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Abstract: Primary Central Nervous System Lymphoma (PCNSL) is an aggressive neoplasm with a
poor prognosis. Although therapeutic progresses have significantly improved Overall Survival (OS),
a number of patients do not respond to HD–MTX-based chemotherapy (15–25%) or experience relapse
(25–50%) after an initial response. The reasons underlying this poor response to therapy are unknown.
Thus, there is an urgent need to develop improved predictive models for PCNSL. In this study, we
investigated whether radiomics features can improve outcome prediction in patients with PCNSL.
A total of 80 patients diagnosed with PCNSL were enrolled. A patient sub-group, with complete
Magnetic Resonance Imaging (MRI) series, were selected for the stratification analysis. Following
radiomics feature extraction and selection, different Machine Learning (ML) models were tested for
OS and Progression-free Survival (PFS) prediction. To assess the stability of the selected features,
images from 23 patients scanned at three different time points were used to compute the Interclass
Correlation Coefficient (ICC) and to evaluate the reproducibility of each feature for both original and
normalized images. Features extracted from Z-score normalized images were significantly more stable
than those extracted from non-normalized images with an improvement of about 38% on average
(p-value < 10−12). The area under the ROC curve (AUC) showed that radiomics-based prediction
overcame prediction based on current clinical prognostic factors with an improvement of 23% for
OS and 50% for PFS, respectively. These results indicate that radiomics features extracted from
normalized MR images can improve prognosis stratification of PCNSL patients and pave the way for
further study on its potential role to drive treatment choice.

Keywords: rare tumor; PCNSL; radiomics; image normalization; MRI

1. Introduction

Primary diffuse large B-cell lymphoma (DLBCL) of the central nervous system (CNS)
(PCNSL) is a rare form of aggressive extranodal non-Hodgkin’s lymphoma limited to
the CNS and, thus, potentially involving the brain, spinal cord, meninges, and eyes [1,2].
Magnetic resonance imaging (MRI) before and after contrast injection is the recommended
imaging modality in the case of PCNSL suspicion and for disease staging after diagnosis
confirmation by histopathological examination of a tumor biopsy [3]. The modern treatment
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of PCNSL is based on two phases, induction and consolidation [3,4]. The first one typically
consists of high-dose methotrexate (MTX)-based chemotherapy, while the second one may
include several options, among which high-dose chemotherapy, followed by autologous
stem cell transplantation (HCT–ASCT), is presently the golden standard [5–7]. Although
new therapeutic approaches have improved overall survival [5,8], about 30% of patients
<70 years are primary refractory to HD–MTX-based chemotherapy and nearly 25% of
patients relapse after consolidation [9]. Unfortunately, the reasons underlying this poor
response to therapy are not known. Nevertheless, being able to identify, in advance, patients
who are going to respond to the current treatment would be of the uttermost importance,
as it may help in driving clinical decision making and in tailoring treatment accordingly.

Radiomics is a computational technique to extract high-dimensional quantitative
features from medical images [10], which embed information about shape, intensity, and
texture of a particular Volume of Interest (VoI). It assumes that medical images reflect un-
derlying characteristics of disease-specific pathological processes and quantitative analysis
can objectively capture and describe such mechanisms [11]. In recent years, the appli-
cation of Artificial Intelligence (AI) techniques in the biomedical field[12,13] has been
rapidly expanding. Advanced analytical and machine learning (ML) tools with radiomics
features [14] have been used to improve diagnosis [15], or to allow prognostic stratifica-
tion [16] and customization of therapy in oncology [17]. In contrast to a traditional biopsy,
which is limited to the analysis of a small amount of tissue sample, one of the advantages of
Radiomics is the possibility to characterize the whole tumor volume, and, thus, capturing
extended lesion properties, such as size, shape and heterogeneity, or changes over time
on image series [18]. Several radiomics studies have so far been conducted for highly
prevalent common cancer types, such as lung [19], breast [20], and colon [21]. However, for
rarer cancer types, especially for PCNSL, the literature is still very limited. In this context,
studies have mainly focused on differentiating PCNSL from glioblastoma (GBM) [22–27]
starting from multi-parametric MRI [22,28]. On the other hand, the correlation between
radiomics features and therapy response or outcome has been barely investigated for
PCNSL [29]. Chen et al. [30] evaluated the prognostic value of radiomics features for
predicting Overall Survival (OS) in 52 PCNSL patients. However, the study was limited
only to the analysis of textural features on contrast enhanced MRI. Ale et al. [31] carried out
a predictive analysis on OS and Progression-Free Survival (PFS) considering a population
of 47 patients, respectively. Promising results were achieved, although few details about the
methodology and the patient cohort were provided. A schematic overview about the State
of Art (SoA) of PCNSL and Radiomics Analysis is given in Table S1 in the Supplementary
Data. A common problem for studies related to PCNSL is that recruiting patients with such
a disease in a single center may be difficult, due to the relatively low incidence of the tu-
mor [32]. Nonetheless, some issues must be taken into account for radiomics data deriving
from multiple institutions. Inter- and intra-scanner variability is a common problem for
multicenter MRI studies and, for this reason, the normalization of the intensity of the gray
level becomes of fundamental importance in radiomics analyses.

