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ABSTRACT 

Neurodegenerative disorders and aging share two main characteristics: an insidious 

progression and a selective predilection in the breakdown of specific brain regions. 

Irreversibility and steady progression of clinical manifestations are also common features 

between brain aging and neurodegenerative conditions. The most recent evidence 

suggests that selective regional vulnerability exists and defines the clinical features of 

different neurodegenerative diseases, as well as aging seems to affect specific brain 

regions paving the way (additive effect) to the onset of neurodegenerative diseases. 

Recent magnetic resonance imaging (MRI) advanced techniques, including diffusion 

tensor imaging and resting state functional MRI, allow to explore the role of structural 

and functional alterations in aging and neurodegenerative diseases and to shed light on 

the interplay between healthy aging and pathological conditions. 

In this thesis, firstly I have applied graph theory-based approaches and connectomics 

to explore brain structural and functional changes across Frontotemporal dementia – 

amyotrophic lateral sclerosis (FTD-ALS) spectrum, as a model of neurodegeneration, 

with the goal of mapping spatiotemporal patterns of degeneration in these conditions. In 

the second part, I moved the focus on healthy aging to identify structural and functional 

brain signs of vulnerability. 

Results within the FTD-ALS spectrum revealed a considerable motor and extra-motor 

network degeneration in ALS patients and an even more widespread damage in primary 

lateral sclerosis patients. Moreover, a maladaptive role of functional rearrangements in 

ALS with cognitive/behavioral impairment concomitantly with similar structural 

alterations compared to ALS cognitively normal was found when I investigated the neural 

correlates of cognitive impairment. This seems to support the hypothesis that ALS with 

cognitive/behavioral impairment might be considered as a phenotypic variant of ALS, 

rather than a consequence of disease worsening. Focusing on the role played by aging, 

our findings showed potential functional and structural pattern of vulnerability. Finally, 

the application of a recent technique to investigate white matter integrity using the 

NODDI model in a cohort of young and older adults showed that the fibers of frontal 

regions are characterized by greater damage and are the most vulnerable to aging, 

followed by the parietal and temporal fibers. 



 

Taken together, our studies suggest that the assessment of network connectivity through 

graph-based analyses, connectomics and novel diffusion MRI model in aging and 

neurodegenerative disorders is useful in order to answer the question of whether 

neurodegeneration-related patterns of damage represent accelerated aging or a distinct 

process.  
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ACRONYMS AND ABBREVIATIONS 
AD=Alzheimer’s disease; ALS=amyotrophic lateral sclerosis; ALS-cn= amyotrophic 

lateral sclerosis cognitively normal; ALS-ci= amyotrophic lateral sclerosis with cognitive 

impairment; ALS-bi= amyotrophic lateral sclerosis with behavioral impairment; ALS-

cbi= amyotrophic lateral sclerosis with cognitive and behavioral impairment; ALSFRS-

R= ALS functional rating scale revised; bvFTD= behavioral variant of frontotemporal 

dementia; CSF= cerebrospinal fluid; DLB= dementia with Lewy bodies; DMN= default 

mode network; DT= diffusion tensor; DTI= diffusion tensor imaging; FA= fractional 

anisotropy; fMRI= functional magnetic resonance imaging; FTD= frontotemporal 

dementia; FTLD= frontotemporal lobar degeneration; HC= healthy controls; ICVF= 

intra-cellular volume fraction; ISO= isotropic water diffusion; LMN= lower motor 

neuron; MD= mean diffusivity; MND= motor neuron disease; MRI= magnetic resonance 

imaging; NBS= network based statistics; NFT= Neurofibrillary tangles (; NODDI= 

Neurite orientation dispersion and density imaging; ODI= orientation dispersion index; 

PLS= primary lateral sclerosis; PMA= progressive muscular atrophy; PPA= primary 

progressive aphasia; RS fMRI= resting-state functional magnetic resonance imaging; 

SD= semantic dementia; SFC= stepwise functional connectivity; UMN= upper motor 

neuron; VBM= voxel=based morphometry. 
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1.  AGING AND NEURODEGENERATIVE DISEASES 
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1.1 AGING 
As the elderly population is increasing, aging itself constitutes a consistent burden, 

becoming a challenge to societies worldwide and a greatest risk factor for a majority of 

chronic diseases (Kennedy et al, 2014). Trends show that life expectancy has almost 

doubled in the last 150 years. About 10% of the population was 65 or older in the mid-

1950s, with only 1-3% being older than 80 (Atella et al, 2019), while in the last 60 years, 

in countries like Italy, the proportion of elderly people (>65 years old) has more than 

doubled (21.5%), and it is predicted to reach the 33% in 2050 tripling the proportion of 

the 85+ (5.9%), which will become the 14% in the mid-2050s (Atella et al., 2019).  

Aging is characterized by molecular and physiological deregulations that are often 

accompanied by subsequent pathological consequences such as diabetes, cancer, 

cardiovascular and among others neurodegenerative diseases. It seems therefore critical 

to understand the events of the aging process. Unsurprisingly, a key challenge in current 

research is to understand and recognize aging determinants, along with defining its 

characteristics and biomarkers (Flatt & Partridge, 2018). 

