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Abstract
Background and Purpose: Precise and timely diagnosis is crucial for the opti-
mal	 use	 of	 emerging	 disease-	modifying	 treatments	 for	 Alzheimer	 disease	 (AD).	
Electroencephalography	(EEG),	which	is	noninvasive	and	cost-	effective,	can	capture	neu-
ral abnormalities linked to various dementias. This study explores the use of individual 
alpha	frequency	(IAF)	derived	from	EEG	as	a	diagnostic	and	prognostic	tool	in	cognitively	
impaired patients.
Methods: This	retrospective	study	included	375	patients	from	the	tertiary	Memory	Clinic	
of	 IRCCS	 San	Raffaele	Hospital,	Milan,	 Italy.	 Participants	 underwent	 clinical	 and	 neu-
ropsychological assessments, brain imaging, cerebrospinal fluid biomarker analysis, and 
resting-	state	EEG.	Patients	were	categorized	by	amyloid	status,	the	AT(N)	classification	
system,	clinical	diagnosis,	and	mild	cognitive	impairment	(MCI)	progression	to	AD	demen-
tia.	IAF	was	calculated	and	compared	among	study	groups.	Receiver	operating	character-
istic	(ROC)	analysis	was	used	to	calculate	its	discriminative	performance.
Results: IAF	was	higher	in	amyloid-	negative	subjects	and	varied	significantly	across	AT(N)	
groups.	ROC	analysis	 confirmed	 IAF's	 ability	 to	distinguish	A–T–N–	 from	 the	A+T+N+ 
and	A+T–N+	groups.	IAF	was	lower	in	AD	and	Lewy	body	dementia	patients	compared	
to	MCI	and	other	dementia	types,	with	moderate	discriminatory	capability.	Among	A+ 
MCI	patients,	IAF	was	significantly	lower	in	those	who	converted	to	AD	within	2 years	
compared	to	stable	MCI	patients	and	predicted	time	to	conversion	(p < 0.001,	R = 0.38).
Conclusions: IAF	is	a	valuable	tool	for	dementia	diagnosis	and	prognosis,	correlating	with	
amyloid	 status	 and	neurodegeneration.	 It	 effectively	 predicts	MCI	progression	 to	AD,	
supporting its use in early, targeted interventions in the context of disease- modifying 
treatments.
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INTRODUC TION

The	emergence	of	disease-	modifying	treatments	for	Alzheimer	dis-
ease	 (AD)	 necessitates	 precise	 and	 timely	 diagnostic	 capabilities	
for	 optimal	 therapeutic	 interventions.	However,	 the	 financial	 con-
straints, invasiveness, and restricted availability of advanced neu-
roimaging techniques and lumbar puncture for cerebrospinal fluid 
(CSF)	AD	biomarkers	pose	substantial	obstacles	to	broad	diagnostic	
coverage.

Electroencephalography	(EEG)	may	offer	a	promising	solution.	
Characterized	 by	 a	 noninvasive	 and	 cost-	effective	 nature,	 EEG	
may detect neural aberrations associated with various dementia 
subtypes [1, 2].	 The	 individual	 alpha	 frequency	 (IAF),	 represent-
ing the dominant frequency in the background posterior cerebral 
activity,	 is	easily	obtainable	from	clinical	EEG	recordings	and	has	
demonstrated significant differentiation among dementia forms 
[2–4].

In this cross- sectional and longitudinal retrospective study, we 
sought	to	fill	a	crucial	gap	in	the	literature	by	exploring	IAF	associa-
tions	with	CSF	AD	biomarkers,	neuroimaging	markers,	and	the	risk	
of	progression	 to	dementia	 in	a	 sizable	and	 systematically	 charac-
terized	population	of	 cognitively	 impaired	patients	 from	a	 tertiary	
memory center.

METHODS

A	total	of	907	patients	with	cognitive	 impairment	who	underwent	
lumbar	 puncture	 for	 CSF	AD	 biomarkers	measurement	 as	 part	 of	
the standard clinical pathway were screened for inclusion from 
those	 evaluated	 at	 the	 Memory	 Clinic,	 Neurology	 Unit	 of	 IRCCS	
San	Raffaele	Hospital	between	January	2017	and	December	2022.	
The inclusion criteria comprised a clinical diagnosis of mild cognitive 
impairment	 (MCI)	 or	 dementia,	 brain	 imaging	 scan	 (structural	 or	
functional),	 and	 resting-	state	 19-	channel	 EEG,	 acquired	 as	 part	 of	
the	 diagnostic	 pathway.	 Excluded	 were	 patients	 with	 significant	
cognitive decline due to brain lesions, other clinically relevant 
systemic/neurological/major psychiatric disorders, drug/alcohol 
abuse,	and	evidence	of	epileptiform	activity	on	EEG.

