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Abstract 
Allo-HCT provides a remarkable demonstration that immunotherapies can cure 

hematological malignancies, including AML. However, leukemic cells can enact 

multiple strategies to evade immune recognition and outgrow in clinical relapse, such 

as reducing antigen presentation or dampening effector responses through the 

expression of inhibitory checkpoint molecules. Increasing evidence suggests that 

leukemic cells actually weave a much broader net of interactions, involving several 

other immune cell types within the bone marrow microenvironment. Still, how this 

complex crosstalk between malignant cells and the bone marrow niche may shape 

the features of leukemia post-transplant relapse remains unknown.  

By exploiting the high resolution provided by scRNA-seq, we provide a detailed 

insight of the human bone marrow immune microenvironment and the changes that 

arise following allo-HCT, both when disease reemergence is prevented, and when it 

occurs. Using cryopreserved BM aspirates, we profiled samples from N=25 adult AML 

patients at the time of disease relapse; N=5 post-transplant patients in complete 

remission (CR), each tested at two different timepoints (+90 and +365 days) and 

N=6 healthy controls (HC). ScRNA-seq allowed us to recapitulate known leukemia-

intrinsic features of each relapse modality, such as HLA loss, down-regulation of HLA 

class II molecules and upregulation of inhibitory T cell ligands. Moreover, by focusing 

on malignant cells, we could highlight novel features of relapse. HLA loss relapses 

exhibited a more immature profile, hinting that the hematopoietic cell of origin 

impacts on the mechanism of post-transplantation relapse. Leukemic cells also 

featured a high inflammation-associated gene score (iScore), as also evident in non-

malignant HSPCs from relapsed patients compared to HC and CR. 

Focusing on specific BM immune compartments, we annotated a rare subset of 

immature CD56bright NK cells characterized by higher expression of IFN-related genes 

and NK exhaustion markers, which were enriched in patients with upregulation of T 

cell inhibitory ligands compared to other relapses, thus suggesting a shared 

mechanism of dysfunction signature between T and NK cell that may favor leukemia 

immune evasion. Further, we describe functional and compositional reshaping of the 

T cell compartment. In conclusion, we generated a comprehensive atlas of the BM 

immune microenvironment in AML post-transplantation relapses, showing that 

inflammation shapes immune subset composition and transcriptional profile in the 

BM, and that leukemia mechanisms of immune evasion are influenced by the 

surrounding milieu.  
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PCA Principal Component Analysis 
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scRNA-seq Single-cell RNA sequencing 

TCR T cell receptor 

Treg Regulatory T cell 
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UMI Unique Molecular Identifier 

UMAP Uniform Manifold Approximation and Projection 
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1 Introduction 

1.1 Hematopoietic cell transplantation 
1.1.1 Definition 

Hematopoietic cell transplantation (HCT) is a therapeutic treatment that aims at 

the restoring of the hematopoietic and immune system in patients whose bone 

marrow has previously been depleted by the use of chemotherapy and/or 

radiotherapy. Restoration of bone marrow function can be accomplished through the 

collection, and subsequent infusion, of hematopoietic stem and progenitor cells 

(HSPCs) either from the patient themselves (referred to as autologous HCT) or from 

a healthy donor (referred to as allogeneic HCT). Typically, HSPCs can be harvested 

from the bone marrow (BM), peripheral blood (PB), and cord blood units (CBU). These 

cells possess the ability to differentiate into all functional blood cells while retaining 

their self-renewal capability, ultimately aiming to rejuvenate the patient's 

hematopoietic and immune systems.  

Since its first application in the 1960s, significant advancements in the HCT 

technique have contributed to make it a highly effective and reliable treatment option 

for many hematological malignancies, such as acute myeloid leukemia, lymphomas, 

and multiple myeloma. Furthermore, bone marrow transplantation has emerged as 

an efficacious therapeutic approach for the management of various pathological 

disorders outside onco-hematology. These encompass both inherited, such as 

hemoglobinopathies, inborn errors of metabolism, and congenital aplasia, as well as 

acquired conditions, including autoimmune diseases and solid tumors (Duarte et al. 

2019). (Figure 1) 

 
 

Figure 1. HCT indications.  

Relative proportion of indications in Europe in 2015 for allogeneic (left) and  autologous HCT 
(right) (Passweg et al. 2017). 
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In the context of autologous treatment, stem cells of the patient are collected and 

preserved prior to any myeloablative therapy, and later reintroduced into the 

patient's body with the aim of restoring hematopoietic function. This enables the use 

of chemotherapeutic agents with high toxicity levels, which would otherwise result in 

persistent aplasia of the bone marrow. Hence, autologous HCT is most effective when 

there is a direct correlation between chemotherapy dose and anti-tumor response, 

and when the major dose-limiting toxicity of the treatment is represented by 

myelosuppression. Autologous HCT, for its biological properties, offers the advantage 

of avoiding any immunological activation of the graft against healthy tissues, 

resulting in an overall good tolerance of the procedure (Du et al. 2021), (Copelan 

2006). 

However, within the realm of hematological malignancies, there exists a significant 

possibility of acquiring, during the process of HSPCs collection, malignant cells, and 

reintroducing them would ultimately contribute to disease reoccurrence.  

In contrast, allo-HCT, by making use of donor cells coming from a family-related 

or an unrelated donor, adds to the therapeutic effect of the chemotherapeutic 

conditioning regimen, the active role played by the donor’s immune system in 

eradicating the disease (Copelan 2006). In fact, genetic differences between donor 

and recipient are responsible for the graft activation towards leukemia (GvL). 

Nonetheless, allo-HCT presents numerous challenges. First, a suitable donor might 

not always be available. Second, despite the beneficial effect of GvL, host-donor 

genetic disparities are also bearer of the most toxic side effect of the transplant, the 

graft-versus-host disease (GvHD), where host’s tissues are recognized as non-self, 

and attacked by the donor’s immune cells (Klepin, Rao, and Pardee 2014). Hence, 

because morbidity and mortality are more frequently associated to this process, 

patient’s health status at the time of transplant can heavily influence the transplant 

outcome and overall survival, independently of the underlying disease (Sorror 2005), 

(Michelis et al. 2015), (Hemmati et al. 2011). 

 

1.1.2 Stem cell source  

The term "stem cells" is frequently employed to describe a population of cells that 

possess the ability to remain in an undifferentiated state while simultaneously 

exhibiting the capacity for self-renewal and the potential to differentiate into a diverse 

array of specialized cell types, thereby contributing to the formation of a functional 

progeny. Thus, the  fundamental attributes of hematopoietic stem cells (HSCs) reside 

in their inherent capacity for self-renewal and their potential to undergo 
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differentiation into all mature blood lineages (Bryder, Rossi, and Weissman 2006). 

HSCs can be collected for transplant from different sources: bone marrow (BM), 

peripheral blood (PB) and cord blood (CB).  

The physiological origin of bone marrow renders it a highly desirable source for 

HSCs. Due to its inherent inclusion of stromal cells, which offer molecular-level 

support to the cells and facilitate optimal engraftment, BM represents the most 

“natural” source for HSCs. Moreover, the favorable ratio between stem and T cells 

contributes to a diminished susceptibility to acute and chronic GvHD (Pruszczyk et 

al. 2017). The harvesting process, however, is performed through an invasive 

procedure consisting in the aspiration of the marrow from both the posterior superior 

iliac crests, thus requiring either a general or an epidural anesthesia. 

Mobilization of HSCs to the peripheral blood, on the other hand, has emerged as 

a progressively employed alternative to BM harvesting (Figure 2).   

 

 
Figure 2. Number of transplants from unrelated donor. 

Colored by cell source (1992-2017). Adapted from https://bethematchclinical.org/. 

 

Indeed, transplantation of peripheral blood stem cells (PBSCs) represents a 

notably convenient approach from the perspective of the donor, as the leukapheresis 

process is a non-invasive procedure characterized by a high level of safety, similar 

to that of a simple blood draw. The presence of HSCs within the PB is a rare 

occurrence, as they usually make up for less than 0.1% of all circulating nucleated 

cells. The mobilization, and subsequent release into the circulatory system, of these 

HSCs from their specialized bone marrow microenvironment is obtained through the 

utilization of growth factors, such as G-CSF, and/or other pharmacological agents, 
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such as Plerixafor (a small molecule CXCR4 antagonist, which impedes the interaction 

between CXCR4 and SDF-1a9), which increase the quantity of HSCs present within 

the peripheral blood from 10 to 100-fold. Importantly, it is widely recognized that 

the use of G-CSF or other mobilizing agents is not linked to an increased risk of 

cancer development (Shaw et al. 2015). However, the acquisition of peripheral blood 

inherently entails the transfer of greater quantities of T cells in comparison to BM, 

thereby increasing the susceptibility to GvHD (Cutler et al. 2001), with no statistically 

significant difference in terms of overall survival compared to BM harvesting (Claudio 

Anasetti et al. 2012), (Cheuk 2013). 

Umbilical cord blood is a relatively novel source of HSCs. Thanks to the 

establishment of cord blood banks where CBUs are stored and cryopreserved, it has 

become a valid alternative for patients that lack other donors. Moreover, CBUs 

present a decreased risk of GvHD, due to T cells being mostly immunologically naïve. 

Thanks to this, CBUs are also more permissive when it comes to HLA 

incompatibilities. On the other hand, CBUs usage is strongly limited by the reduced 

probability of engraftment, delayed immune reconstitution, unavailability of the 

donor for additional donations, and a generally low volume of blood available per 

unit, which often limits its usage for low weight hosts (<50kg), like children.  

 

1.1.3 Choice of the donor and HLA matching 

Donor choice and its compatibility with the host represents one of the major 

players in determining the outcome of allo-HCT. In fact, not only it affects BM 

repopulation, but it also has a crucial role in the two most frequent causes of 

transplant failure: GvHD and the underlying disease reoccurrence. 

Donor compatibility is defined mostly by the alleles matching on the Major 

Histocompatibility Complex (MHC), a key part of the immune system controlled by 

genes located on the short arm of chromosome 6 (6p21.31). HLA stands for the 

human MHC and encodes extremely polymorphic cell surface molecules. This 

variability is explained by its fundamental immunological role: HLA molecules present 

antigenic peptides to T cells, educating the T cell to discriminate between “non-self” 

and “self” antigens, with subsequent elimination of cells expressing foreign peptides. 

In the context of transplant, where two foreign immune systems must coexist, being 

able to mitigate HLA natural functions is crucial. 

According to the structure and function of proteins encoded, the HLA system is 

divided in three classes: class I, II, and III. While MHC class III includes genes 

without completely clarified functions, class I and II molecules are central in T cell 
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activation, which is achieved through recognition of antigens localized in the peptide-

binding groove.  

Class I molecules, composed of HLA-A HLA-B and HLA-C (HLA-classical antigens) 

and HLA-E, HLA-F and HLA-G (non classical antigens), are ubiquitously expressed by 

nucleate cells, and exploit their function by binding peptides mostly derived from 

processing of endogenous proteins. Proteins in the cytosol or nucleus of the cell are 

degraded by the proteasome and loaded on the newly assembled MHC class I 

heterodimer into the endoplasmic reticulum (ER) lumen. The peptide-MHC complexes 

are then exposed on the cell membrane through the Golgi, thus permitting the 

recognition of infected and/or defective cells (Klein and Sato 2000). Class I molecules 

are recognized by CD8 T cells through their T cell receptor (TCR) and by killer-like 

immunoglobulin receptors (KIRs) on the surface of NK cells. More in particular, while 

T cells recognize the peptide-HLA complex (HLA restriction), NK cells are believed to 

recognize the loss of expression of HLA class I molecules (missing self). 

Class II molecules, coding for HLA-DP, HLA-DQ and HLA-DR proteins, are 

expressed mostly by antigen presenting cells (APCs) such as dendritic cells, 

macrophages, and B cells. However, in response to concurring conditions such as 

infections or inflammation, they can be expressed also in non-immune cells (Neefjes 

et al. 2011). CD4 T cells are the main “recipients” of class II processed peptides, and, 

in this case, the presented peptides are a part of the exogenous milieu, hence 

deriving from proteins degraded by the endocytic pathway.  

Although MHC class I and II are described as two separated entities, links between 

the two pathways such as cross-presentation allow DCs to expose extracellular 

peptides on MHC class I molecules and therefore enable the activation of CD8 T cells 

also against external microorganisms and tumors (Kurts, Robinson, and Knolle 

2010). Likewise, autophagy among others have been shown to permit the 

presentation of intracellular peptides on MHC class II molecules (Neefjes et al. 2011). 

As said before, the most unique characteristic of the MHC lies in the polymorphism 

of its genes. Allele variants mostly determine differences in the anchor residues to 

which the peptides dock, creating a unique bond between each binding groove and 

the antigen presented. Despite the high variability in the HLA system, all HLA genes, 

being encoded in a very small region of the DNA, are generally inherited together, 

due to linkage disequilibrium. Thus, one entire HLA locus is inherited from each 

parent determining the individual’s haplotype and allowing the identification of 

compatible donors. Following a mendelian inheritance, two siblings have a 25% 

probability to be HLA identical, a 50% chance of being HLA haploidentical and a 25% 

chance to don’t share any haplotype.  
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HLA incompatibilities, in the context of allogeneic HCT, are surely the main 

immunological barriers to transplant success. We can distinguish HLA matched 

transplants, where donor and recipient share identical haplotypes, or HLA 

mismatched transplants, among which we can find haploidentical transplantation, 

where donor and recipient only share one haplotype.  

 

 
Figure 3. Algorithm for donor selection. 

Adapted from EBMT Handbook, Enric Carreras et al., 2019. 

 

Among HLA matched transplants, an HLA genotypically identical sibling donor 

represents the gold standard source of stem cells for allo-HCT (Figure 3). Indeed, 

the absence of HLA disparities allows a faster engraftment, a lower risk of developing 

GvHD and a rapid immune reconstitution. However, as family units become smaller 

with time, it has been calculated that only 30% of the population in need for a 

transplant actually has an HLA-matched sibling donor (C. Anasetti and Hansen 1994). 

The natural consequence is that alternative sources, such as CBUs, haploidentical-

related donor, matched unrelated donor and mismatched unrelated donors are being 

increasingly used. 

Matched unrelated donors (MURD) are characterized by a full match on HLA- A, -

B, -C, DRB1, and DQB1 alleles (10/10).  In this setting, similar outcomes regarding 

TRM and survival have been shown compared to HLA-identical transplants, hence 

representing the second choice when the latter is not available (Saber et al. 2012). 

Also with MURD, finding a compatible donor is not always simple, especially for ethnic 

minorities. 

88

C, and DRB1 loci is requested, and progres-
sively the same criteria used for volunteer 
donors are considered to de!ne CB HLA match-
ing (Eapen et al. 2017).

12.3  Donor Selection for Adult 
Patients

12.3.1  Donor Type (Summarized 
in Fig. 12.1)

12.3.1.1  Matched Related Siblings 
and Unrelated Donors

Donor-recipient histocompatibility is one of 
the key variables in allo-HSCT.  An HLA-
identical sibling donor is generally considered 
the best donor for allo-HSCT; however less 
than a third of patients will have one available. 
Unrelated donor registries worldwide now 
include more than about 30 million volunteer 
donors, most of them in North America and 
Europe (www.bmdw.org). The probability of 
!nding a fully MUD (8/8 or 10/10) varies on 
average between 16% and 75% (Gragert et al. 
2014; Buck et al. 2016) depending on ethnic-
ity, with lowest and highest probabilities in 
patients of African and European descent, 

respectively. Increasing ethnic diversity will 
with time further limit the chances of !nding a 
fully matched unrelated donor.

Till date no randomized trial has compared 
outcome of transplants from different donors. 
However, one prospective (Yakoub-Agha et al. 
2006) and several retrospective analyses indi-
cate that outcomes after MSD and fully MUD 
(8/8 or 10/10) HSCT are comparable (Schetelig 
et al. 2008; Szydlo et al. 1997; Arora et al. 2009; 
Ringden 2009; Gupta et  al. 2010; Woolfrey 
et al. 2010; Saber et al. 2012). Increase in donor-
recipient HLA disparity in HLA-A, HLA-B, 
HLA-C, or HLA-DRB1 is associated with 
poorer outcome after unrelated donor transplan-
tation (Lee et  al. 2007; Shaw et  al. 2010; 
Woolfrey et al. 2011; Horan et al. 2012; Fürst 
et  al. 2013; Pidala et  al. 2014; Verneris et  al. 
2015). The overall decrease in survival can be 
explained by the increase in NRM with no posi-
tive effect on relapse. Disparities in HLA-DQB1 
as well as C-allele disparities in C*03:03 vs 
03:04 have been reported to be permissive with 
no negative effects on outcome (Lee et al. 2007; 
Fürst et al. 2013; Morishima et al. 2015; Pidala 
et al. 2014; Crivello et al. 2016). Disparities in 
HLA-DPB1 are observed in the majority of 
HLA-A, HLA-B, HLA-C, and  HLA- DQB1 

Algorithm for donor selection for adult patients with hematological malignancies

HLA-identical sibling donor

HLA-10/10 matched unrelated donor
Beyond HLA: donor age> CMV-matching, sex-matching, ABO-matching

HLA-9/10 matched unrelated donor;
HLA-mismatched related donor; cord blood Beyond HLA: donor specific antibodies, specific center experience

Fig. 12.1 Algorithm for donor selection

F. Ayuk and A. Balduzzi
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Mismatched unrelated donors (MUD) with a limited degree of mismatching (e.g., 

compatible HLA-A, -B, -C and -DRB1 phenotypes) are still associated with very good 

outcomes (Yakoub-Agha 2016) and ease the donor finding process. Indeed, 

nowadays, as more than 32 million potential unrelated donors have been enlisted in 

worldwide registries, the probability of finding a well-matched donor reaches 

approximately 75% for Caucasian patients, whereas the rate is much lower for ethnic 

minorities and mixed-race patients, due both to higher genetic diversity of HLA 

haplotypes and lesser availability (Gragert et al. 2014) (Figure 4). As 

incompatibilities between HLA systems grow, the outcome of HCT becomes poorer, 

as risk of GvHD and treatment-related mortality (TRM) grows, and engraftment of 

neutrophils and platelets takes more time.  