Accordingly, this chapter will focus on the molecular and physiological alterations in 

aging and specifically the cellular markers in brain aging. Then, the focus will be on 

cognitive decline as aging-related effect, risk and protective factors in aging and, finally, 

changes observed in neuroimaging studies, to define the structural and functional 

magnetic resonance imaging (MRI) key features that follow elderly’s brains. The 

recognition of such features may pave the way toward a deeper understanding of brain 

aging and hence of what might arise in concomitance with such complex process, notably 

neurodegenerative diseases, that will be explored in the second part of this chapter. 

 

1.1.1 Biological Aging 

Several molecular regulatory processes that have major effects on longevity and influence 

the structural and functional changes with advancing age, have been well-established and 

comprehensively synthesized by López-Otin et al. as the ‘hallmarks of aging’ (Lopez-

Otin et al, 2013). These are common cellular and molecular denominators contributing 

to the aging process that together determine the aging phenotype. The hallmark 

phenomena are in some way intermingled with the processes that occur in 

neurodegeneration and probably represent the groundwork of age-related 
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neurodegenerative diseases. These nine hallmarks are categorized into primary, 

antagonistic and integrative hallmarks (Figure 1).  

 
Figure 1. Functional Interconnections between the Hallmarks of Aging. The proposed nine 
hallmarks of aging are grouped into three categories. In the top, those hallmarks considered to be 
the primary causes of cellular damage. In the middle, those considered to be part of compensatory 
or antagonistic responses to the damage. These responses initially mitigate the damage, but 
eventually, if chronic or exacerbated, they become deleterious themselves. In the bottom, there 
are integrative hallmarks that are the result of the previous two groups of hallmarks and are 
ultimately responsible for the functional decline associated with aging. Figure from (Lopez-Otin 
et al., 2013).  

 

Primary hallmarks of aging 

Genomic instability. It refers to high-frequency mutations within the genome. 

Progressively, genomic instability might trigger neuronal death, accelerate aging, and 

increase susceptibility to age-related neurodegenerative diseases. Indeed, oxidative 

damages are believed to be early events in Alzheimer’s disease (AD), promoting the 

hyperphosphorylation of tau and mitochondrial dysfunction, leading to the formation of 

NFTs, a known pathological signature of AD (Bhatia & Sharma, 2021;Luque-Contreras 

et al, 2014). 

Telomere attrition. It is a natural mechanism whereby cells in our body shorten at 

each cell division, up to the point where a limit is reached (Hayflick’s limit), triggering 

cellular senescence. Since microglial cells retain the ability to undergo cell divisions in 

adulthood, they are therefore more susceptible to this process. The microglial senescent 

phenotype implies loss of neuroprotection, thus favoring neuronal degeneration. This 
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might play a role in NFT deposition and the so-called amyloid/neuroinflammation 

cascade hypothesis in AD (Bussian et al, 2018; Streit et al, 2021). 

Epigenetic alterations. Epigenetic changes may occur in genes involved in protein 

folding and metabolism, as well as in the regulation of cytokines release and microglia, 

that have a role in the inflammation processes. There is emerging evidence that many 

genes involved in neurodegeneration also undergo this type of influence. 

Loss of proteostasis. The balance between protein synthesis and degradation is the 

most intriguing observation, and probably the molecular cornerstone underlying 

neurodegeneration. Impaired regulation of protein homeostasis underlies the abnormal 

deposition of aggregated hyperphosphorylated tau, β-amyloid, α-synuclein, the nuclear 

to cytoplasmic translocation of TDP-43 and the formation of neural inclusions (e.g., NFT, 

Lewy bodies, amyloid plaques) in older individuals. This consideration has led to 

prototyping most neurodegenerative diseases as proteinopathies (protein aggregation 

syndromes) (Bourdenx et al, 2017). 

 

Antagonistic hallmarks of aging 

The antagonistic hallmarks are thought to be at initial phase compensatory responses 

but then become antagonistic and deleterious. 

Deregulated nutrient sensing and altered metabolism. Dysregulated metabolism 

promotes the aging processes and represents major risk factors for the development of the 

neurodegenerative diseases associated with aging (Johnson & Stolzing, 2019). 

Mitochondrial dysfunction. It is the major and early contributor of the aging process. 

As stated in the “free radical theory” of aging (Barja, 2014), the gradual accumulation of 

damage during aging is primarily driven by dysfunctional mitochondria, responsible for 

cellular energy deficit, production of reactive oxygen species, and progressive 

accumulation of free radicals. Moreover, degradation of dysfunctional mitochondria has 

received particular attention because of its key role in preventing age-related 

disease(Arotcarena et al, 2019; Fivenson et al, 2017). In the context of 

neurodegeneration, oxidative stress triggers compensatory mechanisms, that may fail 

turning into pathological processes.  

Cellular senescence. This mechanism implies an arrest in the stress-induced stable 

cell cycle. It aims at maintaining survival of healthy cells and removing damaged cells 
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by autophagy. Age-dependent functional decline of autophagy is thought to give a 

significant contribution towards disease development and/or progression (Klaips et al, 

2018). For instance, the impaired autophagy of Aβ plaques and tau tangles is present in 

the pathogenesis of AD and frontotemporal dementia (FTD), favoring protein aggregation 

(Wong et al, 2020). 