Following	 the	AT(N)	 framework	 [5], the final sample was strat-
ified	by	amyloid	status	(A+,	A–,	based	on	CSF	Aβ42	or	Aβ42/Aβ40 
ratio)	alone	and	by	the	entire	AT(N)	profile,	involving	amyloid	status,	
tau	pathology	(T+,	T–,	based	on	CSF	phosphorylated	tau	[pTau]),	and	
neurodegeneration	(N+,	N–,	based	on	CSF	total	tau,	presence	of	at-
rophy according to the global cortical atrophy scale [6] at structural 
neuroimaging	 [Atrophy+	 if	 the	 score	was	 ≥2	 in	 at	 least	 one	 brain	
region	 on	 either	 magnetic	 resonance	 imaging	 [MRI]	 or	 computed	
tomography,	 otherwise	Atrophy–],	 and/or	hypometabolism	on	 flu-
orodeoxyglucose	 positron	 emission	 tomography	 [FDG-	PET;	 PET+, 
PET–]).

Patients	were	further	categorized	based	on	their	clinical	diagno-
sis	at	hospital	discharge,	including	amnestic	MCI	(aMCI)	[7], nonam-
nestic	MCI,	multidomain	MCI,	typical	AD,	early	onset	dementia	due	

to	AD	[5,	8],	behavioral	variant	frontotemporal	dementia	(bvFTD)	[9], 
Lewy	body	dementia	 (LBD)	[10],	mixed	AD,	and	vascular	dementia	
[11].

Clinical	data	on	A+	MCI	patients'	progression	to	full	AD	demen-
tia were also collected. These patients were grouped into convert-
ers	(A+	MCIc),	who	transitioned	within	2 years,	and	stable	MCI	(A+ 
MCIs),	who	did	not	convert	in	2 years.

EEGs	were	acquired	in	resting	awake	condition	on	a	computer-	
based	 system	 using	 19	 standard	 10/20	 electrode	 locations	 with	
linked ear reference [12].	 EEG	 traces	were	 visually	 inspected,	 and	
segments	containing	artifacts	were	rejected.	EEG	spectral	analysis	
involved averaging the fast Fourier transform of at least 100 2- s 
nonoverlapping	epochs,	tapered	by	Hanning	window,	under	closed-	
eye conditions. Power spectra of C3, C4, P3, P4, O1, and O2 were 
averaged	to	obtain	a	single	mean	power	spectrum.	Absolute	power	
values	were	normalized	into	relative	power.	 IAF	[2], corresponding 
to the peak in the mean power spectrum within the extended alpha 
range	(7–13 Hz)	[2],	was	calculated	using	custom	MATLAB	(v9.10.0-	
R2021a,	 MathWorks,	 Natick,	 MA,	 USA)	 routines.	 To	 validate	 the	
peak	in	the	EEG	spectrum	representing	IAF,	we	assessed	its	shape	
and	 quality.	Metrics	 like	 first	 derivative,	 kurtosis	 index,	 and	 slope	
of	best	 fit	 lines	were	used	 in	 the	analysis.	 If	 the	 IAF	was	near	 the	
range	limits	(7–13 Hz),	the	analysis	was	extended	by	3 Hz	beyond	this	
range,	 and	 the	 raw	EEG	 traces	were	 inspected	 to	 ensure	 that	 the	
posterior rhythms matched the frequencies of the spectral peaks.

Analyses	were	computed	using	R	software,	and	the	level	of	sig-
nificance was set at p < 0.05.	 Clinical–demographic	 and	 cognitive	
variables were compared among study groups using Fisher exact 
test, analysis of variance, or age- , sex- , and education- adjusted anal-
ysis	of	covariance	(ANCOVA)	models.	Pearson	coefficient	was	used	
to	assess	correlations	between	IAF	and	age,	disease	duration,	Mini-	
Mental	 State	 Examination	 (MMSE),	 and	 CSF	 pTau/Aβ42 ratio for 
the	entire	sample.	IAF	values	were	compared	among	AT(N)	groups	
and	clinical	diagnostic	groups	and	between	A+	MCIc	and	A+	MCIs,	
utilizing	 age-	/sex-	/education-	adjusted	 and	 Bonferroni-	corrected	
ANCOVA	models.	Receiver	operating	characteristic	 (ROC)	analysis	
evaluated	 the	 discriminative	 accuracy	 of	 IAF	 in	 selected	 pairwise	
comparisons.	A	linear	regression	model	was	implemented	to	inves-
tigate	whether	baseline	 IAF	 in	A+	MCI	patients	predicted	 time	of	
conversion	 to	 full-	blown	AD	dementia,	 adjusting	 for	 age,	 sex,	 and	
education.

