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Résumé : Dans [Boccuni 2010], un fragment prédicatif du blv de Frege
augmenté de la quantification plurielle illimitée de Boolos interprète pa2. Le
principal inconvénient de cette axiomatisation est qu’elle ne récupère pas Frege
Arithmetic (fa), en raison des restrictions imposées aux axiomes. Le but du
présent article est de montrer comment [Boccuni 2010] peut être étendu de
manière cohérente afin d’interpréter fa et par conséquent pa2 d’une manière
qui soit parallèle à celle de Frege. Ce faisant, le système présenté sera mis en
comparaison avec le système pe dans [Ferreira 2018] et quelques différences
pertinentes entre les deux seront mises en évidence.

Abstract: In [Boccuni 2010], a predicative fragment of Frege’s blv
augmented with Boolos’ unrestricted plural quantification is shown to interpret
pa2. The main disadvantage of that axiomatisation is that it does not recover
Frege Arithmetic fa because of the restrictions imposed on the axioms. The
aim of the present article is to show how [Boccuni 2010] can be consistently
extended so as to interpret fa and consequently pa2 in a way that parallels
Frege’s. In that way, the presented system will be compared with the system
pe in [Ferreira 2018] and some relevant differences between the two will be
highlighted.

1 Plural Grundgesetze

Frege’s Grundgesetze der Arithmetik is notoriously inconsistent. So-called
Russell’s paradox arises from Frege’s Basic Law V (blv) and the impredicative
second-order comprehension axiom that accompanies it. There may be no
general agreement on which one of the axioms involved in the inconsistency is
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the real culprit.1 Nevertheless, as far as Frege’s Grundgesetze are concerned,
the fact of the matter is that full second- or higher-order comprehension and
full Basic Law V jointly lead to inconsistency.

Quite recently, some fragments of Frege’s Grundgesetze were proved
consistent, i.e., [Ferreira & Wehmeier 2002], [Heck 1996], [Wehmeier 1999].
Heck deploys predicative comprehension [Heck 1996], while both [Ferreira
& Wehmeier 2002] and [Wehmeier 1999] adopt ∆1

1-comprehension. Their
major shortcoming is that they interpret only very weak, though non-trivial,
subsystems of arithmetic, like Robinson’s Q.2

More recently, [Boccuni 2010] proposed to augment Heck’s predica-
tive fragment of Frege’s Grundgesetze in [Heck 1996] by Boolos’ plural
quantification—see e.g., [Boolos 1985]. The resulting axiomatic system, i.e.,
Plural Grundgesetze (pg), is shown to interpret pa2. The axioms of pg are a
Plural Comprehension Principle

plc: ∃xx∀x(x ≺ xx↔ φx),

where φx does not contain xx free;3 a Predicative Comprehension Principle

prc: ∃F∀x(Fx↔ φx),

where φx contains neither F free, nor free plural variables, nor bound second-
order variables;4 and a schematic formulation of Basic Law V :

1. See, for instance, the famous debate between Boolos and Dummett on the cause
of the inconsistency in Frege’s Grundgesetze. Dummett ascribes the inconsistency to
the underlying second-order logic, in particular to the indefinite extensibility of the
very notion of concept. On the other hand, Boolos ascribes the contradiction to the
violation of Cantor’s theorem embodied in the one-to-one correspondence Frege’s blv
poses between concepts and objects. But see [Paseau 2015] in this respect.

2. See [Burgess 2005, § 2.6], [Ferreira & Wehmeier 2002], [Heck 1996], and
[Wehmeier 1999]. Famously, Robinson’s Q lacks a (first-order) induction principle,
i.e., φ0 ∧ ∀x(φx → φsx) → ∀xφx. In the above consistent subsystems of Frege’s
Grundgesetze, the concept being a natural number cannot be defined in such a way
that any interesting class of inductions can be proved, because of its irreducible
impredicativity—e.g., this is pointed out by [Heck 1996] with regards to their
predicative subsystem of Grundgesetze. Also, it has to be mentioned that the
extension operator governed by (fragments of) blv can either be functional and
take second-order variables as arguments, or variable-binding and take first-order
variables as arguments. For instance, [Ganea 2007] proves the equi-interpretability
of the predicative fragment of blv with a functional operator with Robinson’s Q. See
also [Cruz-Filipe & Ferreira 2015] for a thorough discussion of these issues.

3. In [Boccuni 2010] a different notation is used for plural formulæ, i.e., xηX,
meaning “x is one of the xs”. In the present article, I will rephrase [Boccuni 2010]’s
plural notation in the standard notation, i.e., x ≺ xx. Other things being equal,
these two notations imply neither a deductive nor a semantic difference.

4. See [Boccuni 2010] and [Boolos 1985] for considerations supporting the claim
that prc is indeed predicative, even though it allows for bound plural variables on its
right-hand side. Also, the aim of this article is merely technical, so I will not delve into
philosophical issues. Still, for philosophical considerations on the difference between
plural and second-order quantification, see [Boccuni 2010].
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v: {x : φx} = {x : ψx} ↔ ∀x(φx↔ ψx).