Herein, we report a machine learning-based approach for predicting one-year OS and
PFS in patients with PCNSL undergoing treatment with a high-dose methotrexate-based
chemotherapy regimen. The proposed method relies on extracting robust and stable ra-
diomics features from MRI scans. Such robustness and stability was assessed by comparing
different intensity normalization methods on patient images acquired at different time
points. To our knowledge, only a few studies have investigated the importance of image
normalization in radiomics studies, despite it constituting an important challenge when
using MRI data. In fact, the definition of a protocol is still missing [33–37]. Moreover, to
date, the role of image normalization for radiomics analysis of PCNSL tumors has not yet
been evaluated.
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2. Materials and Methods
2.1. Dataset Description

Clinical and MRI data from 80 patients with histological or cytological diagnosis of
PCNSL, as well as absence of extra-CNS disease as per international guidelines [38], treated
at San Raffaele Scientific Institute of Milano, Italy, between January, 2010, and November,
2019, were retrospectively collected. MRIs were acquired in different centers and with
different scanners. Patients were considered eligible for subsequent analyses based on
the following criteria (see Figure 1): (1) availability of T1-W, T2-W, Fluid Attenuated
Inversion Recovery (FLAIR) and T1-W with gadolinium (T1 gd) pulse sequences on MR
scans obtained before the start of therapy; (2) tumor contours clearly distinguishable for
manual segmentation. Overall, 56 patients were included for the OS classification (Group
A) and 47 patients (Group A2) for PFS. From Group A, 23 patients (Group A1) were
imaged at 3 different time points (before, during and after the treatment) and with different
scanners (described for each group in Table S2 in Supplementary Data) were selected for
feature stability analysis. The demographics and clinical features of the patient cohort are
summarized in Table 1. This observational study was approved by the Ethical Committee
of San Raffaele Hospital in Milan (Italy) with number 22/INT/2021 and conducted in
accordance with all international laws and rules, and in accordance with the national laws,
as well as in accordance with all applicable guidelines. Due to the retrospective nature of
this study and anonymized clinical data, ad hoc informed consent was waived.

Figure 1. Flowchart of the patient enrolment process. In the blue box, the initial number of patients
available for this study. In the red box, the reasons for exclusion of some patients (unavailability of
complete MRI sequences or missing clinical data). In the green box, the number of patients selected
for the specific task.



Bioengineering 2023, 10, 285 4 of 17

Table 1. Description of the patient dataset (Group A).

Eligible Patients (#) 56/80 (70%)

Male:Female 0.56

Median Age 69 (41–85)

Multiple lesions 32 (58%)

Involvement of deep areas § 45 (80%)

Lactic dehydrogenase serum level >ULN 35 (52%)

Cerebrospinal-fluid protein concentration >ULN * 34(60%)

ECOG—Performance Status >2 30 (53%)

IELSG risk score
-Low 5 (9%)
-Intermediate 28 (50%)
-High 23 (41%)

Sites of disease
-Brain parenchyma 56 (100%)

Treatment details
Induction
MATRix 37 (66%)
MAT 2 (3%)
HD-MTX + HD-ARAC 10 (17%)
HD-MTX + Alkylators 4 (7%)
WBRT ± TMZ 4 (7%)
Rituximab 43 (77%)
Consolidations
ASCT 15 (27%)
WBRT 6 (11%)
DeVIC 5 (9%)
Oral Maintenance 3 (5%)
None 26 (46%)
Unknown 1(2%)

Treatment delay >20 gg 40 (71%)

Refractory to first line @ 22 (39%)

1-year PFS 24/47 (51%)

1-year OS 30/56 (54%)
* Lumbar puncture was contraindicated in 3 patients; CSF protein concentration was considered an unfavorable
feature in IELSG risk score in these patients. § At least one of the following brain structures: periventricular
regions, basal ganglia, corpus callosum, brainstem, and cerebellum. @ PD < 6 months from the end of first line
treatment; HD-ARAC: high dose Cytarabine; ASCT: autologous stem cell transplantation; DeVIC: Dexametha-
sone, Etoposide, Ifosfamide and Carboplatin; ECOG—PS: Eastern Cooperative Oncology Group—Performance
Status; HD-MTX: High dose Methotrexate; IELSG: International Extranodal Lymphoma Study Group; LDH:
Lactic dehydrogenase serum level; MATRix: High dose Methotrexate, high dose Cytarabine, Thiotepa and
Rituximab; pCSF: Cerebrospinal-fluid protein concentration; PFS: Progression free survival; OS: Overall Survival;
TMZ: Temozolomide; ULN: upper limit normal; WBRT: Whole brain radiation therapy.