 

Integrative hallmarks of aging 

Integrative hallmarks arise because of cumulative damage induced by the primary and 

antagonistic hallmarks and are ultimately responsible for the functional cellular decline 

associated with aging. 

Altered intercellular communication and inflammation. An important feature of 

the aging process is a chronic progressive increase in the proinflammatory status, 

originally called “inflamm-aging” (Franceschi et al, 2000). The sustained elevation of 

inflammation exacerbates tau phosphorylation, Aβ deposition, and both α-synuclein 

truncation and aggregation (Chen et al, 2016). 

Stem cells exhaustion. The progressive decline in stem cell function and proliferative 

capacity over the lifespan plays a major role in the majority of body tissues that 

progressively lose their ability to repair damage through replication. Such process occurs, 

although less persistently, in the brain. 

 

1.1.2 Brain aging 

There are several effects of aging in the brain, which like our whole body, changes as we 

age. One of the most prevalent cellular changes is deposition of beta-amyloid (Ab) 

plaques in many brain regions (Rodrigue et al, 2012). Ab is a protein fragment that is 

deposited on the brain in the form of sticky, starch-like plaques, which can be found in 

the brains of elderly individuals who are not even cognitively impaired (Mufson et al, 

2016). Amyloid PET studies have found Ab aggregates in the frontal and parietal cortex, 

precuneus, and posterior cingulate gyrus approximately in 20–30% of healthy elderly 

(Rodrigue et al., 2012). Ab aggregates are a characteristic feature of all patients with AD 

and, in subjects with mild cognitive impairment, it is an important predictor for the 

conversion to AD (Rodrigue et al, 2009). In addition,  
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microstructural brain alterations are routinely observed in elderly brains. These include 

deposition of substances, tissue alterations and characteristic lesions in brain parenchyma. 

For instance, a significant increase in the level of iron, which plays an important role in 

myelination and remyelination, has been shown in aging (Kennedy & Raz, 2015). Indeed, 

the accumulation of free iron in brain structures causes axonal injury and accelerates 

cellular apoptosis (Kennedy & Raz, 2015). As a consequence, other brain changes such 

as brain shrinkage and white matter damage occur in conjunction with iron depositions. 

Among all, white matter lesions are the most frequent alterations encountered in elderly 

brains. Their prevalence in elderly individuals can range from 5% to above 90% and their 

origin is thought to be linked to vascular and ischemic changes (Grajauskas et al, 2019). 

Furthermore, detection of “micro-scale” changes of a microvascular nature has been 

reported with advancing age, including dilated perivascular spaces, micro-infarcts (tiny 

areas of necrotic tissue due to ischemia), microbleeds (brain areas of blood break-down 

products) and lacunes (fluid-filled cavities due to an occlusion or atherosclerosis) 

(Grajauskas et al., 2019). 

If we evaluate changes in brain at a macroscopic level, the most common and widely 

recognized sign is atrophy. Brain atrophy results from a reduction of brain parenchymal 

tissue volume and comes with several associated morphological variations. Most studies 

of post-mortem human brains indicate that after 60 years of age there is a consistent loss 

of brain tissue (Ho et al, 1980). It has been shown that brain weight loss occurs after the 

third and fourth decades of life, with a rate of 0.1–0.2% per year from college age onward 

and increases at about 0.3–0.5% per year in the 70s (Esiri, 2007). Brain volume reduction 

is associated with mild sulcal widening, gyral narrowing, and mild blunting of the lateral 

ventricular angles. Moreover, tissue loss leads to a consequential enlargement of 

ventricles, sulci, and other cerebrospinal fluid spaces. The loss in brain weight and brain 

shrinkage can be addressed to structural alterations of both gray matter and white matter. 

Alterations in gray matter result most likely from significant reductions in the mean 

dendritic diameters and dendritic spine densities, and from a loss of synapses and 

dendrites in neuronal cells (Benavides-Piccione et al, 2013). White matter density also 

declines with age explaining by the less efficient myelin production by oligodendrocytes 

with aging, resulting in thinner myelin sheaths and shorter internodes (Marner et al, 

2003). 
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1.1.3 Cognitive decline 

Loss of synapses along with impairment in function of the remaining ones are 

important contributors to age-related cognitive decline. However, age-related worsening 

in mental abilities is nonetheless highly variable. Indeed, it is well-established that some 

cognitive capacities decline significantly with age while others are quite spared. The main 

functions that suffer a worsening of the performances during aging regard information 

processing (e.g., attention, perception, short-term memory) (Park & Reuter-Lorenz, 2009) 

and, definitively, the processing speed along with working memory function which 

translates into motor slowdown and decision-making tasks (Eckert et al, 2010). To these 

are added other aspects as executive or control processes (e.g., inhibitory functions, set 

shifting, monitoring), which become less efficient over time, probably due to a decline in 

attentional resources (Stuss & Craik, 2019). On the other hand, other aspects of cognitive 

function such as implicit memory, knowledge storage, vocabulary, information, and 

comprehension are protected and relatively resistant to cognitive aging (Park & Reuter-

Lorenz, 2009).  