The restrictions on the formulæ permitted in the extension-terms are
exactly the same restrictions imposed on the right-hand side of prc. By this
strategy, pg, in a rather Fregean spirit, guarantees that there is a one-to-
one correspondence between concepts and extensions.5 This, nevertheless,
cripples the system to the effect that, though it recovers pa2, it does not
interpret Frege Arithmetic fa. This latter consists of full second-order logic
and Hume’s Principle (hp): ∀F,G(#F = #G↔ F ≈ G), which says that the
number of the F s is identical with the number of the Gs just in case F and G
are equinumerous. In fact, a Fregean definition of the number operator # in
terms of extensions, which is crucial for recovering fa from blv, requires that
bound second-order variables be allowed in the scope of the extension operator.
This dictates that the very definition of # is not available in pg, let alone the
derivation of so-called Frege’s Theorem, namely the derivation of appropriate
formulations of second-order Peano axioms from fa. This is contested also
in [Ferreira 2018] and [Hewitt 2018]. Thus, the aim of the present article is
twofold: to provide a consistent extension of pg so as to recover fa, and, by
that, to respond to [Ferreira 2018]’s and [Hewitt 2018]’s criticism, on the one
hand; and, on the other, to highlight some interesting differences between the
resulting system and [Ferreira 2018].6

pg’s limitation can be easily overcome by restricting the formulæ allowed
within extension-terms only to those not containing free plural variables. The
resulting system will be shown to be consistent and capable of interpreting fa.
Now, the new version of axiom v, call it v∗, will be schematic and such that
the formulæ allowed within the abstraction operator {:} can contain (i) bound
plural variables; (ii) both free and bound second-order variables; (iii) but no
free plural variables at all. Call the resulting system vimp, since impredicative
second-order formulæ are allowed in extension-terms. Also, vimp preserves
pg’s axioms plc and prc, restricted as above.7 From this, it should be clear
that [Boccuni 2010]’s pg and [Ferreira 2018]’s pe are subsystems of vimp.8

5. In pg, [Ferreira 2018], and in the system presented in this article, concepts are
the values of second-order variables.

6. In [Ferreira 2018], the system pe is presented, which consists of two rounds
of second-order variables F ,G ,H , . . . and F,G,H, . . . respectively governed by an
impredicative comprehension axiom ∃F∀x(Fx ↔ φx), where φ is unrestricted; a
predicative comprehension axiom ∃F∀x(Fx ↔ φx) where φ contains neither bound
predicative variables nor impredicative variables at all; and a formulation of blv, i.e.,
x̂.Ax = x̂.Bx ↔ ∀x(Ax ↔ Bx) with a variable-binding operator x̂, where A and B
contain no impredicative variables at all, but can contain predicative variables both
free and bound. pe is consistent and strong enough to recover fa. More remarks on
pe will be provided later on.

7. The same considerations mentioned in fn. 4 above apply also to prc in vimp.
8. Modulo a translation of pe’s second-orderly impredicative fragment into vimp’s

plural fragment. Notice that both in vimp and in [Boccuni 2010], as also in [Ferreira
2018] and [Heck 1996], the extension operator is variable-binding. Both in vimp and
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The main aim of the present article is merely technical. On the one hand, it
will be proved that one of the restrictions imposed on pg’s v and, other things
being equal, on pe’s blv and predicative comprehension can be consistently
lifted. On the other, it will be proved that fa can be interpreted in the
resulting system. Nevertheless, it is interesting to mention a philosophical
issue. There might be several desiderata a Fregean foundation of arithmetic
based on blv might be expected to satisfy—consistency being an obvious pre-
requisite. These might be, possibly among others: the preservation of a one-
to-one correspondence between concepts and extensions; the interpretation of
full second-order arithmetic; the interpretation of full second-order arithmetic
on the basis of Frege’s definitions of the mathematical notions necessary
to prove Frege’s Theorem. As said, in pg the one-to-one correspondence
between concepts and extensions is preserved. Furthermore, pg has enough
mathematical strength to interpret full pa2, in which natural numbers are
defined à la Zermelo on the basis of the empty extension {x : x 6= x} and the
singleton operation. On the other hand, by lifting the restriction concerning
bound second-order variables in v∗, vimp loses the one-to-one correspondence
between concepts and extensions. The up-side is that, unlike pg, vimp recovers
pa2 via fa, i.e., by a Fregean definition of the number operator # and by
deriving a formulation of hp from v∗—which cannot be done in pg.9 With
respect to the aforementioned desiderata, each approach has nice advantages
and clear shortcomings. So, depending on which among the above desiderata
is more fundamental, if any, one might prefer pg over vimp or the other
way around. I am not going to take a stand on this here. But it is worth
mentioning that a case can be made in favour of pg over vimp, if the one-to-
one correspondence between concepts and extensions is deemed crucial, and
one rests content with any derivation of second-order Peano axioms. On the
other hand, vimp or pe would be preferable over pg, if pa2 were to be recovered
in a way as faithful as possible to Frege’s, while at the same time the one-to-one
correspondence between concepts and extensions were not deemed essential to
a Fregean foundation of arithmetic.10

2 Consistency
Being that vimp an extension of pg and pe in which one or more restrictions on
the axioms are lifted, and being that both pg and pe consistent [see Boccuni
2011, Ferreira 2018], the first worry to address concerns the consistency of
vimp. The consistency result in what follows, then, is the main result of this
article. As a matter of convenience, I will rely on pg’s consistency proof,

in [Ferreira 2018], this is crucial, since complex formulæ are needed in the scope of
the extension operator for recovering fa.