 

 
Figure 4. Likelihood of finding an 8/8 HLA match by year since 1987 to 2013. 

Projected match likelihoods are also presented for 2013 through 2017 (shaded area). Adapted 
from Gragert L et al. N Engl J Med 2014;371:339-348.  

 

Cord blood units (CBU) also represent a feasible alternative to matched 

transplants, as they are easier and faster to obtain. Moreover, CBU cells are 10-1000 

times less alloreactive than adult peripheral blood cells, determining a lower risk of 

GvHD even with increasing number of HLA mismatches (Risdon et al. 1994).   

Gragert L et al. N Engl J Med 2014;371:339-348.

Likelihood of Finding an 8/8 HLA Match by Year End, Based on 
Current Donor Availability and with Recruitment Trends 
Extended to 2017.
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Half-compatible family donor (haploidentical) transplant has been an issue in the 

transplantation community for years. The major challenge, historically, has been the 

strong graft-versus-host and host-versus-graft alloreactivity due to the several HLA 

incompatibilities. Hence, experience with haploidentical transplantation has been 

characterized by high rated of graft failure, GvHD and TRM. 

Several efforts, have been made to finally develop a safe platform for 

haploidentical transplantation, which presents numerous advantages: first, almost 

every patient has at least one related haploidentical donor (either a parent, sibling 

or child) and being able to rely on this approach can be extremely helpful when a 

transplant is urgently needed, and sometimes allows the possibility to select among 

multiple donors the best match based on age, sex, and infectious status. Moreover, 

the lower cost in stem cell obtainment and the unnecessity of national registries can 

be especially useful in low-income nations.  

Use of haploidentical donors for allo-HCT has been continuously growing in the 

latest years: since 2005, a 291% increase has been witnessed. The growing resort 

to this transplantation setting has been seen for all diseases, even if myeloid 

malignancies still represent the most important reason (Passweg et al. 2017).  

 

 
Figure 5. Trends in haploidentical HCT In Europe between 1990-2015.  

Comparison with CBU transplantation (a) and among malignancies (b) (Passweg et al. 2017).  

 

1.1.4 Graft-versus-Host Disease (GvHD) 

GvHD is a major leading cause of death after transplantation, second only to 

disease relapse. It is caused by donor T cells that, following the encounter with 

foreign (non-self) antigens, in the presence of a pro-inflammatory environment, 

attack and destroy healthy recipient’s tissues. It’s a severe and often life-threatening 

condition, which affects many organs, in particular skin, gastrointestinal tract, liver 

and lungs (J. L. M. Ferrara et al. 2009). The likelihood and severity of the disease are 
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directly correlated to the number of HLA mismatches between donor and recipient. 

Nevertheless, other minor risk factors (including age of donor and recipient, gender 

disparity, multiparous female donors) can influence this condition (Nash et al. 1992), 

(Gale et al. 1987), (J. H. Antin and Ferrara 1992). Moreover, even in the context of 

HLA-identical transplantation there is a non-negligible risk of developing acute GvHD, 

due to the recognition of minor histocompatibility antigens (miHAgs), highly 

polymorphic peptides displayed by HLA molecules of recipient cells (Falkenburg et al. 

2003), (Bleakley and Riddell 2004).  

Traditionally, GvHD has been divided into acute and chronic, based on the time of 

occurrence after HCT, being it before or after 100 days (Sullivan et al. 1992),(Martin 

et al. 1990). However, this distinction cannot be taken too strictly, and profound 

differences that go beyond it make acute and chronic GvHD two distinct entities.  

In acute GvHD, tissue damage determined by the underlying disease activity, 

combined with the conditioning toxicity, induces the release of DAMPs and pro-

inflammatory cytokines, and increases the expression of HLA molecules, thus 

activating the donor’s immune system. Moreover, activation and proliferation of 

effector T lymphocytes leads to a cytokine storm through the recruitment of 

additional mononuclear effectors, amplifying the process (Ghimire et al. 2017), 

(Joseph H. Antin and Ferrara 1992). Acute GvHD primarily targets skin, the 

gastrointestinal tract, and hepatic tissues. The extent of involvement of these three 

main targets decides the severity and thus the prognosis of aGvHD (J. L. Ferrara et 

al. 2009). 

Chronic GvHD, presents a different pathophysiology, though donor immune cells 

are still largely responsible and can also arise from progression of the acute form. 

Dysregulated T but also B-immunity plays a major role in its development and 

fibrosis usually is the final step of this process (Zeiser and Blazar 2017).  

 

1.1.5 Graft-versus-Leukemia effect 

Donor graft cells are not only responsible for the return to normal hemopoiesis 

following allo-HCT, but are also deemed major factors in the delivery of the anti-

tumoral activity of the transplant. In fact, disparities between the donor and 

recipient’s HLA, though being responsible of GvHD development, are also the main 

driver in the recognition and elimination of residual tumor cells by the donor’s 

immune system (GvL), and in particular by T cells. The first evidence of such an effect 

was highlighted more than 50 years ago, when in murine models leukemia 

eradication was obtained after bone marrow engraftment without the use of other 

myelosuppressive agents (Barnes et al. 1956). The idea, once applied to humans, 



 16 

led to the definition, for the first time, of the term “adoptive immunotherapy” when 

referring to transplant. 

Another indirect proof of the GvL effect was given by the observation that recipient 

of syngeneic HCT have an higher risk of disease relapse than patients receiving 

allogeneic HCT (M. M. Horowitz et al. 1990), (Marmont et al. 1991). Moreover, T cell 

depletion from the graft is also associated with an increase in relapse incidence 

(Figure 6).  

 

 
Figure 6. Probability of relapse after BMT. 

Likelihood of relapse for AML according to type of graft and developement of GvHD (Horowitz 
et al., 1990) 

 

The power of GvL is also shown by the clinical practice of donor-lymphocyte 

infusions to treat post-transplant relapse. DLIs are, indeed, able to induce remission 

in a high percentage of patients with chronic myeloid leukemia (CML) (Kolb et al. 

2004), but are also effective in lymphoma, AML, myelodysplastic syndromes (Depil 

et al. 2004) and multiple myeloma, whereas rare responses are seen in acute 

lymphoblastic leukemia (ALL).  

Clearly, the most common side effect of DLIs, involving up 40-60% of patients, is 

GvHD onset (Kolb et al. 2004),(Collins et al. 1997), although patients that suffer 

from GvHD are less exposed to disease relapse, meaning that the activation of the 

donor immune system is not limited to healthy tissues but also to dysfunctional ones. 

Of note, also NK cells are involved in determining a GvL effect, and a proof of this 

can be derived from the persistence of a GvL effect even after complete T cell 

depletion of the graft. The major triggers for NK cell activation and subsequent 

release of perforin-granzyme and cytokines are the presence of killer cell 



 17 

immunoglobulin receptor (KIR) ligand/KIR ligand incompatibilities between host and 

donor cells, where the absence of an MHC class I KIR ligand in the recipient, but not 

in the donor, prevents the inhibition of donor NK cell-mediated cytotoxicity (Nguyen 

et al. 2005), and the expression by leukemic cells of ULBPs  and MIC-A/B, which are 

among the ligands for NK cell receptor NKGD2 activation (Bauer et al. 1999). In 

haploidentical settings, it has been observed that in the first months after 

transplantation NK cell reactivity is an important mediator of GvL when host cells lack 

of specific KIR ligands. This effect was even enhanced in T cell depleted graft, where 

the potent alloreactivity of T cells can mask this important feature of NK cells (Vago 

et al. 2008).  

Considering that long term survival is dented by disease relapse, it is clear how 

the major curative intent of allo-HCT relies on GvL.  

Nevertheless, a delicate balance marks GvL and GvHD and strategies to enhance the 

first without aggravating the latter are crucial. In this prospective, donor selection 

can be guided by specific mismatches on HLA-DPB1. Some of these are in fact 

considered permissive, precisely because of their role in disease recognition which 

manifests a beneficial impact on relapse(Kawase et al. 2009). Moreover, minor 

histocompatibility antigens selectively expressed by hematopoietic cells, such as HA-

1, HA-2, HB-1 and BCL2A1, or aberrantly expressed proteins due to molecular 

dysregulation can be actively targeted. In this context, donor T cells that recognize 

leukemic restricted antigens are isolated and expanded in vitro and then infused in 

the patient to establish a strong reaction against the cancer. The same approach can 

be used with NK cells, shown to have a wider role in GvL compared to GvHD. A 

number of pharmacological agents, such as tyrosine kinase inhibitors (TKIs), 

hypomethylating agents and checkpoint inhibitors have been or are currently being 

studied to increment the killing of tumoral cells without leading to GvHD(Y.-J. Chang, 

Zhao, and Huang 2018).  

 

1.2 Relapse following allo-HCT 
1.2.1 Acute Myeloid Leukemia 

Acute myeloid leukemia is a rapidly progressing malignancy of immature myeloid 

cells that fail to undergo normal differentiation. The subsequent uncontrolled 

proliferation affects normal haematopoiesis and is responsible of multilineage 

cytopenia, eventually determining not only marrow but multi-organ failure. AML 

diagnosis speaks for 1.2% of all new cancer diagnosis, with an increased incidence 

in older adults. Despite major advances in the treatments, the outcome often remains 
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dire, and five-year survival doesn’t reach 30% (Newell and Cook 2021). Many driver 

mutations promote clonal expansion, the most common ones being within FLT3, 

NPM1 and DNMT3A, though a wide variety of cytogenetic and molecular abnormalities 

are responsible for its heterogeneity.  

General therapeutic strategy for AML is to induce disease remission through 

chemotherapy, mostly with cytarabine and anthracycline as the mainstay. If 

complete remission is achieved, consolidation therapy is essential and includes 

chemotherapy or allo-HCT. Choice between the two is mostly driven by the leukemic 

genetic-risk profile, treatment-related death scores and patient’s performance status. 

Although maintaining a higher toxicity, allo-HCT is the strongest antineoplastic 

therapy since it leverages on high doses of chemotherapies in conditioning, and it 

allows a constant immune control over tumoral cells through the GvL effect.  

 

1.2.2 Relapse 

Despite substantial improvements in supportive-care treatments, diagnostics 

monitoring and graft manipulation, the major cause of treatment failure, eventually 

leading to death in up to 30% of all transplant settings (M. Horowitz et al. 2018) , is 

still represented by the reappearance of the initial disease, without consistent 

advances over the last 20-30 years (Figure 7). 

Disease relapse is often expression of a more aggressive disease, and in the frame 

of transplant-related toxicities, the prognosis is poor, with little to no suitable salvage 

options. Indeed, overall survival is around 20% at only 1 year after relapse and is 

especially aggravated when relapse occurs within 6 months from transplant 

(Bejanyan et al. 2015).  

The ability of donor-derived T cells to establish a proficient GvL following allo-HCT 

depends on a complex net of immunological interactions, whose balance is crucial in 

determining the effectiveness of transplant and abating the occurrence of clinical 

relapse, and it is becoming increasingly recognized that failure of allo-HCT and 

reappearance of the original disease in relapsed form are often the expression of 

mechanisms of tumor immune escape (Zeiser and Vago 2019), either dampening the 

activity of these donor-derived effector cells (Toffalori et al. 2019b; Noviello et al. 

2019b) or rendering leukemic cells invisible to them (Christopher et al. 2018a; 

Toffalori et al. 2019b; Vago et al. 2009a).  
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Figure 7. Causes of disease relapse following HCT.  

A) Among HLA-matched sibling transplant recipients at or after 100 days, 57% of deaths are 
attributed to primary disease. B) Among unrelated donor allogeneic HCT, after 100 days, 48% 
of deaths are related to primary disease. C) After autologous HCT, 71% of deaths are due to 
primary disease. (D’Souza A, Fretham C., 2018). 

 

1.2.3 Leukemia intrinsic mechanisms of relapse 

1.2.3.1 HLA loss 

Genomic loss of the mismatched (patient-specific) HLA haplotype through copy 

neutral loss of heterozygosity (CN-LOH) represented the first evidence of a recurrent 

modality through which leukemia evades immune recognition following allo-HCT 

(Vago et al. 2009a). CN-LOH, also known as uniparental disomy, is as a frequent 

genetic alteration in solid cancers (O’Keefe, McDevitt, and Maciejewski 2010; Tuna, 

Knuutila, and Mills 2009), although rarely described on hematological malignancies, 

and consists in the combination of a deletion of a genomic region, rapidly 

counterbalanced by duplication of its homologous region on the other chromosome, 

resulting in an acquired homozygous genotype for all genes encompassed in the 

A B 

C 
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alteration, without alterations in gene content or expression levels (Mary Horowitz et 

al. 2018; Itzel Bustos Villalobos et al. 2010). In the setting of allo-HCT from 

haploidentical donors, CN-LOH events that encompass the entire HLA region lead to 

irreversible loss of the haplotype that encodes for the mismatched HLA, and to 

duplication of its homologue, thus rendering leukemic cells “invisible” to the donor 

immune system.  

After HLA loss occurs, mutated subclones rapidly become the predominant 

population precisely because donor-derived T cells are no more able to recognize 

blasts, as the TCR-HLA interaction, the major driver of alloreactivity, is turned 

ineffectual (Vago et al. 2009b),(I. B. Villalobos et al. 2010). Moreover, since this 

mechanism allows malignant cells to retain a physiological copy number of HLA class 

I loci, NK cells will not receive their “missing self” activation signal. These 

observations are of crucial value, since they imply that the whole GvL effect derived 

from T and NK cells is lost, and DLI infusions are to be considered ineffectual, if not 

harmful, since the toxic effect of GvHD is preserved (Tsirigotis et al. 2016a).  

This relapse modality accounts for approximately 30% of relapses after 

haploidentical HCT (Crucitti et al. 2015; Grosso et al. 2017; McCurdy et al. 2016), 

and while it has also been reported in other transplantation settings, in particular 

after well-matched unrelated donor HCT, it usually exhibits a lower incidence 

(Toffalori et al. 2012),(Waterhouse et al. 2011),(Stölzel et al. 2012), probably due 

to a lower alloreactivity that leukemic cells undergo in this transplantation settings. 

Interestingly, as opposed to what happens in haploidentical transplantation, HLA 

mismatches in MUD transplant are usually scattered between the two haplotypes, 

thereby turning ineffectual any attempt at escape from alloreactivity by losing one 

allele.  
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Figure 8. Loss of mismatched HLA in leukemic cells after haploidentical HCT.  

Adapted from Horowitz et al., Bone Marrow Transplant., 2018. 

 

A number of studies have investigated the features and risk factors for HLA loss, 

showing that this escape modality is more frequent in late relapses and when allo-

HCT is performed in active disease (Vago et al. 2009a; Crucitti et al. 2015).  

 

1.2.3.2 HLA class II downregulation 

Several years after the HLA haplotype loss was described, two independent studies 

identified a different modality by which leukemia can alter its HLA asset, hiding from 

T cell recognition. By comparing paired patients’ samples collected before and after 

transplantation, both studies evidenced abolished expression of HLA class II genes 

and of their master regulator class II major histocompatibility transactivator (CIITA) 

in up to 40% of AML post-transplantation relapses (Christopher et al. 2018a; Toffalori 

et al. 2019b). Of note, differently from its genetic counterpart, this mechanism was 

apparently not correlated with the number of donor-recipient incompatibilities and 

occurred with similar frequencies after HLA-compatible and -incompatible 

transplants. 

Another, even more relevant, difference from the previously described HLA loss is 

that in these relapses sequencing of  HLAs and their regulatory network revealed no 
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mutations that could explain the abrogated expression of class II, hinting toward a 

primarily epigenetic origin of this phenotype (Christopher et al. 2018a; Toffalori et 

al. 2019b). Lack of class II molecules expression can occur by different epigenetic-

driven processes, such as downregulation of CIITA, linked to the hypermethylation 

of its promoters(Toffalori et al. 2019c),(Christopher et al. 2018b), and mutation in 

epigenetic regulators such as EZH2 (Ennishi et al. 2019). Several studies also 

reported HLA class II downregulation due to deletions and point mutation in HLA class 

II genes and of a recurrent fusion between CIITA and programmed death-ligands PD-

L1 and PD-L2, leading to concurrent downregulation of HLA class II genes and 

upregulation of these inhibitory ligands (Steidl et al. 2011). 

In the case of AML post-transplantation relapses, recent reports demonstrated the 

involvement of both transcription factors (IRF8, MYB, MEF2C, and MEIS1) (Eagle et 

al. 2022), and polycomb repressive complex 2 (PRC2) as key epigenetic driver of this 

immune escape modality, showing PRC2-mediated chromatin compaction at HLA 

class II and CIITA loci in leukemic blasts at the time of relapse (Gambacorta et al. 

2022). 

 

1.2.3.3 Upregulation of T cell inhibitory ligands 

Alterations at the interface between T cells and leukemic blasts can lead to reduced 

immune recognition and become responsible of relapse in up to 40% of cases. It has 

been shown that costimulatory interactions, necessary for T cell activation against 

target cells, are significantly altered after allo-HCT. In particular, activator molecules 

such as CD11A and B7-H3 are downregulated, whereas expression of ligands that 

induce inhibition is increased. Of these, PDL-1 overexpression on blasts was shown 

to correlate significantly with relapse, and other molecules such as PVRL2 and CD80 

were also implicated (Toffalori et al. 2019c).  

