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A B S T R A C T

Multiple sclerosis (MS) is a neurological disorder characterized by immune dysregulation. It begins with a first
clinical manifestation, a clinically isolated syndrome (CIS), which evolves to definite MS in case of further
clinical and/or neuroradiological episodes. Here we evaluated the diagnostic value of transcriptional alterations
in MS and CIS blood by machine learning (ML).
Deep sequencing of more than 200 blood RNA samples comprising CIS, MS and healthy subjects, generated

transcriptomes that were analyzed by the binary classification workflow to distinguish MS from healthy subjects
and the Time-To-Event pipeline to predict CIS conversion to MS along time. To identify optimal classifiers, we
performed algorithm benchmarking by nested cross-validation with the train set in both pipelines and then tested
models generated with the train set on an independent dataset for final validation.
The binary classification model identified a blood transcriptional signature classifying definite MS from

healthy subjects with 97% accuracy, indicating that MS is associated with a clear predictive transcriptional
signature in blood cells. When analyzing CIS data with ML survival models, prediction power of CIS conversion to
MS was about 72% when using paraclinical data and 74.3% when using blood transcriptomes, indicating that
blood-based classifiers obtained at the first clinical event can efficiently predict risk of developing MS.
Coupling blood transcriptomics with ML approaches enables retrieval of predictive signatures of CIS con-

version and MS state, thus introducing early non-invasive approaches to MS diagnosis.

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory demyelinating
disease of the central nervous system (CNS), characterized by profound

heterogeneity in clinical course and progression (Marrie et al., 2022).
The disease begins with a first clinical manifestation suggestive of MS,
referred to clinically isolated syndrome (CIS) which evolves to definite
MS in case of further clinical and/or neuroradiological episodes (Marrie
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et al., 2022). The probability to diagnose MS changes depending on the
applied diagnostic criteria, and has increased e.g. from McDonald
criteria 2010 to Mc Donald criteria 2017, with 2017 criteria however
suffering from low specificity as developed to maximise therapeutic care
(Filippi et al., 2022). Thus, assessment of CIS conversion to MS may
require time and imply costs for treatments, which represent a major
economic burden in MS care (Bebo et al., 2022). While early diagnosis
and treatment of the disease are important to prevent irreversible
damage (Stankiewicz & Weiner, 2020), unnecessary exposure to drugs
and adverse drug reactions in CIS subjects who will never progress to
definite MS has to be avoided (Ng et al., 2024;Chung et al., 2020). For all
these reasons, the identification of predictive factors measured at the
first clinical event, possibly based on non-invasive approaches, is a
relevant unsolved clinical need. Peripheral blood mononuclear cells
(PBMC) from MS subjects harbor dysregulations in their transcriptional
profiles (Srinivasan et al., 2017a; Srinivasan et al., 2017b), so that they
may serve for machine learning-based classification of patients with
distinct forms of disease (Acquaviva et al., 2020). Here we moved to
whole blood transcriptomics to select transcriptional signatures pre-
dicting CIS conversion and MS state.

