earlier identification of biochemical relapse than the DGBRD obtained for rs, b, and Dtn for each pa-

tient (p = 0.0098, 0.0098, and 0.0078, respectively). The comparison of the DGBRD for rs and b with respect

to the DGBRD for Dtn was not significant under two-sidedWilcoxon signed-rank testing. However, the cor-

responding one-sided tests do identify a significantly larger DGBRD for rs and b (p = 0:039 and p = 0:027,

respectively). Comparing the overall DGBRD distributions between the biomarkers under two-sided Wil-

coxon rank-sum testing, no significant differences are detected. The corresponding one-sided tests only

identify a significantly larger DGBRD for Pn than for Dtn ðp = 0:026Þ.

DISCUSSION

Patient-specific predictions of PSA based on mechanistic modeling to design personalized

PSA-monitoring strategies

The detection of a consistent rising trend in PSA constitutes a biochemical relapse, which is indicative of a

potential PCa recurrence (Wein et al., 2012; Mottet et al., 2021; Cornford et al., 2021). Here, we posit that

patient-specific forecasts of PSA evolution obtained via mechanistic modeling of post-EBRT PSA dynamics

can accurately identify relapsing patients earlier than the current PSA threshold criteria for detection (e.g.,

nadir+2 ng/mL) (Wein et al., 2012; Roach et al., 2006; Cornford et al., 2021). To this end, we leverage our

single-dose model of PSA dynamics after EBRT, which was previously proposed in Lorenzo et al.
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Figure 7. Distribution of the days gained to

biochemical relapse diagnosis (DGBRD) for the

model-based biomarkers of biochemical relapse

The boxplots in this figure represent the distribution of

theDGBRD in the relapsing subgroup (n = 10) obtained

for each biomarker of biochemical relapse by

leveraging the optimal threshold calculated in the ROC

curve analysis of the fitting-forecasting study results.

From left to right: proliferation rate of tumor cells rs,

non-dimensional ratio b (i.e., ratio of tumor cell

proliferation to EBRT-induced death; see STAR

Methods), PSA nadir Pn, and time to PSA nadir since

EBRT termination Dtn. Outliers are represented as

hollow circles. A single asterisk (*) denotes statistical

significance in one-sided Wilcoxon signed-rank tests

for a median larger than zero (p < 0.05).
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(2019b). This mechanistic model features key advantages for its clinical use to forecast PSA during post-

EBRT patient monitoring. First, it is defined upon the essential mechanisms underlying the tumor response

to radiation and the ensuing changes in PSA dynamics after EBRT conclusion (see STAR Methods and Fig-

ure 1). Consequently, our model has a simple formulation with only four parameters to be identified pa-

tient-wise from the longitudinal PSA data that are routinely collected during standard patient follow-up

(see STAR Methods and Figure 1). Finally, the mathematical solutions to our model span the plateauing

trend observed in non-relapsing patients as well as the biexponential response expected for relapsing pa-

tients (Zagars and Pollack, 1997; Cox et al., 1994; Hanlon et al., 1998; Vollmer and Montana, 1999; Taylor

et al., 2005).

In this work, we first demonstrate that our model exhibits a remarkable accuracy in reproducing the com-

plete post-EBRT PSA dynamics observed in a new patient cohort from a different center to the one from our

previous study (Lorenzo et al., 2019b), thereby providing preliminary evidence of cross-institutional valida-

tion. We further demonstrate that our model can provide reasonably accurate short-term forecasts of PSA

for both non-relapsing and relapsing patients over the course of post-EBRT monitoring. To this end, we

focused on predicting the immediately next two PSA values that were not used to parameterize our model

in the serial nP;fit scenarios run for each patient ðnP;fit = 5;.; nP� 1Þ during the fitting-forecasting study. As

noted in the results section, our short-term PSA predictions correspond to a time horizon of approximately

1 year according to the PSA testing frequency in our cohort (Table 1). This prediction time horizon overlaps

with standard PSA monitoring protocols, which usually define routine PSA tests more frequently over the

first years following EBRT termination (e.g., every 3 to 6 months) and more sparsely afterward (e.g., every 6

to 12 months) (Hamdy et al., 2016; Wein et al., 2012), unless the collected PSA values rise suspicion of a po-

tential relapse that would warrant more frequent testing (e.g., moderately high PSA levels, an incipient ris-

ing trend) (Freiberger et al., 2017; Zelefsky et al., 2005; Zumsteg et al., 2015; Ray et al., 2006; Bates et al.,

