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Abstract 

The role of imaging in pretreatment staging and management of prostate cancer (PCa) is constantly evolving. In 
the last decade, there has been an ever-growing interest in radiomics as an image analysis approach able to extract 
objective quantitative features that are missed by human eye. However, most of PCa radiomics studies have been 
focused on cancer detection and characterisation. With this narrative review we aimed to provide a synopsis of the 
recently proposed potential applications of radiomics for PCa with a management-based approach, focusing on pri-
mary treatments with curative intent and active surveillance as well as highlighting on recurrent disease after primary 
treatment. Current evidence is encouraging, with radiomics and artificial intelligence appearing as feasible tools to 
aid physicians in planning PCa management. However, the lack of external independent datasets for validation and 
prospectively designed studies casts a shadow on the reliability and generalisability of radiomics models, delaying 
their translation into clinical practice.

Key points
• Artificial intelligence solutions have been proposed to streamline prostate cancer radiotherapy planning.

• Radiomics models could improve risk assessment for radical prostatectomy patient selection.

• Delta-radiomics appears promising for the management of patients under active surveillance.

• Radiomics might outperform current nomograms for prostate cancer recurrence risk assessment.

• Reproducibility of results, methodological and ethical issues must still be faced before clinical implementation.

Keywords Artificial intelligence, Clinical decision-making, Prostatic neoplasms, Radiomics, Reproducibility of results

Background
Prostate cancer (PCa) is the second most common can-
cer and the fifth cause of cancer-related death in men 
worldwide [1]. PCa shows a highly heterogeneous clini-
cal behaviour, ranging from indolent disease [2] to 
treatment-resistant lethal disease [3]. A wide range of 
management options are available, ranging from deferred 
treatment, such as active surveillance (AS), to primary 
treatment with curative intent, including radical prosta-
tectomy (RP) and radiotherapy (RT) and systemic ther-
apy (hormonotherapy and chemotherapy) [4]. In this 
context, an accurate patient selection is key to deliver the 
most appropriate management in terms of oncologic out-
comes and quality of life.
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Despite multiparametric magnetic resonance imag-
ing (mpMRI) and prostate-specific membrane antigen 
(PSMA)-ligand positron emission tomography/com-
puted tomography (PET/CT) have revolutionised the 
diagnostic pathway of PCa, their role in preoperative 
staging, treatment planning, and in the PCa recur-
rence setting is less defined [5, 6]. Currently, thera-
peutic and prognostic recommendations widely rely 
on risk-stratification tools based on clinical param-
eters such as clinical stage, prostate-specific antigen 
(PSA), and Gleason score (GS) [7–9]. Nonetheless, 
there is mounting evidence to suggest that imaging can 
improve accuracy of clinical-based prognostic models 
[10, 11]. Still, there are some limitations of imaging to 
be addressed in order to exploit its full potential in this 
setting, such as the inherent subjectivity, variability of 
image interpretation, and lack of reliable quantitative 
parameters.

To address these issues, radiomics has been pro-
posed as an image analysis approach that allows a high-
throughput extraction of objective quantitative features 
(morphological, statistical, and textural) that are missed 
by human eye [12, 13]. Radiomics features have the 
potential to better describe tumour phenotype and its 
heterogeneity, providing relevant diagnostic and prog-
nostic information to better inform clinical decision-
making [14].

While the bulk of radiomics research has been mainly 
focused on PCa detection and characterisation [15], there 
are many potential implications of radiomic features in 
management planning for both primary and recurrent 
PCa, which could lead to a more personalised treatment 
approach (Table  1). For example, features of tumour 
aggressiveness could inform on local and nodal staging, 
overcoming the limited sensitivity of preoperative imag-
ing, with direct impacts on the choice of the surgical 
technique (e.g., nerve-sparing, pelvic lymph node dis-
section). Radiomics and machine learning (ML)-based 
solutions could assist radiation oncologist in their daily 
practice, from treatment planning to toxicity prediction. 
Also, a better characterisation of tumour aggressiveness 
may help in defining which patients may benefit from 
adjuvant therapies, to reduce post-treatment recurrence 
[14, 16, 17]. Finally, radiomics features may help identify-
ing metastatic lesions that are more likely to respond to 
systemic therapies, and to quantify the effectiveness of a 
specific treatment.