The variability and discrepancies of cognitive decline in aging might be explained by 

the concept of “reserve”, defined as the capacity to preserve cognitive function (Groot et 

al, 2018). The “brain reserve” can be divided into two main components: the cognitive 

reserve and the brain reserve. Cognitive reserve acts by recruiting alternate neural 

networks or existing networks more efficiently to deal with the normal cognitive decline 

and it usually derived from educational gain. Meanwhile, brain reserve represents a higher 

quantity of neural resources to better tolerate aging or emerging neuropathology (Groot 

et al., 2018). 

 

1.1.4 Risk and Protective factors in aging 

Lifestyle, sociodemographic, behavioral and genetic factors have been suggested as 

impacting elements on the course of age-related neural changes. Such factors may help 

in contributing to a qualitative better aging, also defined as “successful aging” (Urtamo 

et al, 2019) and provide means that slow, delay, or prevent age-related diseases. 
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These factors can be classified in those with a detrimental effect, favoring pathological 

changes in the brain and cognitive decline, and those with a protective role a “successful 

aging”. The first are cardiovascular risk factors (i.e., hypertension, diabetes, and obesity), 

psychosocial factors (i.e., depression and social isolation), and unhealth behaviors (i.e., 

physical inactivity, smoking, alcohol abuse) (Kralj et al, 2018). Among non-modifiable 

risk factors APOE allelic ɛ4 variant, known to be a genetic risk factor for AD, is more 

associated with higher memory decline in the elderlies even in the absence of cognitive 

impairment (Brathen et al, 2021). On the other side of the coin, protective factors include 

diet and caloric restriction appears as the most successful interventions to extend lifespan 

and prevents age-associated diseases. Dietary restriction ameliorates brain aging by 

downregulating oxidative stress, upregulating anti-inflammatory responses, promoting 

neurogenesis, and increasing synaptic plasticity (Fusco & Pani, 2013). Performing 

physical activity has positive effects on cognitive functions. The explanation of such 

neuroprotective role in brain effects lies on several underlying mechanisms, including 

increased brain blood flow, angiogenesis, immune regulation, and induction of 

neurotrophic factors, contrasting grey matter loss and white matter lesions formation 

(Domingos et al, 2021). Furthermore, cognitive reserve allows to counteract the age-

related cognitive decline and to mitigate the cognitive impairment caused by brain 

pathology (Stern et al, 2019). Therefore, high-level education and midlife and late-life 

cognitive stimulation have undoubtedly a positive impact on aging effects (Stern et al., 

2019). 

 

1.1.5 Imaging 

Neuroimaging has significantly contributed to understand the process of brain aging, 

allowing us to track and assess changes during normal aging and neurological conditions 

(Grajauskas et al., 2019). Among neuroimaging techniques, MRI is nowadays the most 

widely available imaging modality, thanks to its properties of non-invasiveness, cost-

effectiveness, and in vivo applicability.  

Structural MRI allows to study grey matter integrity. In particular, grey matter changes 

are usually assessed by using probabilistic (i.e., voxel- based morphometry, VBM) or 

quantitative tools (i.e. cortical thickness). Morphological studies, which investigated grey 

matter changes on T1-weighted scans by using the aforementioned techniques, showed a 
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linear age-related brain volume reduction across the entire brain (Good et al, 2001). A 

consistent result is that age-related morphometric changes are widespread across the 

cortex, although there are specific regions with a major and non-linear grey matter losses 

over time (Terribilli et al, 2011). Gray matter decline appears more prominent in frontal, 

parietal and temporal lobes, specifically in inferior prefrontal cortex, insula, superior 

parietal gyrus, and supramarginal gyrus, central and cingulate sulci and insular areas than 

in other cortical areas (Salat et al, 2004) (Bourisly et al, 2015; Galluzzi et al, 2008). In 

addition, substantial evidence showed a linear and slow decline in amygdala, thalamus, 

nucleus accumbens and caudate, whereas the atrophy rates accelerate at older ages in 

other brain regions, especially entorhinal cortex, hippocampus, putamen and precentral 

gyrus (Grajauskas et al., 2019). Furthermore, a longitudinal study investigating changes 

over time in a cohort of 66 older adults with a mean follow up of 8 years highlighted that 

frontoparietal regions exhibit greater rates of decline than temporal and occipital regions, 

supporting the hypothesis of the anterior-posterior gradient of cortical thinning 

(Thambisetty et al, 2010).  

When investigating the functional behavior of human brain, functional MRI (fMRI) is 

one of the most used imaging methods with the advantage to be an indirect and non-

invasive technique in comparison with other functional neuroimaging exams. fMRI is 

based on the measurement of fluctuations in blood flow and BOLD (blood-oxygenation 

level dependent) contrast, exploiting the paramagnetic properties of the blood. The 

assessment of functional activity in resting condition (resting-state fMRI (RS fMRI)) has 

provided important insights into brain functional organization and revealed age-related 

connectivity changes in the brain. The most consistent finding across all studies is the 

reduction of functional connectivity in regions of the default mode network (DMN) in 

older adults compared to younger adults (Damoiseaux et al, 2007). The regions of this 

large-scale brain network are primarily the medial prefrontal cortex, posterior cingulate 

cortex/precuneus and angular gyrus, as well as additional subsystems, including medial 

temporal structures (Buckner et al, 2008). Of note, in older adults, the reduced functional 

connectivity in the DMN regions was found associated with lower episodic memory, 

executive function and processing speed scores, reinforcing the hypothesis that brain 

normally loses functional integrity during advanced aging (Esposito et al, 2008) 

(Staffaroni et al, 2018). Furthermore, anterior regions of the DMN appear more 
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susceptible than posterior regions; for instance, the medial prefrontal cortex shows lower 

activation than other regions of the DMN alongside aging (Galiano et al, 2020).  