2005; Cheung et al., 2006; Cavanaugh et al., 2004; Shi et al., 2013; Wein et al., 2012). Thus, our model fore-

casts could facilitate the systematic design of personalized monitoring plans, which can be adapted as the

collection of further PSA data become available to inform our model. For instance, the consistent predic-

tion of a plateauing trend during post-EBRT monitoring could be used to extend the time interval between

consecutive PSA tests. Conversely, the detection of rising PSA dynamics would motivate a decision to

prescribe more frequent PSA tests to confirm a biochemical relapse and then proceed to assess PCa recur-

rence (e.g., via biopsy and medical imaging) (Cornford et al., 2021; Wein et al., 2012). Hence, our mecha-

nistic modeling forecasts could advance patient monitoring after EBRT from routine and observational PSA

testing to a dynamic predictive paradigm optimizing PSA data collection on a patient-specific basis.
Promising model-based biomarkers to detect biochemical relapse early

In addition to the explicit forecast of PSA values with our model, we further explore the performance of

model-based biomarkers of biochemical relapse. By analyzing if our global model fits to the whole PSA da-

taset available for each patient, we identified four candidate biomarkers of biochemical relapse: the
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Table 4. Distribution of the days gained to biochemical relapse diagnosis (DGBRD) in the relapsing subgroup

ðn = 10Þ for each biomarker obtained leveraging the optimal threshold calculated in the ROC curve analysis of the

fitting-forecasting results

Biomarker Median IQR Range

rs 175 (90, 450) (-66, 1100)

b 222 (90, 450) (-66, 1625)

Pn 443.5 (0, 1639) (-66, 3505)

Dtn 0 (0, 245) (-66, 330)

IQR, interquartile range.
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proliferation rate of tumor cells ðrsÞ, its ratio to the radiation-induced tumor cell death rate ðbÞ, the PSA

nadir ðPnÞ, and the time to PSA nadir since EBRT termination ðDtnÞ.

As in Lorenzo et al. study (2019b), we observed a superior performance in classifying relapsing patients for

the biomarkers that are directly related to the underlying tumor dynamics (rs and b) than for the biomarkers

that are more closely linked to PSA dynamics (Pn andDtn; see Figure 4 and Table 2). In particular, our results

show that relapsing patients exhibit high rs and b (Figure 3 and Table S7). A high-proliferation activity

measured via Ki-67 staining in PCa tissue samples has been correlated with worse prognosis, radiothera-

peutic outcome, and survival (Cowen et al., 2002; Li et al., 2004; Berlin et al., 2017). An elevated tumor

cell proliferation has also been correlated with an increased risk of PCa aggressiveness in terms of a higher

Gleason score (Tretiakova et al., 2016), which is a histopathological metric that is ubiquitously used in the

clinical management of PCa. In particular, a higher pretreatment Gleason score has been linked to higher

probability of both local and distant PCa recurrence (Zumsteg et al., 2015; Zelefsky et al., 2005; Wein et al.,

2012). The measurement of both the Ki-67 staining index and the Gleason score require an invasive

approach to extract patient-specific tissue samples. However, our mechanistic model could provide a

non-invasive surrogatemethod to estimate the proliferation activity of PCa in terms of rs and b, and thereby

refine the estimation of patient-specific prognosis to guide therapeutic planning (Cowen et al., 2002; Li

et al., 2004; Berlin et al., 2017).

Pn and Dtn are common metrics in clinical studies of PSA dynamics after EBRT. According to our modeling

framework, a high PSA nadir or a short time to reach it after EBRT conclusion is predictive of biochemical

relapse (see Figure 3 and Table S7). Indeed, previous clinical studies have also linked these observations to

worse prognosis, such as a higher likelihood of tumor recurrence and reduced patient survival (Zumsteg

et al., 2015; Ray et al., 2006; Freiberger et al., 2017; Wein et al., 2012). The estimation of Pn and Dtn with

our model relies not only on rs and b but also on other model quantities that are not significantly different

between non-relapsing and relapsing patients (see STAR Methods). This may partially explain their

comparatively poorer performance in identifying biochemical relapse with respect to rs and b (Lorenzo

et al., 2019b). Additionally, the post-EBRT PSA doubling time during biochemical relapse, a PSA metric

linked to a poor PCa prognosis (Freiberger et al., 2017; Zumsteg et al., 2015; Bates et al., 2005; Wein

et al., 2012), can also be estimated by leveraging our model (Lorenzo et al., 2019b).