In this narrative review, we present the current knowl-
edge on the potential application of radiomics for PCa 
treatment planning, with a management-based approach 
and a highlight on recurrence of disease after treatment, 
while also covering some artificial intelligence (AI)-based 
imaging tools when relevant (Fig. 1).

Radiomics and radiotherapy
RT has a consolidated role in cancer treatment, and it can 
be estimated that around half of all oncologic patients 
will receive RT either alone or in combination with other 
treatments [18]. In this setting, PCa patients represent 
no exception. Diagnostic imaging has historically played 
a major role in all aspects of RT, from identification of 
eligible patients and therapy planning to the assessment 
of treatment response, and the evolution of RT is closely 
tied to the advancements in diagnostic imaging [19]. For 
example, it is foreseeable that MRI will become more 
relevant for RT in the near future, due to its advantages 
for target definition [20] as well as for dose adaptation 
and personalisation, with MRI-linear accelerator (MRI-
LINAC) systems being commercially available [21]. Simi-
larly, radiomics is expected to transform the way RT is 
currently conceived, bringing an added value to many 
tasks in the RT workflow which could benefit from novel 
imaging biomarkers ML decision support models [22]. 
Indeed, radiomics could assist radiation oncologist in 
the transition toward personalised medicine, allowing 
to tailor treatment on individual patients based on their 
specific needs, thus possibly improving outcome while 
reducing toxicity [23].

Treatment planning
Radiomics pipeline and RT workflow share a common 
time-consuming task that is prone to error and low 
reproducibility due to inter-operator variability: image 
segmentation. Usually, radiomics requires segmentation 
of the primary tumour lesion, frequently corresponding 
to the target of RT. However, when planning treatment, 
the radiation oncologist also needs to consider the criti-
cal normal structures located in proximity of the actual 
target that might be damaged by RT, defined as organs at 
risk (OAR), further increasing the workload. Automated 
segmentation tools have been gaining interest in the field 
of prostate MRI. Different deep learning (DL) algorithms 
for whole-gland as well as for lesion segmentation have 
been proposed, with more than promising results and 
some commercial solutions already available (e.g., Dyn-
aCAD Prostate®, Philips, Amsterdam, The Netherlands, 
Quantib® Prostate, Quantib B.V. Rotterdam, The Nether-
lands) [24–26].

In particular, the imaging paradigm for RT planning 
in PCa patients is shifting from computed tomography 
to MRI, and a number of solutions based on AI have 
been proposed to automatise the MRI segmentation 
process with the aim of reducing treatment planning 
time, decreasing the workload for radiation oncolo-
gists and possibly promoting more consistent outcomes 
[27, 28]. In 2019, Elguindi et  al. [29] employed transfer 
learning to train, test, and then externally validate a DL 



Page 4 of 17Stanzione et al. European Radiology Experimental            (2023) 7:13 

algorithm (DeepLabV3+, https:// hasty. ai/ docs/ mp- wiki/ 
model- archi tectu res/ deepl abv3) using contours manu-
ally annotated by an experienced radiation oncologist. 
The DeepLabV3+ was able to automatically segment the 
prostate and seminal vesicles (volumetric dice similar-
ity coefficient 0.83 ± 0.06) as well as five OAR includ-
ing bladder, rectum, urethra, penile bulb, rectum/rectal 
spacer. Similarly, DL has been proposed as a feasible tool 
to improve accuracy and consistency of MRI target and 
OAR segmentations for PCa RT planning in clinical trials, 
automatically flagging delineations needing corrections 
thus reducing the workload for radiation oncologists per-
forming quality assurance (with sensitivity and specificity 
for target volumes needing major corrections of 0.73 and 
0.86, respectively) [30].

With specific regard to OAR, Savenije et  al. [31] 
trained two DL algorithms to segment bladder, rectum, 
and femurs and compared their performance to that of 
an atlas-based software. They found that one of the algo-
rithms (DeepMedic, https:// deepm edic. org/)) was faster 
and more accurate compared to the benchmark, with 
segmentations requiring fewer manual corrections. Of 
note, after training and testing they were able to success-
fully translate DeepMedic into clinical practice and did 
not observe a decrease in the automated segmentation 

tool’s performance compared to the experimental 
setting.