2.2. Image Pre-Processing

All images were pre-processed according to the steps described below (see Figure 2), in
order to improve their quality and to increase the reproducibility of radiomics features [39]:

1. to correct the non-homogeneous intensity of the magnetic field present in MR images,
the module “N4ITK MRI bias correction” available in 3D Slicer [40] was used [41];

2. for each patient, all available MRI acquisitions were registered on the T1-gd image
(sequence where segmentation was performed);
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3. skull stripping [42] was performed from images to remove extra brain tissue from the
brain volume and to increase the accuracy of subsequent MRI processing. The “Swiss
skull stripper” module of 3D Slicer was used[43];

4. normalization methods were applied for MRI intensities normalization (described in
detail in Section 2.2.1);

5. all sequences were resampled (voxels 1 mm3) [44].

2.2.1. Intensity Normalization of MR Images

Three gray level intensity normalization methods were tested on the MR images:
Z-score, WhiteStripe and Nyul.

The Z-score method normalizes the image I(x) by subtracting the mean of the image
µbrain and dividing by the standard deviation of all the voxel intensities σbrain:

IZscore(x) =
(I(x)− µbrain)

σbrain
(1)

The WhiteStripe method [45] was developed to bring raw image intensities to a
biologically interpretable intensity scale. The method applies a z-score transformation to the
whole brain using parameters estimated from a latent subdistribution of normal-appearing
white matter (NAWM). In detail, this method normalizes the image I(x) intensities by
subtracting µws, which corresponds to the mean intensity value of the (NAWM), from each
voxel intensity I(x) and dividing the result by the standard deviation of the NAWM σws:

Iws(x) =
(I(x)− µws)

σws
(2)

The method developed from Nyul et al. [46], also called piecewise linear histogram
matching normalization, learns a standard image histogram from a set of images, and
then linearly maps the intensities of each image to this standard image histogram. MRI
intensities are not standardized. For this reason, before carrying out Radiomics analyses,
the intensity normalization of the gray levels of images is essential.

The code used for this implementation is available at https://github.com/jcreinhold/
intensity-normalization (accessed on 19 February 2023).

2.3. Segmentation VOI (Volume of Interest) and Features Extraction

The hyperintense tumor lesion on post-contrast T1-W images was manually segmented
for each patient resulting in volume of interest (VOI). The same VOI was reported in
the other sequences for each patient applying the linear transformation identified by the
registration process. All segmentations were performed by R.L., a radiologist with 4 years of
experience, at the time of the study. Radiomics features were extracted from the VOI using
Pyradiomics 3.0.1 (https://pyradiomics.readthedocs.io/en/latest/features.html, (accessed
on 19 February 2023) [47]: 19 First Order (F0) features, 14 Shape features, 23 Gray Level
Co-I Matrix (GLCM) features, 16 Gray Level Run Length Matrix (GLRLM) features, 16 Gray
Level Size Zone Matrix (GLSZM) features and 14 Gray Level Dependence Matrix (GLDM)
features [48]. In total, 120 features (including radiological features) were extracted from
the tumor region of each MRI sequence from both non-normalized images and normalized
images with the chosen method.

2.4. Machine Learning Model Building

Given as input a set of radiomics features extracted from processed MRIs (Group A),
the goal was to train a machine learning model to predict the probability of survival of a pa-
tient with PCNSL. Since the prediction task had only two possible outcomes (survive/not
survive after 1 year), the task was modeled as a binary classification problem. A first
selection of the features was performed, using a high correlation filter to remove variables
having large absolute correlation. To overcome the curse of dimensionality issues and

https://github.com/jcreinhold/intensity-normalization
https://github.com/jcreinhold/intensity-normalization
https://pyradiomics.readthedocs.io/en/latest/features.html
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reduce overfitting, the Min–Max Normalization method was applied to linearly transform
radiomics features by using scikit-learn library (https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.MinMaxScaler.html, accessed on 19 February 2023). Only
relevant features were selected in cross validation according to an ensemble of four se-
lection methods: (i) SelectKBest for the chi-square test method; (ii) the Recursive Feature
Elimination (RFE) using the Logistic Regression model; (iii) least absolute shrinkage and
selection operator (Lasso), and (iv) Select From Model using RandomForestClassifier model.
In detail, each method extracted k = 15 candidate features and only the ones selected by
at least three algorithms over four were chosen to feed the classification algorithm. Five
classifiers were tested, namely: Extra Tree Classifier (ETC), Support Vector Machine (SVM),
Logistic Regression (LR), Random Forest (RF), kNeighbors (KN). Feature selection methods
and ML classifiers were implemented, based on the scikit-learn library version 0.23. The
whole process, from the normalization of features to the selection and classification, was per-
formed in a repeated five-fold stratified cross-validation (https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html, accessed on
19 February 2023) (10 repetitions) was adopted to assess overfitting and to evaluate the
stability of the results. The workflow of this study is described in Figure 2.