Plenty are the molecular drivers of this relapse mechanism and most remain 

unknown. Activation of aberrant janus kinase (JAK), Myc oncogenic signalling and 

epigenetic alterations on its promoter have all been described as drivers of PD-L1 

upregulation (Green et al. 2010), (Prestipino et al. 2018), (Casey et al. 2016). In 

addition, low levels of micro RNA-34a, involved in PD-L1 degradation, and post 

translational modifications are also implicated in its expression (X. Wang et al. 2015), 

(C.-W. Li et al. 2016). The frequency of changes in costimulatory molecules 

expression after transplant is not linked to compatibility between donor and host, 

similarly to downregulation of HLA class II molecules (Tsirigotis et al. 2016b). 

Noticeably, T cells immunophenotypic changes at the time of relapse mirror those 

observed in leukemic blasts (Toffalori et al. 2019b; Noviello et al. 2019a). In fact, a 
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growing number of studies highlighted the co-expression of multiple inhibitory 

checkpoint receptors on donor-derived T cells and their association with post-

transplantation relapse. In the context of HLA-matched transplants TIM-3 and LAG-

3 have been shown to be overexpressed in leukemia antigen-specific T-cells (Jain et 

al. 2019). Coherently, PD-1high/TIM-3+ PB T cells of transplanted patients showed 

functional exhausted features and accumulated before clinical diagnosis of relapse, 

indicating a strong association between PD-1high/TIM-3+ T cells frequency and 

leukemia relapse (Y. Kong et al. 2015). Moreover, studies reported a higher 

frequency of CD8+PD-1+/TIM-3+ and PD-1+/LAG-3+  T cells in the bone marrow(BM) 

of AML relapsed patients (Williams et al. 2019).  

 

1.2.4 Leukemia extrinsic mechanisms of post-transplantation relapse 

Though very different, the mechanisms described above all share the abrogation 

of T cell recognition of leukemia cells as the main gateway to relapse. Nonetheless, 

the interaction between leukemia and T cells is not the only element to be taken into 

consideration. Malignant cells not only adapt to become more aggressive and less 

detectable by the immune system, but they can also modify their environment to 

support disease spread (Baryawno et al. 2019). This interaction between cancer cells 

and their environment is well-studied in solid tumors, and it's increasingly being 

examined in blood diseases as well. After an allo-HCT procedure, this relationship 

gets even more intricate, due to the combination of elements from both the donor 

and the recipient. 

 

1.2.4.1 Metabolism-related mechanisms 

Recent studies have reported the key importance of metabolic rewiring as a new 

hallmark of AML onset, progression, and relapse after allo-HCT (Uhl et al. 2020; 

Mishra, Millman, and Zhang 2023) (Vallet et al. 2022)  

In particular, hypoxia and competition for nutrient availability are two major forces 

able to drive immunosuppression in the TME. In fact, both tumor cells and T 

lymphocytes rely on glycolytic metabolism, which results in an increase of lactate 

(lactic acid, LA) as a byproduct of ATP production. Alterations in the energetic 

interplay in the TME inevitably determine an increase in LA, and a consequent 

increased acidosis of the TME, which directly hampers effector functions of different 

immune subsets (e.g NK cells, monocytes, dendritic cells, macrophages, Tregs and T 

effector cells), and thus GvL responses (Z.-H. Wang et al. 2021). In line with these 

findings, lactic acid (LA) production by tumor cells has been shown to have a 

suppressive effect towards cytotoxic T lymphocyte (CTLs) activity by obstructing 
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lactate efflux and subsequently altering T cell metabolism (Fischer et al. 2007) (C.-

H. Chang et al. 2015). 

Importantly, a number of studies, although carried out mainly in solid tumors, 

showed that targeting T cell glucose, amino acid, and lipidic metabolisms in the TME 

with anti-PD-1/PD-L1 and CTLA4 antibodies (Staron et al. 2014; Ho and Liu 2016), 

Imatinib (Gottschalk et al. 2004) Acyl-coenzyme A: cholesterol O-acyltransferase-

1(ACAT-1) (W. Yang et al. 2016) and idoleamine 2,3 dioxygenase-1 (IDO) inhibitors 

(GDC-0919, INCB024360) (Nayak-Kapoor et al. 2018, 1) can be exploited as novel 

anti-cancer therapeutic strategies, leveraging the reprogramming of the metabolic 

asset of tumor and effector cells.  

Lastly, some reports have described an increased level of oxidative markers and 

altered anti-oxidant balance in the serum of patients undergoing allo-HCT, fostering 

the common hypothesis by which the conditioning regimen can induce oxidative 

stress (Sari et al. 2008; Sabuncuoğlu et al. 2012). The main cause of oxidative stress 

is the altered regulation of reactive oxygen species (ROS) levels in the cells, which 

culminate in a high degree of oxidative DNA damage and dramatically hamper proper 

T cell activation (H. Kong and Chandel 2018).   

 

1.2.4.2 Immunomodulatory role of the BM microenvironment  

Although in the non-transplant setting, several studies highlighted that leukemic 

cells can reprogram the TME by producing different immunosuppressive enzymes, 

such as idoleamine 2,3 dioxygenase-1(IDO-1) (Munn et al. 2005), arginase (Mussai 

et al. 2013), the ectonucleotidase CD73 (Serra et al. 2011), the ectonucleoside 

triphosphate dyphosphohydrolase-1 CD39 (Dulphy et al. 2014), known to support 

tumor escape. Recent evidences, highlighted that malignant cells can also evade GvL 

effects by secreting anti-inflammatory cytokines (IL-4, IL-10, TGF-b), reducing the 

expression of pro-inflammatory and growth factors (IL-15, G-CSF, IFN-g), in a sort 

of paracrine pathway that ultimately involves and co-opt all surrounding cells in the 

TME.  

 

1.2.4.3 Inflammation-mediated remodeling of the BM 

One of the major hallmarks of cancer is inflammation (Hanahan and Weinberg 

2011). While its correlation to different solid cancer types (Greten and Grivennikov 

2019) has been largely demonstrated, its contribution to AML relapse has only been 

hypothesized in the light of leukemic and T cells interactions. Outside of the 

transplantation realm, increased activity in inflammatory pathways has been 

correlated to the progression of AML from myelodysplastic syndromes (Barreyro, 
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Chlon, and Starczynowski 2018), to reduced EFS (Stratmann et al. 2022),  and has 

been reported to control HSCs and accelerate the development of AML in animal 

models via cytokine production (Carey et al. 2017). Moreover, an increased IFN-γ 

gene signature has been shown to be predictive of poor response to chemotherapy 

and, in relapsed/refractory AML, to targeted immunotherapy (Vadakekolathu et al. 

2020).   

Finally, a recent report highlighted how inflammation is able to remodel entirely 

the TME of adult and pediatric AML patients, both by expanding atypical B cell 

population, GMZK+ precursor T cells, and T regulatory cells (Lasry et al. 2023). 

 

1.3 Single cell technologies to unveil cellular diversity 
Since the first bulk RNA library sequencing in the late 00s leveraging NGS 

techniques, RNA-seq has become one of the most valuable and extensively used tool 

in cancer research. While previously used technologies like RT-PCR and microarray-

based assays allowed only quantification of a known pool of transcripts, RNA-seq 

enabled for the first time the sequencing of the whole transcriptome, opening the 

gates to a series of previously unreachable data: sequencing of non-model organisms 

whose genome was unknown, detection of gene isoforms, gene fusions, sequence 

variations (SNP), and many other features. 

Despite revolutionizing our understanding of biology, RNA-seq from bulk tissue 

and/or dissociated cells presents an important limit, as it cannot resolve specific cell 

types, which is often critical to understanding the deepest and more complex layers 

of biological systems. Bulk sequencing is, in general, cheap and not time-consuming, 

both from the pre-analytical and the computational standpoint. However, by 

providing only cell-averaged profile expression, sample heterogeneity can’t be 

assessed (although methods to estimate the abundance of cell types in mixed 

populations have shown promising results (Chen et al. 2018). To uncover rare cell 

populations, and answer to more complex biological questions, such as tracing 

developmental trajectories, gene expression must be assessed at the single-cell level.  

scRNA-seq was first introduced in 2009 (Tang et al. 2009), and, since then, its 

applications, and the laboratory and computational methods available, have 

advanced at an unprecedented pace. Each scRNA-seq method basically follows the 

same steps required for bulk RNA-seq, like solid tissues dissociation, cell lysis, 

reverse transcription, amplification, and sequencing. However, scRNA-seq protocols 

requires the two additional steps of cell isolation and labeling. These are also the 

steps that vary the most across different pipelines. 
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1.3.1 scRNA-seq “wet” pipelines 

scRNA-seq pipelines can be essentially divided based on the different techniques  

used for cell isolation and cDNA synthesis.  

Regarding cell isolation, plate-based techniques leverage single cell isolation and 

library preparation in individual wells of a plate. This allows for higher read depths 

per cell, though at the cost of a lower cellular output (Kashima et al. 2020). Most 

commonly used protocols include SMART-seq2 (Picelli et al. 2014), MARS-seq (Keren-

Shaul et al. 2019), QUARTZ-seq (Sasagawa et al. 2013), and SRCB-seq (Soumillon 

et al. 2014). Droplet-based techniques, on the other hand, while able to process a 

significantly higher number of cells, have generally lower read counts. Moreover, 

gene information from droplet-based approaches can only be obtained either at the 

5’ or 3’ end of each transcript, whereas plate-based methods can generate reads 

from whole transcripts (Griffiths, Scialdone, and Marioni 2018) (Figure 9). Most 

commonly used microfluidic-based protocols include Drop-seq (Macosko et al. 2015) 

and 10X genomics Chromium (Zheng et al. 2017). 

 

  
 

Figure 9. Different cell isolation methods for single cell pipelines.  

(Griffiths, Scialdone, and Marioni 2018)  
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cDNA synthesis from mRNA transcripts is another critical step: main protocols are 

divided into UMI-based (or tag-based), where a unique molecular identifier is 

incorporated in the initial reverse transcription step along with the barcode, allowing 

more reliable read counts, and protocols that leverage template-switching 

mechanisms, enabling generation of full-length cDNAs (Picelli et al. 2014).  

Lately, to enhance the depth and precision of scRNA-seq techniques in capturing 

the intricate regulatory mechanisms underlying cellular functions and signaling, 

significant strides have been taken to assess other aspects at a single-cell level, 

including chromatin accessibility (Baek and Lee 2020), surface proteins (Stoeckius et 

al. 2017), TCR/BCR sequences (Han et al. 2014), and spatial transcriptomics 

(Larsson, Frisén, and Lundeberg 2021), which can even be combined into single 

experiments to produce multi-omic single cell datasets. 

 

1.3.2 scRNA-seq computational pipelines 

Experimental innovation has been accompanied by the development of several 

computational tools to analyze this newly generated data. As of 2023, scRNA-tool, a 

database used to catalogue software packages for the analysis of scRNA-seq data, 

had collected approximately 1600 bioinformatic tool, comprising mostly visualization 

(~40%), dimensionality reduction (~25%), clustering (~23%), and integration 

(~18%) software, as well as pre-processing, data acquisition and differential 

expression pipelines.  Notably, between 2018 and 2023, the number of available tools 

witnessed a 5-fold increase, and if the trend continues at this rate, it is expected to 

reach, by the end of 2025, at least 3000 available packages (Zappia and Theis 2021) 

(Zappia, Phipson, and Oshlack 2018). A number of comparison and benchmarking 

studies have been performed in the last few years, covering almost every step of a 

standard single-cell analysis pipeline (Vieth et al. 2019; Cole et al. 2019; Dal Molin, 

Baruzzo, and Di Camillo 2017; Soneson and Robinson 2018), at the point that even 

studies comparing these studies have started to come out (Germain, Sonrel, and 

Robinson 2020).  

Despite the availability of all these tools, three main “ecosystems” have emerged 

as the most popular and widely used: R based Bioconductor (Huber et al. 2015) and 

Seurat (Hao et al. 2021a), and Python based scverse (Virshup et al. 2023). 

Furthermore, best-practices workflows have also been presented (Heumos et al. 

2023), in an attempt to standardize computational workflows employed. 
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2 AIM OF THE WORK 
Allo-HCT represents the most successful therapeutic option for many patients 

suffering from AML. Nevertheless, leukemic cells often find means to evade control 

from the donor-derived immune system and re-emerge. To date, three alternative 

and frequent mechanisms by which AML cells modify their features and escape 

immune control have been described: genetic loss of the mismatched HLA haplotype 

(HLA loss), downregulation of HLA class II molecules and upregulation of inhibitory 

ligands, all ultimately leading to abolished leukemia recognition by T lymphocytes. 

Nonetheless, a sizable portion of disease recurrences are still unaccounted for. 

Many other immune cell types weave a canvas of interactions with leukemic clones 

in the bone marrow niche, where AML originates, and this complex tumor 

microenvironment (TME) has already been demonstrated to play a role in anti-tumor 

immunity in other settings.  

In the present study, by leveraging 10x Genomics Single Cell Immune Profiling 

solution, our aim is to map by scRNA-seq the transcriptomic changes that occur in 

the bone marrow of patients who experience AML relapse after allo-HCT, with the 

ultimate goal of improving our understanding of how leukemic cells exploit their TME 

to escape immune surveillance and identify new vulnerabilities to be exploited for 

personalized therapeutic approaches. 

More specifically, we first initiate by closely examining leukemic cells, with the 

primary objective of identifying known leukemia-intrinsic features of post-

transplantation relapse, and uncover how these changes influence and shape the 

surrounding TME.  

We subsequently turn our attention towards the primary TME populations that play 

pivotal roles in post-transplant immunity, NK and T cells. Exploiting the high 

resolution provided by scRNA-seq, we dissect these immune cell subsets to uncover 

intricate molecular signatures, differential expression patterns, and potential 

interplay with leukemia cells that may offer insights into relapse mechanisms and 

immune evasion strategies. 

To conclude, our in-depth exploration of the bone marrow environment in post-

transplantation relapses, combined with our focus on leukemia and immune cell 

dynamics, contributes on the understanding of how the BM niche could be exploited 

to find novel vulnerabilities in AML relapses.  
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3 RESULTS 

3.1 Study design and patient characteristics 
We retrospectively reviewed clinical and epidemiological data from a non-

consecutive cohort of N=36 patients, of which N=25 with a diagnosis of AML who 

underwent allo-HCT and later experienced disease relapse at our institution between 

2009 and 2022, N=6 HC, and N=5 patients with a diagnosis of AML who, following 

allo-HCT, remained in CR for at least 1 year. Table 1 summarizes patients’ 

characteristics. 

Patients from our AML relapse cohort were characterized by different mechanisms 

of leukemia relapse, including downregulation of HLA class II (N=5), upregulation of 

inhibitory ligands (N=4), genomic loss of incompatible HLAs, “HLA loss” (N=10), and 

unknown mechanisms of relapse (N=6). 

 

3.2 scRNA-seq data pre-processing 
3.2.1 Cell Ranger 

Cell Ranger software comprises a set of informatic pipelines with the ultimate 

function of processing Chromium scRNA-seq outputs. Here, we used it to align reads, 

generate feature-barcode matrices and perform initial clustering and QC. 

Median estimated number of cells was 7,648 (range 438-25,480), median number 

of reads per cell (sequencing depth) was 42,630 (14,893-279,683), median number 

of captured genes 1,667 (480-4,423), median percentage of reads mapped 

confidently to the transcriptome 72% (40-82). Notably, intronic reads retention 

significantly improved the number of reads mapped confidently to the transcriptome 

(Wilcoxon rank sum test, p-value<0.001), median genes per cell (0.007), reads 

mapped antisense to gene (<0.001), and total genes detected (<0.001). 

Relevant summary statistics are shown in Table 2.  

 

3.2.2 Cell-free mRNA correction and doublets removal 

The 10X Chromium platform that was used in this work is a droplet-based 

technology. Droplet-based scRNA-seq strictly depends on the assumption that within 

each droplet, where UMI and barcode tagging and reverse transcription take place, 

only mRNA from a single cell is present. Nonetheless, violations of this principle are 

very common, even in high quality datasets, and may interfere with following 

biological interpretation of scRNA-seq data (Zheng et al. 2017).  

A well-known, and non-negligible, phenomenon that often occurs is the formation 

of empty droplets, and/or droplets where, other than a cell, a mixture of cell-free 
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RNA (“ambient” RNA) from the initial cell suspension is present, which leads to 

sequencing of exogenous RNAs that mainly derive from dead cells, and that will be 

assigned to a cell’s native RNA during library construction. A common consequence 

of high ambient RNA contamination can be cell-type mislabeling, as the presence of 

cell-type-specific markers might blend different cell populations together and 

interfere with correct clustering.  

Here, we used SoupX (Young and Behjati 2020), a method that, by analyzing 

mRNA expression profiles from empty droplets, estimates the cell-specific 

contamination fraction and produces a count matrix with corrected expression 

profiles of native mRNA. In our cohort, only one sample returned an estimated 

contamination fraction >20%. Of note, this was a sorted leukemia sample, and we 

therefore speculate that the absence of cluster-specific genes influenced SoupX 

results. To avoid subtracting too much signal, a default 5% contamination fraction 

was set for this sample. Median ambient RNA percentage was 2.5 (range 1-10.1%) 

(Figure 10A). 

Among the most frequent genes whose expression became zero in a larger fraction 

of cells after correction, we notably found HBB, and several TRB and IGHV chains, 

along with other cell-type-specific markers such as CST3, LYZ, and AZU1. Among 

those genes whose expression became lesser, but not necessarily zero, we found a 

prominence of mitochondrial genes (i.e. MT-CO1, MT-CO2, MT-ND1, MT-ND2). These 

results suggest that the use of SoupX in our dataset allowed us to increase the ability 

to discern different cell-types, both by removing cell-specific markers from clusters 

where those markers are not expected and correcting signal coming from dying or 

distressed cell, which are typically associated with mitochondrial content leakage. 