A very recent publication postulated that such 
strategies will likely disrupt daily practice in the near 
future, reporting a first-in-human experience of com-
pletely autonomous unsupervised treatment planning 
approach to deliver MRI-guided RT to a PCa patient 
[32]. In this experience, both OAR and target vol-
ume were automatically contoured by a DL tool and a 
baseline treatment plan was autonomously generated 
using particle swarm optimisation. No human interac-
tion was required up to treatment plan optimisation 
and plan approval by the radiation oncologist. The 
time from simulation to treatment was inferior to 6 h 
and the automate treatment plan fulfilled most of the 
dosimetry criteria adopted for quality assurance check.

However, it is important to further deepen our under-
standing of these tools, which should not be superfi-
cially deemed as perfect or super-human. Indeed, a 
recent study revealed that multiple DL algorithms have 
the highest segmentation variability in those anatomical 
regions (e.g., junctions between prostate and bladder or 
the external urinary sphincter) in which interobserver 
variability is the highest for radiation oncologists [33]. 
This finding is somewhat expected when considering 

Fig. 1 Graphic representation of radiomics and artificial intelligence main applications in the setting of prostate cancer management

https://hasty.ai/docs/mp-wiki/model-architectures/deeplabv3
https://hasty.ai/docs/mp-wiki/model-architectures/deeplabv3
https://deepmedic.org/
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that human drawn contours are usually employed to 
train the automatic segmentation algorithms.

Adaptative RT and assessment of response
Delivering the most appropriate dose based on individual 
tumour features is among the goals of personalised RT. 
Surely, heterogeneity is a hallmark of cancer, with focal 
variations in angiogenesis, hypoxia, and thus metabo-
lism which contribute to determine tumour aggressive-
ness and treatment response [34]. Radiomics holds the 
promise to characterise tumour heterogeneity and paired 
to ML could be used effectively to identify and auto-
matically segment target areas corresponding to the MRI 
index lesion for dose boosting during RT, as proposed by 
Shiradkar et al. [35] with the Rad-TRaP framework.

The idea of refining and adjusting treatment plan to 
account for new clinical and imaging information that 
become available over time is commonly referred to as 
adaptive RT, and has been historically limited by the lack 
of readily available data on tumour biological changes 
[36]. MRI-LINAC and radiomics might offer a solution 
to overcome this limitation. Indeed, beyond the clear 

advantages of better motion management and precise 
tumour localisation, allowing for safe dose escalation, the 
use of MRI-LINAC implies the creation of novel imaging 
datasets daily enriched with new scans. These datasets 
represent the ideal starting point for radiomics studies 
aimed at the prognostic assessment of cancer patients 
[37].

In particular, delta-radiomics (the study of changes in 
radiomics features over time) feasibility experiments with 
multiple time points could be performed. Using two time 
points only (before and after treatment), a recent study 
on 33 PCa patients found that delta-radiomics is outper-
formed by radiomics approaches based on pre- or post-
treatment images alone in the prediction of response to 
RT (Fig.  2) [38]. However, this study might have been 
limited by the relatively small sample size as well as the 
number of available time points and future experiments 
are needed to investigate whether radiomics of multiple 
MRIgRT images can provide and added prognostic value 
for PCa management, as recently found for pancreatic 
cancer [39]. Notwithstanding, researchers venturing in 
this field should be aware of the challenges to be faced. 

Fig. 2 Sixty-nine-years old patient treated with external beam radiotherapy after MRI targeted biopsy revealed 3+4 Gleason score prostate cancer. 
Images from pre-biopsy (a−c) as well as post-treatment (d−f) MRI scans are presented. The index lesion (PI-RADS 5) can be appreciated on the 
T2-weighted images (a, lesion epicentre marked with a white star) as a homogeneous, moderately hypointense area with obscured margins in the 
right anterior transition zone. Corresponding marked and focal hypointensity on ADC map (b, red region of interest) and hyperintensity on high 
b value DWI (c, white arrow) are present. On the corresponding post-treatment sequences (d−f), no abnormalities can be detected, suggesting 
a good treatment response. DWI Diffusion-weighted imaging, MRI Magnetic resonance imaging, PI-RADS Prostate Imaging-Reporting and Data 
System
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There are differences between MRI scans acquired for 
diagnostic purposes and those from MRI-LINAC scan-
ners. For example, diffusion weighted imaging (DWI) 
acquisition is technically challenging for MRI-LINAC 
scanners [40] and only a minority of radiomics features 
are stable and robust on MRI-guided RT feature selection 
[41]. Test-retest studies and great care in feature selection 
will be required to ensure high methodological standards 
are met.