Figure 2. The workflow of the study was divided into two main sections: (1) Reproducibility analysis
of features extracted from pathological tissue of MR images normalized with three different methods
(Z-score, WhiteStripe and Nyul); (2) Radiomics Analysis for predictive OS and PFS of PCNSL patients
(features extracted from segmentation tumor). For both sections, the first step was to pre-process MRI
sequences. From the results of the reproducibility of features, the Z-score method was selected for
application to the MRI sequences.

2.5. Experiments
2.5.1. Feature Robustness

To determine which normalization method was best suited for our dataset, we studied
the effect of image intensity normalization on the reproducibility of the radiomics features. To
this aim, Group A1 (subgroup of Group A, as described in Section 2.1 and shown in Figure 1)

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html 
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html 
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was considered. Notice that the selected subgroup of patients was not considered during the
survival prediction analysis, in order to avoid any bias in the classification results.

Given a patient, all his/her longitudinal T1-W and T2-W sequences were, in turn,
normalized using three methods: Z-score, WhiteStripe and Nyul (described in Section 2.2.1).
Then, a region of the pons, where no pathological modifications were observed, was identi-
fied on the patient’s FLAIR image. From this region, a 1 cm diameter spherical segmentation
was extracted using the segmentation tool of 3D Slicer software. The segmentation was
reported for all the longitudinal sequences of the patient by applying the linear transfor-
mation of the registration between the images made previously. A total of 94 radiomics
features were extracted with the Pyradiomics library. Shape features were excluded as the
selected spherical VOI was equal for all patients. For the three longitudinal acquisitions of
each patient, we extracted features from images normalized with three methods previously
described and from the non-normalized images for sequences T1-W and T2-W.

The Interclass Correlation Coefficient (ICC) was calculated to evaluate the repro-
ducibility of each feature for each normalization method. Formally, the ICC is a descriptive
statistic that can be used when quantitative measurements are made on units organized
into groups [49]. It ranges between 0 and 1, indicating null and perfect reproducibility.
ICCs were calculated with IBM’s SPSS statistical software, using the two-way random mean
measurement ICC (2,k). We defined a matrix nxk, with n number of features extracted for
each patient and k, number of observers (i.e., MRI acquired with different scanners). Given
MSr the average square for rows, MSe the residual average, and MSc the average square
for columns:

ICC(2, k) =
(MSr − MSe)

MSr +
(MSc−MSe)

k

(3)

ICCs were computed to assess the stability of first-order and textural features across
the three acquisitions before and after normalization. The Kruskal–Wallis test and its post
hoc were used to compare the obtained ICCs for T1-w and T2-w sequences, under the
assumption that data were not normally distributed. The best normalization method was
applied to images of groups A/A2 for subsequent Radiomics analysis.

2.5.2. Overall and Progression Free Survival Prediction

Patients were dichotomized, based on OS or PFS greater than, or lower than, 12 months,
respectively. OS was defined as time from diagnosis until death due to any cause or date of
last follow-up visit, and PFS was defined as time from diagnosis until progression, relapse,
death or date of last follow-up visit [50].

Each of the selected ML algorithms was trained at classifying OS for patients in
Group A. Classification performances were evaluated in terms of F1-score (https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.f1_score.html, accessed on 19 Febru-
ary 2023) and Area Under ROC curve (AUC) (https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.auc.html, accessed on 19 February 2023). It is worth noticing
that machine learning model validation is a crucial step, especially in the biomedical do-
main. We also compared the performance of the classifiers using both radiomics features
alone as well as combined with clinical features. Age > 60, PS > 2, LDH > ULN, protein
CSF > ULN and deep lesion were considered as clinical features, these being considered as
available and validating PCNSL risk scores [51,52].

To better evaluate the impact of normalization on survival prediction, each algorithm
was trained and tested using radiomics features obtained either from raw or normalized
images. Only the Z-score method was used in these experiments since, as shown in
Section 3.1, it provided the most stable features.

3. Results
3.1. Impact of the Intensity Normalization Method on Radiomics Feature

Figure 3 shows median ± quartiles of ICCs computed on both original and normalized
images in T1-W and T2-W Sequences (Group A1). Z-score normalization determined the

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.auc.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.auc.html
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highest increase in ICC for features extracted from T1-W (30% average increase compared
with non-normalized sequences, p < 10−9). No statistically significant differences were
observed when comparing non-normalized T1-W sequences with Nyul or WhiteStripe
normalized sequences. All three normalization methods showed a clear increase of ICC
values in T2-W sequence (Kruskal–Wallis test, p < 10−12 (Z-score), p < 10−13 (WhiteStripe),
p < 10−15 (Nyul).