Therefore, we believe that our model-based biomarkers could be leveraged to assess the probability of

tumor recurrence and estimate patient survival after EBRT, thereby assisting the treating physician in ther-

apeutic decision-making. We plan to explore these important applications of our modeling technology in

future studies over larger cohorts. Additionally, in this study, we further investigate the performance of our

model-based biomarkers to identify biochemical relapse early in the course of post-EBRT PSA monitoring.

Our results show that the estimation of rs, b, Pn, and Dtn with a fraction of the total PSA values available for

each patient also enables to identify relapsing patients (Figure 6 and Table 3). In general, we observe a

similar classifier performance as in the global fitting scenario (Figure 4 and Table 2), although a more con-

servative cutoff value may be required to optimally detect biochemical relapse with rs (Figure 6 and Ta-

ble 3). The promising early classifier performance reported in this study suggests that our model-based

biomarkers are robust with respect to the amount of data required to identify biochemical relapse, and

thus may enable to anticipate the diagnosis of this event with respect to current methods relying on

PSA threshold criteria (e.g., nadir+2 ng/mL). In this work, we perform a preliminary investigation of this

hypothesis revealing that rs, b, and Pn may enable to detect biochemical relapse at a median of
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175–443.5 days (or approximately 5.8–14.8 months), significantly outperforming the standard clinical prac-

tice. Interestingly, while Pn exhibits a poorer classifier performance than rs and b according to the ROC

curve analyses in this study (see Table 2 and Table 3), this biomarker rendered the earliest detection of

biochemical relapse in our cohort. Additionally, a model-informed personalized monitoring approach

would contribute to refine the predictive power of our model-based biomarkers of biochemical relapse

over standard clinical criteria, which would also improve their associated DGBRD metric. For example,

increasing the frequency of PSA data collection according to the model forecasts of a potentially relapsing

patient would facilitate an earlier detection of biochemical relapse (e.g., below the usual nadir+2 ng/mL

threshold) with respect to standard monitoring plans prescribing progressively sparser PSA tests primarily

based on the time since EBRT termination. Future studies over larger cohorts of relapsing patients are

necessary to precisely assess the predictive power of our model-based biomarkers and their combined

ability to anticipate the detection of biochemical relapse with respect to standard practice.

Toward a robust clinical implementation

Around 20%–50% of PCa patients undergoing radiotherapy are estimated to exhibit a biochemical relapse

within 5–10 years of treatment conclusion (Kupelian et al., 2006; Rosenbaum et al., 2004). Their early iden-

tification and the accurate estimation of the severity of their tumor recurrence is crucial to optimize disease

control and survival. Further developments of our patient-specific forecasting methods based on mecha-

nistic modeling of PSA dynamics could constitute a robust enabling technology to accurately address those

timely needs in posttreatment patient monitoring. In particular, casting our model in a Bayesian framework

would advance the current state of our forecasting technology by incorporating the uncertainty in PSA

values (Carobene et al., 2018; Christensson et al., 2011) as well as the uncertainty emanating from themodel

parameterization and ensuing predictions (Lima et al., 2017; Hawkins-Daarud et al., 2019; Lorenzo et al.,

2022). We plan to investigate this approach to seamlessly integrate our mechanistic model predictions

with uncertainty quantification and risk assessment. This strategy has the potential to guide clinical deci-

sion-making during the posttreatment monitoring of individual patients, including the frequency of PSA

data collection, the timing of tests to ascertain the suspicion of tumor recurrence, the estimation of clinical

risks and survival (e.g., biochemical relapse, local and distant recurrence, or death), and the planning of

optimal primary and salvage treatments by maximizing therapeutic outcomes and minimizing toxicities.

In particular, uncertainty quantification of the collected PSA data and model forecasts within a Bayesian

framework would enable a joint assessment of our model-based biomarkers and standard clinical criteria

(e.g., nadir+2 ng/mL) in order to define the risk of biochemical relapse for each individual patient, which has

the potential to minimize false positives and negatives with respect to either method to identify biochem-

ical relapse.

Limitations of the study

While the work presented herein shows promises for the use of our mechanistic model of PSA dynamics to

assist decision-making in post-EBRT monitoring of PCa, it also features some limitations that we plan to

address in forthcoming studies. First, the patient cohort used for our analysis has a reduced number of re-

lapsing patients (n = 10). Thus, to obtain a more robust analysis of the predictive performance of our mech-

anistic model and biomarkers, we need to extend our cohort to increase the number of patients showing

biochemical relapse. This cohort extension would also provide enough statistical power to examine the

correlations between our proposed model-based biomarkers and usual PCa clinical characteristics (e.g.,

Gleason score). To facilitate this effort, we plan to pool cohorts from multiple centers, which would also

enable us to assess the applicability of our model across various institutions. Indeed, we believe that

this is a key step toward the future clinical use of our predictive technology. Additionally, our analysis

was focused on biochemical relapse detection as a surrogate for PCa recurrence (Mottet et al., 2021; Corn-

ford et al., 2021; Wein et al., 2012). To address this limitation, we specifically aim at extending our cohort

with patients for whom PCa recurrence has been confirmed, including the type of recurrence (e.g., local or

metastatic), which would let us analyze their correlation with our biomarkers and model predictions.