2. Materials and mehods

2.1. Human subjects

The study included initially 225 individuals, comprising subjects
with CIS, RR-MS patients and healthy controls (HC). This research was
conducted according to the principles expressed in the Declaration of
Helsinki and after approval of the Ethics Committees of involved hos-
pitals. Written informed consent was obtained from all participants. Sex
at birth and age were collected from all subjects, while information on
gender and socioeconomic status was not under analysis. All healthy
individuals had no acute or chronic inflammatory or autoimmune dis-
orders at the time of blood sampling. CIS subjects had a recent first
neurological episode with symptoms suggestive of demyelination, they
were with or without white matter (WM) brain MRI abnormalities and
those without brain MRI lesions had spinal cord lesions. Oligoclonal
bands in the liquor and serum were checked by standard diagnostics,
and 68 CIS and 53 RR-MS patients resulted positive. Blood sampling for
deep RNA sequencing was performed between month 1 and 3 from the
first clinical event in most cases. All CIS and RR-MS subjects were
clinically stable at the time of blood sampling (defined as no relapses
and no steroid treatment in the month before sampling), were not
suffering from any other acute or chronic inflammatory/autoimmune
diseases and were not under any disease-modifying treatment (treat-
ment naïve in most cases except for 4 RR-MS patients). RR-MS subjects
were distinct from the CIS cohort and had median disease duration of
2.01 ± 4.86 years. Median time between the last relapse and blood
sampling was 6.39 ± 32.20 months. Peripheral blood was collected into
PAXgene Blood RNA Tubes (Qiagen) between 9 and 12 a.m. Clinical
follow up of CIS subjects was performed every three months for the first
year and then yearly unless neurological deterioration emerged. Brain
and spinal cord MRI scans were acquired using 1.5 or 3.0 Tesla scanners
using standardized protocols. More specifically, for the brain, axial dual-
echo (DE) and/or fast fluid-attenuated inversion recovery (FLAIR) and
post-contrast (0.1 mmol/kg of gadolinium [Gd]-DTPA; acquisition
delay: ≈ 10 min) T1-weighted sequences were acquired at baseline and
at follow-up. Slice thickness varied between 3 and 5 mm, in-plane res-
olution between 0.45 and 1.0 mm, no gap between slices. For the spinal
cord, sagittal short tau inversion recovery (STIR) and/or T2-weighted
and post-contrast T1-weighted sequences (0.1 mmol/kg of gadolinium
[Gd]-DTPA; acquisition delay: 5 min) with 3 mm slice thickness, in-
plane resolution between 0.4375 and 1.0 mm, no gap between slices,
covering the cervical and thoracic cord were acquired. All images were
assessed by consensus by two experienced observers, blinded to the
patients’ identity and MS status at the Neuroimaging Research Unit

(Milan, Italy). Brain white matter (WM) lesions were identified on dual-
echo/FLAIR images and were defined as hyperintensities involving at
least 3 voxels, present on at least two slices and visible on two different
sequences (e.g., FLAIR and T2 or proton density and T2). Spinal cord
lesions were identified on sagittal short tau inversion recovery (STIR)
and/or T2-weighted sequences. Total number of WM lesions, number of
periventricular (abutting the lateral ventricles without intervening
WM), juxtacortical (touching the cortex), cortical (within the cortex),
posterior fossa (located in the brainstem, cerebellar peduncles and
cerebellar hemispheres) and spinal cord lesions were evaluated
following published recommendations (Filippi et al., 2019). Gd-
enhancing lesions (area of hyperintensity on post-contrast T1-
weighted images) were identified on post-contrast T1-weighted scans.
On the MRI scan acquired at follow-up, the numbers of new T2-
hyperintense and Gd-enhancing lesions were quantified.

2.2. Generation of whole blood RNA for sequencing experiments

RNA extraction was conducted using PAXgene Blood RNA Kit (Qia-
gen). RNA quantification was performed on Nanodrop (Thermo Fisher
Scientific) and quality control was conducted using Bioanalyzer 2100
with Agilent RNA 6000 Nano Kit (Agilent). RNA integrity (RIN) values
were all above 8. RNA samples were processed with Globin-Zero™ Gold
Kit (Illumina) to remove rRNA and globin mRNA.

2.3. RNA seq experiment, quality controls and data processing

Sequencing libraries were generated using TruSeq Stranded mRNA
Library Prep (Illumina) following manufacturer’s instructions. Paired-
end RNA sequencing was performed with NovaSeq 6000 technology
(Illumina) and reached an average depth of 45 million reads. Initial
RNAseq quality control (QC) checks included evaluation of GC and per-
base sequence content using FastQC (v0.11.9). All raw reads that passed
initial QC were aligned to the human reference genome (hg38/GRCh38)
using STAR (v2.5.3a). Post-alignment QC including quantification of
mapped reads on unique regions and coding sequences was conducted
using the MultiQC (v1.9.0) tool. Gene expression quantifications (raw
read counts) were calculated using the function featureCounts from R
package Rsubread (v1.22.2) and Gencode v28 basic annotation, and
pseudogenes were removed. Transcriptome datasets reached at least 10
million reads for 90 % of included samples.