Age-related differences in functional connectivity have also been observed in other brain 

networks such as the salience, dorsal attention and sensorimotor networks (Damoiseaux, 

2017; Onoda et al, 2012)(Damoiseaux, 2017). These networks are responsible for 

communication and social behavior (Menon, 2015), attention and working memory 

(Zhou et al, 2018), motor and coordinating tasks, respectively. Both the salience and 

dorsal attention networks appear to have a diminished functional connectivity strength 

with advancing age (Ferreira & Busatto, 2013; Li et al, 2020; Tomasi & Volkow, 2012) 

(Oschmann & Gawryluk, 2020). An opposite trend was observed in networks involved 

in primary information processing, such as the sensorimotor and visual, where the 

functional connectivity was even found increased with age (Li et al., 2020). 

Such findings suggest a general trend in functional connectivity characterized by a 

decrease within networks along with an increase inter networks to maintain the efficient 

communication implementing compensatory mechanisms as well as dedifferentiation 

processes. 

 

1.2 THE LINK BETWEEN AGING AND NEURODEGENERATION 
The aging process itself is by far one of the most impacting among the many 

predisposing factors for neurodegeneration. Given that neurodegenerative dementia is 

especially common in old individuals, the hypothesis that brain aging might form a 

continuum with neurodegeneration has been considered. Gowers in 1902 (Gowers, 1902) 

explained for the first time what is degeneration and devised a new term “abiotrophy”, 

which identified a lack of “vital endurance”. However, this hypothesis arises a question: 

if the human being lived another 50 years beyond the current expectation, would all 

nervous structures show the changes of neurodegenerative disease? The answer is 

probably “no”, as there are distinctive cellular and subcellular features of degenerative 

diseases that are different from the programmed loss of cells that is due to aging. On one 

hand, neurodegenerative mechanisms could be interpreted as a manifestation of 

accelerated aging, on the other hand they might be determined by a substrate of genetic 

and environmental factors, and thus the divergency from physiological aging. The 

question of whether characteristic cellular and subcellular features represent lesser 
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aspects of brain aging or whether they are the harbingers of neurodegenerative diseases 

remains largely unexplained (Wyss-Coray, 2016). Therefore, the goal here is to detect 

what is the link and why aging is the most prominent risk factor associated with 

neurodegenerative dementia.  

Neurodegenerative diseases and aging have two common characteristics: a relentless 

progression and a selective preference in the breakdown of specific brain regions (Han, 

2009). Indeed, regional vulnerability defines the clinical features of different 

neurodegenerative diseases; similarly, specific brain alterations provide different 

cognitive decline in aging. Evidently, these two shared features identify different 

consequences, which are the extremes of a demarcation zone between a physiological and 

pathological process. However, the separation line is shadowy since the aging and the 

neurodegenerative processes are intermingled.  

 

1.3 FRONTOTEMPORAL LOBAR DEGENERATION 

1.3.1 FRONTOTEMPORAL DEMENTIA 

FTD is an umbrella term that included several neurodegenerative syndromes and 

neuropathologically heterogeneous disorders characterized by progressive prominent 

changes in behavior and executive functions, or language, accompanied by degeneration 

of the frontal and/or temporal lobes with a relative sparing of posterior brain regions 

(Bang et al, 2015). FTD is a common type of dementia, even though less common than 

AD and dementia with Lewy bodies (DLB), with an average age of symptoms onset in 

the sixth decade, its prevalence is around 3-26% of cases with an expected onset early 

than 65 years (Bang et al., 2015). 

Along with age, family history is a major risk factor for FTD (Niccoli et al, 2017). The 

expansion of a non-coding GGGGCC hexanucleotide repeat in the C9orf72 gene is the 

most common cause of inherited FTD (DeJesus-Hernandez et al, 2011). Inherited 

mutation of the MAPT gene, coding for tau, accounts for 5 to 10% of all cases of FTD 

and less than 25% of familial cases. Another associated mutation is in the GRN gene, 

leading to haploinsufficiency and loss of functional progranulin concentrations in the 

serum and cerebrospinal fluid (CSF). Mutations in other genes, namely TARDBP 

(encoding for TDP-43), FUS, VCP, or CHMP2B are rarer and are mainly associated with 

familial amyotrophic lateral sclerosis (ALS) with or without FTD (Bang et al., 2015). 
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1.3.1.1 Neuropathology 

It is not surprising that the neuropathology underlying clinical FTD (i.e., 

frontotemporal lobar degeneration, FTLD) is also heterogeneous. Indeed, 

neuropathological subtypes have been associated with characteristic patterns of abnormal 

protein deposition following the prion-like propagation models (Figure 2) (Hofmann et 

al, 2019). The corresponding pathological subtypes of FTLD include tau protein (FTLD-

tau) for approximately 40% whose spreading is hypothesized to follow a prion-like model 

(Sieben et al, 2012). The remaining majority (~ 50% of cases) of tau negative FTLD are 

positive for ubiquinated TDP-43 inclusions (FTLD-TDP) (Mackenzie et al, 2010). 