Toxicity
To minimise the side effects of RT, radiomics and ML 
approaches have been proposed to predict OAR toxicity 
[42]. Regarding PCa RT, only preliminary investigations 
have been carried out to explore the role of MRI radi-
omics. In particular, a pilot delta-radiomics study on 30 
patients treated with RT for PCa found that radiomic fea-
tures extracted from femoral head volumes exhibit sig-
nificant differences between pre- and post-RT MRI scans 
[43]. While the authors argue that these variations could 
be related to RT-induced biological changes, the lack of 
feature robustness for temporal variation and the absence 
of meaningful clinical correlates (i.e., fractures) do not 
allow to make strong claims regarding the value of radi-
omics for predicting RT bone toxicity.

Another delta-radiomics study was similarly designed 
for the evaluation of radiation-induced changes in the 
bladder wall using T2-weighted imaging (T2WI) [44]. 
However, beyond changes in radiomics features val-
ues between pre- and post-RT MRI, the correlation 
between radiomics features and radiation dose as well 
as radiation induced urinary toxicity (i.e., cystitis) was 
evaluated and an overall good correlation was found in 
both cases. The same research group also performed a 
pilot study on radiomics for rectal RT toxicity predic-
tion in PCa patients and found that a combined model 
employing both T2WI and DWI features extracted from 
pre-RT MRI had a good prediction power, with an area 
under the curve (AUC) of 0.81, thus possibly represent-
ing a field worthy of further investigation for the pre-
treatment prediction of rectal toxicity [45]. Finally, MRI 
radiomics has been reported as a promising strategy to 
identify patients at higher risk of developing urethral 
strictures as late adverse effect of high dose brachyther-
apy for PCa treatment in a case-control study [46]. Spe-
cifically, on pre-treatment MRI, statistically significant 
differences emerged between the stricture cases and 
controls for radiomics features like contrast and homo-
geneity while no correlation with urethral dosimetry 
was found.

Quantitative computational features can be extracted 
from all types of medical images, and since volumetric 
maps of RT dose levels distributions are indeed images 

a complementary approach to radiomics defined as dosi-
omics has been proposed [47]. In 2018, Rossi et  al. [48] 
tried to improve the prediction of genitourinary and 
gastrointestinal toxicity of PCa RT. With a cohort of 351 
patients, they found that adding dosiomics to non-treat-
ment related parameters (e.g., age, previous treatment) 
significantly increased the accuracy of rectal bleeding 
and faecal incontinence prediction compared to using 
non-treatment-related parameters alone (AUC of 0.58 
versus 0.73 and 0.63 versus 0.73 respectively). Similarly, 
adding dosiomics to non-treatment-related parameters 
increased the prediction accuracy for urinary inconti-
nence (AUC of 0.68 versus 0.73), although statistical sig-
nificance was not reached in this case. Taken together, 
these findings suggest that dosiomics should not be 
neglect and deserves consideration, possibly in the con-
text of multi-omics models [49].

Radiomics and radical prostatectomy
Treatment choices in PCa patients are guided by risk 
stratification, which is based on PSA levels, GS and clini-
cal stage [4]. RP represents the main option alongside 
RT for PCa primary treatment with curative intent. An 
overview of the main RT and RP studies discussed in this 
review is presented in Table 2. With specific regard to RP, 
it is recommended as a valid option for active treatment 
with curative intent for patients at low-intermediate risk. 
Conversely, for high-risk patients or locally advanced dis-
ease, RP should be considered in selected cases and in the 
context of a multimodal therapy.