2.4. Generation and processing of training and validation datasets for
classifier development

For the generation of the final transcriptome dataset, transcripts
were retained if expressed in at least 55 subjects (the number of subjects
in the smallest group in the data, HC) according to R package edgeR
(v3.26.8). Next, CPM (Count-per-million) were calculated for the
retained transcripts. For outlier detection the distance among all sub-
jects was calculated using Pearson correlation coefficient and Z scores
were calculated for correlation matrix. Subjects with Z score less than
− 2 were identified as outliers (5 CIS and 2 RR-MS) and excluded from
the analysis. The final dataset used for machine learning studies
included 218 individuals, comprising 94 CIS subjects, 69 RR-MS patients
and 55 healthy controls (HC) (Table S1). Raw read counts were then
transformed into transcripts per kilobase million (TPM) to correct for
both sequencing depth and gene length. Then, each class was divided in
training and validation cohorts avoiding clinical, age and sex biases for
proper model development. A TPM value ≥ 2 was applied to training
sets and between-sample normalization was avoided to assure complete
independence between training and validation data sets.

2.5. Machine learning pipeline

To construct binary classifiers, our previously developed machine
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learning workflow (Acquaviva et al., 2020) was assembled using Python
with implementations for AdaBoost-FT, AdaBoost-DC and RF algo-
rithms. A ten-fold stratified NCV provided hyper-parameter optimiza-
tion on different partitions of training data and a set of hyperparameters
which maximised F-measure (harmonic mean of precision and recall)
was selected as optimal hyperparameters. Hyper-parameters used for
AdaBoost-FT were the number of iterations (I=2 to 10; step= 1) and the
learning rate (h = 0.2 to 0.9; step = 0.1). Resampling instead of
reweighting was applied to AdaBoost as it showed superior perfor-
mance. Hyper-parameters used for RF were the number of trees (nt =
500 to 2000; step= 500) and the number of selected features (mtry= 50
to 300; step = 50; where sqrt of nTot features= 100). Hyper-parameters
used for AdaBoost-DT were the number of iterations (I=2 to 10; step =

1) and the learning rate (h = 0.2 to 0.9; step = 0.1). The model with the
best hyperparameters was re-trained on the whole training set and
applied to the independent test set for final validation. To build more
robust classifiers we repeated this procedure with a set of features that
contributed more than 2 times to the classifier nodes. Precision-recall
curves and AUPRC were generated using Python package matplotlib.
Alternatively, numpy and scikit-learn packages were introduced in Py-
thon and applied to generate random combinations of 107 transcripts
(1000 iterations) from the whole transcriptome devoid of the predictive
RR-MS features before running the binary classification pipeline. Then,
models were built on the training set by AdaBoost algorithm with the
same hyperparameters optimized for the predictive RR-MS signature
and validated on the independent test set. Sklearn.metrics package in
Python was used to calculate and plot accuracy and confidence interval.

To build time-to-event classifiers, we developed a highly customized
machine learning pipeline by adapting and extending the R code
developed by Heider et al.(Haider et al., 2020) for the construction of
“individual survival time distribution” (ISD) models. A schematic rep-
resentation of the resulting pipeline is shown in Fig. 3A. We assembled a
10-fold stratified cross validation (CV) loop for hyperparameter opti-
mization and comparison of three distinct machine learning algorithms:
RSF, gbmCoxPH and CoxPH_KPEN. In the first step, data were split into
training (63) and test (31) set and hyperparameter optimization was
performed using the training dataset. Eventually, we used Gradient
Boosting with Component-wise Linear Model (glmboost) using mboost
package to achieve proper feature selection in ultra-high dimensional
settings and adapted it to treat time-to-event censored data through the
application of inverse probability of censoring weights. Feature selec-
tion was performed on the whole training set to avoid any information
leakage and bias during optimization. Hyperparameters were number of
trees (nt = 9000 to 18000; step = 3000), number of selected features
(mtry = 20 to 30; step = 5) and node size (size = 5 to 15; step = 5). The
optimization CV loop was designed to find the combination of hyper-
parameters that minimize the prediction error of each candidate
model, calculated as 1- Concordance index (C-index). The C-index, a
goodness of fit measure commonly used to evaluate risk models in sur-
vival analysis, was employed to evaluate model performance.

To examine the power of paraclinical features in predicting MS
conversion, we designed a time-to-event experiment using positivity for
oligoclonal bands in liquor and presence of MS lesions at distinct central
nervous system locations at the first clinical event as features. Moreover,
we tested whether these paraclinical measures could improve the pre-
diction power of whole blood-derived transcripts by applying the time-
to-event workflow to aggregated data.

pca3d package (v0.10.2) in R was used for PCA plots, while the
ggplot2 package (v3.3.6) was applied for other plots. Differential
expression analysis was performed for selected features by unpaired t-
test for normally distributed data or Mann-Whitney U test in case of non-
normal distribution. Functional annotation was performed using Top-
pGene Suite (https://toppgene.cchmc.org/).