(Figure 10B). SoupX modified counts were used for all downstream analysis. 

Another important single-cell artifact that can strongly alter downstream analysis 

consist in the capture, in a single reaction volume (in our case, a droplet) of two or 

more cells, which will then be sequenced as a single cell (doublets or multiplets).  

Depending both on cell density at the moment of sample loading and the absolute 

number of cells captured, the proportion of doublets in single-cell experiments can 

reach 20% of estimated cells, making accurate doublet detection, and removal, 

trivial. Here, we leveraged scDblFinder (Germain et al. 2021), a method that, 

similarly to other doublet-detection tools, generates artificial heterotypic doublets 

from the given dataset and a kNN network to build a cell-level predictor matrix. 
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Figure 10. Cell-free mRNA removal with SoupX.  

A) Raincloud (Allen et al. 2021) plot displaying adjusted SoupX contamination fraction values 
for each sample. Dots indicate individual values; boxplots show median, interquartile range 
(IQR) and highest and lowest values (whiskers) excluding outliers; half-violins provide an 
explicit representation of the distributions. B) t-SNE plots of sample GEXV49, showing, for four 
exemplary genes, the log10 of the fraction of observed counts that are identified as 
contamination for each cell.  

 

Briefly, by clustering real cells and artificial doublets together, scDblFinder 

identifies as doublets those cells that share similar properties to artificial doublets. 

In our dataset, median percentage of estimated doublets was 6.9% (range 0.7-

18.5). 

Results from scDblFinder were also combined with those from souporcell (Heaton 

et al. 2020). Souporcell uses minimap2 to remap raw readings to a reference 

genome, freebayes to identify candidate variations, and vartrix to quantify the 

number of cell alleles supported by each cell. Cell allele counts are then subjected to 

sparse mixture model clustering to identify doublets and determine the genotypes of 

each cluster. 

Leveraging the presence of two different genotypes in most of our samples, we 

were able to increase our sensitivity in doublet detection by identifying cross-

genotype doublets, which in some cases might have highly similar transcriptional 

profiles (homotypic doublets), therefore precluding detection only by their 

transcriptional profile (Figure 11).  

With souporcell, median fraction of estimated doublets was 2.9% (range 0.05-

34.4). 

Collectively, median percentage of doublets (on the whole dataset, prior to low-

quality cell removal) was 9.7% (range 0.7-40.4). 
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Figure 11. Doublet identification results in a sample (GEXV15). 

 A) PCA of cells based on genotype assignment loss metrics. The log loss for each genotype 
provides a quantitative measure of the certainty (or uncertainty) associated with each cell's 
assignment to the respective genotype. Cells that cluster “in the middle” of the two genotype 
are predicted to be cross-genotype doublets. B) UMAP of doublets identified by souporcell (left) 
and scDblFinder (right). While there is some degree of concordance (for this sample, 15% of 
total doublets), combining the two methods allows for better doublet isolation. 

 

3.2.3 Low-quality cells filtering 

scRNA-seq library preparation protocols require a suspension of viable single cells, 

and to obtain high-quality data, minimizing the presence of cellular aggregates and 

dead cells is critical. Despite pre-processing steps to ensure sample’s integrity, such 

as dead cell removal or FACS sorting, low-quality sequenced cells are a common 

finding, and several methods and metrics are available to filter data to only retain 

cells that are of high quality.  

Cell QC is usually performed on the following three QC covariates: the number of 

counts per barcode (count depth), the number of genes per barcode, and the fraction 

of counts from mitochondrial genes per barcode. In our dataset, since we started 

from BMMCs and we expected RBC contamination to some extent, we also calculated 

the fraction of counts from ribosomal and hemoglobin genes to be added to our QC 

metrics, to identify and exclude erythrocytes from downstream analysis. In our 

dataset, RBCs were also characterized by a generally low read depth, number of 

genes expressed and mitochondrial content (Figure 12A). 
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In cell QC, covariates are usually filtered via thresholding. Cells that show a low 

count depth, few detected genes and a high fraction of mitochondrial reads might 

reflect cells with ruptured membranes, whose cytoplasmic mRNA has leaked out and 

therefore only the mRNA in the mitochondria is still present.  

Nonetheless, it is crucial to consider the three QC covariates jointly when 

thresholding decisions are made. A higher fraction of mitochondrial counts might 

characterize a cell that is undergoing several respiratory processes, whereas cells 

with low or high read counts might correspond to quiescent cell populations or cells 

larger in size, respectively. In our dataset, for example, samples are characterized 

by a mixed population of blasts (large cells with a high transcriptional activity) and 

lymphocytes (small cells in a relatively quiescent state).  

In our QC pipeline, we first removed genes characterized by high “dropout” events, 

causing them to be expressed in less than 10 cells per sample. These genes, 

characterized by 0-counts, can dramatically reduce the average expression for a cell 

and influence downstream analysis. For low-quality cell detection and filtering, we 

both used manual thresholds, as recommended by single-cell analysis guidelines 

(Luecken and Theis 2019), and sample-wise automatic filtering based on the number 

of median absolute deviations (MAD) (McCarthy et al. 2017). For the latter, instead 

of focusing on the single covariates for outlier detection, we used a combined 

approach that takes into account read counts, number of genes, and mitochondrial 

and ribosomal reads fraction together. This allowed us to avoid filtering of cell 

populations characterized by a single outlying characteristic (i.e. small subsets of 

rapidly proliferating cells with  higher read counts) and true detection of low-quality 

cells (Figure 12B). 

In total, median fraction of low-quality cells was 8.9% (range 5.8-20.8). Median 

number of cells per sample that were kept following low-quality filtering and doublets 

removal was 4382 (range 361-14282). 
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Figure 12. Low-quality cell identification and removal.  

A) Scatter plots of sample GEXV05, characterized by an RBCs population. The x-axis and y-
axis depict number of reads and genes, respectively. Color gradient indicates the fraction of 
mitochondrial (left), ribosomal (middle) and hemoglobin (right) reads per cell. RBCs are 
characterized by a low number of reads, mitochondrial and ribosomal reads percentages, and 
a high hemoglobin genes content. B) Scatter plots of GEXV05 following erythrocytes filtering. 
Blue dots represent cells defined as outliers with different criteria. From left to right and top 
to bottom: read counts, number of genes, ribosomal content, mitochondrial content and all of 
the previous parameters combined.  
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3.2.4 Cell annotation 

Possibly the most crucial part of all scRNA pre-processing pipelines consists in 

defining the cellular identity of each cell in a given dataset. Here, we used a three-

steps approach:  

The first step, automated, classifier-based cell-type annotation, was performed 

leveraging the SingleR R package (Dvir Aran, Aaron Lun, Daniel Bunis, Jared 

Andrews, Friederike Dündar n.d.), both in cell- and cluster-modes. SingleR is a 

computational tool designed for unbiased cell-type annotation, that leverages 

reference data sets of pure cell types sequenced by microarray or bulk RNAseq. While 

this annotation method is fast, unbiased and automated, it mainly relies on single 

references, and this can lead to inaccuracy when cell types in “query” and “reference” 

datasets are not well matched (i.e. from different organs) or in the presence of poorly 

characterized and rare cells (Abdelaal et al. 2019) (Pasquini et al. 2021).  

To partially make up for this limit, we then used a personalized reference-mapping 

method (see Methods section). Briefly, we first calculated gene average expression 

for each cluster at different resolution. Then, low-expressed genes were filtered from 

cluster-average expression values based on CPM, and cluster-gene matrices were 

rescaled. Finally, rescaled values were used to calculate a module score for each cell 

type in our reference datasets, and each cell was then assigned to the population 

with the highest value. 

Similar to classifier-based approaches, the reliability of this method depends on 

the quality of the reference data. However, the possibility to filter low-expressed 

genes and manually curate gene signatures from references allowed us to better tune 

our annotations.  

Finally, exploiting the FindMarkers() function embedded in Seurat, we examined 

the most significant up- or down-regulated genes in each cluster at different 

resolutions, and performed manual annotation of clusters combining gene expression 

profiles and information from previous annotation methods (Figure 13).  

This step was necessary, as clusters showed variable degrees of ambiguity among 

automatic annotation methods. In particular, for most samples this was necessary 

for the distinction between CD8 and CD4 T cells and between CD8 T and NK cells. At 

this point of the analysis, our aim was to obtain a broad cell type characterization in 

order to exclude low-quality clusters and have a general outline of each sample.  

Clusters that couldn’t be characterized by either method or that exhibited a strong 

enrichment in mitochondrial genes were excluded from further analysis.  
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Figure 13. Cell annotation on GEXV05 (HC) sample.  

Cell type assignation was performed leveraging SingleR (top panels, here are showed 
annotations obtained via analysis by-cluster with two different reference datasets), reference 
atlases (middle panels), and manual marker analysis (bottom). Despite a high degree of 
concordance, some discrepancies can be observed, especially in CD4/CD8 T and CD8 T/NK cell 
discrimination.  
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3.3 BM landscape of AML relapses following allo-HCT 

Following cell-type annotation, our next step was to effectively integrate our 

dataset, to unveil a comprehensive atlas of the BM microenvironment of post-

transplantation AML relapses. An integrated approach presents several advantages, 

including the possibility to increase our statistical power, especially important when 

dealing with rare cell populations, or cell types and states that might be exclusive to 

certain patient subsets. Furthermore, a collective view can also be both time and 

cost-efficient, by circumventing the process of individual analyses followed by post 

hoc comparisons. 

Following samples merging, counts were re-normalized and scales, and 

dimensionality reduction and cluster calculation were performed. We applied again 

our cell-annotation workflow, this time leveraging also previous annotations for 

individual samples. While mostly overlapping, re-clustering in a merged dataset 

allowed us to also correct some cell type assignation.  

In total, we obtained 263,606 annotated BM cells. Among these, 189,892 (72%) 

cells were from AML patients, 43,653 (16.6%) from CR patients, and 29,991(11.4%) 

from HC.  

By looking at the UMAP projection it is already possible to highlight some degree 

of BM microenvironment remodeling, with some clusters being populated both by 

AML and control patients, and other clusters dominated almost exclusively by AML 

samples (Figure 14A). As expected, clusters that were leukemia patient-specific 

were particularly enriched in myeloid immature cell populations, whereas myeloid 

mature and lymphoid populations were distributed more evenly across experimental 

groups (Figure 14B). More in detail, AML patients showed increased percentages of 

some specific subsets of hematopoietic stem (HSC) and progenitor (MEPs and MPPs) 

cells, while mature myeloid populations, in particular monocytes and pDC, were 

depleted in AML patients. Lymphoid populations were largely unchanged, except for 

a decrease in B cell percentages in AML patients (Figure 14C). Interestingly, while 

a certain degree of BM remodeling was somewhat expected in these patients, CR and 

HC samples were largely overlapping, hinting that, following immune-reconstitution, 

the BM of patients that undergone a procedure of allo-HCT is able to return to a 

condition of normal hemopoiesis even after a short period of time.  
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Figure 14. BM landscape of AML relapses following allo-HCT. 

A) UMAP of merged dataset colored by experimental group. B) UMAP of merged dataset, 
grouped by experimental group and colored by manual annotation. C) Raincloud plots showing 
the percentage of immature (upper panels), lymphoid mature (middle panels), myeloid mature 
(lower panels), and perivascular (lower right panel) cells among the different experimental 
groups. P values were calculated by Wilcoxon Rank-Sum test for pair-wise comparisons, and 
by Kruskal-Wallis test for global comparisons.  
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3.3.1 Malignant and microenvironment separation 

To better assess how leukemia relapses remodel the BM microenvironment, we 

first sought to separate malignant cells from their healthy counterparts. 

To identify leukemic blasts, we started from three observations: first, malignant 

cells have already been shown to form patient-specific clusters in solid tumors 

(Darmanis et al. 2017) (Jerby-Arnon et al. 2021). We therefore hypothesized that 

the clusters mainly occupied by AML samples that we observed might be mainly 

composed of leukemic populations. This would also be in concordance with the fact 

that these clusters were mainly constituted by HSPCs. The second observation comes 

from clinical routine in hematological patients: allo-HCT in the context of 

hematological malignancies involves the replacement of the patient's diseased 

hematopoietic system with that of a healthy donor. Successful transplantation results 

in complete donor chimerism, where recipient's blood and immune cells are entirely 

donor-derived. Monitoring chimerism is a vital and common procedure, as it can offer 

insights into the graft's stability, potential complications, and the risk of disease 

relapse. An increase in the host-derived fraction (Lindahl et al. 2022) often signals 

an impending disease relapse, indicating that the patient's original, diseased 

hematopoietic cells are starting to repopulate the system. In our dataset, AML 

patients were characterized by a clinically overt relapse, and their BM was therefore 

populated by two genotypically distinct populations.  

Last, we employed inferCNV (Timothy Tickle and Itay Tirosh, n.d.) to discern cells 

with copy number variations (CNVs) within our dataset. Traditionally, AML isn't 

associated with a high prevalence of chromosomal aberrations. We therefore 

validated this approach both by specifically applying it only on those patients where 

documented evidence of chromosome gains or losses was present, and by comparing 

results with those coming from patient-specific clusters and genotype inference.  

 

3.3.2 Patient-specific cluster assessment 

We observed that not only AML samples had the tendency to cluster together, but 

that most of these clusters were also patient-specific (Figure 15A). 

Following an already validated approach and using high resolution clustering 

information, we calculated, for each cluster, an “occupancy score” (Lasry et al. 2023), 

that would reflect the degree of patient-specificity of this cluster (see Methods 

section) (Figure 15B). As expected, higher scores were assigned to cells in HSPC 

clusters, which have been shown to be mainly patient-specific. Based on score 

distribution, we chose a threshold of 70% of sample abundance to define a cluster 

as patient-specific, and therefore malignant (Figure 15C-D). Malignant clusters 
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mainly consisted of HSPCs, erythrocytic precursors and myeloid cells, with a small 

fraction of T and NK cells, which surprisingly clustered in a patient-specific fashion 

and that were all derived from a single patient (PZ170136) (Figure 15E).  

 

 
Figure 15. Occupancy score calculation.  

A) UMAP showing the merged dataset, colored by patient code 3. B) UMAP showing occupancy 
score values for each cell. C) Density plot showing occupancy score distribution. It is possible 
to observe a slight bimodal distribution, with most cells either having a very low occupancy 
score and a peak after 0.7. D) UMAP showing malignant and ME assignment based on a cut-
off of 70% between single patient and control cells ratio. Control cells are labelled in grey. E) 
Barplot displaying broad cell type distribution across different groups, as defined by a 70% 
cluster occupancy cut-off. 

 

3.3.3 Souporcell genotype assessment 

Initially, we used souporcell to better discriminate, and get rid of, doublets and 

multiplets. Here, we leveraged the possibility to use transcriptomic data to infer host-

donor chimerism to identify malignant and TME cells. 

We first validated this approach by exploiting two patients’ sorted samples (see 

Methods). By running souporcell after merging TME and leukemia samples in both 
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patients, we could show that the majority of cells that were assigned to donors’ 

genotype were assigned to lymphoid populations, including T, B, and NK cells, and a 

small percentage of mature myeloid cells, whereas host-assigned cells were mainly 

composed of HSPCs and had a tendency to populate patient-specific clusters. (Figure 

16A-B). To further confirm that souporcell is a suitable method to discriminate AML 

blasts from their surrounding, donor-derived, TME, we show that souporcell-assigned 

host genotype corresponded in large part to the sorted leukemic samples, while donor 

genotype matched with TME samples (Figure 16C). For TME_1 and TME_2, donor-

genotype percentage were 95.3% and 94.9%, respectively, while for LK_1 and LK_2 

0.2% and 0.1%, respectively.  

Following validation of this approach, we applied this analysis to our whole cohort 

(except for HC, CR, and sorted samples) (Figure 16D). Except for a small, 

unexpected, population of host-derived lymphoid cells (8% of all host cells), most of 

B, T and NK cells were assigned to a donor origin, while host-derived cells mainly 

comprised HSPCs and erythrocytic precursors, Interestingly, we also found a small 

proportion of myeloid mature cells of host origin, that may suggest some residual or 

retained functionality of the host's original hematopoietic system. (Figure 16E).  

By examining host-derived lymphoid populations, we found out that most of these 

cells pertained to sample GEXV11 (PZ13000129) and were also previously marked 

as malignant by occupancy score analysis. In this latter case, it is possible that, due 

to lower coverage, souporcell was not able to correctly discern the two genotypes. 

 

3.2.4 CNV assessment with inferCNV 

Our patient cohort included a number of patients that harbored chromosomal gains 

or losses (see Table 3). To further confirm that patient-specific clusters and host-

derived cells were correctly labeled as malignant, we leveraged inferCNV, a 

bioinformatic method that can be used to identify copy number alterations by 

analyzing expression levels of genes across different positions of the genome in 

comparison to a set of reference “normal” cells. We applied this analysis to each 

sample individually, when clinical data was available. 
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Figure 16. Souporcell benchmarking.  

A) UMAP showing host and donor assignment for sorted samples. Grey cells represent other 
samples. B) Barplot showing cell type of host and donor-derived cells. C) UMAP showing cells 
from sorted samples. D) Global UMAP showing host and donor assignment for each AML 
sample. E) Barplot showing cell type fraction of host, donor, HC and CR cells.  

 

InferCNV was able to detect large scale chromosomal aberrations, such as deletion 

of chromosome 7 in PZ190045 (Figure 17A). Recapitulating our previous findings, 

CNV+ cells were mainly located in patient-specific clusters, while CNV- cells 

corresponded to lymphoid-cell populated clusters (Figure 17B). By combining 

results from each sample (Figure 17C), we could highlight that CNV+ cells were 

mainly constituted of HSPCs, erythroid progenitors and myeloid mature subsets, 

while CNV- cells were mainly annotated as T, NK, and B cells (Figure 17D). 