However, the current risk stratification model is not 
exempt from limitations. Among these, GS at biopsy has 
been reported to be prone to undergrading compared to 
the final score assigned at RP, possibly leading to high-
risk patients being selected for RP [50]. In this context, 
recent studies suggest that radiomics could potentially 
represent a complementary tool to biopsy allowing for 
a more accurate preoperative GS assessment [51, 52]. 
Using multiparametric 3-T MRI radiomics and multi-
variate logistic regression analysis on 166 PCa patients 
treated with RP, Zhang et  al. [51] build (n = 116) and 
validated (n = 50) a predictive model which showed a 
good performance (AUC 0.87) in the prediction of biopsy 
GS upgrade at RP. When adding the radiomics signature 
and clinical parameters into a nomogram, the predictive 
performance further improved (AUC 0.91). While these 
findings are encouraging, it should be considered that 
MRI-targeted biopsies were not performed in this study, 
which could have led to an overestimation of biopsy GS 
downgrading in this study. Furthermore, the relatively 
low number of high GS (> 7) in the study cohort did not 
allow to perform a subgroup analysis, which might have 
confirmed the added value of radiomics.
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Another very recent work compared the performance 
of different whole-gland radiomics models based on 
PSMA PET/MRI to that of biopsy for the prediction of 
GS at RP in 101 retrospectively enrolled PCa patients 
[52]. Among the different single-modality and com-
bined models trained in this IBSI-Image Biomarker 
Standardization Initiative compliant study, the PET 
plus apparent diffusion coefficient (ADC) model out-
performed biopsy (AUC 82.5% versus 72.4%) in the 
prediction of GS at RP. While integrated PET/MRI 
scanners are not widespread, the reported findings sup-
port the hypothesis that multimodal radiomics might 
support urologists in the risk stratification of PCa 
patients. Radiomics might also be able to predict the 
occurrence of bone metastases on pretreatment MRI 
scans, as found in a population of PCa patients under 
watchful waiting, outperforming GS alone as a predic-
tor [53]. The predicted risk of distant tumour spread 
could be helpful identify patients eligible to more 
aggressive treatment strategies.

Nerve‑sparing surgery
Bilateral preservation of the neurovascular bundles can 
lead to better urinary and sexual function outcomes 
without compromising cancer control [54, 55]. How-
ever, current guidelines recommend against performing 
nerve-sparing surgery when extracapsular extension is 
suspected [4]. MRI provides important and useful infor-
mation regarding extracapsular extension of PCa, with 
various signs being used in different scoring system with 
good diagnostic performances [56, 57], but the inter-
reader agreement is rather low and the accuracy is linked 
to the experience of radiologists [58]. Radiomics could 
offer feasible solutions to overcome these limitations and 
thus help identify patients not eligible for nerve sparing 
surgery (Fig. 3) [59–61].

In a recent study, a support vector machine model was 
trained to detect the presence of extraprostatic exten-
sion disease using radiomic features extracted from index 
lesions volumes as identified on the T2WI and ADC 
map of preoperative MRI scans [59]. The overall accu-
racy ranged from 83% (train set) to 74–79% (test set), not 
statistically different from that of an experienced radiol-
ogist. Considering the multicentre and multiscanner set-
ting, these findings indicate a good model generalisability 
and a possible benefit to support less experienced readers 
might be hypothesised. In line with these results, subse-
quent studies from different research groups confirmed 
that MRI radiomics analysis might deliver valuable infor-
mation regarding extracapsular extension of PCa, which 
can be successfully paired with clinical parameters to 
obtain more holistic models with even greater predictive 
performances [60, 61].

Lymph node dissection
At present, it is still unclear how beneficial lymph node 
removal may be on PCa outcomes and while the pro-
cedure can be justified for the information it provides 
regarding cancer spread, it is associated with complica-
tions [62]. Several nomograms can be used to assess 
the risk of nodal involvement in PCa, in order to select 
candidates for lymph node dissection and its extent, but 
most of them were developed in the pre-MRI era [63]. 
The conventional evaluation of lymph node on imag-
ing strongly relies on size and morphology as criteria for 
involvement, suffering from poor sensitivity [64].

Radiomics has been assessed as a potential strategy to 
improve the role of imaging [65–67]. Whole gland ADC 
radiomics obtained from automatically annotated vol-
umes of interests was not statistically different in terms 
of accuracy when compared to two of these nomograms, 
although the overall accuracy is still lower than desirable 
(AUC 0.73) [65]. With a different approach, Zheng and 
colleagues [67] integrated radiomic features, extracted 
from the index lesions on T2WI and ADC map, and clin-
ical features (e.g., PSA, biopsy results) to build a support 
vector machine model. In this case, the integrated model 
achieved an AUC of 0.915, significantly higher compared 
to that of clinical nomograms whose highest AUC was 
0.724. The results of a previous study from a different 
research group combining T2WI and ADC index lesion 
radiomics with clinical variables had already suggested 
the feasibility of this approach for lymph node status 
prediction and its superiority compared to conventional 
nomograms, although with differences in terms of model 
(e.g., a neural network was used) [66]. It should be noted 
that all these studies were only internally validated. Until 
external validation is performed, the degree of generaliz-
ability remains uncertain and represents a possible major 
issue.