9. Also in [Ferreira 2018] there is no one-to-one correspondence between (predica-
tive, let alone impredicative) concepts and extensions, and fa is recovered.
10. See [Tennant 2017] on these and other issues connected with logicism.
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which implies the consistency of the fragment of vimp that is equivalent with
pg. This fragment consists of all instances of v∗ not containing bound second-
order variables, all instances of prc since the restrictions imposed by [Boccuni
2010] are the same imposed on prc in vimp, and all instances of plc not
containing extension-terms containing bound second-order variables. What
we need to prove is that: (i) all instances of v∗ containing bound second-order
variables hold—i.e., the extension-terms introduced by those instances have
denotations; (ii) and all instances of plc containing extensions-terms with
bound second-order variables hold.11

On the basis of this result, the overall strategy will be:

1. to recap the consistency proof of pg—i.e., of the aforementioned
fragment of vimp;

2. to prove that all extension-terms containing bound second-order vari-
ables have denotations;

3. to prove that all instances of v∗ containing extension-terms with bound
second-order variables hold in the model;

4. to prove that all instances of plc containing extension-terms containing
bound second-order variables hold in the model.

2.1 The consistency of pg’s twin theory

Let us consider the fragment of vimp that is equivalent with pg. The model
of pg in [Boccuni 2011] will also be a model for such a fragment:

1. First, [Boccuni 2011] fixes the first-order domain, namely ω, and the
domain for plural variables, namely ℘(ω); and provides denotations for
the extension-terms not containing second-order variables at all, but
possibly containing bound plural variables, in § 4.1 and § 4.1.1. In line
with [Heck 1996], this is accomplished by the definition of a function
J0(m,n) as 2J(m,n), where J(m,n) is a pairing function assigning a
natural number to each ordered pair of natural numbers (m,n). Recall
that free plural variables are not allowed in extension-terms both in pg
and in vimp.12

11. Recall that in vimp, just like in pg, bound second-order variables are not allowed
on the right-hand side of prc, so that also formulæ containing extension-terms with
bound second-order variables are not allowed on the right-hand side of prc in either
theories. Also, it goes without saying that extension-terms can contain free and
bound first-order variables.
12. As mentioned, extension-terms can contain free first-order variables. The

values of these are provided by [Boccuni 2011] in line with [Heck 1996], namely
by substituting with numerals free first-order variables other than the designated
first-order variable.
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2. Secondly, [Boccuni 2011, § 4.2] fixes the domain for the second-order
variables, namely a set π(ω) containing all subsets of the first-order
domain whose defining formula contains no free variables of any kind nor
bound second-order variables (it may contain bound plural variables).

3. Thirdly, [Boccuni 2011, § 4.2.1] provides denotations for extension-terms
containing free second-order variables in line with [Heck 1996, § 3.2].

4. Then, [Boccuni 2011, § 4.3] shows that all instances of blv containing
no bound second-order variables hold in this model—the same holds for
all instances of v∗ containing no bound second-order variables.

5. Then, [Boccuni 2011, § 4.4] shows that all instances of prc hold in this
model.

6. Finally, [Boccuni 2011, § 4.5] shows that all instances plc hold in this
model.

This model is also a model for the fragment of vimp corresponding to
pg. We need to extend this interpretation so that all instances of v∗
containing extension-terms with bound second-order variables hold—i.e., the
corresponding extension-terms have denotations; and all instances of plc
containing these latter extension-terms hold—still, as a matter of convenience
I will prove that plc holds.

2.2 Extension-terms containing bound
second-order variables

This section closely follows [Heck 1996, § 3.4]. Let an interpretation I
be as above, i.e., the domains for first-, second-, and plural variables are
ω, π(ω), ℘(ω), respectively.