3. Results

3.1. Inspection of global blood transcriptomes showed separation of RR-
MS from CIS and healthy controls

More than 200 subjects, including treatment-naïve relapsing-
remitting (RR) MS patients, CIS patients and sex- and age-matched
healthy controls (HC), were recruited for this study and whole blood
was collected into Pax-gene Blood RNA tubes during remission for RR-
MS subjects and between month 1 and 3 from the first clinical event
for CIS subjects (see Methods for details). After removal of rRNA and
globin mRNA, RNA specimens were processed for deep paired-end RNA
sequencing with NovaSeq 6000 technology, which reached an average
of 45 million reads per sample. After alignment to human reference
genome hg38/GRCh38 and removal of non-expressed transcripts and
outliers (see Methods for details), the resulting global blood tran-
scriptomes were grouped according to class (Fig. 1A) and inspected by
principal component analysis (PCA). The PCA plot displayed clear sep-
aration of RR-MS from HC and CIS subjects, while minor distances
existed between CIS and HC (Fig. 1B).

3.2. Binary models correctly distinguished relapsing-remitting MS from
the healthy condition but were inaccurate in the prediction of early CIS
conversion

To explore whether whole blood transcriptomes could discriminate
RR-MS subjects from the healthy population, we divided the dataset into
distinct training and test sets with similar demographic features
(Table S1) and applied our previously published machine learning
pipeline for binary classification (Acquaviva et al., 2020). Initially, we
performed algorithm benchmarking using RNA-seq data of the training
set and comparing the performance of three distinct machine learning
algorithms (Random Forest RF, AdaBoost Functional Tree FT and Ada-
Boost Decision Tree DT) by nested cross validation (NCV) (Fig. 2A).
During NCV the algorithm was trained, optimized and tested on
different partitions of the training set for unbiased evaluation of the
resulting classifier (Fig. 2A). Precision-recall curves and relative areas
under the precision-recall curve (AUPRC) indicated high classification
performance for the three algorithms in this task (Fig. 2B). Algorithms
were then re-trained on the complete training set using the optimized
parameters and applied to the independent test set for final validation
(Fig. 2C). They generated very accurate models differentiating RR-MS
from healthy subjects, with AdaBoost FT showing the best perfor-
mance (Fig. 2D). Training of this algorithm on 90 blood transcriptomes
relative to 49 RR-MS and 41 HC subjects extracted a model based on 107
transcripts, which correctly classified 14/14 healthy subjects and 19/20
RR-MS patients of the independent test set, resulting in exceptional
precision (100 %), recall (95 %) and overall accuracy (97 %) (Fig. 3A).
The same signature displayed modest prediction power (65 % accuracy)
when AdaBoost algorithm was applied without hyperparameter opti-
mization (Figure S2). As further control experiment, we implemented a
Bootstrap approach for iterated random selection of 107 transcripts from
the transcriptome deprived of the predictive RR-MS features, applied
AdaBoost algorithm with hyperparameters optimized for the predictive
signature and verified prediction accuracy of 1000 distinct random
combinations of 107 transcripts on the test set. This experiment
measured a mean accuracy of 75 % (95 % confidence interval 61–88 %)
for the random selection of 107 features (Figure S3), thus proving that
prediction obtained with the RR-MS signature was not due to chance.

PCA plots built on RR-MS features separated subjects according to
disease state and not sex (Fig. 3B and C). These data indicate that MS is
associated with clear predictive transcriptional signals in blood cells that
may equally classify female and male patients. Among predictive tran-
scripts, some were regulatory RNAs such as long non-coding RNAs, or
RNAs coding for proteins involved e.g. in RNA metabolism and immune
signaling (Fig. 3D, Table S2). Among the 107 features, 74 were
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differentially expressed between RR-MS and HC, with 48 upregulated
and 26 downregulated transcripts in RR-MS (Table S2).

To assess whether the RR-MS model was already present at the onset
of disease, we added 31 CIS blood transcriptomes to the test set and
verified their classification by the RR-MS model. As shown in Fig. 3E,
only 10 out of 31 CIS subjects were classified as RR-MS, indicating that
this transcriptional model is suitable to identify definite RR-MS but is
not reproduced in CIS yet.