Radiomics and active surveillance
AS has been proved to be a viable alternative to radical 
treatments such as RP or RT for low risk PCa, with simi-
lar oncological outcomes [68, 69]. AS protocol requires 
strict patients monitoring over time to recognise any 
potential risk reclassification that would need deferred 
radical intervention, still with curative purpose [69]. 
Annual biopsies identify whether patients on AS show 
upgrading or upstaging of PCa. However, due to the pos-
sible complications of the procedure as well as the risk of 
not correctly targeting the lesion of interest, in the last 
decade there has been an ever-growing interest in non-
invasive diagnostic tools, such as MRI, enabling re-eval-
uation of the risk of PCa progression [70, 71]. Indeed, 
mpMRI has been included in several AS protocols [72, 
73]. Moreover, the UK NICE (National Institute for Care 
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and Clinical Excellence) currently recommends mpMRI 
either for baseline evaluation of AS candidates or for the 
assessment of clinical as well as PSA modifications dur-
ing surveillance protocol [74].

Quantitative imaging techniques may provide objec-
tive measures of the underlying biological changes occur-
ring over the course of natural history of PCa [75–78]. 
An overview of the main studies in the setting of AS dis-
cussed in this review is presented in Table 3. In their ret-
rospective study, Xie et al. [75] assessed a combination of 
texture features and ML-based analysis of ADC maps for 
the prediction of grade group (GG) upgrading in GS ≤ 6 
PCa (GG1) and GS 3 + 4 PCa (GG2) from biopsy to RP 
in 59 patients eligible for AS. Among the four supervised 
ML methods employed, the nearest neighbor algorithm, 
including six texture features (variance, skewness, kurto-
sis, 90% percentile, variance of absolute gradient, and S 
difference variance), showed the best diagnostic perfor-
mance (AUC 0.71) in the test cohort for non-invasively 
prediction of PCa GG upgrading.

Moreover, Sushentsev et  al. [77] compared the per-
formance of the PRECISE scoring system against 
MRI-derived delta-radiomics models for predicting his-
topathological proven PCa progression in 64 patients 
on AS protocol with a median follow-up of 46 months. 
In detail, three delta-radiomics models, including 34 
T2WI- and 53 ADC-derived texture features, were devel-
oped using the parenclitic networks, LASSO (least abso-
lute shrinkage and selection operator regression), and 
random forests ML methods. The Authors showed that 
PRECISE scoring (AUC 84.4%) and delta-radiomics mod-
els (AUC 78.0−81.5%) yielded comparably good perfor-
mance for predicting PCa progression in AS patients.

In a more recent investigation, Algohary et al. [78] eval-
uated the performance of MRI-based radiomics features 
(including Gabor, first-order statistics, and grey-level 
co-occurrence-based texture features) in identifying the 
presence of csPCa in 56 patients on AS regimen who had 
previously undergone prebiopsy 3-T biparametric MRI 
(T2WI plus DWI). In detail, the authors performed two 
experiments. Experiment 1 aimed to identify radiomics 
features able to discriminate patients with biopsy proven 
clinically significant PCa, while experiment 2 evaluated 
the ability of the selected radiomics features to identify 
the presence or absence of clinically significant disease 
in the more challenging cases with discordance between 
PI-RADS assessment and biopsy findings (groups 3 and 
4). Out of the three ML models used, quadratic discrimi-
nant analysis yielded the best results, showing an overall 
accuracy improvement of 80%, while of 60% for groups 3 
(MRI negative and biopsy positive) and 4 (MRI positive-
and biopsy negative) when compared to PI-RADS v2.0 
alone.

Radiomics and biochemical recurrence
Both RP and RT are considered definite treatments for 
localised PCa [79]. However, about 27−53% of patients 
show biochemical recurrence (BCR) after those primary 
therapies (Fig. 4) [80, 81]. BCR definition varies according 
to the main curative interventions. After RP, the thresh-
old is represented by PSA > 0.4 ng/mL that is rising [82]. 
Instead, the Radiation Therapy Oncology Group-Amer-
ican Society for Therapeutic Radiology and Oncology 
Phoenix consensus conference set the definition of BCR 
after primary RT as any PSA increase > 2 ng/mL higher 
than the PSA nadir, regardless of the nadir value [83].