Let the degree of an extension-term {x : Ax} be 0 if, and only if, Ax is a
formula of the language of vimp containing no bound second-order variables
at all. It is of degree 1 if, and only if, it does, but it contains no extension-
terms containing bound second-order variables. In general, an extension-term
{x : Ax} is of degree n if, and only if, the greatest degree of any extension-term
contained in it is n− 1.
Let us arrange the extension-terms by degree in an ω×ω-sequence, where the
extension-terms of each degree form an ω-sequence and, for each extension-
term t, each term preceding it is of degree less than or equal to that of t itself.
Let K(m,n) be a function defined as 4J(m,n) + 1, where J(m,n) is as above.
Previously, the consistency proof for the fragment of vimp corresponding to
pg has assigned denotations to all extension-terms of degree 0. Let us assume
we have done the same for all terms preceding a term t = {x : Ax} of degree
greater than 0, and let us assume that, for any extension-terms {x : Bx} and
{x : Cx} preceding t in the sequence, those terms have the same denotation
just in case Bx and Cx are equivalent under I with respect to x. We assign
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to t, as its denotation, that of any preceding term {x : Dx} such that Dx is
equivalent to Ax under I with respect to x, if there is such a term; if there is
no such term, we assign to t as its denotation K(m,n), where m is the rank
of t, n is the degree of t, and, for all k < n,K(m, k) has already been assigned
as denotation to some extension-term, but K(m,n) has not.
Check now that, if {x : Bx} and {x : Cx} precede or are identical with t,
then Bx and Cx are equivalent under I with respect to x if, and only if,
{x : Bx} and {x : Cx} have been assigned the same denotation. The case
in which {x : Bx} and {x : Cx} precede t in the sequence is covered by the
previous assumption. Now, let t = {x : Bx}. Since t is {x : Ax} by previous
assumption, the denotations of the terms {x : Ax} and {x : Bx} are identical.
Then, Ax and Cx are equivalent if, and only if, {x : Ax} and {x : Cx} have
been assigned the same denotation by construction via the function K(m,n).

2.3 All instances of v∗ containing bound
second-order variables are true in this model

This section closely follows [Boccuni 2011, § 4.3], and [Heck 1996, § 3.5].
Theorem 1. Every instance of v∗ containing bound second-order variables holds
in this model.

Proof. v∗: {x : φx} = {x : ψx} ↔ ∀x(φx↔ ψx),
where φ and ψ are restricted as above.13

Let {x : Ax} and {x : Bx} be extension-terms, such that Ax is equivalent
to φx and Bx is equivalent to ψx.14 Let us assign the denotations of {x : Ax}
and {x : Bx} respectively to {x : φx} and {x : ψx} as their denotations. From
the previous section, in the ω×ω-sequence either {x : Ax} is prior to {x : Bx},
or conversely. Suppose {x : Ax} precedes {x : Bx}, then they have the same
denotation just in case Ax↔ Bx under I with respect to x. So, if Ax↔ Bx,
then φx ↔ ψx as well. Finally, the right-hand side of v∗, i.e., ∀x(φx ↔ ψx),
is true just in case φx and ψx are equivalent.15

Given that also all instances of plc are true in this model, since plural variables
vary over the full power set of ω, from the previous constructions it follows
that vimp is consistent.16

13. Instances containing free second-order variables and bound plural variables are
proved to hold by [Boccuni 2011]’s construction.
14. Where x is their sole free variable.
15. The proof goes analogously if {x : Bx} precedes {x : Ax} in the ω×ω-sequence.
16. Since pe is a subsystem of vimp, the consistency of vimp implies that in pe the

ban on bound impredicative second-order variables in pe’s predicative second-order
comprehension axiom and pe’s blv can be consistently lifted. Analogously as for v
in pg.



196 Francesca Boccuni

3 Frege Arithmetic and Frege’s Theorem

The aim of this section is twofold. First, we need to prove that Frege
Arithmetic fa can be interpreted in vimp; secondly, that Frege’s Theorem
is implied by vimp. Both goals can be easily achieved. As mentioned earlier,
[Ferreira 2018]’s pe is a subsystem of vimp. Since pe interprets fa and derives
Frege’s Theorem, so does vimp.

Still, there are two issues worth investigating. First, it is instructive to
see how vimp recovers fa, given the balance between plural and second-order
resources in order to retain consistency. Secondly, the derivation of Frege’s
Theorem in vimp relies on the Weak Reducibility Theorem by [Ferreira 2018],17

which is crucial to prove the Successor Axiom in pe and vimp. The recovery of
fa will be investigated in § 3.1. In § 3.2, the Successor Axiom will be derived, in
order to make clear where weak reducibility is at work and why it is necessary,
and highlight some differences with [Ferreira 2018]; whereas, for the sake of
brevity, all other Peano axioms will not be derived, since they follow in pe and
therefore in vimp.

3.1 fa
First of all, it has to be shown that an axiomatic formulation of hp, i.e.,
#F = #G ↔ F ≈ G, is a theorem of vimp. As a matter of fact, in [Heck
1996] hp follows in a predicative system for Frege’s blv. Since [Heck 1996] is
a subsystem of vimp, hp follows also in this latter theory.18

In a standard Fregean setting with extension-terms, the definitions of the
equinumerosity relation ≈ and of the number operator # require second-
orderly impredicative resources. Also other notions necessary for recovering fa
require such resources: i.e., predecessor, ancestral, and the concept of natural
number.