As only a proportion of CIS subjects is going to develop MS, we
investigated whether whole blood CIS transcriptome carried sufficient
information to predict conversion from CIS to MS by 12 months from
disease onset. Clinical and magnetic resonance imaging (MRI) follow-up
examinations of CIS subjects were performed as described in methods,
and conversion status was defined according to the 2010 revision of
McDonald diagnostic criteria (Filippi et al., 2022). We then applied our
binary classification pipeline to transcriptomes of early converters
(named Conv CIS), who developed MS within 12 months from the first
episode, and compared them to those of CIS subjects who developed MS
after 12 months or were still not converted at the last follow up visit
(named nonConv CIS, Fig. 3F). Algorithm training on 63 blood

transcriptomes led to the definition of a 58 transcript-based signature,
which however classified correctly only 2 out of 12 Conv CIS and 16 out
of 19 nonConv CIS of the independent test set, resulting in low precision
(40 %) and accuracy (58 %). Thus, early converters to MS are not
identified when analyzing blood transcriptome with the conventional
binary classification following an arbitrary conversion time threshold.

3.3. Time-to-event models predicted conversion to MS more reliably when
based on blood transcriptomes than on paraclinical data at the first clinical
episode

Conversion time to MS is a continuous variable, which may greatly
vary among the patients as shown also for our cohort (Fig. 1S). Time-to-
event analysis, which integrates occurrence of the event of interest with
a range of time, includes statistical tools for machine learning ap-
proaches and has found some application in medicine (Wang et al.,
2019). To overcome limitations of the binary classification paradigm in
the prediction of CIS conversion to MS, we assembled a time-to-event
machine learning framework (Fig. 4A, Table S3), which exploited tem-
poral information relative to the conversion event for each CIS subject,

Fig. 1. Demographic features of the subjects included in the study and relative blood transcriptome distribution. A. Demographic characteristics of the
subjects included in the study according to class. B. PCA plot of whole blood transcriptomes according to class (HC, blue; CIS, orange; RR-MS, green). Larger symbols
indicate centroids.
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thus producing time-dependent and subject-specific survival probability
curves. Three distinct time-to-event algorithms (Random Survival For-
ests RSF, Gradient Boosting Machines combined with Cox Proportional
Hazards gbmCoxPH and CoxPH_KPEN) were initially trained, optimized
and tested on blood transcriptomes derived from different partitions of
the training set in a 10-fold CV loop (Fig. 4A, Table S3). The models were
then re-trained on the complete training set using the optimized pa-
rameters and applied to the independent test set for final validation
(Fig. 4A). As shown in Table S4, the three algorithms reached scarce C-
index values both in the CV experiment with the train set and on the test
set. Introduction of a feature selection step by glmboost algorithm before
time-to-event algorithm benchmarking improved performance of
CoxPH_KPEN on the training set (C-index= 87.3 %) which was however
not confirmedwith the test set (C-index= 54.2%), demonstratingmodel
overfitting to the training set. Importantly, the RSF algorithm led to
personalized transcripts-based survival curves (Fig. 4C) reaching a C-
index of 74.3 % in the independent test cohort when trained with the 58
glmboost-selected transcriptional features (Fig. 4B). The same pipeline
constructed a model with scarse performance on the independent test

when conversion time and event were defined according to more recent
diagnostic criteria (C-index = 56.4 %, Table S5). Most of the 58 pre-
dictive features (60.34 %) belonged to regulatory RNAs such as micro-
RNAs and long non-coding RNAs (Fig. 4D, Table S6). Functional
annotation confirmed that the conversion signature was significantly
enriched in members of the microRNA gene family (FDR-corrected p-
value 9.740e-7).

We then examined the contribution of paraclinical data (positivity
for oligoclonal bands in liquor and presence of periventricular, juxta-
cortical, infratentorial brain lesions and/or spinal cord lesions as
detected by MRI) measured at the first clinical episode to the prediction
of CIS conversion. Time-to-event analysis using the RSF algorithm on
paraclinical features constructed a model with moderate performance
on the independent test cohort (C-index = 70.5 %, Fig. 4B). Addition of
demographic and/or paraclinical features to the previously selected 58
transcript-based signature reached a C-index of about 72 % (Fig. 4B),
indicating that blood transcriptional features are sufficient to obtain
conversion risk prediction and that this model is not influenced by sex
and age of the subjects.