Figure 3. The distribution of ICC values computed from extracted features for non-normalized images
and for normalized images with Z-score, WhiteStripe and Nyul methods. *** (significant statical
difference).

3.2. Performance Comparison of Classification Models

The results of median and quartiles of the F1-scores obtained from the five selected
machine learning models for the OS and PFS prediction classification tasks are reported
in Table 2. For both tasks, we performed the classification with radiomics features alone,
radiomics features + clinical features and clinical features alone.

Table 2. median ± quartiles of the F1-Score (T1-W and T2-W and combination T1-W and T2-W),
obtained using all 5 test folds with 10 repeated of the cross-validation and 5 machine learning models.
The difference between the quartiles provided information on the distribution of results. Each result
was compared with features extracted from non-normalized images and normalized images using
only radiomics features, radiomics plus clinical features and only clinical features.

OS Radiomics Features ETC SVM LR RF KN

T1-W No Normalizazion 0.67 (0.61–0.79) 0.71 (0.70–0.71) 0.71 (0.67–0.71) 0.67 (0.61–0.72) 0.67 (0.61–0.73)
Intensity Normalization 0.75 (0.67–0.83) 0.77 (0.68–0.83) 0.77 (0.73–0.83) 0.73 (0.67–0.83) 0.73 (0.63–0.80)

T2-W No Normalization 0.67 (0.55–0.73) 0.67 (0.57–0.71) 0.71 (0.67–0.71) 0.59 (0.50–0.71) 0.57 (0.44–0.70)
Intensity Normalization 0.79 (0.73–0.86) 0.80 (0.77–0.86) 0.80 (0.75–0.86) 0.73 (0.67–0.830) 0.77 (0.72–0.80)

T1-W/T2-W No Normalization 0.67 (0.57–0.72) 0.67 (0.55–0.76) 0.67 (0.60–0.76) 0.61 (0.54–0.71) 0.61 (0.54–0.70)
Intensity Normalization 0.80 (0.77–0.86) 0.80 (0.72–0.83) 0.80 (0.73–0.83) 0.83 (0.77–0.86) 0.80 (0.72–0.83)

OS Radiomics + Clinical Features ETC SVM LR RF KN

T1-W No Normalizazion 0.72 (0.67–0.80) 0.73 (0.60–0.80) 0.73 (0.60–0.80) 0.67 (0.61–0.75) 0.73 (0.60–0.77)
Intensity Normalization 0.80 (0.73–0.83) 0.79 (0.68–0.83) 0.80 (0.68–0.83) 0.80 (0.71–0.83) 0.82 (0.73–0.86)

T2-W No Normalization 0.73 (0.66–0.80) 0.72 (0.60–0.825) 0.72 (0.66–0.77) 0.72 (0.60–0.77) 0.67 (0.60–0.77)
Intensity Normalization 0.77 (0.66–0.86) 0.77 (0.68–0.83) 0.77 (0.66–0.83) 0.73 (0.68–0.80) 0.77 (0.67–0.77)

T1-W/T2-W No Normalization 0.77 (0.67–0.86) 0.73 (0.66–0.83) 0.73 (0.66–0.83) 0.67 (0.60–0.72) 0.73 (0.60–0.80)
Intensity Normalization 0.80 (0.73–0.86) 0.80 (0.73–0.83) 0.80 (0.72–0.83) 0.77 (0.68–0.83) 0.80 (0.72–0.83)

OS Clinical Features ETC SVM LR RF KN

0.60 (0.44–0.67) 0.71 (0.66–0.79) 0.71 (0.66–0.77) 0.60 (0.54–0.67) 0.67 (0.60–0.77)
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Table 2. Cont.

PFS Radiomics Features ETC SVM LR RF KN

T1-W No Normalizazion 0.67 (0.54–0.72) 0.68 (0.58–0.75) 0.71 (0.66–0.79) 0.60 (0.50–0.72) 0.60 (0.54–0.73)
Intensity Normalization 0.60 (0.50–0.66) 0.68 (0.60–0.68) 0.68 (0.66–0.73) 0.60 (0.50–0.66) 0.67 (0.55–0.66)

T2-W No Normalization 0.67 (0.55–0.75) 0.67 (0.61–0.68) 0.67 (0.61–0.68) 0.60 (0.50–0.73) 0.67 (0.51–0.73)
Intensity Normalization 0.68 (0.57–0.76) 0.80 (0.67–0.88) 0.80 (0.67–0.86) 0.68 (0.55–0.76) 0.73 (0.67–0.83)

T1-W/T2-W No Normalization 0.67 (0.50–0.74) 0.67 (0.60–0.73) 0.67 (0.58–0.73) 0.60 (0.46–0.67) 0.67 (0.58–0.73)
Intensity Normalization 0.63 (0.50–0.75) 0.70 (0.60–0.80) 0.73 (0.62–0.80) 0.67 (0.58–0.75) 0.68 (0.60–0.75)