Finally, around 5% of patients are both tau and TDP-43 negative, showing aggregates of 

other proteins such as FUS (FTLD -FUS) (Mackenzie et al., 2010).  

 

 
Figure 2. Summary of the complex variety of clinical syndromes, neuropathology, and 
genetics of FTD. The main six clinical syndromes include bvFTD, svPPA, nfvPPA, FTD-MND, 
CBS, and PSPS are reported, inserting the information that a small number of patients with 
bvFTD, svPPA, nfvPPA, or CBS have Alzheimer’s disease as the underlying pathology. Based 
on the proteinopathy involved, the neuropathology of clinical syndromes of FTLD can be 
classified in FTLD-tau, FTLD-TDP, or FTLD-FUS. Finally, genetic mutations associated with 
each molecular subtype are italicized (Hofmann et al., 2019). 
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Most common clinical variants of FTD are the behavioral variant of frontotemporal 

dementia (bvFTD) and the language variant, termed primary progressive aphasia (PPA). 

The latter can be further subclassified into non-fluent variant PPA, characterized by 

impaired speech production, and semantic variant PPA (also referred to as semantic 

dementia, SD), characterized by impaired word comprehension and semantic memory 

(Bang et al., 2015).  

 

1.3.1.2 Behavioral Variant Frontotemporal Dementia 

bvFTD is the most common clinical variant and accounts approximately for 70% of all 

FTD cases. In general, the most marked symptoms of bvFTD include behavioral changes 

and executive dysfunction, personality changes, a mixture of disinhibition and lack of 

embarrassment, apathy, and loss of sympathy or empathy (Rohrer, 2011). All these can 

result in tactless and socially inappropriate behavior, impulsive or careless actions, 

reduced interest in work, hobbies, social interaction, and hygiene. Furthermore, patients 

may show compulsive and ritualistic behaviors, e.g., repetitive movements, and repetitive 

use of verbal phrases. Binge eating, increased consumption of sweets or alcohol, and 

weight gain are different aspects of the characteristic hyperorality in this type of dementia. 

Moreover, anosognosia is usually prominent and patients often show deficits in various 

executive tasks, although their visuospatial skills are normal at first.  

 

Diagnostic criteria 

Despite the recent advances in the characterization of bvFTD, the diagnosis of the 

syndrome remains challenging, due to the absence of definitive biomarkers for an early 

and accurate differential diagnosis. To date, the diagnosis of bvFTD is dependent on 

clinical diagnostic criteria, whose latest diagnostic version has been established in 2011 

(Rascovsky et al, 2011). According to the latter, the diagnosis might be:  

Possible bvFTD: based solely on the clinical syndrome and aims to identify patients 

at the mildest stages of disease. This classification relies on the flexible combination of 

three of six clinically discriminating features: disinhibition, apathy/inertia, loss of 

sympathy/empathy, perseverative/compulsive behaviors, hyperorality and a dysexecutive 

neuropsychological profile (Rascovsky et al., 2011). 

Probable bvFTD: based on the clinical syndrome, plus demonstrable functional 
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decline and the frontotemporal imaging findings that reflect the principal anatomical 

location of neurodegeneration in bvFTD. Furthermore, a diagnosis of probable bvFTD 

may be withheld if other biomarkers are strongly indicative of AD or other degenerative 

processes. 

bvFTD with definite FTLD pathology: patients who exhibit the bvFTD clinical 

syndrome and who also have a pathogenic mutation or histopathological evidence of 

FTLD. 

 

Neuroimaging in bvFTD 

Structural MRI 

There is a considerable body of research employing MRI in bvFTD to investigate the 

pattern and distribution of grey matter loss. bvFTD is generally characterized by 

frontotemporal atrophy, showing an antero-posterior gradient with the involvement of 

medial orbitofrontal, anterior cingulate, insular and anterior temporal cortices and relative 

sparing of the parietal and occipital lobes (Rosen et al, 2002; Seeley et al, 2008). 

Furthermore, atrophy, although commonly bilateral, is generally asymmetrical (Barkhof 

& van Buchem, 2016). Subcortical structures like the striatum, thalamus, hypothalamus 

and brainstem are often involved (Du et al, 2007; Seeley et al., 2008). 

 

 
Figure 3. Characteristic patterns of gray matter atrophy (highlighted in red) in 
frontotemporal dementia (FTD). Patients with bvFTD exhibit prominent frontal, insular, and 
anterior cingulate atrophy. Figure adapted from Meeter et al., 2017 (Meeter et al, 2017). 

 

Several studies have been aimed at improving differential diagnosis distinguishing 

FTD from AD. Indeed, cortical thinning of the anterior temporal and frontal lobes is 

indicative of bvFTD, whereas atrophy of the posterior cingulate gyrus, parietal lobe and 
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frontal pole suggests an AD pathology (Canu et al, 2017; Du et al., 2007). Moreover, the 

pattern of gray matter atrophy can distinguish to some degree clinical and pathological 

FTD syndromes (Agosta et al, 2015). Compared to cognitively normal subjects, FTD 

patients have a thinner cortex in bilateral frontal and temporal regions and some thinning 

in inferior parietal regions and the posterior cingulate (Du et al., 2007), and frontal 

atrophy (most evident in medial portions) is somewhat more exacerbated in bvFTD 

subjects compared to the decline observed in normal aging individuals (Manera et al, 

2019). Noteworthy, another study investigated the relation between aging and bvFTD, 

suggesting that there is an overlap in atrophy among healthy elderly and bvFTD. 