Second, all patients in the cohort leveraged in this study only had a single pre-EBRT PSA measurement.

This limitation probably hindered the precise identification of baseline tumor cell dynamics by rendering

tumor cell proliferation rates ðrsÞ close to the minimal admissible value (see STAR Methods) in the non-re-

lapsing subgroup and in the fitting-forecasting scenarios where observed PSA dynamics do not provide

sufficient information to detect a rising branch (e.g., see Table S7 and Lorenzo et al., 2019b). However,

this issue is compatible with our model to represent the early PSA decay usually observed in most patients
14 iScience 25, 105430, November 18, 2022



ll
OPEN ACCESS

iScience
Article
after EBRT conclusion as well as the long-term plateauing PSA dynamics in cured patients (Zagars and

Pollack, 1997; Cox et al., 1994; Hanlon et al., 1998; Vollmer and Montana, 1999; Taylor et al., 2005; Lorenzo

et al., 2019b). Thus, we think that underestimation of the tumor cell proliferation rate did not impede the

performance of our model and biomarkers to respectively predict PSA dynamics and biochemical relapse,

as shown by the results presented herein. Further pre-EBRT PSA values would specifically facilitate the esti-

mation of the PCa cell proliferation rate, which may also lead to a more reliable estimation of the other

model parameters. This improvement would refine our model and biomarker predictions, while also

enabling the calculation of a surrogate for the proliferation activity of the tumor enabling the assessment

of prognostic risks and expected survival (Cowen et al., 2002; Li et al., 2004; Berlin et al., 2017). Moreover,

the availability of several PSA values before EBRT may even allow to consider a different proliferation rate

before and after EBRT (see STARMethods). This modeling feature would enable the investigation of EBRT-

mediated changes in tumor cell population dynamics, e.g., due to direct changes to tumor cell cycle dis-

tribution and proliferation rates (Lima et al., 2017; Hormuth et al., 2018; Powathil et al., 2013) or due to the

evolutionary treatment-induced promotion of a radiation-resistant, proliferative tumor phenotype

(Greaves and Maley, 2012; Enriquez-Navas et al., 2015; Forouzannia et al., 2018; West et al., 2018).

Finally, our modeling framework assumes that all PSA changes after EBRT conclusion emanate from radi-

ation-induced tumor cell death and the proliferation of a potential tumor cell survival fraction. However, the

mathematical formulation of our model could be extended to accommodate other mechanisms underlying

PSA dynamics after EBRT. For instance, postradiotherapy PSA bounces (Wein et al., 2012; Pinkawa et al.,

2010; Freiberger et al., 2017) have been described via mechanistic modeling of the interplay between tu-

mor cell dynamics and tumor immune response (Yamamoto et al., 2016). Indeed, a recent study has also

found this complex interplay to be central for the prediction of the probability of radiocurability of cancer

patients (Alfonso et al., 2021). Our model could also accommodate the increase in PSA caused by prostatic

enlargement due to concomitant benign prostatic hyperplasia by means of an additional disease-specific

PSA production term (Lorenzo et al., 2019b,a; Hanlon et al., 1998; Swanson et al., 2001), which could be

informed by either population-based, age-stratified estimates of PSA changes due to this pathology

(Roehrborn et al., 2000) or longitudinal patient-specific, imaging measurements of prostatic whole or cen-

tral gland volumes (Lorenzo et al., 2019b,a; Cao et al., 2017; Roehrborn et al., 2000; Lieber et al., 2010).