In vimp, the delicate balance between plural and second-order resources,
mirrored by the restrictions on the axioms, requires that some definitions are
provided in terms of second-order quantification, while others are defined in
terms of plural quantification. This has to be done, because, on the one
hand, free plural variables are not allowed in the scope of the extension
operator: so, for instance, # cannot be defined by plural resources, since this

17. The Weak Reducibility Theorem in [Ferreira 2018] states that, if x is a natural
number, there is a (predicative) concept that is co-extensive with the formula y ≤ x,
where ≤ is defined impredicatively. This theorem is implied by a Finite Reducibility
Theorem in pe, which states that every finite impredicative concept (relation) is co-
extensive with a (finite) predicative concept (relation). Since pe is a subtheory of
vimp, these theorems follow in vimp as well, though in a plural formulation.
18. Given its formulation, in vimp hp is restricted to prc-definable concepts. We’ll

see this poses some issues as for the proof of Frege’s Theorem, which, nevertheless,
can be easily overcome. See §3.2.
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would require allowing for plural parameters within extension-terms. On the
other hand, second-orderly definitions in vimp are restricted to prc-definable
concepts and relations. Suppose we define ≈ in terms of an existentially
quantified second-order formula ∃R . . . as it is usually done. That would be a
formula indeed allowed in extension-terms in vimp, but at the same time the
relations quantified over would be, on the basis of the restrictions imposed on
prc, only the predicatively definable ones, so the definition of ≈ would not
involve the class of all bijections, but only the class of predicative bijections.
But if equinumerosity is defined in terms of plural quantification, then the
equinumerosity notion can be defined in terms of all pluralities, since plc has
no restrictions at all:19 for any formulæ φ, ψ of the language of vimp,
Definition 1 (≈).

φ ≈ ψ := ∃xx(∀y(φy → ∃!x(ψx ∧ (x, y) ≺ xx)) ∧ ∀y(ψy → ∃!x(φx ∧ (y, x) ≺
xx))).

Also, for any second-order variable F , the #-operator is defined as follows:
Definition 2 (#).

#F := {x : ∃G(x = {y : Gy} ∧G ≈ F )}.

From the definitions provided so far, the axiomatic formulation of hp from
above follows in vimp.

The other three fundamental notions to recover fa are the notions of zero,
predecessor, and natural number. The first one is straightforward, since it
utilises a valid instance of prc, i.e., ∃F∀x(Fx ↔ x 6= x). Call this concept
Empty, and provide the definition of zero: 0 := #Empty.

Since prc alone, due to the restrictions concerning bound second-order
variables, cannot define the notions of predecessor, ancestral and natural
number because of their irreducible impredicativity, plc will have to do the
job. In what follows, I will focus on the first and the third.

The notion of predecessor, provided by a valid instance of plc, is given in
terms of pluralities and #-terms:20

19. Boolos’ plural logic is monadic, so as it stands it cannot be used to define
the equinumerosity relation. This issue can be easily circumvented by defining the
notions of singleton, unordered pair, and (Wiener-Kuratowski) ordered pair in vimp—
{x} := {y : x = y}; {x, y} := {z : z = x ∨ z = y}, and (x, y) := {{x}, {x, y}},
respectively. On the basis of the definition of ordered pairs, the set of the well-formed
plural formulæ of the language of vimp contains formulæ of the form (x, y) ≺ xx, so
that also the plural fragment of the language of vimp is polyadic.
20. For the sake of clarity, I will use the following notational convention: if a

complex prc-permissible formula, e.g., x 6= x ∧ ∃xx(x ≺ xx), is co-extensive with
a concept that has a number, I will construe the corresponding number-term as
“#[x.x 6= x ∧ ∃xx(x ≺ xx)]”, namely the number of all individuals x such that
x 6= x ∧ ∃xx(x ≺ xx).
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Definition 3 (Predecessor).

x precedes y : (x, y) ≺ pp := ∃F∃u(Fu ∧ y = #F ∧ x = #[z.Fz ∧ z 6= u]).

In order to move on to the definition of natural number, also the definitions
of the notions of hereditary, ancestral, and weak ancestral are needed. Those
are easily obtained by plural quantification. In particular, Hereditary: The
plurality ss is hereditary in the plurality rr: Her(ss, rr) := ∀x, y((x, y) ≺
rr → (x ≺ ss → y ≺ ss)); Ancestral: x comes before y in the rr-series:
(x, y) ≺ rr∗ := ∀ss(∀z((x, z) ≺ rr → z ≺ ss) ∧Her(ss, rr) → y ≺ ss); Weak
Ancestral: (x, y) ≺ rr+ := (x, y) ≺ rr∗ ∨ x = y.

Finally, the notion of natural number is defined by a valid instance of plc
in terms of the weak ancestral pp+ of the predecessor:
Definition 4 (N). x ≺ N := (0, x) ≺ pp+.

3.2 Frege’s Theorem
The above definitions are sufficient for deriving Frege’s Theorem, namely a
derivation of second-order Peano axioms in vimp that mirrors Frege’s. Of
course, in vimp second-order Peano axioms are proved in the following plural
formulations:

(PA1) 0 ≺ N.
(PA2) ∀x, y(x ≺ N ∧ (x, y) ≺ pp→ y ≺ N).
(PA3) ∀x, y, z(x ≺ N ∧ y ≺ N ∧ z ≺ N ∧ (x, y) ≺ pp ∧ (x, z) ≺ pp→ y = z).
(PA4) ∀x, y, z(x ≺ N ∧ y ≺ N ∧ z ≺ N ∧ (x, z) ≺ pp ∧ (y, z) ≺ pp→ x = y).
(PA5) ¬∃x(x ≺ N ∧ (x, 0) ≺ pp).
(PA6) ∀x(x ≺ N→ ∃y(y ≺ N ∧ (x, y) ≺ pp)).21

(PA7) ∀xx(0 ≺ xx ∧Her(xx, pp)→ ∀x(x ≺ N→ x ≺ xx)).22

As mentioned, in what follows, I will focus only on PA6, since in PA6 the
application of [Ferreira 2018]’s weak reducibility comes into play.