Specifically, atrophy in dorsolateral frontal and orbitofrontal regions seen in normal aging 

is severe enough to match that of bvFTD patients at a mild stage of the disease (Chow et 

al, 2008). 

To investigate white matter tracts organization, different diffusion tensor imaging 

(DTI) analyses can be applied. DTI is sensitive to the direction and extent of water 

movement to provide a measure of the integrity of white matter tracts. The diffusion 

tensor permits to extract two measures such as fractional anisotropy (FA) and mean 

diffusivity (MD), which are indirect indices of white matter integrity. Indeed, intact white 

matter will restrict diffusion of water molecules parallel to the main fiber direction 

(leading to higher FA and lower MD), whereas damage to white matter will cause 

diffusivity to be less restricted (i.e., lower FA and higher MD) (Basser et al, 1994). 

Analysis of DTI metrics can be performed using ROI approaches, or whole-brain voxel-

wise methods such as VBM-style analysis or tract-based spatial statistics (TBSS) (Smith 

et al, 2006). 

In patients with bvFTD, DTI studies showed an involvement of the major frontal white 

matter tracts (anterior cingulum, genu of the corpus callosum, and superior longitudinal 

fasciculus) and those travelling through the temporal lobes (uncinate, inferior longitudinal 

fasciculus , and inferior fronto-occipital fasciculus) (Whitwell et al, 2010; Agosta et al, 

2012a; Mahoney et al, 2014). White matter abnormalities, however, have been identified 

also in posterior regions, including the posterior portions of inferior longitudinal 

fasciculus and posterior cingulum (Whitwell et al., 2010; Agosta et al., 2012a; Mahoney 

et al., 2014). DTI can be helpful in differentiating bvFTD from AD cases due to the fact 
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that bvFTD is associated to greater damage especially in frontal regions (Canu et al., 

2017; Mahoney et al., 2014). 

 

Functional MRI 

Several studies have explored functional brain connectivity in patients with bvFTD 

using RS fMRI analyses. Studies focusing on the assessment of resting-state networks 

have shown that bvFTD patients feature a recurrent attenuation of within-resting-state 

network connectivity of the salience network (Farb et al, 2013; Filippi et al, 2013; Zhou 

et al, 2010). This altered pattern is not unexpected, since the regions known to harbor the 

neuropathological changes of bvFTD, such as the fronto-insular and anterior cingulate 

areas, are central regions of the salience network.  

 
Figure 4. In the Salience Network (A), patients with bvFTD showed distributed connectivity 
reductions compared to healthy controls (HC). In the DMN (B), patients with bvFTD showed 
increased left angular gyrus connectivity relative to HC and a further focal brainstem connectivity 
disruption within the DMN. Figure adapted from Zhou J. et al., 2010 (Zhou et al., 2010). 

 

Moreover, given their role in processing socially relevant information and behavior, 

attenuated salience network connectivity is unsurprisingly predictive of worsening 
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behavioral symptoms and correlates with both clinical dementia ratings and behavioral 

test scores (Day et al, 2013; Filippi et al., 2013). Altered connectivity has been observed 

in other functional networks: increased functional connectivity has been reported in the 

attention/working memory network, and in the medial parietal components of the DMN 

(Farb et al., 2013; Filippi et al., 2013; Whitwell et al, 2011; Zhou et al., 2010). 

This contrasting pattern of altered functional connectivity in the DMN and salience 

network may be useful to differentiate bvFTD patients from patients with AD, which 

typically show reduced connectivity in the DMN and posterior brain nodes (Canu et al., 

2017). 

 

1.3.1.3 Motor Neuron Disease 

Motor neuron disease (MND) encompasses several phenotypes all of which are 

relentlessly progressive and ultimately fatal. The involvement of the upper motor neurons 

(UMN) and/or lower motor neurons (LMN) defines different clinical phenotypes, 

including ALS, primary lateral sclerosis (PLS) and progressive muscular atrophy (PMA) 

(Norris et al, 1993). ALS is the most common clinical presentation of MND and is 

characterized by the progressive degeneration of both UMN and LMN. PLS is 

characterized by the progressive degeneration of UMN only, while PMA by degeneration 

of LMN only. Clinically, patients with MND greatly differ in terms of site of onset, 

differential UMN and LMN involvement, presence and severity of extra-motor 

impairment (e.g., cognitive impairment), and disease progression, delineating a wide 

spectrum of syndromes partially overlapping with FTD with different prognostic impact 

at the individual level (Swinnen & Robberecht, 2014). 

 

Epidemiology 

Epidemiological studies in MND are a challenging task, because of the difficulties in 

determining disease onset and the delay between onset and clinical manifestations. An 

Italian-study provided that the MND incidence in Europe is 2.08/100,000 individuals, 

corresponding to an estimated 15,355 cases (Chio et al, 2013). Prevalence is 5.40/100,000 

individuals (about 39,863 prevalent cases). The mean age at onset is approximately 60 

years (Chio et al., 2013). Survival time generally ranges between 2 and 5 years from onset 
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(Chio et al, 2009; del Aguila et al, 2003) and only 5–10% of patients survive longer than 

10 years (Chio et al., 2009). The most common cause of death is respiratory failure. 