Additionally, our mechanistic model of post-EBRT dynamics features a model-naı̈ve formulation of the sur-

vival fraction as a free parameter that is directly estimated from PSA data (see STAR Methods). This defini-

tion of the survival fraction could be refined by leveraging a radiobiological dose-dependent formulation,

for which there exists a rich literature (Forouzannia et al., 2018; Corwin et al., 2013; Lima et al., 2017; Bodgi

et al., 2016; Rockne et al., 2015; Powathil et al., 2007, 2013; Lewin et al., 2018; O’Rourke et al., 2008; Kal and

Gellekom, 2003; Wang and Li, 2005). Hence, our modeling framework would enable to investigate alterna-

tive radiation plans and systematically select clinically feasible, optimal regimens for individual patients

(Forouzannia et al., 2018; Henares-Molina et al., 2017; Brüningk et al., 2021; Lipková et al., 2019; Ayala-

Hernández et al., 2021). The aforementioned model extensions increase the number of parameters to

be identified on a patient-specific basis. Thus, global sensitivity analysis and model selection would be

recommendable to identify a minimal set of driving parameters requiring personalized calibration and

assess whether the extended models are superior to the parent formulation used in this study (Oden

et al., 2016; Lorenzo et al., 2022).
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Lead contact

Further information and requests for resources should be directed to the lead contact, Guillermo Lorenzo

(guillermo.lorenzo@unipv.it).
Materials availability

This study did not generate new unique reagents.

Data and code availability

De-identified patient data and all original code have been deposited at Zenodo (https://doi.org/10.5281/

zenodo.6277674) and are publicly available as of the date of publication. Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Anonymized patient data were retrospectively collected at Istituto di Ricovero e Cura a Carattere Scienti-

ficoOspedale San Raffaele (IRCCSOSR, Milan, Italy). Ethics approval and informed consent waiver were ob-

tained from the Internal Review Board at IRCCSOSR for this study. The inclusion criteria were diagnosis of

localized or locally advanced PCa (clinical TNM stage: T1 to T3, not N1 or M1), availability of complete basic

diagnostic data (i.e., baseline PSA, Gleason score, and TNM stage), EBRT as primary treatment with cura-

tive intent and without (neo)adjuvant ADT, follow-up for at least 3 years since the onset of radiotherapy, and

a PSA history featuring at least 5 values after EBRT conclusion. The exclusion criteria were a previous diag-

nosis of cancer prior to PCa, any other prior or concomitant treatment for PCa (e.g., ADT, radical prosta-

tectomy, radiotherapy, chemotherapy), EBRT without curative intent, incomplete diagnostic data, and

insufficient PSA monitoring for this study.

A total of 206 men treated with EBRT at IRCCS Ospedale San Raffaele between years 2006 and 2018 were

initially considered for this study. The application of the inclusion and exclusion criteria resulted in a final

cohort of 166 patients. A total of 10 patients in this cohort were diagnosed with biochemical relapse and

tumor recurrence was confirmed in five of them with choline PET/CT. PCa recurrence was local in one pa-

tient and metastatic in the other four patients. Nine relapsing patients received a secondary treatment,

which consisted of ADT for seven patients, radiotherapy in one patient, and combined ADT and radio-

therapy for another patient. The PSA data collected after the onset of the second treatment is not consid-

ered in the present study. We recall that Table 1 summarizes the characteristics of the study cohort, the

relapsing subgroup, and the non-relapsing subgroup. The total number of PSA values reported for each

patient ðnPÞ includes a single pre-EBRT value (i.e., the baseline PSA, Pd ) and the series of PSA values

collected during post-EBRT follow-up. AWilcoxon rank-sum test identified significantly larger PSA at diag-

nosis (Pd , p = 0:017), higher number of PSA values (np, p = 0:040), and more frequent PSA testing

ðp < 0:001Þ in the relapsing subgroup. Additionally, the proportion of T1, T2, and T3 disease in the non-re-

lapsing/relapsing subgroups are 88/6, 64/4, and 4/0, respectively.
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METHOD DETAILS

In this section, we describe the mathematical modeling framework leveraged in this work, which was pre-

viously introduced in [Lorenzo et al., 2019b]. The interested reader is further referred to Table S1 in

Methods S1 for a list of symbols and definitions of the model variables and parameters.
General mathematical model

We call PðtÞ the serum PSA at time t. Our time interval of interest is ðt0;tf Þ, where t0 is the time at which the

pre-EBTR PSA measurement in our database was taken, and tf is the latest time at which we forecast the

PSA. For simplicity, we rescale time such that t0 = 0 for all patients. The patients in our database received

nd radiation doses at times ftkgk = 1;.;nd
, where t0 < t1 </< tnd < tf . Note that the tk ’s may vary from patient

to patient.

We assume that the serum PSA is proportional to the number of tumor cells NðtÞ, that is

PðtÞ = kNðtÞ; (Equation 1)

where k is a constant. Prior to EBRT treatment, we assume thatN grows exponentially in time fromNðt0Þ =

N0, with a characteristic tumor cell proliferation rate rn. Thus,

PðtÞ = kN0e
rnt in t ˛ ðt0; t1Þ: (Equation 2)

From Equation (2), we define P0 = Pð0Þ = kN0.