Fig. 2. Machine Learning Pipeline for binary classification. A. Nested cross-validation (NCV) for algorithm benchmarking. At each fold of the outer CV, tran-
scriptomic data of the training set are split in two sub-sampled datasets, one for training and the other for testing. The sub-sampled training set enters the hyper-
parameter optimization loop for three machine learning algorithms (AdaBoost-FT, AdaBoost-DT, and RF algorithms), where it is further split into training and
test partitions following a second 10-fold CV (inner CV), where different combinations of hyper-parameters are evaluated (one 10-fold CV for each combination). The
combination of hyper-parameters that maximize the F-measure (harmonic mean of precision and recall) of the class of interest is retained as optimal, applied to the
algorithm, and tested on the test set of the corresponding outer CV fold. The entire procedure is repeated 10 times, and the averaged performance is collected at the
end of the outer CV loop and used for algorithm comparison. B. Comparison of the performance obtained by the three algorithms in the NCV experiment on the
training set is shown as precision-recall (PR) curves and relative areas under the curves (AUPRCs). C. Final optimization and validation of the models. The whole
training dataset enters the hyper-parameter optimization loop, where it is subjected to the search for the combination of hyper-parameters that maximize the F-
measure. The optimal hyper-parameters are applied to the algorithm, which is trained on the whole training set and tested on the independent test set for final
validation. D. Comparison of the performance of the different algorithms on the independent test set for RR MS versus HC classifiers.

M. Omrani et al.



Brain Behavior and Immunity 121 (2024) 269–277

274

4. Discussion

Here we found that whole blood transcriptomes deliver key predic-
tive information about multiple sclerosis risk and state that can be
reproducibly captured and validated by artificial intelligence.

Given the importance of MRI in MS diagnosis, prognosis and treat-
ment monitoring, the majority of published prediction tasks by machine
learning focused on MRI data, alone or jointly with clinical data
(Bonacchi et al., 2022). Regarding MS diagnosis, no validated models
were developed to distinguish MS from healthy subjects despite the good
prediction accuracy shown by cross-validation studies using conven-
tional (Bonacchi et al., 2022; Eitel et al., 2019; Lopatina et al., 2020) or
advanced (Yoo et al., 2018; Zurita et al., 2018) MRI data, as their

applicability suffers from the difficulty to obtain reproducible and
repeated MRI measurements and cover relative costs. Promising classi-
fication results were also obtained when analyzing paraclinical cere-
brospinal fluid and/or blood parameters (Barbour et al., 2017; Goyal
et al., 2019; Gross et al., 2021). Our group recently demonstrated that
PBMC carry transcriptional markers shared among MS stages and forms
that can predict MS diagnosis with 89 % accuracy in an independent test
set including healthy people and subjects with MS or other neurological
disorders (Acquaviva et al., 2020). Here, to reduce blood sample pro-
cessing and exploit deep RNA sequencing, we generated large and ac-
curate whole blood mRNA repertoires from RR-MS and healthy subjects
suitable for our machine learning binary classification pipeline. The
model displayed 97 % accuracy on the independent test set,

Fig. 3. Machine learning-based binary classification of CIS and RR-MS state from blood transcriptome. A. Identification of binary classifiers from whole blood
transcriptomes discerning RR-MS subjects from the healthy population. B-C. PCA plots generated by the predictive 107 transcriptional features when classifying
disease state (B) or sex (C). Larger symbols indicate centroids. D. Main RNA classes within 107 transcript-based RR-MS signature. E. Application of RR-MS vs. HC
model to an independent test set including 31 CIS blood transcriptomes. F. Binary classification to predict early converters (Conv CIS) and non converters (non-
Conv CIS).
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demonstrating that the analysis of whole blood instead of PBMC or
specific immune cell subsets did not result in the loss of predictive in-
formation and that a single blood sample was sufficient to assess disease
state. A good proportion of predictive markers were lncRNA, miRNA,
snoRNA, others coded for proteins involved in processes known to be
altered in MS, including inflammatory and oxidative stress (i.e. MS-
associated upregulation of CARD16 (Karasawa et al., 2015; Musella
et al., 2020) and RORC (Capone& Volpe, 2020), and down-regulation of
PRXL2A/FAM213A (Guo et al., 2015) and NQO1 (Dinkova-Kostova &
Talalay, 2010;van Horssen et al., 2011)), mitochondrial function (i.e.
APOO (Tang et al., 2023) and COX8A (Hallmann et al., 2016; Gonzalo
et al., 2019) both upregulated in RR-MS transcriptomes), innate im-
munity and antigen presentation (downregulation of CCL28 (Mohan
et al., 2017) and upregulation of CLN3 (Hersrud et al., 2016)), CD8 T cell
exhaustion (i.e. upregulation of HMGB2 (Neubert et al., 2023; Smolders
& Hamann, 2022)) and IgA synthesis (upregulation of IGHA1 (Boussa-
met et al., 2022)).