Theorem 2. PA6. The Successor Axiom: ∀x(x ≺ N→ ∃y(y ≺ N∧(x, y) ≺ pp)).

A standard strategy to prove the Successor Axiom in fa requires the proof
of the so-called Lemma on Successors, i.e., ∀x((x,#[z.(z, x) ≺ pp+]) ≺ pp),
which states that every number x precedes the number of the individuals z
in the weak precedessor-series ending with x. Still, the existence of numbers
is delivered by hp. This latter is restricted to prc-definable concepts, to the
effect that the supposed #-term “#[z.(z, x) ≺ pp+]” is impermissible by the

21. The Successor Axiom.
22. The Principle of Mathematical Induction.
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definition of # and by prc. Thus, in vimp hp cannot prove the existence of
the number #[z.(z, x) ≺ pp+], since the term “#[z.(z, x) ≺ pp+]”, on the basis
of the definition of the notion of predecessor pp, contains bound second-order
variables and thus is hp-impermissible—see Definition 3.
Still, [Ferreira 2018]’s pe implies a Weak Reducibility Theorem, stating that, if
x is a natural number, there is a (predicative) concept that is co-extensive with
the formula y ≤ x—where≤ is defined impredicatively. The Weak Reducibility
Theorem, in turn, is implied by a Finite Reducibility Theorem.23 In pe,
it is indeed the Weak Reducibility Theorem that underlies the proof of the
Successor Axiom.24 And that is also what will be used in vimp.

Proof. By Mathematical Induction.

First of all, for the sake of convenience but without loss of generality, let
us define:
Definition 5 (≤). x ≤ y := x ≺ N ∧ y ≺ N ∧ (x, y) ≺ pp+.25

We can then show by induction that every natural number x precedes the
number of the plurality z ≤ x, by the plural analogue of what Zalta calls the
Lemma on Successors [see Zalta 2017]:
Lemma 1 (Lemma on Successors). ∀x((x,#[z.z ≤ x]) ≺ pp).26

Since x and z are natural numbers by the definition of ≤, by weak reducibility
the formula z ≤ x is co-extensive with a prc-definable concept, which is
hp-permissible. We can then prove the Lemma on Successors by induction.
Consider the condition (y,#[z.z ≤ y]) ≺ pp contained in the Lemma. This
condition can be stated by plc, and defines the plurality containing ordered
pairs whose first member is a natural number y that precedes the number of
the plurality defined by the condition “z ≤ y”. By plugging that condition in
the right-hand side of plc, we get a further plurality, call it qq, containing all
individuals y that satisfy the condition (y,#[z.z ≤ y]) ≺ pp (i.e., being in the
plurality of predecessors of the number of all individuals z such that z ≤ y).
The strategy is to instantiate the plurality xx in the principle of mathematical
induction by qq: 0 ≺ qq ∧Her(qq,N)→ ∀x(x ≺ qq).

23. This can be accomplished by a definition of Fregean finitude, which mirrors
Frege’s definition as in [Heck 2012, § 8.1], according to which a plurality xx is finite
if, and only if, “x belongs to the xx-series running from a to b”, i.e., xx is functional,
and is such that (b, b) 6≺ xx∗, (a, x) ≺ xx+, and (x, b) ≺ xx+.
24. In order to prove the Successor Axiom, [Ferreira 2018] proves a stronger

theorem, i.e., ∀x(Nx→ ∃F (∀u(Fu↔ u ≤ x) ∧ S(x,#F ))), where S is the Successor
relation, by taking advantage of weak reducibility.
25. The right-hand side formula is a valid instance of plc.
26. Recall that, by definition, ≤-formulæ stand for pp+-formulæ. That pp+, while

appearing to be a free plural variable, is contained in #-terms is not problematic:
in fact, every single instance of it can be substituted by its defining formula, which
contains no free plural variables at all. See also below.
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Since the consequent is the reconfigured Lemma on Successors, we can prove
this Lemma by proving both that 0 ≺ qq and that qq is hereditary on N [see
Heck 2012, § 6.6.]:

Theorem 3. Inductive Base: 0 ≺ qq.