Interestingly, for some patients we detected CNV+ across lymphoid lineages, 

suggesting that, in these cases, CNVs occurred at early stages of hematopoietic 

development.  
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Figure 17. InferCNV to detect large chromosomal aberrations.  

A) InferCNV-generated heatmap for PZ190045. It is possible to note the presence of the 
deletion of the entire chromosome 7 in HSPCs. B) UMAP of merged dataset showing inferCNV 
results for patient PZ190045. Yellow indicates CNV+ cells, red CNV- cells, and grey cells 
pertaining to other samples. C) InferCNV results for all samples in our cohort. Yellow and red 
are CNV+ and CNV- cells, respectively. Black, dark grey, and light grey show cells from 
samples without clinically-annotated CNV data, HC and CR. D) Bar plot showing broad cell type 
distribution across CNV+ and CNV- cells. 

 

3.2.5 Malignant-ME separation 

Results from occupancy score calculation, souporcell analysis, and inferCNV were 

combined and examined (Figure 18A). For those samples where CNV data was 

available, 71% of cells were concordantly defined as “malignant” by all three 
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methods, while 11% by 2/3 and 17% by only one method. Given this, we decided to 

consider these methods as “complementary” in malignant cell definition, rather than 

applying a consensus criterion. A total of 106,812 (40.5% or the whole dataset) cells 

were classified as malignant by either method (Figure 18B). Malignant populations 

mainly consisted of HSPCs and myeloid progenitor and mature cells, with a small 

fraction of B, T and NK cells (Figure 18C-D). Thanks to these three methods, we 

were able to confidently split malignant and microenvironment cells in 24 out 25 AML 

patients.  PZ13000129, with an incomplete split, was excluded from further analysis. 

 
Figure 18. Malignant-ME separation.  

A) UMAP of merged dataset. Cell are colored based on which method assigned them as 
malignant. B) UMAP showing malignant (red), ME (green) and control (yellow) cells, based on 
the three methods mentioned above. C) UMAP of merged dataset, colored by fine cell type 
annotation, split by malignant assignment. D) Barplot showing cell type proportion among the 
different groups.  
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3.2.6 Dataset split and Harmony integration  

Following separation of malignant cells from the TME we sought to investigate at 

a higher resolution cell type populations, to better comprehend how the BM 

microenvironment is influenced by leukemia relapses.  

We therefore split our dataset based on broad cell types (NK, T, B, myeloid mature 

and immature). For each broad cell type object, except for immature myeloid cells, 

we applied Harmony integration prior to analysis. In fact, when integrating multiple 

samples from different sequencing runs and library preparations, confounding factors 

can arise. A relevant challenge is represented by differences in expression levels of 

certain molecules that are the result of a different cell handling among samples, or 

“batches”. A very common batch effect can be seen among different sequencing runs, 

or library preparations. In our dataset, a very strong batch effect was represented 

also by the employment of different chemistries and protocols across samples, and 

by the use of FACS sorting during sample preparation.  

To account for technical variation while retaining real biological variation, 

numerous data integration methods exist. Harmony (Korsunsky et al. 2019), a linear-

embedding model, is a well suited tool for simple integration tasks (Tran et al. 2020) 

(Chazarra-Gil et al. 2021). Harmony operates in a reduced-dimensional space, 

typically a PCA space, and considers each dataset (batch) separately to pull together 

cells that exhibit a similar transcriptional profile though an iterative process.  

To show an example of how batch correction performs, we first tested Harmony 

on our whole dataset. Without batch correction, when projected onto a UMAP space, 

it is possible to note that cells pertaining to a specific batch tend to cluster together 

(Figure 19A). This was particularly relevant for batch #1, which was prepared with 

a 3’ sequencing technology. Interestingly, while T and NK cells tended to suffer less 

from this type of confounding variable, in the case of batch 1 we could highlight a 

complete segregation even within these cell types. By applying Harmony correction, 

batch effect was notably decreased, with a more even cluster occupation (Figure 

19B). Batch effect correction also almost eliminates patient-specific clusters and is 

particularly evident when looking at the more immature cell populations (Figure 1C-

D-E-F). 
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Figure 19. Effects of Harmony batch-effect correction. 

 On the left side, merged dataset without Harmony correction, colored by batch (upper panel), 
sample (middle), and cell type (lower). On the right side, UMAP with Harmony integration. 
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3.3 ScRNA-seq recapitulates known leukemia-intrinsic features of 

relapse 
We obtained a total of 82,254 HSPC, of which 96% were classified as malignant 

by previous analysis. Following re-clustering, we aimed at exploring this major 

population and, by focusing on the different experimental groups, at better 

characterizing the different leukemia-intrinsic features of relapse. Interestingly, while 

HLA loss relapses, those characterized by upregulation of inhibitory ligands, and 

those with an unknown pattern of relapse had a tendency to distribute more evenly 

across the UMAP, relapses characterized by downregulation of MHC-II clustered 

closely, underscoring a robust transcriptional similarity among them. The tight 

clustering suggests that the gene expression profile found in these leukemic blasts 

overrides other potential differences, such as cell type or differentiation level (Figure 

20A). We examined expression of known de-regulated genes across post-

transplantation relapses (Toffalori et al. 2019b), both related to MHC-II surface 

expression and co-stimulatory/inhibitory molecules, to investigate whether at the 

single cell transcriptomic level we could confirm their mechanism of relapse. 

Downregulation of MHC-II patients exhibited, indeed, downregulated expression of 

most MHC-II genes, thereby validating the accuracy of this categorization. HLA loss 

patients showed a more diverse pattern of expression, with heterogeneous, but 

generally high, levels of expression of both MHC-related genes and costimulatory and 

immune checkpoint molecules. Both other relapses and those defined by upregulation 

of inhibitory molecules showed high expression of all sets of genes, hinting that they 

might have exploited common pathways to evade immune control. Moreover, strong 

expression of MHC-II related genes hints at the possibility that these cells were 

residing in a ME characterized by high levels of inflammation (Figure 20B). To 

further combine these gene expression profiles, we calculated an immune activation 

score measuring the capacity of a given cell to present antigens and modulate T cell 

responses (Figure 20C-D). As expected, relapses defined by upregulation of 

inhibitory ligands and other relapses had a higher score, compared to those with HLA 

loss and, more evidently, those with MHC-II downregulation. Interestingly, one 

patient classified as inhibitory ligands upregulation showed a very low score. This 

might be due to the fact that, except for HLA loss relapses, the relapse classification 

we used here has been validated by comparing bulk RNA-seq expression profiles at 

the time of relapse and diagnosis. Therefore, it is possible that, while effectively 

upregulating costimulatory and inhibitory molecules at the surface of these blasts 
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compared to the time of diagnosis, this patient’s relapse might be linked to other, 

still unknown, pathways. 

 
Figure 20. Overview of malignant cell population in our cohort. 

A) UMAP of all malignant cells, colored by experimental group. B) Dotplot showing, for each 
patient in the different AML relapse groups, mean relative expression and percent of cell 
expressing genes related to class II antigen presentation and costimulatory/inhibitory 
molecules. C) Violin plots showing immune activation score of each cell, grouped by different 
mechanism of relapse. Box plots show values for each individual patient within the 
experimental group. D) UMAP showing immune activation score for each cell. Highest scores 
are in red, whereas lower scores are colored light blue.  

 

To further characterize these different relapses, we looked at the distribution of 

leukemic cells among different cell types.  

Interestingly, HLA loss relapses were characterized by a higher fraction of HSCs, 

while other experimental groups showed a mixed population of both early, and late 

progenitors (Figure 21A-B), suggesting that HLA loss relapses may have their 

origin, or main drivers, in less differentiated cells. Concordant to this finding, HLA 

loss showed an higher LSC17 (Ng et al. 2016) compared to other relapses (Figure 

21C). Of note, besides defining cell stemness, the LSC17 score represents a clinical 
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prognostic factor that predicts resistance to commonly used first-line chemotherapy 

regimens and correlates with poor outcome. 

To delve deeper into this observation and also evaluate the potential interplay with 

the ME, we implemented the iScore analysis (Lasry et al. 2023). This score provides 

information about inflammation-related pathways de-regulated in AML cells, and has 

been demonstrated to correlate with BM microenvironment “architecture” alterations, 

especially in T and B cell populations. Moreover, iScore has prognostic value, and can 

be used to stratify AML patients. Indeed, similar to LSC17, a higher iScore has been 

associated to poor outcomes.  

 
Figure 21. Leukemia stemness and inflammation scores. 

 A) UMAP of malignant cells, colored by cell type and split by experimental group. B) Bar plot 
showing relative proportion of hematopoietic precursors among different experimental groups. 
C-D-E) Violin plots of LSC17 score (C) and iScore. iScore was calculated both on experimental 
groups (D) and among malignant, microenvironment and control cells (E)  F) Volcano plot 
showing DEGs between healthy HSPCs (microenvironment) and control HSPCs.  
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In our cohort, in line with previous observations, relapses characterized by 

upregulation of inhibitory ligands presented a higher iScore, underlining that a likely 

cause of immune cell dysfunction in these patients might be related to a strong pro-

inflammatory BM ME.  

Even more interestingly, yet uncharacterized relapses showed a lower iScore. 

Following our previous reasoning, we might hypothesize that while the phenotype of 

these relapses resembles that of patients with high immunological activation, the 

upstream mechanism that initiated leukemia immune evasion might not be linked to 

inflammation (Figure 21D). Last, we compared iScore also considering the immature 

ME. While a certain degree of difference was expected between malignant cells and 

ME and/or controls, we surprisingly found out that also healthy HSPCs from AML 

patients showed a distinctly high inflammation score compare to control cells (Figure 

21E). By examining DEGs among these two cell subtypes, we highlight an increased 

expression in ME of several immune-related markers (IFNG, IFITM, HLA class I 

genes) (Figure 21F). These results might further reinforce the hypothesis that AML 

cells co-opt their TME to favor proliferation and survival. 

 

3.4 Dynamics of NK cells in AML relapses 
A total of 26,264 NK cells were isolated and reclustered. 

Fine annotation was performed leveraging cluster-defining DEGs at 0.5 resolution, 

which returned 8 different clusters (Figure 22A). Based both on canonical lineage-

defining markers (NCAM1, IL7R, SELL, KLRC1, CD44, XCL1, FCGR3A, GZMK, XCL2, 

and CD160) and published scRNA-seq NK datasets (C. Yang et al. 2019), we 

confidently identified three major clusters of CD56bright, CD56dim and transitional NK 

cells (Figure 22B). Moreover, we identified a small population of CD56bright cells, that 

clustered separately from the rest of the cells, that we renamed as “inflamed” NK. 

Indeed, by looking at DEG in this group of cells, we could highlight a significant 

upregulation in interferon-stimulated genes compared to other NK cells. Among those 

with the highest log2FC, in particular, we found IFIT2, IFIT3, OASL and ISG15 (Figure 

22C). We performed GSEA on the GO classification to characterize the functional 

roles and biological processes associated with the identified genes. GSEA results 

revealed a significant enrichment of terms related to IFN-γ response, IFN-a response, 

and TNF-a signaling via NFkB (Figure 22D). Lastly, we selected a panel of genes 

related to interferon and TNF signaling to be able to separate these cells from other 

NK cells on a transcriptomic level (Figure 22E). Following our refined annotation 

(Figure 22F), by looking at relative proportion of these subsets among different 
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post-transplantation relapses, we found a slight increase in the inflamed NK cluster 

in patients with upregulation of inhibitory ligands (Figure 22G). This increase was 

confirmed also when analyzing the percentage of inflamed cells across the four 

relapse groups and controls. Mean percentage was 5.42%, versus a mean 0.74% 

among all other groups, although we could observe that only in 2/4 patients with 

upregulation of inhibitory ligands this subtype was markedly elevated (Figure 22H). 

However, the presence of these cells within this kind of relapse sparks some interest, 

as it might suggest that prolonged activation and the presence of an IFN-rich 

inflammatory ME cause both T and NK cells to undergo processes of exhaustion, 

which may ultimately favor leukemia immune evasion.  

Finally, we focused our attention on the relationship between NK cells and HLA 

loss relapses. HLA loss patients, while losing the major target of T cell-mediated 

alloreactivity, are still, in principle, subjected to NK cell control. The LOH mechanism 

does not alter overall surface expression of HLA class I molecules, thus circumventing 

the “missing self” NK pathway (Mace 2023), but the loss of HLA alleles might result 

in the loss of ligands for inhibitory KIRs, thus triggering NK cell alloreactivity (Barrett 

and Blazar 2009). To begin to understand the mechanisms underlying NK cell failure 

to respond to HLA loss relapses, we focused on the CD56dim cluster. These cells, in 

fact, are believed to be a direct progeny of CD56bright NK cells (Freud, Yu, and Caligiuri 

2014), and are characterized by a far greater cytotoxic capacity (Cooper, Fehniger, 

and Caligiuri 2001). HLA loss are generally late relapses (Crucitti et al. 2015). In our 

cohort, median time from transplant to HLA loss relapse was 517.5 days (range 124-

1186), similar to that of unknown relapses (median 693 days, range 56-1093), while 

both relapses characterized by downregulation of MHC-II and upregulation of 

inhibitory ligands had significantly shorter time to relapse (Figure 23A). 
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 Figure 22. NK subtypes characterization. 

A) UMAP of all NK, colored by clusters calculated at resolution 0.5. B) Violin plots showing 
canonical markers used for refined cell annotation. Cluster 1, not expressing FCGR3A, was 
classified as CD56bright. Cluster 8, which showed an intermediate gene expression profile 
between CD56bright and the other clusters, was assigned as transitional NK. Remaining 
clusters shared very similar gene expression profiles, and were therefore annotated as 
CD56dim. C) Volcano plot of inflamed NK versus all other NK cells. Red dots depict significantly 
de-regulated genes. D) Bar plot showing enriched GO terms obtained from GSEA of DEGs in 
inflamed NK versus other NK. E) Heatmap of selected IFN- and TNF-related genes that 
characterize inflamed NK cells. F) UMAP of all NK, colored by refined annotation. G) Bar plot 
showing NK subtypes relative proportions across experimental groups. (continues) 
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 H) Raincloud plots depicting each NK subtype percentage across experimental groups. Dots 
represent individual patients. Global p values for each graph were calculated via Kruskal-Wallis 
non-parametric test, whereas multiple pair-wise comparisons were performed with Wilcoxon 
Rank sum test. 

 

Given the later onset of HLA loss relapses, we hypothesized that the CD56dim 

subset would assume a more dominant role over its CD56bright counterpart. As a 

matter of fact, we observed a steep decline in CD56bright proportion over time to 

transplant (R = -0.61, p < 0.001), also supporting the theory that these cells are 

immature precursor to CD56dim NK (Figure 23B). Last, using recently published gene 

signatures of NK cell activation markers (Ni et al. 2020) (Crinier et al. 2021) (Duault 

et al. 2021) (L. Li et al. 2023), we generated a module score to test the functional 

properties of CD56dim NK cells in our cohort. While, expectedly, HC exhibited a low 

score, CR samples showed a much higher activation profile, similar to that of 

upregulation on inhibitory ligands relapses. Interestingly, HLA loss relapses showed 

a very low score, providing evidence that NK cells in these relapses are, in fact, 

unable to counteract leukemic cells (Figure 23C).  
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Figure 23. Dynamics of different subset of NK cells in AML relapses. 

 A) Box plot showing time to relapse in each experimental group. B) CD56bright percentages 
over time following transplantation. Dots indicate each patient and are colored by experimental 
group. Regression line was calculated using a linear regression model. Gray area shows 
confidence intervals. C) Violin plots showing NK activation score for each cell in our different 
experimental groups. 

 

3.5 T cell responses in AML relapses 

Following reclustering, we isolated 93,062 T cells. T cells were annotated and 

separated into major subtypes, including, for both CD4 and CD8, TEMRA (terminally 

differentiated effector memory), TEM (effector memory), TCM (central memory) and 

Tnaïve (naïve). Moreover, we were able to define a population of MAIT (mucosal-

associated invariant T) cells, T regulatory cells (Treg) and a subset of CD8 TEM cells 

enriched in inhibitory receptors, in particular TNFRSF9, TIGIT, VCAM1, CTLA4, LAG3, 

TOX, PDCD1, and CD38, and that was therefore defined as TEM.EX (effectory memory 

exhausted) (Figure 24A). We compared T cell subset distribution across different 

experimental groups. Among CD4 subsets we observed an expected higher fraction 

of Tnaïve cells in HCs, although not reaching statistical significance. Among CD8 

subsets, relapses with MHC-II downregulation were enriched in TEM, while relapses 

with upregulation of inhibitory ligands had an increase in TEM.EX cells. Although 

differences were not statistically significant, Tregs were higher in patients in CR at 

3mo, in agreement to the fact that these are the T cell subset to reconstitutes earlier 

in the post allo-HCT setting (Dekker et al. 2020) (Figure 24B-C). 

Finally, we leveraged scRepertoire (Borcherding, Bormann, and Kraus 2020) to 

delve into clonotype analysis of T cells. ScRepertoire allows processing of data 

derived from 5’ TCR immune profiling and integration with Seurat gene expression 

analysis. First, we looked at the clonotypic frequencies of T cells. We observed a 

marked clonal expansion of CD8 T cells, in particular sustained by TEM and TEMRA, while 

CD4 T cells mainly consisted of rare clones (Figure 25A-C-D-E).  