Machine learning-based imaging diagnostics in patients with a
clinically isolated syndrome showed modest (65–70 %) accuracy in
predicting clinical conversion to MS in cross-validation binary classifi-
cation experiments using baseline MRI data (Bendfeldt et al., 2019;
Wottschel et al., 2019). Though accurate in discriminating RR-MS from
the healthy population, our MS blood RNA signature was ineffective to
predict CIS converters from non converters. Conversion time, however,

follows a continuous, not binary distribution, urging the development of
novel machine learning pipelines incorporating conversion time into
analysis. Here we described a time-to-event machine learning workflow
which leveraged conversion status together with conversion time and
analyzed different types of data, including demographic, paraclinical
and blood transcriptome parameters. Comparison of distinct diagnostic
criteria indicated the existence of biological correlates in blood tran-
scriptomes for 2010 and not 2017 clinical criteria. This is not unex-
pected as 2017 criteria were developed to maximize therapeutic care
and therefore suffer from low specificity (Filippi et al., 2022). Interest-
ingly, the best classification result in the independent test set was ob-
tained by the signature based on transcriptional markers only. Most of
them were regulatory RNAs, while others coded for proteins involved in
e.g. antigen presentation (HLA-DQB2 (Ferrè et al., 2020)), complement
activation (C4BPA (Werner & Criss, 2023)), γ/δ T cell function (TRGV4
(Reijneveld et al., 2020), TRGV5 (McKenzie et al., 2022) and BTNL3
(Willcox et al., 2019)), immunoregulation (TMEM176B, (Hill et al.,
2022) and PTGES (Loynes et al., 2018)), antiviral responses (ARHGDIA,
(Cohn et al., 2022), ATOH8 (Liu et al., 2023), BEX1 (Martens et al.,
2022)), processes which still need investigation in early MS.

In conclusion, here we describe that blood transcriptomics analyzed
by artificial intelligence identifies predictive markers providing 97 %
accuracy for definite MS. This information extends to whole blood the
observation about relevant changes in peripheral immunity previously

Fig. 4. Machine learning-based Time-To-Event analysis of CIS conversion. A. Workflow for machine learning-based Time-To-Event analysis of CIS data. The
initial transcriptomics dataset is partitioned into distinct training and test sets with similar demographic and clinical features (Table S3). For algorithm optimization
and comparison the training set enters a hyper-parameter optimization loop, where it is further divided into training and test partitions through 10-fold cross-
validation. The hyper-parameter combination minimizing prediction errors is then applied to the algorithms, which are trained on the whole training set and
tested on the independent test set. Eventually, a feature selection step with glmboost algorithm is applied before algorithm benchmarking. B. Performance of RSF-
based model when applied to CIS data (blood transcriptomes and/or paraclinical data eventually with demographic features) obtained at the first episode. C. RSF-
based survival probabilities for 31 CIS subjects of the independent test set. D. Main RNA classes within the 58 transcript-based CIS signature.
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described for PBMC transcriptomes (Acquaviva et al., 2020). The MS
transcriptional signature is however ineffective for the CIS stage, sug-
gesting that time and disease evolution are necessary to fix it in blood
cells. We also provide the first proof-of principle study where applica-
tion of machine learning-based time-to-event analysis to whole blood
transcriptomes can predict personalized conversion risks with good ac-
curacy. Clearly, despite the current project already analyzed deep RNA
sequencing and paraclinical data relative to more than 90 CIS subjects,
future studies with larger cohorts are necessary to further optimize and
validate the model. However, compared to the current diagnostic path,
which requires several clinical follow-up examinations, the advantage of
our approach is that blood transcriptome-based models can be captured
at the first clinical event and predict more efficiently than paraclinical
features at baseline, thus allowing early definition of risk of conversion
to MS. Prospectively the described machine learning pipelines may be
applied to verify whether blood transcriptomics may support the specific
identification of MS from other CNS demyelinating diseases such as
neuromyelitis optica or myelin oligodendrocyte glycoprotein antibody-
associated disease, or allow early prognostic stratification of MS ac-
cording to disease activity and course.
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Hersrud, S.L., Kovács, A.D., Pearce, D.A., 2016. Antigen presenting cell abnormalities in
the Cln3-/- mouse model of juvenile neuronal ceroid lipofuscinosis. Biochim.
Biophys. Acta Mol. basis Dis. 1862 (7), 1324–1336. https://doi.org/10.1016/j.
bbadis.2016.04.011.