PFS Radiomics + Clinical Features ETC SVM LR RF KN

T1-W No Normalizazion 0.60 (0.44–0.67) 0.67 (0.60–0.71) 0.67 (0.55–0.71) 0.60 (0.51–0.73) 0.60 (0.47–0.72)
Intensity Normalization 0.60 (0.45–0.67) 0.68 (0.61–0.67) 0.68 (0.60–0.67) 0.60 (0.50–0.72) 0.60 (0.45–0.67)

T2-W No Normalization 0.60 (0.48–0.71) 0.61 (0.55–0.67) 0.67 (0.55–0.76) 0.60 (0.50–0.70) 0.62 (0.55–0.67)
Intensity Normalization 0.68 (0.50–0.76) 0.72 (0.60–0.80) 0.69 (0.60–0.75) 0.70 (0.60–0.77) 0.69 (0.60–0.73)

T1-W/T2-W No Normalization 0.64 (0.55–0.68) 0.67 (0.66–0.71) 0.67 (0.61–0.77) 0.61 (0.50–0.73) 0.61 (0.50–0.67)
Intensity Normalization 0.61 (0.44–0.68) 0.69 (0.60–0.73) 0.65 (0.55–0.68) 0.60 (0.50–0.67) 0.60 (0.45–0.62)

PFS Clinical Features ETC SVM LR RF KN

0.55 (0.41–0.60) 0.62 (0.51–0.67) 0.67 (0.63–0.71) 0.57(0.47–0.65) 0.55 (0.40–0.61)

3.2.1. OS Classification Task

For features extracted from T1-W, T2-W and the combination of T1-W and T2-W
features (T1-W/T2-W), classification results obtained from images normalized with Z-score
are presented in this section (providing the best results in terms of reproducibility and
stability compared to the other normalization methods, as reported in Section 3.1).

Considering only radiomics features, the best performances of T1-W sequence were
obtained from classifiers SVM and LR with the median and quartiles, respectively, F1 = 0.77
(0.68–0.83) and F1 = 0.77 (0.73–0.83). For T2-W sequence, the best performances were
obtained by the SVM classifier with F1 = 0.80 (0.77–0.86) and LR with F1 = 0.80 (0.75–0.86).
For T1-W/T2-W, the performance improved and we obtained a median of F1-score equal to
0.83 (0.77–0.86) with RF classifier. The best results were obtained from normalized images,
with a significant statistical difference from the results obtained using features extracted
from non-normalized images.

When introducing clinical features, the results did not significantly change. In this case,
the best performances were obtained with T1-W (KN = 0.82 (0.73–0.86) and T1-W/T2-W
(ETC = 0.80 (0.73–0.86)). Instead, The F1-score for predicting OS using only clinical features
was 0.71 (0.66–0.79) with the SVM classifier.

Figure 4 shows the ROC curves of the best performances of classifiers. The AUC
values of radiomics features alone, radiomics + clinical features and clinical features alone
for predicting OS were 0.86 ± 0.09, 0.83 ± 0.11 and 0.70 ± 0.14, respectively. In comparing
the best performance for OS prediction with clinical features, and with radiomics features a
significant statistical difference (p < 10−9) was found. There was no significant statistical
difference between performance with radiomics features alone, and with Radiomics plus
clinical features (p = 0.38).

3.2.2. PFS Classification Task

Patients of Group A2 were considered to assess PFS classification task. The patients’
characteristics are summarized in Section 2.1. Considering radiomics features alone, the
best performances were obtained from the sequence T2-W (SVM = 0.80 (0.67–0.88) and
LR = 0.80 (0.67–0.86)) and from T1-W/T2-W (LR = 0.73 (0.62–0.80)). For the PFS, the
combination of T1-W and T2-W sequences did not improve the performance of the model
(compared to single sequence) .

The addition of clinical features for PFS did not improve performances and, considering
only clinical features, the best result was LR = 0.67 (0.63–0.71). Compared to OS prediction,
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in this case also the best performance was obtained with normalized images for the sequence
T2-W and T1-W/T2-W with a statistical difference with non-normalized images.

ROC curves of the best performances for PFS classification (Figure 4) also showed
the prediction of radiomics features (AUC = 0.84 ± 0.13) in respect to clinical features
(AUC= 0.56 ± 0.18) with a significant statistical difference (p-value < 10−12). There was
also a statistical difference between the prediction with radiomics features alone and with
the addition of clinical features (p = 0.002).

Figure 4. Roc curves of the best classifiers for each feature category: only radiomics features in blue,
radiomics + clinical features in green and only clinical features in red (currently validated).