By analyzing the interconnection between different T cell subsets, we could also 

highlight that TEM and TEMRA share a large part of their clonotypes, suggesting that 

TEM cells that undergo expansion following leukemic cell recognition might 

subsequently differentiate into TEMRA, generally characterized by a higher cytotoxic 

capacity. The low degree of clonotype sharing between CD4 and CD8 T cells 

corroborates our subset annotation. 
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Figure 24. Distribution of T cell subsets 

A) UMAP projection of T cells, colored by subset. B) Bar plot showing relative proportion of T 
cell subsets across experimental groups. C) Box plot of relative percentages of each T subset 
across experimental group.  
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Looking in detail at clonotype quantification, we first observe that, in our dataset, 

TEMRA and TEM consisted mostly of hyperexpanded (> 100 cells) and large (> 20 cells) 

clones (Figure 25C), with less than 20% and 40% rare clones, respectively (Figure 

25D). Accordingly, both of these T cell subtypes were also characterized by the 

lowest values of Shannon and inverse-Simpson indices. The latter are measures of 

diversity that take into account both richness (number of clonotypes) and evenness 

(how evenly are cells distributed across the different clonotypes). More in general, 

we see that CD8 T cells feature more expanded clonotypes than CD4 T cells, similar 

to what observed in a different AML cohort (Apostolova et al. 2023). 

 Interestingly, TEM.EX were largely composed of rare cell clones, possibly indicating 

that exhaustion and shrinkage of this T cell population is an early event in the 

pathogenesis of AML relapse 

Last we analyzed TCR repertoire across different experimental groups (Figure 

26). Relapses characterized by MHC-II downregulation were characterized by a 

larger proportion of hyperexpanded and large clones, with only 30% unique 

clonotypes. This finding was also reflected by  lower values of Shannon and inverse 

Simpson indices. On the other hand, relapses with upregulation of inhibitory ligands 

showed a higher percentage of unique clonotypes, and were mainly composed of rare 

and small TCR clone types, and as a consequence a higher value of both Shannon 

and inverse Simpson indices. This latter finding is in agreement with the proposed 

immune escape mechanism, where leukemia recognition by the immune system is 

stunned by IR expression, and T cell activation and expansion is prevented.  
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Figure 25. Clonotype analysis on T cell subsets with scRepertoire. 

A) UMAP projection of T cells, colored according to the size of the TCR clone they belong to 
(clone type: hyperexpanded (100 <X <= 10000), large (20 < X <= 100), medium (5 < X <= 
20), small (1 < X <= 5), single (X = 1)). B) Chord diagram representing shared TCRs among 
different T subsets. Each fragment of the outer part of the circle represents a T subset. Size 
of the arc is proportional to the number of shared TCRs. C)Bar Plot showing absolute numbers 
of T cells for each subset, colored according to clone type. D) Percent of unique (single) 
clonotypes for each T subpopulation. E) Fraction of T cell belonging to a specified clone type 
bin, grouped by T subset. For example, in CD8 TEMRA the first 5 more abundant cell clones 
account for approximately 15% of the total cells. F) Dot plot showing Shannon and inverse 
Simpson index scores for each T subtype.    
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Figure 26. Clonotype analysis on experimental groups with scRepertoire. 

A) Absolute numbers of T cells for each experimental group, colored according to clone type 
of pertinence. D) Percent of unique clonotypes for each experimental group. E) Fraction of T 
cell belonging to a specified clone type bin, separated by experimental group. F) Dot plot 
showing Shannon and inverse Simpson index scores for each experimental group. 
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4 DISCUSSION 
Allogeneic hematopoietic cell transplantation (allo-HCT) currently represents the 

most effective treatment for high-risk malignancies such as acute myeloid leukemia 

(AML). Despite the advances in the clinical management of patients, and the 

increasing understanding of the biology underlying allo-HCT success, its efficacy is  

dramatically hampered by disease relapse. As of today, despite the increasing 

availability of potentially promising therapeutic options, prognosis for patients that 

experience disease recurrence is dismal, with a 2-year survival<15% (Webster, 

Luznik, and Gojo 2021). 

Several factors complicate the already difficult management of AML relapses 

following allo-HCT. In particular, a previously unappreciated layer of complexity is 

related to the recent observation that post-transplantation relapse may occur through 

a number of alternative and largely mutually-exclusive modalities, each obeying to a 

different biology and, possibly, requiring a different therapeutic approach (Toffalori 

et al. 2019a; Vago 2019).  

The epicenter of the attention, when trying to understand how to fight back AML 

relapses, has so far been the interaction between blasts and T cells. Graft versus 

Leukemia (GvL) effect, in fact, is strictly linked to the presence of donor’s T 

lymphocytes, which recognize incompatible MHC molecules, minor histocompatibility 

antigens, and tumor-associated antigens on the surface of leukemic blasts and 

eliminate them (Dickinson et al. 2017). 

Nonetheless AML develops, and is sustained by, a specialized bone marrow (BM) 

microenvironment, that comprises a number of immune cell subsets together with 

mesenchymal stromal cells, vascular endothelial cells, osteoblasts, sympathetic 

nerve fibers, and non-myelinating Schwann cells (Morrison and Scadden 2014). How 

this rich microenvironment collaborates with or adapts to the selective immune 

pressure driven by the transplant, and why it fails to enact measures to counteract 

leukemia immune escape, is still largely unknown.  

Single-cell technologies are rapidly revolutionizing almost every field of biomedical 

research. Since their first applications, the development of droplet-based techniques 

and, in parallel, the refinement of computational tools has significantly expanded our 

ability to interrogate cellular heterogeneity at an unprecedented resolution. Rather 

than observing the average behavior of a multitude (bulk) of cells, it is now possible 

to dissect the intricacies of individual cells. This granular approach has paved the way 

for the generation of comprehensive human cell atlases, providing a detailed 

roadmap of cell types, states, and interactions, offering invaluable insights into 
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human biology, and, importantly, disease (Sikkema et al. 2023) (Regev et al. 2017) 

(Snyder et al. 2019).  

In this work, we aimed at generating comprehensive atlases of the bone marrow 

of different post allo-HCT relapses, with the ultimate goal of providing insights into 

how the leukemia microenvironment undergoes dynamic changes in response to allo-

HCT and how these alterations may contribute to its resurgence according to different 

mechanisms. 

Understanding the interplay between the diverse cellular components of the BM is 

of paramount importance. Not only does it provide a snapshot of the local 

environment during relapse but also sheds light on the potential protective or 

permissive roles these cells play in the context of disease progression. Moreover, 

exploring the unique transcriptomic signatures of individual cell populations within 

the BM can illuminate the molecular pathways that are activated or suppressed within 

AML post-transplantation relapses. 

In the present study, we leveraged a droplet-based 3’ and (for most patients) 5' 

sequencing platform to profile BM samples from a diverse cohort comprising 36 

patients. Of these, 25 patients, previously diagnosed with AML and having undergone 

allo-HCT, experienced disease relapse, while 5 patients maintained a stable complete 

remission (CR) for a minimum of one year post-transplantation, providing insights 

into the BM landscape that characterizes a successful therapeutic response. To 

further reinforce the validity of our findings, we incorporated samples from healthy 

controls (HC). Cells from this latter control cohort represent the “normal” bone 

marrow ME, free from the complexities of AML or post-transplant alterations.  

Alongside capturing whole transcriptomic data, the 5' sequencing approach also 

allowed us to simultaneously sequence the T-cell receptors (TCRs) and B-cell 

receptors (BCRs) of our patients, which potentially enables analysis of diversity, 

clonality, and antigenic targets of the adaptive immune cells present in a dataset 

(Singh et al. 2019). 

Despite its advantages, scRNA-seq presents many challenges, especially related 

to its heavy computational component (Lähnemann et al. 2020). Sparsity of data 

(Bouland, Mahfouz, and Reinders 2023), batch effects, dealing with doublets or 

multiplets, reproducibility (Gibson 2022), ambiguity in cell type annotation, and large 

datasets handling are just a few of the problems that might complicate distinguishing 

real biological variation from technical artifacts.  

To account for this, our first efforts have been aimed at developing a robust 

pipeline that entailed the utilization of multiple tools to generate a reliable dataset 

(at the cost of parting with quite a few cells along the way).  
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We first relied on soupX (Young and Behjati 2020) for ambient mRNA 

contamination correction. For doublet and multiplet removal, we used two methods,  

scDblFinder (Germain et al. 2021) and souporcell (Heaton et al. 2020), which allowed 

us to notably improve our droplet assignment. In line with current best practices 

(Luecken and Theis 2019), the processed data then underwent quality control using 

Scater (McCarthy et al. 2017), that allowed us to control for multiple QC variables at 

once.  

Following QC procedures, we delved into the equally critical and intricate task of 

cell annotation. Assigning accurate cellular identities is paramount in scRNA-seq 

pipeline, and more than 200 bioinformatic tools have been developed for this purpose 

(https://www.scrna-tools.org/). Incorrect or imprecise annotations can misguide 

downstream analyses and interpretations. To account for this challenge, we 

implemented a three step approach: first, we used SingleR's automated framework 

(Dvir Aran, Aaron Lun, Daniel Bunis, Jared Andrews, Friederike Dündar n.d.) While 

singleR allows for quick cell type annotation for multiple samples in parallel, it 

remains an unsupervised approach, applied to a dataset that, although “cleaned” of 

low-quality cells, is still extremely complex. Moreover, an inherent limit of this 

method is the reliance on single references, that, especially when dealing with 

heterogeneous samples or rare cell types, might lead to misclassification. We partially 

solved this problem by incorporating a gene set score approach: using published 

scRNA-seq data of AML BM samples, we built our own reference dataset (see Methods 

section), and calculated average expression of selected genes across cells that cluster 

together (and that are, therefore, similar at a transcriptomic level), to identify those 

that shared a more similar expression to that of the reference. While this model 

allowed us to incorporate more BM-specific subtypes in our classification, it raised an 

important question: how personal can, or should, reference-mapping be? The risk 

with this kind of approaches, indeed, is to confound tailoring with overfitting. To 

account for this, we combined these two approaches with manually curated marker 

analysis.  

Following quality control and annotation procedures, we obtained a merged 

dataset that offered a comprehensive view of the bone marrow immune landscape in 

AML relapses. By looking at cell type distribution, we observed a shift in the bone 

marrow composition during AML relapses, indicative of the dynamic interplay 

between malignant cells and the surrounding microenvironment. Apart from an 

expected increase in myeloid progenitors, we also saw a significant decrease in the 

B cell fraction. Although humoral immunity has traditionally less relevance than T 

cell-mediated immunity in the context of allo-HCT, recent reports have highlighted a 
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contribution of certain B cell subsets in determining poor prognosis in AML (Lv, Wang, 

and Liu 2019), and CLL (DiLillo et al. 2013). Moreover, a similar decrease in B cell 

fraction in the BM, with a relative increase in the proportion of atypical pre-B and 

pro-B cells has been shown to promote a suppressive milieu in the microenvironment 

in AML patients (Lasry et al. 2023). We next sought to separate malignant AML cells 

from their immune ME. To do so, we used three different methodologies. First, we 

took advantage of the observation that leukemic cells’ distinctive transcriptional 

signature inherently led them to cluster separately, allowing for an intrinsic 

differentiation from their immune counterparts. Next, we borrowed the concept of 

mixed chimerism from the clinics: transplanted patients, indeed, present the unique 

feature of hosting cells from two different organisms, where long-lived, stromal, and 

malignant cells are of recipient origin, while most immune cells are of donor origin 

(Deeg 2021). We resorted to souporcell (Heaton et al. 2020), first by successfully 

validating this method by exploiting the presence in our dataset of sorted samples 

from two different patients. Last, we applied CNV analysis with inferCNV (Timothy 

Tickle and Itay Tirosh, n.d.), first validating this method by comparing our results 

with clinical data, and then identifying malignant cells that carried large chromosomal 

aberrations. 

Upon re-clustering the major population of HSPC, distinct patterns emerged 

regarding leukemia-intrinsic features of relapse. We highlighted a pronounced 

clustering of relapses with MHC-II downregulation, pointing to a specific 

transcriptional profile that trumps other cellular differences. This dominant clustering 

might suggest a more “clonal” structure of AML cells compared to other types of 

relapses (at least from a transcriptomic point of view), where all blasts share the 

same mechanism of immune evasion. Therapeutic targeting of these clones might 

thus potentially lead to eradication of AML in MHC-II downregulation  relapses, which 

account for up to 50% of all relapses following allo-HCT (Toffalori et al. 2019b). 

Recent reports have used different strategies to rescue MHC class II surface 

expression, enabling CD4+-mediated leukemia recognition, either by pharmacologic 

inhibition of PRC2 subunits (an important epigenetic driver of this immune escape 

modality) (33), or leveraging T cell immunotherapies to induce local release of IFN-

γ (34).  

Importantly, we were also able to validate both downregulated MHC-II expression 

and upregulation of inhibitory ligands at the single-cell level, underscoring the 

robustness of this rather recent AML relapse categorization. This seems of particular 

relevance as, so far, these relapses were defined by their relative down or 

upregulation compared to paired pre-transplant samples. Validating these definitions 
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independently of a diagnosis’ sample, holds promise for swifter and more effective 

therapeutic interventions, tailored specifically to the relapse profile.  

Additionally, the immune activation score we defined offered a more nuanced 

functional perspective on malignancy characteristics in different relapse types. 

Relapses characterized by upregulated inhibitory ligands presented higher immune 

activation scores, indicating a heightened capacity to modulate immune interactions. 

While elevated expression of these molecules confirms their dependency on this 

mechanism for immune evasion, it also possibly hints at their vulnerability towards, 

for example, immune checkpoint inhibitors (ICIs). ICIs, following their success in 

solid tumors, have recently been tested in the post allo-HCT setting (Apostolova et 

al. 2023; Albring et al. 2017; Köhler et al. 2021), yielding inconsistent results. While 

the so far limited success of ICIs in AML post all-HCT underscores once again the 

complexity of immune evasion mechanisms in AML, it might also indicate that a more 

tailored therapeutic strategy aimed specifically at patients who suffer relapse driven 

by upregulation inhibitory ligands, may lead to better outcomes.  

It should be noted, however, one outlier patient in our cohort exhibited a low 

immune activation score despite inhibitory ligand upregulation, emphasizing once 

again the complexity of relapse mechanisms and the potential existence of yet 

unidentified pathways influencing relapse.  

We then examined the cellular composition across the different leukemia relapses. 

Notably, HLA loss relapses were shown to be predominantly characterized by 

Hematopoietic Stem Cells (HSCs), suggesting that these relapses may originate from 

a more immature cell, while other experimental groups showed a more mixed 

population, further suggesting that not all relapses are driven by the same cellular 

mechanisms or originate from the same progenitor cells. While it has already been 

demonstrated that AML relapses can arise from cells at different stages of 

hematopoietic maturation, ranging from more hematopoietic stem/progenitor cell 

phenotypes to immunophenotypically committed leukemia cells (Shlush et al. 2017), 

these findings may suggest a correlation between mechanism of relapse and 

leukemia cell of origin. Moreover, cells at different stages of maturation not only 

possess distinct molecular signatures but also exhibit diverse functional roles, 

influencing their interaction with the tumor microenvironment, response to therapy, 

and potential to drive disease progression (Galen et al. 2019). This multifaceted 

genetic backdrop necessitates a tailored therapeutic strategy. Especially in cases of 

less differentiated AML, the therapeutic aim should not be limited to eradicating the 

predominant tumor cells but also include efficient targeting of cancer stem cells. 
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To further confirm our findings, we evaluated the LSC17 metric (Ng et al. 2016). 

The elevated LSC17 scores associated with HLA loss relapses underscore not only the 

inherent “stemness” of this mechanism of relapse, but also add prognostic value, 

given the established association of the LSC17 score with resistance to frontline 

chemotherapeutic regimens. 

Building on this, we also calculated the iScore (Lasry et al. 2023) on our different 

experimental groups, focusing on perturbed inflammation-associated pathways. The 

observed higher iScore in relapses characterized by upregulated inhibitory ligands 

further confirmed the strong relationship between immune cell dysfunction and a 

heightened pro-inflammatory BM ME. Interestingly, uncharacterized relapses 

exhibited a lower iScore, contradicting our previous hypotheses based on the immune 

activation score, and suggesting a mechanism of relapse that seems detached from 

established inflammatory pathways. The data thus underscores the importance of a 

comprehensive investigation into these uncharacterized relapses to bridge the 

knowledge gap. Finally, we compared iScore metrics between the healthy HSPC 

counterpart of AML patients and our CR and HC controls. Strikingly, these BM ME 

cells exhibited an enriched inflammatory signature, as evident both by the iScore 

value and DE analysis, indicating that the ME is intricately involved in the 

inflammatory process. However, whether it is the AML that initiates this inflammation 

in the ME or rather it is a pre-existing inflammatory state of the ME that contributes 

to the onset of AML remains unknown. 

In the next section of our work, we focused on the BM ME lymphoid populations.  

Starting from NK cells, we were able to identify a small subpopulation of CD56bright 

cells that exhibited a different transcriptional profile compared to the other CD56bright. 

At a closer examination, these cells showed a pronounced upregulation of IFN-

stimulated genes in contrast to their counterparts, in particular IFIT2, IFIT3, OASL, 

and ISG15. To unravel the underlying biological pathways these genes might 

influence, we performed GSEA analysis. Our findings highlighted a pronounced 

enrichment in processes associated with IFN-γ response, IFN-α response, and TNF-α 

signaling via NFκB, leading us to identify them as “inflamed” NK. Interestingly, by 

looking at NK subtype distribution among experimental groups, we could highlight an 

increase in inflamed NK especially in those cases marked by the upregulation of 

inhibitory ligands. On average, the inflamed subtype constituted 5.42% of total NK 

in this experimental group as opposed to a 0.74% mean across other groups. Yet, 

it's noteworthy that this marked increase was observable in only 2 out of 4 patients 

with upregulation of inhibitory ligands. Interestingly, this NK cell subtype has already 

been described in another study (C. Yang et al. 2019), where it was found in the BM 
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of a healthy donor. The presence of these inflamed NK cells in this specific relapse 

type, coupled with the previous observation of an elevated immune activation and 

iScore, may suggest that sustained immune activation, coupled with an IFN-rich 

inflammatory ME, might steer both T and NK cells towards an exhaustion trajectory. 