Fig. 3 Prebiopsy MRI scan of a 58-year-old patient (PSA value of 6.12 ng/mL at the time of imaging) showing a PI-RADS 4 lesion in the 
posterior-lateral peripheral zone (right lobe) appearing hypointense on T2-weighted images (a) and exhibiting markedly restricted diffusion (b, 
high b value DWI; c, ADC map with red region of interest). Target biopsy confirmed the presence of prostatic adenocarcinoma (Gleason score 3 + 
4). While a moderate capsule-tumour contact length can be appreciated on the T2-weighted images (a, white arrow), no bulging nor definitive 
signs of extracapsular extension are present and the radiologist staged the disease as locally confined. Based on the MRI report and considering the 
young age, the patient underwent nerve-sparing radical prostatectomy. Unfortunately, the pathology report on the surgical specimen revealed the 
presence of extracapsular disease extension and upgraded the Gleason score to 4 + 4. ADC Apparent diffusion coefficient, DWI Diffusion-weighted 
imaging, MRI Magnetic resonance imaging, PI-RADS Prostate Imaging-Reporting and Data System, PSA Prostate-specific antigen
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An early identification of subjects at high risk for BCR 
may allow a better management of the disease, discrimi-
nating patients that would benefit the most of adjuvant 
RT from those who could avoid unneeded complemen-
tary treatments and the associated side effects [84]. To 
date, there are still a few studies aimed at radiomics pre-
diction of BCR, mostly focused on MRI features either 
after RP [85, 86] or RT. [87] An overview of the main 
investigations in the setting of BCR discussed in this 
review is presented in Table 4.

In their retrospective multicentre study, Li et  al. [88] 
developed and validated a prognostic nomogram, incor-
porating radiomics features extracted from biparametric 
MRI with preoperative clinicopathologic parameters, for 
predicting BCR free survival after RP in 198 patients with 
PCa. In detail, the nomogram was built with five radiom-
ics features, including two T2WI Laws features, T2WI 
intensity range and Haralick information measure as well 
as ADC Laws feature. Their prognostic nomogram out-
performed the Cancer of the Prostate Risk Assessment 
score (CAPRA) (C-index 0.79 and 0.68, respectively) and 
achieved comparable performance as the post-surgery 
CAPRA score (C-index 0.75) in a head-to-head compari-
son for BCR free survival prediction.

Another study group from France developed and 
externally validated an MRI ADC map-derived radiom-
ics model to predict BCR and BCR free survival after RP 
[89]. Interestingly, while the radiomics model resulted 

to be predictive of BCR (accuracy of 0.76%), the clinical 
model failed to validate the external cohort (accuracy of 
0.56%). Surprisingly, the radiomics-clinical model did not 
outperform the radiomics alone model, with an accuracy 
of 0.67%.

Moreover, Yan et al. [85] developed and externally vali-
dated a DL-based radiomics signature, including MRI 
features (first-order, shape, texture, wavelet, and Lapla-
cian of Gaussian Filter) extracted from T2WI, to predict 
BCR of 485 patients underwent RP in three different 
Institutions. The radiomics model achieved a C-index of 
0.802 in both primary and validating cohorts and outper-
formed the post-surgery CAPRA score (0.677), National 
Comprehensive Cancer Network model (0.586), and 
Gleason grade group system (0.583).

Promising evidence from MRI-derived radiomics fea-
tures have been provided even in the setting of predicting 
BCR after RT. [87, 90, 91] Fernandes et  al. [91] investi-
gated the potential of whole-prostate imaging features 
extracted from the original and filtered T2W MR images 
for 5-year BCR prediction after RT of 120 patients with 
localised PCa. The logistic regression model built using 
whole-prostate imaging features (AUC 0.63) outper-
formed both the clinical and combined models (AUC 
0.51 and 0.56, respectively).