RESULTS

After	 the	 revision	of	 inclusion	 and	exclusion	 criteria,	 375	patients	
were	 included	 in	 this	 study	 (Table 1).	 All	 EEGs	 were	 acquired	
before	 the	 initiation	 of	 dementia-	specific	 treatments	 (e.g.,	
anticholinesterase	inhibitors,	memantine).	Pearson	correlation	tests	
showed	negligible	to	small	correlation	coefficients	between	IAF	and	
demographic	 features,	 pTau/Aβ42	 ratio,	 and	global	 cognition	 (age:	
r = −0.06,	 p = 0.19;	 disease	 duration:	 r = 0.04,	 p = 0.39;	 pTau/Aβ42 
ratio: r = −0.13,	p = 0.01;	MMSE:	r = 0.29,	p < 0.01).
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Demographic	and	clinical	features	of	AT(N)	groups	are	reported	
in Table 1.	IAF	was	significantly	higher	in	A–	than	in	A+ subjects and 
in	A–T–N–	than	 in	 the	A+T+N+	and	A+T–N+	groups	 (Figure 1a,b).	
ROC	analysis	confirmed	 the	discriminatory	ability	of	 IAF	 in	distin-
guishing	A–T–N–	from	A+T+N+	 and	A+T–N+	 subjects	 (area	under	
the	curve	 [AUC]	= 0.71,	95%	confidence	 interval	 [CI]	= 0.57–0.85).	
When	considering	single	biomarkers	of	neurodegeneration,	IAF	was	
significantly	 higher	 in	 PET–	 (n = 44)	 than	 PET+	 (n = 244)	 subjects	
(p < 0.01),	and	 in	Atrophy–	 (n = 144)	 than	 in	Atrophy+	 (n = 231)	pa-
tients	(p = 0.04;	Figure 1c,d).	After	combining	amyloid	and	FDG-	PET	
status,	 A+/PET+	 patients	 showed	 significantly	 lower	 IAF	 values	
than	A–/PET+	(p < 0.01),	A+/PET–	(p = 0.02),	and	A–/PET–	subjects	
(p = 0.01;	Figure 1e).

Demographic and clinical features of clinical diagnosis groups 
are reported in Table 1.	IAF	was	significantly	lower	in	AD	dementia	
patients	 than	 in	MCI	groups	 (AUC = 0.69,	95%	CI = 0.54–0.84)	and	
bvFTD	subjects	(AUC = 0.75,	95%	CI = 0.65–0.85),	in	mixed	dementia	
subjects	than	in	aMCI	(AUC = 0.75,	95%	CI = 0.61–0.89)	and	bvFTD	
patients	 (AUC = 0.77,	95%	CI = 0.62–0.91),	and	 in	LBD	than	 in	MCI	
(AUC = 0.84,	95%	CI = 0.68–0.99)	and	bvFTD	patients	 (AUC = 0.87,	
95%	CI = 0.76–0.99;	Figure 1f).

IAF	 was	 significantly	 lower	 in	 A+	 MCIc	 (n = 23,	 mean	
age = 72.90 ± 6.12 years)	 than	 in	 A+	 MCIs	 (n = 19,	 mean	

age = 70.30 ± 7.20 years)	 patients	 (AUC = 0.66,	 95%	 CI = 0.51–
0.82;	Figure 1g).	IAF	also	predicted	time	of	conversion	in	A+	MCI	
patients	 who	 transitioned	 to	 AD	 dementia	 (p < 0.001,	 R2 = 0.38;	
Figure 1h).

DISCUSSION

In this cross- sectional and longitudinal retrospective study, we 
investigated	 the	 potential	 of	 IAF	 as	 an	 accessible	 EEG-	derived	
parameter to enhance dementia differential diagnosis and prognosis. 
As	the	global	burden	of	dementia	rises,	there	is	an	increasing	need	
for cost- effective and minimally invasive diagnostic tools, especially 
with advancing therapeutic interventions.

Correlation	analysis	revealed	that	IAF	may	capture	distinct	neu-
rophysiological aspects independent from age, disease duration, and 
pTau/Aβ42.	 IAF	showed	 instead	a	small	correlation	with	degree	of	
cognitive impairment, as previously observed [13].