For each time interval, Ik = ðtk ; tk + 1Þ, k = 1;.;nd � 1, we define SkðtÞ, which represents the number of

tumor cells surviving to the k-th radiation dose, and ~DkðtÞ, which is the number of tumor cells irreversibly

damaged after the k-th radiation dose. For compactness of the notation, we also define S0ðtÞ and ~D0ðtÞ
in the interval ðt0; t1Þ as S0ðtÞ = NðtÞ and ~D0ðtÞ = 0. This assumes that there are no damaged cells before

treatment.

The values of Sk and ~Dk at time tk are obtained from Sk� 1 as

~DkðtkÞ = ð1 � RdÞSk� 1ðtkÞ; (Equation 3a)
SkðtkÞ = RdSk� 1ðtkÞ: (Equation 3b)

Equation (3a) assumes that the radiation dose at time tk immediately produces irreversible damage to a

fraction of cells ð1 � RdÞ, where 0<Rd < 1. The remaining fraction of cells, Rd , continues in the compart-

ment of surviving cells. The parameter Rd is patient-specific, but constant for all doses. We do not assume

any specific formulation for Rd , but simply compute it from the PSA data. Equations (3a) and (3b) and pro-

vide initial conditions for the ordinary differential equations (ODEs) that govern the dynamics of ~DkðtÞ and
SkðtÞ in the time interval Ik . These ODEs are based on the assumptions that irreversibly damaged cells un-

dergo programmed cell death at a rate rd , and surviving cells continue their proliferation at a characteristic

rate rs,

d ~Dk

dt
= � rd

~Dk in Ik ; (Equation 4a)
dSk

dt
= rsSk in Ik : (Equation 4b)

We further define the cumulative number of irreversibly damaged tumor cells in the time interval Ik as

DkðtÞ = Dk� 1ðtkÞ+ ~DkðtÞ; (Equation 5)

with D0ðtÞ = 0. Hence, the total population of tumor cells in the interval Ik is

NkðtÞ = SkðtÞ+DkðtÞ; (Equation 6)

and the PSA is given by

PkðtÞ = kNkðtÞ = kðSkðtÞ + DkðtÞÞ; (Equation 7)

Note that Equations (3a) and (4b) can be solved recursively on all time intervals from I1 to Ind � 1 through

direct integration, which leads to
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~DkðtÞ = ð1 � RdÞSk� 1ðtkÞe� rd ðt� tk Þ in Ik ; (Equation 8a)
SkðtÞ = RdSk� 1ðtkÞersðt� tk Þ in Ik : (Equation 8b)

From Equations (8a) and (5), we obtain

DkðtÞ = Dk� 1ðtkÞ+ ð1 � RdÞSk� 1ðtkÞe� rd ðt� tk Þ in Ik : (Equation 9)

By applying Equations (8b) and (5) recursively, we derive

SkðtÞ = Rk
dN0q1e

rst in Ik ; (Equation 10a)
DkðtÞ = ð1 � RdÞ
"Xk

i = 1

Ri� 1
d eðti � t1Þðrs + rd Þ

#
N0q1q2e

� rd t in Ik ; (Equation 10b)

where q1 = et1ðrn � rsÞ and q2 = et1ðrs + rdÞ. Then, the expression for the serum PSA is

Pk

�
t
�
= P0q1

"
Rk
de

rst +

 
1 � Rd

! Xk
i = 1

Ri� 1
d eðti � t1Þðrs + rd Þ

!
q2e

� rd t

#
in Ik : (Equation 11)

Single dose model

In the single dose model, we assume that the entire radiation treatment is given in one single dose at time

tD . Then,

SðtÞ = RDN0q1De
rst ; t > tD ; (Equation 12a)
DðtÞ = ð1 � RDÞN0q1Dq2De
� rd t ; t > tD ; (Equation 12b)

where RD is the fraction of surviving tumor cells after the entire treatment dose, q1D = etDðrn � rsÞ, and q2D =

etD ðrs + rd Þ. Then, the PSA is given by

PðtÞ = P0q1D ½RDe
rst + ð1 � RDÞq2De� rd t �: (Equation 13)

Dimensional analysis and predicted PSA nadir

The PSA dynamics after treatment completion can be obtained from Equation (11) as