3.3. Feature Importance

Beyond the classification scores, further analyses were conducted to better understand
the role of the features in the classification process. The study was performed for each
imaging modality, with and without intensity normalization. We considered the RF clas-
sifier, where the feature importance was computed as the mean and standard deviation
of accumulation of the impurity decreased within each tree of the forest. In more detail,
for each independent training in the cross-validation procedure, we ranked the features
according to importance score and selected the top 15 (top-15). Then, for each feature,
we calculated the frequency with which that feature was selected as top-15 and, from the
resulting distribution, we selected the top 13 features for analysis. Simply put, we selected
the top 13 features most often ranked as “most important" in each independent training of
the cross-validation procedure.

Figures 5 and 6 represent the selected clinical and radiomics features for T1-W, T2-
W sequences, and T1-W/T2-W sequences. As per the OS classification task, the most
selected clinical features were Age and Performance status (PS) (Figure 5), while for the
PFS classification task, LDH>ULN, deep lesion, and Age were almost always selected
(Figure 6). Considering the feature importance score, radiomics features seemed to give a
greater contribution to the outcome than clinical features.

For T1-W and T2-W sequences (without intensity normalization) in the OS classi-
fication, the most important contribution was given by shape features (Elongation and
Sphericity) and first order features (https://pyradiomics.readthedocs.io/en/1.1.1/features.
html#radiomics-firstorder-label, accessed on 19 February 2023) (Minimum, Maximum
and Skeweness). For T1-W and T2-W sequences (with intensity normalization), GLCM
features (Cluster Shade, Joint Average) and GLRLM features (Long Run Low Gray Level
Emphasis, Run Length Non-Uniformity and High Gray Level Run Emphasis ) received the
highest scores.

https://pyradiomics.readthedocs.io/en/1.1.1/features.html#radiomics-firstorder-label
https://pyradiomics.readthedocs.io/en/1.1.1/features.html#radiomics-firstorder-label
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Figure 5. Feature importance for all MRIsequences with and without normalization (OS classification
task). Features were grouped using different colors for shape features, texture features, first order
features and clinical features.

Considering the PFS classification task, an important role seemed to be played by
Elongation (shape feature), that shows the relationship between the two largest principal
components in the ROI shape, and its value, ranging from 0 (line-like object) to 1 (circle-
like object).

Elongation =

√
λminor
λmayor

(4)

Here, λmayor and λminor were the lengths of the largest and second largest principal
component axes. Amongst the selected, we also found Zone Percentage (GLSZM) and
Imc2 (GLCM) for non-normalized images, and, concerning normalized images, Large
Dependence High Gray Level Emphasis (GLDM) for T1-W and Gray Level Emphasis
(GLSZM) for T2-W.
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Figure 6. Feature importance for all MRI sequences with and without normalization (PFS classification
task). Features were grouped using different colors for shape features, texture features, first order
features and clinical features.

4. Discussion

To the best of our knowledge, this is the first study investigating the capability of
radiomics features as outcome predictors in patients with newly diagnosed PCNSL, while
also evaluating the impact of MR image normalization [53] on feature stability. To overcome
the curse of dimensionality issues and to reduce overfitting, feature selection was performed
by using multiple approaches and reaching consensus by a voting procedure. A post-hoc
analysis of the most salient features learned by the selected ML models was performed,
with the aim of trying to collect more insight about the pathology and to partially explain
the classification process.

Significant results were obtained for both OS and PFS prediction using all the selected
classifiers with a statistically significant difference (p-value < 10−4) between image intensity
normalization and no normalization (best median F1-score 0.83 vs. 0.71 for OS and 0.80
vs. 0.71 for PFS, respectively). Interestingly, it was observed that combining features from
both T1-W and T2-W sequences improved results in the OS classification task compared
to using features from a single sequence. On the other hand, the best performance for
PFS was obtained using only the T2-W sequence (median F1-score T1-W/T2-W = 0.73
(0.62–0.80) vs. T1-W = 0.68 (0.66–0.73) vs. T2-W = 0.80 (0.67–0.88)). Noteworthy was the
fact that introduction of clinical features commonly used to calculate the IELSG score (age,
PS, deep lesions, CSF protein, and LDH) marginally improved the performance of some
classifiers only in OS analysis. However, their contribution did not have a significant impact.
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AUC scores achieved by the best classifiers (RF for OS and SVM for PFS) were observed
to be significantly higher compared with scores obtained using only clinical features
(p-value < 10−9 and p-value < 10−12, respectively), showing that radiomics features better
contributed to the outcome prediction than clinical features. This work has some limitations
that are worth mentioning. First, the relatively small number of patients, mainly due to
the low incidence rate of PCNSL [32], which could highly impact the learning process
and might cause sub-optimal prediction performances and overfitting. Obviously, we
resorted to numerous techniques to mitigate the effect of the low number of patients, but,
in any case, our future goal is to increase the dataset in order to validate these promising
results. Furthermore, images from multiple centers were collected to mitigate the issue and
a repeated cross-validation approach was used to evaluate the robustness of our results.
Furthermore, up to 30% of the initial study population could not be considered eligible
for this study because of lack of MR sequences or delineable tumor. However, we believe
this number could be reduced in future radiomics studies in the PCNSL setting, given
increasing use of stereotactic biopsy instead of surgery for diagnosis, as well as the potential
availability of pre-biopsy MRI scans which could also reduce other technical problems,
such as bleeding. Moreover, the recent IPCG (International Primary CNS Lymphoma
Collaborative Group) recommendations for MRI imaging should, potentially, also impact
on the homogeneity of future studies [54]. Second, our models processed the radiomics
features representing the tumor, excluding the possible prediction capability of extra lesion
tissues as well as the association between radiomics features and pathological/molecular
characteristics, which might reveal hidden relations useful to better understand the history
of the disease. Third, information about the performed treatment was not included in the
prediction process of the final analysis, as it differed from the main focus of this study.
However, up to 93% of patients received an HD–MTX based treatment with a subsequent
consolidation/maintenance in nearly 50%, unless there was progression or death due to
lymphoma or other causes and, overall, all patients received the best available treatment
based on clinical stratification. Further investigation is needed to use this integrated clinical
and radiomics approach to stratify patients for therapy response prediction. This would
allow not only the division of patients into risk groups, but also definition of the better
potential treatment to be studied in future clinical trials.