Musella, A., Fresegna, D., Rizzo, F.R., Gentile, A., De Vito, F., Caioli, S., Guadalupi, L.,
Bruno, A., Dolcetti, E., Buttari, F., Bullitta, S., Vanni, V., Centonze, D., Mandolesi, G.,
2020 Jan. ’Prototypical’ proinflammatory cytokine (IL-1) in multiple sclerosis: role
in pathogenesis and therapeutic targeting. Expert Opin Ther Targets 24 (1), 37–46.
https://doi.org/10.1080/14728222.2020.1709823. Epub 2020 Jan 3 PMID:
31899994.

Hill, M., Russo, S., Olivera, D., Malcuori, M., Galliussi, G., & Segovia, M. (2022). The
intracellular cation channel TMEM176B as a dual immunoregulator. In Frontiers in
Cell and Developmental Biology (Vol. 10). Frontiers Media S.A. https://doi.org/
10.3389/fcell.2022.1038429.

Karasawa, T., Kawashima, A., Usui, F., Kimura, H., Shirasuna, K., Inoue, Y., Komada, T.,
Kobayashi, M., Mizushina, Y., Sagara, J., Takahashi, M., 2015. Oligomerized
CARD16 promotes caspase-1 assembly and IL-1β processing. FEBS Open Bio 5,
348–356. https://doi.org/10.1016/j.fob.2015.04.011.

Liu, X., Fan, Z., Chen, L., Yang, J., Cheng, J., 2023. ATOH8 promotes HBV immune
tolerance by inhibiting the pyroptotic pathway in hepatocytes. Mol. Med. Rep. 28 (1)
https://doi.org/10.3892/mmr.2023.13018.

Lopatina, A., Ropele, S., Sibgatulin, R., Reichenbach, J.R., Güllmar, D., 2020.
Investigation of Deep-Learning-Driven Identification of Multiple Sclerosis Patients
Based on Susceptibility-Weighted Images Using Relevance Analysis. Front. Neurosci.
14 https://doi.org/10.3389/fnins.2020.609468.

Loynes, C. A., Lee, J. A., Robertson, A. L., Steel, M. J., Ellett, F., Feng, Y., Levy, B. D.,
Whyte, M. K. B., & Renshaw, S. A. (2018). PGE 2 production at sites of tissue injury
promotes an anti-inflammatory neutrophil phenotype and determines the outcome
of inflammation resolution in vivo. In Sci. Adv (Vol. 4).

Marrie, R.A., Allegretta, M., Barcellos, L.F., Bebo, B., Calabresi, P.A., Correale, J.,
Davis, B., De Jager, P.L., Gasperi, C., Greenbaum, C., Helme, A., Hemmer, B.,
Kanellis, P., Kostich, W., Landsman, D., Lebrun-Frenay, C., Makhani, N., Munger, K.
L., Okuda, D.T., Tremlett, H., 2022. From the prodromal stage of multiple sclerosis to
disease prevention. Nat. Rev. Neurol. 18 (9), 559–572. https://doi.org/10.1038/
s41582-022-00686-x.

Martens, C.R., Dorn, L.E., Kenney, A.D., Bansal, S.S., Yount, J.S., Accornero, F., 2022.
BEX1 is a critical determinant of viral myocarditis. PLoS Pathog. 18 (2) https://doi.
org/10.1371/journal.ppat.1010342.

McKenzie, D.R., Hart, R., Bah, N., Ushakov, D.S., Muñoz-Ruiz, M., Feederle, R.,
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