Within	 the	 AT(N)	 classification	 system	 [5],	 IAF	 exhibited	 dis-
tinct	variations	across	different	AT(N)	groups.	Specifically,	IAF	was	
lower	in	A+	subjects	compared	to	A–	counterparts,	and	in	A+T+N+ 
and	A+T–N+	groups	compared	to	A–T–N–	subjects	 (Figure 1).	The	
ROC	 analysis	 provided	 insight	 into	 the	moderate	 ability	 of	 IAF	 to	

F I G U R E  1 (a–g)	Boxplots	of	individual	alpha	frequency	(IAF)	in	patients	stratified	according	to:	(a)	amyloid	status,	(b)	AT(N)	groups,	(c)	
evidence	of	atrophy	on	structural	neuroimaging,	(d)	positron	emission	tomography	(PET)	status,	(e)	a	combination	of	amyloid	and	PET	status,	
(f)	clinical	syndromes,	and	(g)	converter	status	in	A+ mild	cognitive	impairment	(MCI)	patients.	P- values refer to age- /sex- /education- adjusted 
analysis	of	variance	models,	followed	by	post	hoc	pairwise	comparisons	(Bonferroni-	corrected	for	multiple	comparisons,	*p < 0.05,	**p < 
0.01,	***p <	0.001,	****p <	0.0001,	R	Software).	(h)	Linear	regression	model	showing	that	baseline	IAF	(Hz)	in	A+	MCI	patients	predicted	time	
of	conversion	(months)	to	full-	blown	Alzheimer	disease	(AD)	dementia,	adjusting	for	age,	sex,	and	education	(p < 0.05,	R	software).	The	R2 
goodness	of	fit	statistic	evaluated	the	model's	performance.	aMCI,	amnesic	MCI;	bvFTD,	behavioral	frontotemporal	dementia;	EOAD,	early	
onset	AD;	LBD,	Lewy	body	dementia;	MCIc,	imminent	MCI	converters;	MCIs,	stable	MCI;	mdMCI,	multidomain	MCI;	naMCI,	nonamnesic	
MCI;	VaD,	vascular	dementia.
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distinguish	 between	 different	ATN	 groups.	 Examining	 IAF	 in	 rela-
tion	to	imaging	neurodegeneration	biomarkers,	FDG-	PET,	and	struc-
tural	neuroimaging,	N+	patients	consistently	had	 lower	 IAF	values	
than	N–	subjects	 (Figure 1).	These	 findings	align	with	previous	 lit-
erature, confirming the association of disrupted alpha rhythms with 
hypometabolism	 on	 FDG-	PET	 and	 atrophy	 on	MRI	 [14].	 Notably,	
when	integrating	A	status	with	FDG-	PET	findings,	A+/PET+ individ-
uals	demonstrated	 lower	 IAF	values	 compared	 to	other	 subgroup,	
suggesting	that	lower	IAF	values	may	align	with	poorer	outcomes	in	
cognitively impaired patients [15].

Beyond	 the	 AT(N)	 system,	 IAF	 showed	 moderate	 to	 good	
discriminatory capabilities among specific dementia clinical sub-
types,	 particularly	 highlighting	 the	 role	 of	 IAF	 in	 distinguishing	
between later stages of dementia and in reflecting progression, 
rather than serving as a tool for distinguishing early stage clinical 
phenotypes.	 Although	 not	 all	 subjects’	 psychotropic	medication	
data	were	available,	AD	and	LBD	patients	showed	the	lowest	IAF	
values, aligning with studies proposing cholinergic failure as the 
basis	 for	progressive	EEG	 slowing	 in	AD	continuum	and	LBD	 [1, 
2, 13].

Furthermore, our study ventured into predicting disease pro-
gression,	 particularly	 in	 the	 context	 of	 MCI	 conversion	 to	 AD	
dementia.	 Aligning	 partially	with	 previous	 evidence	 [4],	 IAF	 dis-
criminated	 imminent	 MCI	 converters	 to	 AD	 dementia.	 This	 ad-
dresses a critical need for early prognostic biomarkers and timely 
intervention, particularly in light of future disease- modifying ther-
apies	for	AD.

In	conclusion,	IAF	emerges	as	a	valuable	asset	in	dementia	differ-
ential diagnosis and prognosis. Its accessibility, coupled with its as-
sociations with amyloid status and neurodegeneration, underscores 
its potential to aid the diagnostic landscape. Furthermore, its prog-
nostic	value	in	identifying	A+	MCI	patients	at	imminent	risk	of	con-
version	to	dementia	positions	IAF	as	a	critical	tool	in	the	pursuit	of	
timely and targeted interventions, particularly in the era of emerging 
disease-	modifying	therapies	for	AD.
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