Furthermore, some aspects of this trial merit discussion. The analyses were performed
on the features extracted from T1-W and T2-W sequence and not from the T1 as contrast, as
we did not want the radiomics features to be affected by the contrast. All analyses were
also carried out on the FLAIR sequence, but the data were not reported in this paper as
the results were not satisfactory. We plan to consider it again in future work where deep
learning-based models will be explored.

Almost all the work related to this rare tumor has been focused, to date, on the
differentiation of PCNSL from atypical glioblastoma [23,24,28]. Instead, in the present
study, we evaluated the prognostic value of images normalization to use radiomics features
for predicting OS and PFS in PCNSL. Indeed, for rare tumors, one of the limitations is
to collect a sufficient quantity of patient data to analyze; thus, assembling data from
different centers is usually a valid solution. However, in the case of MRI acquired in a
multicenter setting, inter- and intra-scanner variability can be an important limitation
in the radiomics analysis. Thus, the study of the effect of normalization on both task
prediction and reproducibility of radiomics features is of important value. To this end, a
subgroup of patients with three longitudinal acquisitions over time was selected and the
ICC for each radiomics features was computed in non-pathological tissue. Three state-of-
the-art normalization methods were tested (Z-score, WhiteStripe and Nyul), according to
many MR image harmonization studies [33,34,55]. While a similar study performed for
Glioblastoma [53] found the Nyul method to be the most robust for radiomics analysis, for
MRI of PCNSL patients we found that the Z-score normalization gave the highest number
of reproducible features (median and quartile values of all ICCs = 0.8 (0.74–0.90)) for both
the T1-W and the T2-W sequences, as shown in Figure 4. Furthermore, in contrast with [53],
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we performed a feature stability analysis on a portion of healthy tissue so that the results
were unaffected by disease progression or regression.

The normalization step had a significant impact on the learning process for both OS
and PFS (all results summarized in Table 2). Figures 5 and 6 show the feature importance
for each sequence at inference time. As is observable, first order features had the highest
importance among the features extracted from non-normalized images. By contrast, when
using normalized images, the classifiers seemed to rely more on textural features (GLCM
and GLRLM). First order statistics describe the distribution of individual voxel values
without concern for spatial relationships. Instead, textural features are obtained calculating
the statistical inter-relationships between neighbouring voxels (hence, they provide a
measure of intra-lesion heterogeneity) [17]. We speculate that the latter may contain more
robust and informative content for the survival prediction, therefore explaining the better
classification results. Indeed, textural analysis derived from conventional sequences reflects
histopathology features in solid cancer and has been proposed as a novel noninvasive
modality to further characterize tumors in clinical oncology [56,57]. Furthermore, it is worth
noticing that shape features may also act as confounding factors. If spurious correlation
exists (e.g., between tumor size and disease progression) the learning process may be
biased. In this case, elongation was the most important feature for almost all sequences and
there seemed to be no difference between normalized and non-normalized images, but that
was because the shape features were not affected by intensity normalization and depended
only on tumor segmentation. Furthermore, the performance improved significantly for
the prediction classification task, especially for the T2-W sequence. Probably, the other
textural features made the difference. Finally, for the OS survival classification, features of
both sequences (T1-W and T2-W) were equally important. The PFS features of the T2-W
sequence provided a greater contribution and, in fact, the performance results were better
than for the T1-W sequence.

5. Conclusions

This work presented the effect of normalization of MR images on a radiomic-based
approach to predict OS and PFS in PCNSL patients. Despite the limited number of cases
(mainly due to the rarity of the tumor), the proposed method made a breakthrough in
radiomics-based precision medicine for PCNSL patients.
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