Proof. From PA5 and the fact that, for any plurality xx, (x, y) ≺ xx∗ →
∃z((z, y) ≺ xx),27 which by substitution implies (x, 0) ≺ pp∗ → ∃z((z, 0) ≺
pp), it follows that (x, 0) 6≺ pp∗. By definition of pp+, (x, 0) ≺ pp∗ ∨ x = 0,
which by (x, 0) 6≺ pp∗ implies that x = 0. Thus, 0 is the only member of the
plurality (x, 0) ≺ pp+.
By these two latter and PA1, it follows that x ≺ N ∧ 0 ≺ N ∧ (x, 0) ≺ pp+,
which, by definition of ≤, implies x ≤ 0. Thus, by weak reducibility and hp,
#[x.x ≤ 0] exists. By the Lemma Concerning Zero and ∃x(x ≤ 0),28 it follows
that #[x.x ≤ 0] 6= 0, which by substitution implies that x 6= 0. By x ≤ 0,
x 6= 0, weak reducibility, and hp, it follows that #[x.x ≤ 0∧x 6= 0] exists. But
such a number is 0 itself, since there is no x such that x is less than or equal
to 0 and x 6= 0, by definition of ≤, (x, 0) 6≺ pp∗ from above, and the Lemma
Concerning Zero. By x ≤ 0, the existence of #[x.x ≤ 0], and #[x.x ≤ 0 ∧ x 6=
0] = 0, it follows that x ≤ 0 ∧ x = #[x.x ≤ 0] ∧#[x.x ≤ 0 ∧ x 6= 0] = 0, which
implies, by definition of pp, that (0,#[x.x ≤ 0]) ≺ pp, i.e., 0 ≺ qq.

Theorem 4. Inductive Step: qq is hereditary on N.

Proof. In order to prove the inductive step, we need to prove (y,#[z.z ≤ y]) ≺
pp by assuming that (1) (x, y) ≺ pp, and (2) (x,#[z.z ≤ x]) ≺ pp, for any
natural numbers x, y. In particular, by the definition of pp, we have to show
that, for some concept F , there is a u such that (a) Fu; (b) #[z.z ≤ y] = #F ;
(c) y = #[z.Fz ∧ z 6= u]. Let us assume that F is z ≤ y, by weak reducibility,
and u = y. So (a) becomes (a′) y ≤ y, which holds, since by its definition, ≤
is reflexive; (b) becomes (b′) #[z.z ≤ y] = #[z.z ≤ y] which is true since it is
an instance of the identity principle; (c) becomes (c′) y = #[z.z ≤ y ∧ x 6= y].
By assumptions (1) and (2), and by PA3, it follows that y = #[z.z ≤ x], which
by (c′) becomes #[z.z ≤ y ∧ z 6= y] = #[z.z ≤ x]. This latter claim is what
we have to prove. This can be done by the Lemma on the Weak Predecessor,
i.e., x ≺ N ∧ (y, x) ≺ pp → #[z.(z, y) ≺ pp+] = #[z.(z, x) ≺ pp+ ∧ z 6= x],
from which, since x and y are natural numbers and by the definition of ≤, it

27. This can be easily proved by induction on the basis of basic facts about the
ancestral, i.e., for any xx, yy, (a, b) ≺ xx∗ ∧ ∀x, y(x ≺ yy ∧ (x, y) ≺ xx → y ≺
yy) ∧ ∀x((a, x) ≺ xx→ x ≺ yy)→ b ≺ yy. See [Heck 2012, § 6.6.2, fn. 29].
28. Lemma Concerning Zero: #F = 0↔ ¬∃xFx. See [Zalta 2017].
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follows that y ≺ N∧ (x, y) ≺ pp→ #[z.z ≤ x] = #[z.z ≤ y ∧ z 6= y], where the
consequent is what we had to show in the first place.29

Given the inductive proof of the Lemma on Successors and the proof of
PA2, PA6 follows.30

pe recovers fa via a predicative notion of equinumerosity, i.e., F ≈ G :=
∃R(∀y(Fy → ∃!x(Gx ∧ R(x, y)) ∧ ∀y(Gy → ∃!x(Fx ∧ R(y, x))))). In pe, this
is not a matter of choice, since otherwise the very definition of the cardinality
operator would be blocked on the basis of the ban on impredicative variables
in pe’s blv [see Ferreira 2018, § 4]. Mathematically, this is not a severe issue,
since impredicative bijections will be finite, as soon as they are restricted to
finite concepts F and G, and thus co-extensive with predicative ones by finite
reducibility. Still, it shows that in pe the import of finite reducibility is more
pervasive than in vimp. All in all, what vimp really needs is only a way to
prove the Successor Axiom, and that is achieved by a weaker result than finite
reducibility, namely by weak reducibility; whereas, without finite reducibility,
pe would not even start to recover fa for the just aforementioned reason.
Unlike vimp where the definition of the cardinality operator takes advantage
of the (plural) impredicative definition of equinumerosity, pe requires finite
reducibility to correct a limitation the axioms suffer from because of the
restrictions imposed on them. But, as shown in this article, some of those
restrictions are unnecessary, so there is no apparent reason for banning
impredicative bijections from the definition of the cardinality operator.