This exhaustion can potentially play into the hands of leukemia, facilitating its 

immune evasion mechanisms.  

Although the role of NK cells alloreactivity in the allo-HCT setting has not yet been 

clarified, they’re the first lymphoid compartment to reconstitute, and their successful 

recovery is associated to protection against relapse. In particular, the role of NK cells 

might be pivotal in the prevention of HLA loss relapses. Here, we delved deeper into 

the dynamics of NK cell subsets, especially the relationship between CD56bright and 

CD56dim cells. Our findings further support the prevailing hypothesis that CD56dim 

cells are the direct progeny of CD56bright NK cells. We observed a consistent decline 

in CD56bright proportion with time after transplant. This transition, which we observe 

both in experimental and control groups, could be indicative of a maturation process 

rather than representing a response to specific environmental cues during immune 

reconstitution. Finally, focusing on CD56dim NK functional characteristics, we 

leveraged previously published data to formulate a score to gauge their activation 

status. Strikingly, HLA loss relapses showed a lower activation score, suggesting 

functional impairment of this subset. This reduced functionality could be a critical 

factor contributing to the inability of the immune system to effectively combat HLA 

loss relapses. Further research would be essential to decipher the exact mechanisms 

behind this functional impairment and its implications for patient outcomes. 

Lastly, we analyzed the dynamics of T cell responses in AML relapses. We were able 

to confidently characterize major subsets for both CD8 and CD4 T cells, including 

Tregs, TEMRA, TEM, TCM, and Tnaïve. Of particular interest, we annotated a subset of CD8 

TEM cells that exhibited an exhausted phenotype (TEM.EX), characterized by 

upregulation of TNFRSF9, TIGIT, VCAM1, CTLA4, LAG3, TOX, CD38 and PDCD1.  

Notably, relapses characterized by upregulation of inhibitory ligands exhibited a 

pronounced enrichment in this T cell subset. Interestingly, supporting previous 

evidence that the relapse mechanisms here described are mutually exclusive 

(Toffalori et al. 2019b), TEM.EX were not observed in other experimental groups. We 

also observed an enrichment in TEM in relapses characterized by MHC-II 

downregulation. 

Finally, we exploited 5’ TCR immune profiling data to characterize the TCR repertoire 

in the BM of AML relapses. Examination of clone distribution showed a pronounced 

clonal expansion within CD8 T cells, predominantly driven by TEM and TEMRA. In 
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contrast, CD4 T cells largely comprised of rare and small clones. Further examination 

of expanded clones, unveiled a large overlap in TEM and TEMRA clonotypes, implying a 

potential differentiation trajectory where TEM cells, following leukemic cell recognition 

and subsequent expansion, might mature into TEMRA cells, with an enhanced cytotoxic 

potential. Interestingly, TEM.EX were predominantly composed of rare clones, 

supporting the possibility that the strong pro-inflammatory milieu that features 

relapses with upregulation of inhibitory ligands (found enriched in this subset) impede 

these T cells from effectively recognizing and responding to leukemia antigens in their 

early stages of activation. 

Assessment of clonotype frequencies across experimental groups revealed unique 

immune responses in AML. Relapses with MHC-II downregulation were characterized 

by large and hyperexpanded clones. Conversely, AML relapses showing upregulated 

inhibitory ligands presented a diverse and even TCR repertoire, supporting the 

evidence that this mechanism of relapse hinders T cell activation and proliferation. 

 

In conclusion, in the present work we leveraged single cell technology to 

characterize the BM microenvironment of a vast cohort of leukemia post-

transplantation relapses. We successfully described different mechanisms of 

leukemia relapse at the single-cell transcriptomic level, including upregulation of 

inhibitory ligands and downregulation of MHC-II, and provided insights into how these 

different mechanisms are intertwined to the surrounding milieu. We highlight an 

important, and previously unreported, role of inflammation in shaping the 

transcriptional profile of leukemia relapses, and provide indirect proof that different 

relapses may arise from progenitor cells at diverse stages of hematopoietic 

maturation. Last, we describe how the immune BM populations are reshaped 

following disease recurrence and allo-HCT, both in terms of cell composition, and 

functional remodeling.  

Overall, while an in depth understanding of whether leukemia relapse is caused 

by an inflamed microenvironment, or vice versa, might only be achieved through 

longitudinal sampling from patients before and after transplant, our results here 

exemplify how the BM niche could be exploited to find novel vulnerabilities in AML 

relapses, and inform future therapeutic strategies.   
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5 MATERIALS AND METHODS 

5.1 Ethical regulation 
This study complies with all relevant ethical regulations and was approved by the 

San Raffaele Ethic Committee. 

 

5.2 Human patient samples 

5.2.1 Frozen human BM mononuclear cell preparation 

Cryopreserved, anonymized BM aspirates from patients were collected upon 

signing off a written informed consent for banking and research use of these 

specimens, in agreement with the declaration of Helsinki and in accordance with the 

regulations of the institutional review boards of our institute (protocol HLALOSS, 

approved by the San Raffaele Ethic Committee on 2019). All samples were freshly 

processed to isolate mononuclear cells and stored in liquid nitrogen in the Ospedale 

San Raffaele Center for Biological Resources (protocol “Banca Neoplasie 

Ematologiche”, approved by the San Raffaele Ethic Committee on October 6, 2010; 

latest amendment of June 14, 2012). 

Frozen samples were thawed and transferred into nonpyrogenic, nontoxic, low-

protein binding 15ml conical tubes (Falcon®) with a solution containing 1X PBS + 

2% FBS + Benzonase (1:10.000 dilution). Cell suspensions were then centrifuged at 

300g for 6 min at room temperature and the supernatant was discarded. Samples 

were then kept at 37°C for 15 min in the same solution as above, and, following 

centrifugation, supernatant was discarded and cells were resuspended in 1-2 ml ACK 

lysing buffer for 5 min on ice to allow red blood cell lysis. To quench the lysis reaction 

and dilute out the cytotoxic components of the ACK buffer, PBS was added at a 

volume 10-fold the amount of ACK buffer used. Following another centrifugation at 

300g for 5 minutes, the supernatant was discarded, and cells were resuspended in 

PBS for downstream applications. Samples were subjected to dead cell depletion 

using Dead Cell Removal Kit (Miltenyi Biotec, 130-090-101), following manufacturers’ 

instructions, and were resuspended in 1X PBS + 0.04% weight/volume BSA and kept 

on ice until GEM generation. Median cell vitality, assessed by automated cell-counting 

with Trypan Blue, was 89% (range 44-99). 

 

5.2.2 FACS sorting  

Based on prior knowledge about malignant/non-malignant ratio in the sample, 

prior to dead-cell removal samples from patients PZ190045, PZ160198, PZ160132, 

and PZ160116, were resuspended in 1X PBS + 2% FBS, labeled with antibodies and 
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sorted via flow cytometry using a FACS ARIA Fusion (BD Biosciences) cell sorter, in 

order to obtain two separate samples, one for the malignant and one for the non-

malignant population. In detail, samples were labeled with the mixture of antibodies 

at 4°C for 20 minutes. Following incubation, samples were washed in 1X PBS + 2% 

FBS and resuspended in IMDM added with 10% FBS, 1% L-glutamine and 1% 

Pen/Strep and kept on ice until sorting. 

The complete list of mAbs used in the study is provided in Table 4. 

For sorting, a first logical gate was based on forward scatter area and height to 

exclude doublets, a second gate on forward and side scatter area followed by a gate 

on Annexin V negative cells, to exclude cells undergoing apoptotic processes. 

Subsequently, a gate based on patient-specific LAIP was applied to separate leukemic 

cells from ME cells.  

Samples were sorted into 5-ml poly-propylene tubes containing 300 µl ice-cold 

PBS + 2% FBS. Following cell sorting, samples were centrifuged at 350g for 5 min at 

4 °C. 

 

5.3 Single-cell RNA-seq pre-processing 

Except for the initial Cell Range pipeline, all downstream analysis was performed 

using the Seurat R package (v.5)(Hao et al. 2021b). 

 

5.3.1 Library preparation 

Libraries for samples GEXV01 to GEXV08 were prepared using Chromium Next 

GEM Single Cell 3' Kit v3.1. All other libraries were prepared using Chromium Single 

cell 5’ Immune Profiling kits (v1.1, 10x genomics) following manufacturer’s 

instruction and were sequenced on an Illumina NovaSeq 6000. Target cell recovery 

was 10,000 for each sample. For samples sequenced with a 5’ chemistry, we also 

performed V(D)J sequencing for paired TCR and BCR receptors. 

 

5.3.2 Cell Ranger  

Read alignment, filtering, feature-barcode matrices generation, UMI counting and 

initial clustering (used for SoupX) were performed using Cell Ranger v7.1.0 (10X 

Genomics)(Zheng et al. 2017). For each sample, cellranger mkfastq was run 

on the Illumina BCL output folder to generate FASTQ files. Then, for libraries 

processed with Chromium Next GEM Single Cell 3’ chemistry and for those processed 

with a 5’ chemistry that belonged to sorted leukemic samples, we used cellranger 

count to generate single cell feature counts, whereas for libraries processed with a 



 69 

5’ chemistry that featured also TCR and BCR profiling we used cellranger multi, 

which enables simultaneous sequence assembly and paired clonotype calling on the 

V(D)J repertoire, and generation of GEX data.  

More in detail, the cellranger multi pipeline, by discarding cells in the V(D)J 

dataset that are not also called in the corresponding 5’ GEX library, decreases 

overcalling issues that typically arise in V(D)J data, mainly due to background 

contamination caused by dead cells or cell-free DNA, resulting in a more consistent 

cell calling between these two. Both  cellranger count and cellranger 

multi were launched with and without intronic read retention.  

 

5.3.3 Souporcell 

Cellranger outputs were used as input for souporcell, which was run on the same 

reference genome that was used for count matrix generation. Souporcell command 

for each sample followed software developer’s instruction, and the number of clusters 

to be identified by souporcell was set to 2, corresponding to the number of expected 

genotypes in each sample.  

singularity exec -B $parentdir/souporcell 

souporcell_latest.sif souporcell_pipeline.py -i 

BAM_file_from_cellranger -b barcode_file_from_cellranger -f 

genome.fa -t 8 -o output_k2 -k 2 

 

5.3.4 SoupX 

Raw feature-barcode matrix, and Cellranger clustering information were used to 

run automated contamination fraction estimation for each sample. First, a 

SoupChannel object was created by supplying the table of droplets, the table of 

counts and clustering information from Cellranger output.  

sc = SoupChannel(tod=mtx,toc=mtx_filt,metaData = mDat) 

Then, autoEstCont function was used to estimate the level of background 

contamination, and adjustCounts function was used to remove the calculated 

contamination fraction from original table of counts. 

sc1 = try(autoEstCont(sc)) 

out = adjustCounts(sc1) 

 

5.3.5 scDblFinder 
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scDblFinder function was used using default settings. Since this method relies 

on the generation of artificial doublets by combining random cells and/or pairs of 

non-identical clusters, we first removed empty droplets and cells with low coverage 

(i.e. erythrocytes, see QC and filtering section). Moreover, to better account for 

homotypic doublets detection in our dataset, we first normalized and scaled counts, 

and performed PCA clustering on each individual sample. Note that these PCA 

coordinates were only used for doublet detection with scDblFinder. 

 

5.3.6 QC and filtering 

Mitochondrial, ribosomal and hemoglobin genes fraction was calculated leveraging 

the PercentageFeatureSet function included in the Seurat R package in the 

following way: 

obj[["percent.mt"]] <- PercentageFeatureSet(obj, pattern 

= "^MT-") 

obj[["percent.ribo"]] <- PercentageFeatureSet(obj, 

pattern = "^RP[SL]") 

obj[["percent.hb"]] <- PercentageFeatureSet(obj, pattern 

= "^HB[^(P)]") 

Our first QC filtering step was RBCs removal, which were not the focus of our 

analysis. 

As RBCs commonly shed ribosomes during their maturation and are not involved 

in protein synthesis processes (Moras, Lefevre, and Ostuni 2017), after carefully 

reviewing each individual sample before QQC processing, we defined as RBCs cells 

that surpassed 1% hemoglobin genes count and did not reach 5% ribosomal count 

and filtered them out. 

“Canonical” thresholds were a minimum of 400 genes and a maximum of 8000 

genes detected per cell, and a maximum 25% of mitochondrial reads per cell.  

When using MAD-based filtering, we need to account for the fact that the definition 

of “outlier” in our datasets can be highly influenced by sample composition (i.e. for 

samples with a high fraction of leukemic cells, T cells might be incorrectly classified 

as low-quality cells due to their relatively low number of reads and genes). To do so, 

we first used the adjOutlyingness function (from the robustbase R 

package(Maechler et al. 2023)) to compute the "outlyingness" for each cell based on 

four quality metrics: percentage of mitochondrial reads, percentage of ribosomal 

reads, log10 of read counts and log10 of detected genes. This function assesses how 

different each cell's metrics are from the "typical" cell, considering both the absolute 
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value of the metrics and any potential skewness in their distribution, and returns a 

numerical value (the outlyingness score). 

Then, with the isOutlier function (scater R package (McCarthy et al. 2017)), 

we identified cells that were outliers based on their outlyingness scores. In this case, 

we used a value of MADs=2, which is a relatively strict threshold when defining an 

outlier. Cells were defined as low-quality if they didn’t satisfy all the following criteria:  

• All QC metrics within the “canonical” range 

• Not an outlier based on MADs 

• Defined singlet by scDblFinder 

• Successful genotype assessment by souporcell (except for control and sorted 

samples) 

 

5.4 Analysis of scRNA-seq data (individual samples) 

Samples were first processed and analyzed individually. For each library, after 

filtering (see above), RNA expression data were normalized by total expression, 

multiplied by a scaling factor of 10,000 and log-transformed. Such normalization is 

crucial because raw counts often exhibit significant variability, even among identical 

cells. This variability primarily stems from inherent sampling effects. Specifically, raw 

counts are influenced by the capture, reverse transcription, and sequencing of 

individual RNA molecules, with each step introducing significant variability. 

Then, for clustering and visualization purposes, we first chose a subset of genes 

characterized by highest cell-to-cell variation in our dataset. Focusing on genes with 

such variability has been shown (Brennecke et al. 2013) to enhance the ability to 

detect meaningful biological patterns in single-cell data. FindVariableFeatures 

function, implemented in Seurat, was used with “vst” (variance-stabilizing 

transformation) method, and 2,000 features per sample were kept. By using the "vst" 

method, we modelled the relationship between the variance and the mean of gene 

expression values across cells. Genes that exhibited notably different variance from 

what's expected in the model were defined as "variable". 

These features were also subjected to subsequent linear transformation, with each 

gene’s expression scaled to a mean of 0 and a standard deviation of 1. This is a 

pivotal step in single-cell data analysis, as it ultimately renders the expression levels 

of distinct genes directly comparable and allows the use of dimensionality reduction 

techniques like PCA, t-SNE or UMAP, since these methods are inherently sensitive to 

data scales.  
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Contextual to the scaling process, we also regressed out the percentage of 

mitochondrial reads, number of reads per cell, and the difference between the G2M 

and S phase scores, which are commonly labelled as unwarranted sources of 

variation. This preparatory step is particularly beneficial for clustering algorithms, 

ensuring they aren't influenced by a subset of non-biologically significant variables. 

Of note, we decided against adjusting for the S and G2M cell cycle scores individually. 

While these scores capture most of the cell cycle-related signals, regressing them out 

entirely in our dataset, which includes both quiescent hematopoietic stem cells and 

actively proliferating differentiated cells, might blur differences between these cell 

types. Instead, we used the differential scores between the G2M and S phases. This 

approach ensures that the distinction between non-proliferating and proliferating 

cells remains intact, while minimizing the influence of phase-specific variations within 

the proliferating cell population, which are not the focus of our investigation. 

These processes were integrated in a custom function (see Appendix).  

 

5.4.1 Dimensionality reduction and clustering 

Single-cell datasets suffer from the so-called “curse of dimensionality” (Bellman 

and Bellman 1957). Despite having numerous dimensions in the number of genes, 

most of them are not informative, and rather add more noise and redundancy, 

making data analysis complex and biological signals ambiguous. We already reduced 

the dimensionality of the data with feature selection. To further reduce data 

complexity and for visualization, principal-component analysis (PCA) was performed 

on scaled data, and a k-nearest-neighbor (KNN) graph using the Leiden algorithm 

(Traag, Waltman, and van Eck 2019), an improved version of the Louvain algorithm 

(Duò, Robinson, and Soneson 2020), was constructed using 30 nearest neighbors 

and different resolutions to better explore the dataset. 

Finally, we ran the UMAP algorithm (Becht et al. 2019) on the first 30 principal 

components with 30 nearest neighbors defining the neighborhood size and a 

minimum distance of 0.3.  

 

5.4.2 Automated cell annotation with SingleR 

Four different reference atlases were downloaded from celldex (Aran et al. 2019) 

R package: the Blueprint/ENCODE reference (Martens and Stunnenberg 2013), (The 

ENCODE Project Consortium 2012) and Monaco Immune data (Monaco et al. 2019), 

consisting of bulk RNA-seq data for pure stroma and immune cells, and sorted 

immune cell populations, respectively; and the Human Primary Cell Atlas (HPCA), 

(Mabbott et al. 2013) and the Novershtern reference (Novershtern et al. 2011), 
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composed of microarray datasets derived from human primary cells and sorted 

hematopoietic cells, respectively. 

Both “main” and “fine” cell annotations were calculated with each reference 

dataset, and both per-cell and per-cluster profiles were obtained and compared. 