Efforts for predicting BCR after primary therapies have 
been made with hybrid imaging, including PET/CT and 
PET/MRI [92–94]. Kang et  al. [93] investigated the role 

Fig. 4 Seventy-two-year-old patient who underwent radical prostatectomy for prostate cancer (at pathology, Gleason score 3 + 4). Staging MRI 
shows a large peripheral zone (left posteromedial) lesion with intermediate signal on T2-weighted images (a, lesion epicentre marked with white 
star), focal and marked hypointensity on the ADC map (b, red region of interest) and corresponding hyperintensity on high b value DWI (c, white 
arrowhead). Three years after treatment, rise of PSA value determines biochemical recurrence.  [68Ga]Ga-PSMA-11 PET/CT (d and e) shows a small 
but concerning right external iliac lymph node. ADC Apparent diffusion coefficient, DWI Diffusion-weighted imaging, MRI Magnetic resonance 
imaging, PET/TC Positron emission tomography/computed tomography, PMSA Prostate-specific membrane antigen, PSA Prostate-specific antigen
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of a computational methodology using Haralick texture 
analysis as an adjunct tool to improve and standardise 
the interpretation of F-18 fluciclovine PET/CT in iden-
tifying BCR of 28 patients with PCa underwent RP with 
or without subsequent salvage therapies. Of note, the 
Authors showed that the model combining Haralick tex-
ture features computed with patients’ clinical parameters 
improved the chances of accurately detecting BCR (AUC 
0.94) compared to the models including only clinical data 
and imaging features (AUC 0.71 and 0.92, respectively).

Finally, in a recent investigation, part of a single-centre 
pilot to a randomised prospective trial, Papp et  al. [92] 
investigated the diagnostic performance of  [68Ga]Ga-
PSMA-11 PET/MRI in vivo models for predicting low-
versus-high lesion risk as well as BCR of 52 patients with 
PCa underwent RP with a ML approach. Their super-
vised predictive model for BCR selected seven radiomic 
features (coefficient of variation, grey level co-occurrence 
matrix information correlation type 1, standardised 
uptake value max, grey level co-occurrence matrix joint 
entropy, standardised uptake value mean, and high grey 
zone emphasis from the  [68Ga]Ga-PSMA-11 images, 
interquartile range from ADC images) and clinical data. 
This model outperformed the standard routine analysis 
based on PSA, biopsy GS, and TNM staging (diagnostic 
accuracy of 0.89 and 0.69, respectively).

Conclusions
Radiomics is still in its infancy, but it is foreseeable that 
AI and radiomics solutions will become a key component 
of radiologists’ everyday work in the future. Overall, the 
majority of research efforts have been focused on PCa 
detection [95, 96]. However, the advantages of radiomics 
might be even greater in the setting of treatment man-
agement, possibly compensating for the limitations of 
currently available strategies.

It could be speculated that studies on PCa detection are 
more common because it might be easier to obtain good 
quality datasets to work on (e.g., more data is needed for 
studies on treatment response, such as follow-up data). 
It is also possible that less encouraging results have been 
found for more complex classification tasks and these are 
not emerging due to publication bias, a well-known issue 
in the field of radiomics [97].

The limitations of current evidence should be taken 
into account, and overly optimistic claims should be 
avoided. Indeed, each step in the radiomics pipeline hid-
den methodological pitfalls to be aware of [98]. Above all, 
the lack of external independent datasets for validation 
and of prospectively designed studies cast a shadow on 
the reliability and generalisability of radiomics models, 
hindering their translation into clinical practice. High 
image quality is a key factor for reliable prostate MRI 

conventional interpretation but is not easy to ensure [99]. 
Similarly, high-quality datasets are necessary to minimise 
the risk of a garbage in garbage out effect for radiom-
ics and AI models [100]. Additionally, a substantial het-
erogeneity among radiomics studies was also found, for 
example in terms of methodology and transparency, but 
the scientific community is working to promote stand-
ardisation in imaging AI and radiomics research, with 
checklists and guidelines to help design, assess, and inter-
pret radiomics papers [101–103].

Finally, medical-legal guidance to address the liability 
for clinical practice use of radiomics has not been yet 
provided by official regulatory offices but could aid physi-
cians in gaining confidence with these tools and encour-
age their safe use [104].

In conclusion, this review highlighted excellent future 
prospects for a role of radiomics in powering decision 
support tools to aid physicians in the management and 
treatment planning of PCa patients. However, great 
efforts are advocated to confirm these encouraging 
premises and eventually produce the high-level evidence 
required to turn these exciting perspectives into medical 
practice realities.
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