P
�
t
�
= P0q1

"
Rnd
d erst +

 
1 � Rd

! Xnd
i = 1

Ri� 1
d eðti � t1Þðrs + rd Þ

!
q2e

� rdt

#
; t > tnd : (Equation 14)

We nondimensionalize PSA and time using the scales P0q1ð1 �RdÞð
Pnd

i = 1R
i� 1
d eðti � t1Þðrs + rdÞÞ and 1= rd ,

respectively. Then, using hats to denote dimensionless quantities, we have

bP ðbtÞ =
Rnd
d

ð1 � RdÞ
Pnd

i = 1R
i� 1
d e

ðbti �bt1 Þ�rs
rd

+ 1

�ers
rd
bt
+ q2e

�bt : (Equation 15)

Defining the nondimensional ratios

b =
rs

rd
; (Equation 16a)
a =
Rnd
d

ð1 � RdÞ
Pnd

i = 1R
i� 1
d e

ðbti �bt1 Þ�rs
rd

+ 1

�; (Equation 16b)

we can express the dimensionless PSA as

bPðbtÞ = aebbt + q2e
�bt : (Equation 17)

The nondimensional ratio a represents the efficacy of the radiation plan and b defines the dynamics of the

tumor cell population after radiation. While b is independent from the EBRT regimen (see Equation 16a), a

depends on the specific radiation plan (see Equation 16b). Thus, a can be specialized according to the

modeling assumptions concerning the treatment plan. Hence, for the single dose model
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a =
RD

1 � RD
; (Equation 18)

which stems from nondimensionalizing the serum PSA in Equation (13) with P0q1;Dð1 � RDÞ.

The nondimenzionalized PSA velocity is defined as

cvP ðbtÞ =
d bPðbtÞ
dbt = abebbt � q2e

�bt : (Equation 19)

The PSA nadir is achieved at a dimensionless time btn defined by cvP ðbtnÞ = 0. Using Equation (19), we find

btn =
1

1+ b
ln

�
q2

ab

�
: (Equation 20)

The corresponding dimensional time is

tn = t1 +
1

rdð1+ bÞ ln
�

1

ab

�
: (Equation 21)

and the time to PSA nadir since the completion of the treatment is given by Dtn = tn � tnd .

Further modeling assumptions

Some patients may experience delays in their radiation plans due to treatment side effects, local holidays,

or machine routinemaintenance. Additionally, the patient dataset used in this study only includes the times

of EBRT initiation and conclusion, the radiation dose, and the number of doses. This information is not

compatible with an accurate use of our general model, which would require the exact dates of each

EBRT fraction for each patient. To overcome this limitation, we introduced the equivalent single dose

assumption on radiation delivery that leads to the single dose model presented above. Thus, here we

perform our analyses with the single dose model, which can be leveraged as a surrogate of the general

model as shown in [Lorenzo et al., 2019b].

Methods S2 in the Supplemental Information further describes another surrogate model that we have

termed the periodic dose model in [Lorenzo et al., 2019b]. This model assumes that the EBRT doses are

delivered periodically. Data S1 further provides a summary of the results obtained using the periodic

dose model in the global fitting and fitting-forecasting studies that were carried out for the single dose

model in the main text. The rationale for using the single dose model for the main analysis of this paper

lies in its comparatively simpler formulation than the periodic dose model and the similar performance

of both models in fitting and forecasting PSA dyamics after EBRT (see Data S1 and [Lorenzo et al.,

2019b]). Hence, the single dose model is preferable over the periodic dose model from a model selection

perspective.

We further assume that EBRT does not change the proliferation rate of the surviving tumor cells, such that

rn = rs and q1 = q1D = 1. This is a common assumption in the literature [Lima et al., 2017; Corwin et al.,

2013; Pérez-Garcı́a et al., 2015] that facilitates the parameterization of our models using the cohort of

this study, which only features one pre-EBRT PSA value to inform rn. Additionally, we set tD = t1 for the sin-

gle dose model as in [Lorenzo et al., 2019b].