 

5.4.3 Reference atlas-based manual cell annotation 

For broad cell type annotation, gene signatures generated from scRNA-seq 

analysis of B-ALL bone marrow immune microenvironment by Witkowsky et al. 

(Witkowski et al. 2020) were used. For “fine” cell annotation, we leveraged gene 

signatures and cell type annotations from Lasry et al. (Lasry et al. 2023), which were 

obtained from scRNAseq analysis of 52 BM samples of healthy donors (N=10), and 

pediatric (N=20) and adult (N=22) AML patients.  

For each cell-type in the reference dataset, the ten genes with the highest log2 

fold change, and detected in at least 20% of the cells, with an average log2 fold-

change > 0.2, and adjusted p-value < 0.001, were used as cell type specific gene 

signatures. Mitochondrial and ribosomal genes were also filtered.  

For gene-set score calculation, among previously selected cell type-specific genes, 

only those in our dataset with a cluster average expression > 10 CPM were kept. 

Cluster-gene matrices were then rescaled by dividing each gene’s expression value 

by its highest value across different clusters. This step was necessary to ensure that 

the analysis is not disproportionately influenced by very high or very low expression 

values of certain genes. 

Finally, for each cell-type, we calculated a score by averaging the rescaled 

expression of the genes in the module for that cell-type and for each cluster the 

highest cell-type module was used for annotation. All these processes were 

integrated into a custom function (see Appendix) 

 

5.4.4 Marker-based manual cell annotation  

Cluster marker genes were determined by performing differential expression 

analysis. Seurat’s FindAllMarkers() function was used with the MAST (Finak et 

al. 2015) package, which is suited for scRNAseq datasets and their characteristic 

sparsity. This function compares each of the clusters to the cells outside of that 

cluster, and identifies positive and negative markers. Only genes detected in at least 

10% of the cells, and with, on average, at least a 0.25 log-fold difference between 

the two clusters were retained.  
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5.5 Analysis of scRNA-seq data (merged samples) 

Following cell annotation and further sample purification by removal of low-quality 

clusters, we integrated data from all samples into a single dataset.  

SoupX-corrected matrices and metadata were first pooled together, and 

normalization, variable features selection, scaling and PCA were performed as 

described above. Cells were re-annotated following previous methods, also 

leveraging previous results on individual samples. 

 

5.5.1 Malignant and microenvironment separation 

To evaluate cluster occupancy score, we used clusters defined at resolution 3 in 

our merged dataset, and for each of the 51 samples and 63 clusters we calculated 

the ratio between the number of cells from the patient and the sum of that patient 

and control cells. If occupancy score exceeded a threshold of 70%, we defined that 

cluster as patient specific, with a high probability of it being a malignant cells cluster. 

Next, we used souporcell to discriminate between cells from either host or donor 

origin. First, leveraging the presence in our dataset of sorted samples, we 

benchmarked the accuracy of souporcell in identifying distinct genotypes.  

We used samples from two patients whose LAIP allowed us to isolate by FACS 

sorting their leukemic and microenvironment populations, and to sequence both parts 

individually. We merged this patients’ sequencing files, ran souporcell, and calculated 

the overlap between genotype assignment and sample provenience.  

Following this approach validation, we applied this analysis to our whole dataset. 

As souporcell only calculates the probability of a cell of being either in genotype 1 or 

2 and doesn’t have information about cell origin, we manually assigned genotypes to 

host and donor values based on their relative frequencies in broad cell types. If a 

genotype was particularly predominant in a cell type that is typically of donor (i.e. T 

cells) or of host (i.e. HSPCs for AML patients) origin, we assumed that this would be 

the donor or host values, respectively.  

Next, for patients with clinically annotated karyotype aberrations (Table 3), we 

ran inferCNV (Timothy Tickle and Itay Tirosh, n.d.) to identify malignant cells. 

InferCNV v1.3.3 was run on each AML patient sample individually. SoupX-corrected 

expression matrix was provided, and the annotation file required for the software 

was constructed by supplying broad cell type information annotation (HSPCs, 

erythrocytic, myeloid, T, NK and B cells). Samples from HC were used as controls for 

each patient.  

Tu run InferCNV, we used cutoff = 0.1, min_cell_per_gene = 10, de-noise = TRUE, 

HMM = TRUE and analysis_mode = ’subclusters’. 
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5.5.2 Harmony 

Following dataset split into different broad cell types, before UMAP and cluster 

calculation, Harmony  was used to correct for batch effects. We ran Harmony using 

default settings, and using the different sequencing runs as integration variable. 

harmony::RunHarmony(object = seurat_obj, group.by.vars = 

'batch') 

The first 30 dimensions of Harmony embeddings were kept for UMAP generation 

with 30 nearest neighbors. Clustering was performed using the Leiden algorithm at 

different resolutions (0.5, 1, 1.5, 2, 3).   

 

5.6 Granular annotation of cell subsets 
5.6.1 DE analysis 

DE analysis was performed using FindMarkers() and the package MAST 

(Finak et al. 2015), as implemented in Seurat. 

FindMarkers(object = s_obj, 
                     min.pct = 0.1, 
                     logfc.threshold = 0.25, 
                     only.pos = FALSE, 
                     min.cells.group = 10, 
                     test.use = "MAST", 
                   return.thresh = 1e-06) 

 

5.6.2 AML cells 

Immune activation score, iScore, and LSC17 were calculated using the 

AddModule() function in Seurat. This function calculates the average expression 

levels an input gene list on for each cell in a Seurat object, subtracted by the 

aggregated expression of a randomly generated control gene set. We used N=1000 

control genes. 

Genes used for immune activation score were: CIITA, HLA-DMA, HLA-DMB, HLA-

DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-F, 

TAP1, TAP2, CD274, PDCD1LG2, CD276, VTCN1, CD48, FASLG, CD200, ITGAL, 

CD226, CD70, and ICOSLG.  

Genes used for iScore: ALOX5, AP2S1, ATP2B1, ATP8B4, CAPZB, CD38, CD79A, 

CST3, CTSG, CXCL2, CYBA, FCN1, FGR, FYB1, FYN, GSTP1, HOMER3, IRAK3, KMT2E, 

MEF2C, MPO, PSMA6, PSME1, RGCC, SAMHD1, SLC11A1, SLC2A3, TFPI, TMEM176B, 

TNFRSF1B, TYROBP, VSIR, CHMP4B, CCL7, EIF2AK2, HMOX1, PABPC1, RETN. 
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Genes used for LSC17: ADGRG1, AKR1C3, CD34, BEX3, EMP1, SMIM24, SOCS2, 

CPXM1, CDK6, FAM30A, DPYSL3, MMRN1, LAPTM4B, ARHGAP22, NYNRIN, ZBTB46, 

DNMT3B.  

 

5.6.3 NK cells 

Annotation of NK cell subsets, following reclustering, was obtained through 

differential expression analysis between cells within each cluster against all other 

cells. A resolution of 0.5 was used, resulting in 8 different NK clusters.  

NK activation score was calculated with the following genes: IFITM1, XCL2, 

IFITM3, TNFSF9, LINC02446, CXCR3, IL32, CD276, PDCD1, XCL1, XIST, MTRNR2L8, 

S100A10. 

 

5.6.4 T cells 

To isolate T cells, we leveraged gene expression of canonical markers (CD2, CD3E, 

CD3G, CD4, CD8A). Moreover, TCR sequencing, available for samples processed with 

the 5’ immune profiling solution, allowed us to validate gene expression data by 

comparing manually annotated T cells and barcodes associated to TCR sequences. 

For refined subset annotation, we used resolution 3, which generated 43 different 

clusters and FindMarkers() function as implemented above. We compared gene 

signatures from a scRNA-seq atlas of CD8 TILs of hepatocarcinoma patients (Zhou et 

al. 2020) and a scRNA-seq dataset of CD4 T cells isolated from the PB of HC (Cano-

Gamez et al. 2020) with our data, and annotated clusters based on similarity of gene 

expression profiles.  

For TCR analysis, we used scRepertoire R package following author’s vignette.  
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7 Appendix 
7.1 Tables 

 

Table 1. Patient Characteristics 

Table summarizes clinical data collected for each patient. Data for AML patients was collected at 
the time of relapse, data for HC was obtained at BM collection, and data for CR patients was 
retrieved at both +90 (3mo) and +365 (1y) days following allo-HCT. 

Characteristic N = 411 

Patient sex  

    F 14 (34%) 

    M 27 (66%) 

Donor sex  

    F 15 (43%) 

    M 20 (57%) 

Type of allo-HCT  

    Haploidentical 25 (71%) 

    HLA identical 6 (17%) 

    MUD 4 (11%) 

Allele mismatches (12 alleles)  

    0 6 (17%) 

    1 1 (2.9%) 

    2 2 (5.7%) 

    3 2 (5.7%) 
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Table 1. Patient Characteristics 

Table summarizes clinical data collected for each patient. Data for AML patients was collected at 
the time of relapse, data for HC was obtained at BM collection, and data for CR patients was 
retrieved at both +90 (3mo) and +365 (1y) days following allo-HCT. 

Characteristic N = 411 

    4 5 (14%) 

    5 4 (11%) 

    6 15 (43%) 

aGvHD at sampling 6 (17%) 

cGvHD at sampling 6 (17%) 

IST at sampling 18 (51%) 

Altered cytogenetic 13 (72%) 

Age at sampling 54 (46, 63) 

Time from allo-HCT to sampling 198 (91, 612) 

1 Median (IQR) or Frequency (%) 
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Table 2. Cell Ranger Outputs 
 

Variable 

Intronic Reads Retention 

p-
value2 No, N = 511 Yes, N = 511 

Estimated Number of Cells 7,442 (437-20,364) 7,648 (438-25,480) 0.83 

Mean Reads per Cell 43,874 (16,673-
298,978) 

42,630 (14,893-
279,683) 0.87 

Median Genes per Cell 1,441 (418-3,226) 1,667 (480-4,423) 0.007 

Number of Reads 
407,075,690 
(63,704,583-
648,990,308) 

407,075,690 
(63,704,583-
648,990,308) 

>0.99 

Valid Barcodes 91.7 (85.6-97.9) 91.7 (85.6-97.9) >0.99 

Sequencing Saturation 67 (41-89) 67 (41-89) 0.95 

Q30 Bases in Barcode 96.00 (94.60-98.00) 96.00 (94.60-98.00) >0.99 

Q30 Bases in RNA Read 92.80 (84.70-95.60) 92.80 (84.70-95.60) >0.99 

Q30 Bases in UMI 95.80 (94.20-97.90) 95.80 (94.20-97.90) >0.99 

Reads Mapped to Genome 92.50 (81.80-97.40) 92.50 (81.80-97.40) >0.99 

Reads Mapped Confidently to 
Genome 83 (48-94) 83 (48-94) >0.99 

Reads Mapped Confidently to 
Intergenic Regions 4.50 (2.20-7.60) 4.50 (2.20-7.60) >0.99 

Reads Mapped Confidently to 
Intronic Regions 10 (4-35) 10 (4-35) >0.99 

Reads Mapped Confidently to 
Exonic Regions 65 (33-81) 65 (33-81) >0.99 

Reads Mapped Confidently to 
Transcriptome 60 (30-74) 72 (40-82) <0.001 
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Table 2. Cell Ranger Outputs 
 

Variable 

Intronic Reads Retention 

p-
value2 No, N = 511 Yes, N = 511 

Reads Mapped Antisense to 
Gene 3.30 (0.70-5.80) 6.40 (3.70-10.10) <0.001 

Fraction Reads in Cells 88 (42-97) 87 (41-97) 0.90 

Total Genes Detected 22,946 (18,132-25,803) 26,759 (22,224-29,355) <0.001 

Median UMI Counts per Cell 4,066 (1,286-13,083) 4,424 (1,749-16,409) 0.13 

1 Median (Range) 

2 Wilcoxon rank sum test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Cytogenetic alterations in our AML patient cohort. 
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Patient code Cytogenetics at relapse 

 

PZ170168 

 

46,XY [19] / 46XX [1] 

PZ14000041 46,XX [20] / 46,XY [22] 

PZ160065 

45,XY, del(3)(q?), der(4)t(?1;4)(p?;p?), -11, -12, add(21)(q?), +mar1 [3] / 

46,XY, idem, +mar2, +mar3 [10] 

PZ170022 46, XY, add(15)(P10) [3] / 46, XY, i(17)(Q10) [9] / 46, XY [8] 

PZ12000122 45, XY, -7 [13] 

PZ15000085 

46, XY, del(1)(q?), -2, add(4)(q?35),- 5, -7, -12, -14, -17, +18, +5mar [7] / 

46, XX 

PZ190333 46, XY, del(9)(P?13), del(11)(p?11.2), add(20)(q?13.3) [12] 

PZ170161 47, XYY [16] 

PZ190045 45, XY, -7 [20] 

PZ160198 45,XY,-7 [11] / 46, XY [9] 

PZ1000236 46,XY[22],40-43,XY[14],80-82,XY[2] 

PZ11004972 46XX,[20] nuc ish (D13S319_D13S25,D12S1825) x2[278] 

PZ200216 45,XY,-5,add(21)(q?22)[6]/46,XY,-5,add(21)(q?22),+mar[2]//46,XX[34] 

  
 

Table 4. List of mAbs used in this study  

 

mAb Clone Producer Catalogue 
Human Fc Block Fc1 BD 564219 
HuCD45 PerCP-
Cy5.5 2S1 BD 340953 
CD34 APC 8G12 BD 345804 
CD117 PC7 104D2D1 Beckman Coulter B49221 
CD3 FITC SK7 Biolegend 344804 
CD235a FITC GA-R2 BD 559943 
CD19 FITC HIB19 Biolegend 302206 
Annexin V PB n.a. Biolegend 640918 

 

  



 97 

7.2 Custom functions 

The following function allows data scaling with cell cycle difference regression. 

calculate_variance <- function(seu, nfeatures = 2000, 
log_file = NULL){ 
  # calculate variance of genes in a seurat object 
 
  assay = DefaultAssay(seu) 
 
  # identify features that are outliers on a 'mean 
variability plot' 
  seu = FindVariableFeatures(seu, 
                             assay = assay, 
                             selection.method = "vst", 
                             nfeatures = nfeatures, 
                             verbose = TRUE) 
 
  # calculate cell cycle score (potential source of 
variation that we might want to regress later) 
  cc.genes <- cc.genes.updated.2019 
  s.genes <- cc.genes.updated.2019$s.genes 
  g2m.genes <- cc.genes.updated.2019$g2m.genes 
  seu <- CellCycleScoring(object = seu, s.features = 
s.genes, g2m.features = g2m.genes, set.ident = TRUE) 
  seu@meta.data$CC.Difference <- seu@meta.data$S.Score - 
seu@meta.data$G2M.Score 
 
  # regress out unwanted sources of variation 
  # regressing uninteresting sources of variation can 
improve dimensionality reduction and clustering 
  # could include technical noise, batch effects, 
biological sources of variation (cell cycle stage) 
  # scaled z-scored residuals of these models are stored in 
scale.data slot 
  # used for dimensionality reduction and clustering 
  # scale data in the assay 
  seu = ScaleData(seu, 
                  assay = assay, 
                  vars.to.regress = c("CC.Difference", 
"percent.mt", "nCount_RNA"), 
                  verbose = TRUE) 
  return(seu) 
} 
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The following function was used to calculate gene set scores in cell annotation.  

geneset_score_calc.default = function(module_tbl, 
counts_raw, min_cpm = 0, limit_pct = 1) { 
  # perform the cell type enrichment calculation based on 
rescaled values 
  module_list <- module_tbl %>% 
    with(split(.$gene, celltype)) 
 
  if (!is.matrix(counts_raw)) { stop("expression matrix is 
not a matrix") } 
  if (max(counts_raw) < 100) { stop("expression values 
appear to be log-scaled") } 
 
  # filter matrix for expressed genes only 
  # expression level equivalent to 1 CPM (1 for 1m, 0.01 
for 10k) 
  exp_cpm1 = (1 / 1000000) * median(colSums(counts_raw)) 
  # expression level equivalent to the requested CPM 
  min_exp = exp_cpm1 * min_cpm 
  # filtered expression matrix 
  counts_raw = counts_raw[matrixStats::rowMaxs(counts_raw) 
> min_exp, ] 
 
  # rescale matrix for expressed genes only 
  if (limit_pct > 1) { stop("percentile should be expressed 
as a fraction") } 
  if (!is(counts_raw, "matrix")) { stop("expression matrix 
is not a matrix") } 
  if (max(counts_raw) < 100) { stop("expression values 
appear to be log-scaled") } 
 
  rescale_vector = function(x, limit_pct = 1) { 
    x / quantile(x, limit_pct) 
  } 
  counts_raw_subs = apply(subset(counts_raw, 
rownames(counts_raw) %in% unlist(module_list)), MARGIN = 1, 
FUN = rescale_vector, limit_pct = limit_pct) 
  counts_raw_subs = t(counts_raw_subs) 
  counts_raw_subs[counts_raw_subs > 1] = 1 
 
 
  # check if enough genes pass filter 
  if (min(lengths(module_list)) < 3) { stop("too few genes 
per celltype") } 
 
  # calculate average z-score per celltype 
  celltype_scores_tbl = tibble() 
  for (ct in names(module_list)) { 
    celltype_scores_tbl = 
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      bind_rows( 
        celltype_scores_tbl, 
        tibble( 
          cell = colnames(counts_raw_subs), 
          celltype = ct, 
          score = colMeans(subset(counts_raw_subs, 
rownames(counts_raw_subs) %in% module_list[[ct]])) 
        ) 
      ) 
    ct_scores = colnames(counts_raw_subs) 
  } 
 
  celltype_scores_tbl <- celltype_scores_tbl %>% 
    spread(celltype, score) %>% 
    rename_at(vars(-contains("cell")), list(~paste0(., 
".score"))) 
 
  return(celltype_scores_tbl) 
} 

 