Furthermore, pe and vimp are on a par as long as finite cardinals
are concerned. As long as one agrees with [Ferreira 2018] that so far no
satisfactory set theory has been based on consistent fragments of blv and
likely there will never be one, the fact that by blv we cannot move up
from the finite into the transfinite should not be troublesome at all. But

29. By hp, it suffices to show [z.z ≤ x] ≈ [z.z ≤ y ∧ z 6= y], on the basis of the
definition of ≤ and weak reducibility. Since it’s a fact about equinumerosity that co-
extensive conditions are equinumerous, we have that ∀z(z ≤ x) ≡ ∀z(z ≤ y ∧ z 6= y),
which, by the definition of ≤, is provable from facts about the weak ancestral. See
[Zalta 2017]. Notice, though, that the proof of the Lemma on the Weak Predecessor
in [Zalta 2017] follows from a further lemma, i.e., the lemma that no number strongly
precedes (i.e., pp∗) itself: ∀x(x ≺ N→ (x, x) 6≺ pp∗).
30. Notice that the proof of the Lemma on Successors, in order to introduce the

plurality qq, requires an instance of plc containing bound second-order variables in
the condition (y,#[z.z ≤ y]) ≺ pp once #, ≤ and pp are unfolded. As pointed out
by [Heck 1996] and [Linnebo 2004], in order to follow Frege’s proof of the Successor
Axiom via his definitions, we need to apply a fragment of impredicative reasoning.
This, along with the requirement that pp and N should be plugged in the principle
of Mathematical Induction in order to recover full pa2, are the passages of the proof
of Frege’s Theorem where impredicative reasoning is necessary, whether plural or
second-order.
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some may be disappointed that we should stop at pa2, especially since some
fragments of ZFC have been interpreted in consistent fragments of blv.31 At
the very least, it would be nice to leave the possibility open. To this extent,
upon further investigation, vimp might prove useful for the purpose of going
beyond pa2. After all, in vimp, unlike pe, the extension containing all natural
numbers {x.x ≺ N} is delivered by v∗.32 It might be worrisome that, once
the definition of N is unravelled, its extension-term seems to contain a free
plural variable, namely pp+. Still, this is not problematic: in fact, every single
instance of pp+ can be substituted by its defining formula, which contains
no free plural variables at all, as it is clear once the definition of pp+ is unfolded:

x ≺ N := (0, x) ≺ pp+ := 0 = x ∨ (0, x) ≺ pp∗ :=

0 = x ∨ ∀xx(∀y(∃F∃u(Fu ∧ x = #F ∧ 0 = #[z.Fz ∧ z 6= u]) → y ≺
xx) ∧Her(xx,∃F∃u(Fu ∧ x = #F ∧ 0 = #[z.Fz ∧ z 6= u]))→ x ≺ xx).33

The more liberal restrictions imposed on vimp’s axioms than the restrictions
imposed on pe’s axioms might be used as a basis to extend vimp to a theory
of infinite extensions aimed at recovering larger fragments of set theory.34

4 Closing remarks

In [Boccuni 2010], the system pg is presented, which recovers pa2. Due to the
predicative restriction both on the second-order comprehension axiom prc and
on axiom v, pg cannot interpret Frege Arithmetic fa. Consequently, pg cannot
prove Frege’s Theorem, and thus pa2, though interpretable in pg, cannot be
recovered in a way that resembles Frege’s. In this paper, it is shown that the
predicative restriction on axiom v can be lifted. By consistently extending
axiom v to axiom v∗, the resulting system vimp recovers fa and pa2 in a way
that parallels Frege’s. This advantage is due to the fact that vimp allows for
any formula not containing free plural variables to appear within the extension-
terms governed by v∗, thus delivering, first and foremost, a Fregean notion of
number by the definition of #, which is necessary to deliver fa and Frege’s
Theorem.
31. See for instance [Boolos 1986-1987], [Cook 2003], and [Jané & Uzquiano 2004].
32. Though, it is likely that pe and vimp have the same mathematical strength.

This claim would require a proof that goes beyond the aim of this article, so I shall
just state it as a (reasonable) conjecture.
33. Where Her(xx, ∃F∃u(Fu∧x = #F ∧0 = #[z.Fz∧z 6= u])) means ∃F∃u(Fu∧

x = #F ∧ 0 = #[z.Fz ∧ z 6= u])→ (0 ≺ xx→ x ≺ xx).
34. For instance, we might consider adding further consistent formulations of blv

to vimp, in order to recover real analysis starting from the extension of all natural
numbers—see, e.g., [Hale 2005] or [Panza 2016]. But see also [Boccuni & Panza 2021]
for a critical view of this strategy, and an alternative.
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At the same time, vimp is also a consistent extension of the system pe in
[Ferreira 2018]. Though likely the two systems are mathematically equivalent,
it was argued that vimp has some nice advantages over pe. First of all,
vimp requires a somewhat weaker logico-mathematical machinery to carry
out its main goal: vimp requires [Ferreira 2018]’s weak reducibility to prove
the Successor Axiom, but on the basis of more liberal restrictions than pe it
can interpret fa without further ado. Meanwhile, pe necessarily relies upon
not only weak reducibility to prove the Successor Axiom, but also on finite
reducibility, a stronger result than the former, in order to interpret fa to
begin with. By its consistency proof, vimp shows that the restrictions that
prevent pe from interpreting fa without appealing to finite reducibility can
be lifted. Secondly, on the basis of those same restrictions, unlike vimp, pe
cannot collect the totality of finite cardinals in the extension of the concept
natural number, because of the irreducible impredicativity of this latter. This
is not to say that vimp is stronger than pe, but at least vimp might provide a
starting point to recover larger fragments of set theory.
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