Model fitting and forecasting

We fit the PSA data from each patient to the single dose model. We perform model fitting by leveraging a

nonlinear least-squares method based on a trust-region reflective algorithm. Table S2 in Methods S3 pro-

vides the initial guess as well as the lower and upper bounds of the model parameters. Our model fitting

method aims at minimizing an objective functional J, given by

J =
XnP;fit
i = 1

ðbPðtiÞ � PðtiÞÞ2 +wrðrs � rs;minÞ2: (Equation 22)

The first term in the right-hand side of Equation (22) represents themismatch between PSA data ðbPÞ and the

model estimation of PSA ðPÞ at each of the PSA test times ti ði = 1;.;nP;fitÞ. For each patient, we run a total

of nP;fit model fits in the fitting-forecasting study ðnP;fit = 5;.;nP � 1Þ, whereas we only perform a single

model fit with nP;fit = nP in the global fitting study. The second term in the right-hand side of Equation (22)
iScience 25, 105430, November 18, 2022 23



ll
OPEN ACCESS

iScience
Article
regularizes the proliferation rate of the surviving tumor cells ðrsÞ to low values and was introduced to limit

overfitting, especially when only a small number of PSA values were available to calculate themodel param-

eters. The regularization weight wr is empirically set at 2500 and rs;min is the minimum admissible value for

this parameter in Table S2.

We further cast our model fitting problem within a multi-start strategy to facilitate convergence for all pa-

tient datasets and avoid the selection of local minima in the minimization problem outlined above. In brief,

this strategy consists of solving the model fitting problem multiple times, each of them using a different

initial guess and resulting in a parameter set if convergence is achieved. Then, the algorithm selects the

resulting parameter set that renders the lowest value of the objective functional as the global minimum.

We use a collection of 20 initial guesses that are randomly sampled within the parameter space and always

includes the one provided in Table S2.
Code implementation

The calculations based on the numerical methods described in this section are performed using MATLAB

(R2021a, The Mathworks, Natick, MA, USA). In particular, model fitting is implemented by leveraging func-

tions multistart and lsqnonlin in the Global Optimization Toolbox.
QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative assessment of model fits and forecasts

In the global fitting study, the quality of fit is assessed by means of the root mean squared error (RMSE) and

the coefficient of determination ðR2Þ. Given that some nP;fit scenarios involved a reduced number of PSA

values to assess the model forecasts, we only use the RMSE to analyze the quality of fit and validate the

model predictions of PSA dynamics in the fitting-forecasting study. Additionally, we calculate the 95%

nonlinear regression prediction confidence intervals for our model fits and forecasts.
Receiver operating characteristic curves

We calculate the receiver operating characteristic (ROC) curves for our model-based biomarkers obtained

from global fitting and the fitting-forecasting study. Global fitting produces a unique value for each model-

based biomarker per patient. We use the resulting set of values obtained across the whole cohort as the

thresholds to construct the corresponding ROC curves. Since all PSA values for each patient are used in

global fitting, these ROC curves assess the ability of themodel-based biomarkers to retrospectively classify

patients as relapsing or non-relapsing. The fitting-forecasting study produces a set of values for each

model-based biomarker per patient, which result from the sequential model fits to an increasing number

of PSA values ranging from nP;fit = 5 to nP;fit = nP � 1. Hence, each set contains the temporal evolution of

eachmodel-based biomarker during post-EBRTmonitoring for each patient. To construct the ROC curve of

each model-based biomarker in the fitting-forecasting study, we first pool all the biomarker values across

all patients to define the thresholds. Then, for each patient, we assess whether each threshold can identify

any of the biomarker values obtained across the nP;fit scenarios as predictive for biochemical relapse. Thus,

in this scenario, the ROC curves provide an assessment of the ability of the model-based biomarkers to

early classify the patients as relapsing or non-relapsing during the course of post-EBRT PSA monitoring.

For each ROC curve, we further calculate the area under the curve (AUC) using the trapezoidal rule and the

optimal performance point according to Youden’s index. Additionally, we calculate the 95%bootstrap con-

fidence intervals of the ROC curves and their corresponding AUC and optimal performance point. We use

2000 bootstrap samples for these calculations. The 95% bootstrap confidence interval for each ROC curve

is obtained as the envelope of the 95% bootstrap confidence interval regions obtained for each threshold

value used in the construction of the ROC curve along the sensitivity and specificity axes.
Statistical analysis

We use Wilcoxon rank-sum and signed-rank tests for the statistical analyses performed in this work. In the

results section, we specify when we use each type of test and whether it is two-tailed or one tailed for each

statistical analysis of the global fitting and fitting-forecasting study results. The level of significance for all

statistical tests is set at 5%.
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Code implementation

The calculations based on the statistical methods described in this section are performed using MATLAB

(R2021a, The Mathworks, Natick, MA, USA). In particular, we use the Statistics and Machine Learning

Toolbox to calculate the 95% nonlinear regression prediction confidence intervals for our model fits and

forecasts (function nlpredci), construct the 95% bootstrap confidence intervals for the ROC curve analysis

(function bootci), and perform the aforementioned statistical tests (functions ranksum and signrank).
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