 

Neuropathology 

Up to 98% of MND cases show aggregates of ubiquitin-positive TDP-43 as molecular 

hallmark of disease pathology (Neumann et al, 2006), spreading in a prion-like way 

hypothesized by Brettschneider and colleagues (Brettschneider et al, 2013). The staging 

of TDP-43 protein starts from the primary motor cortex, supplementary motor area 

brainstem motor nuclei and spinal cord (stage I). Pathological process also expands into 

contiguous portions of the premotor and prefrontal regions (stage II), moving to medial 

and lateral orbitofrontal cortex, postcentral gyrus, caudate nucleus, putamen and nucleus 

accumbens (stage III). Patients with most extensive patterns of neuropathology involved 

entorhinal cortex and the hippocampus (stage IV). 

Most MND cases are sporadic, however genetic alterations are reported in up to 10% of 

patients (Renton et al, 2014). Among all genetic alterations, the most common mutation 

is the hexanucleotide expansion in the C9orf72 gene, which is associated with greater 

prevalence of cognitive deficits and full-blown FTD. Since such mutation is found in a 

large proportion of FTD patients, this mutation can be considered as the link between 

MND and FTD (Robberecht & Philips, 2013). Other involved genes are SOD1, TARDBP 

– encoding for the TDP-43 protein –, FUS, OPTN, and VCP.  

 

Clinical presentation and diagnostic criteria 

Based on the differential UMN and LMN involvement, patients can be classified into 

different phenotypes:  

Progressive muscular atrophy (PMA) is characterized by clinical and 

electrophysiological evidence of progressive LMN involvement without evidence of 

UMN disease. The disorder, constituting about 5% of MND cases, is usually asymmetric 

and distal and/or proximal onset can occur (Garg et al, 2017).  

Flail arm and flail leg syndromes are both characterized by a predominant 

involvement of LMN and mild alterations of UMN. The flail arm variant symptoms 

include progressive, predominantly proximal, weakness and wasting in the upper limbs 

with possible development of Hoffman sign in the upper limbs. On the other hand, flail 
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leg syndrome is characterized by weakness and wasting in the lower limbs and possible 

occurrence of Babinski sign with disease progression(Chio et al, 2011).  

Predominant UMN ALS is characterized by LMN signs, such as muscle weakness 

and wasting, but with a prevalence of UMN features comprising spastic paresis in 

association with one or more of the following symptoms: Babinski or Hoffmann sign, 

hyperactive reflexes, clonic jaw jerk, dysarthric speech and pseudobulbar affect. 

Primary lateral sclerosis (PLS) is reported in 5% of MND cases. It presents a 

selective UMN involvement without LMN disturbances after 4 years from disease onset 

(Gordon et al, 2006). In contrast with classic ALS, PLS prognosis is more favorable 

(Gordon et al, 2009) and survival time is longer (Gordon et al., 2006). 

Diagnosis of the different MND phenotypes is based on specific diagnostic criteria. 

ALS is diagnosed with the revised El Escorial criteria (Brooks et al, 2000), which 

requires the presence of clinical, electrophysiological or neuropathologic evidence of 

LMN degeneration and clinical evidence of UMN degeneration, the progression of signs 

within a region or to other regions. Such evidence has to be combined with the absence 

of other diseases or neuroimaging evidence able to explain the observed signs. 

PLS diagnosis is usually based on the Pringle’s criteria (Pringle et al, 1992), while PMA 

is carried out with the criteria by van den Berg-Vos et al. (van den Berg-Vos et al, 2003). 

MND progression can be monitored using the revised version of the ALS 

Functional Rating Scale (ALSFRS-R) (Cedarbaum et al, 1999), that is currently the most 

widely used measurement tool. Patients are scored from 0 (maximum disability) to 48 

points (normal functioning) for bulbar and limb symptoms, mobility, and respiratory 

function.  

 

Cognitive impairment 

The traditional idea that MND is only a purely neuromuscular disease, as depicted by 

Jean-Martin Charcot in the 1869 (Ferrari et al, 2011), is now outdated. Indeed, it is well-

established that nearly 50% of MND patients manifests cognitive and behavioral 

impairment, ranging from mild impairment to a full-blown dementia syndrome (Phukan 

et al, 2012). The revised Strong criteria (Strong et al, 2017) have established a recognized 

nomenclature for the MND clinical continuum. Such criteria classify from MND 

cognitively normal (ALS-cn) to MND with frontotemporal dementia (ALS-FTD), 
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including MND with cognitive impairment (ALSci), MND with behavioural impairment 

(ALSbi) and MND with combined cognitive and behavioural impairment (ALS-cbi). 

MND-FTD can be diagnosed when a patient meets Rascovsky criteria (Rascovsky et al., 

2011) for the behavioral variant or Gorno-Tempini criteria (Gorno-Tempini et al, 2011) 

for the linguistic (i.e., semantic and non-fluent) variants of FTD, even if more rarely 

(Phukan et al., 2012). The diagnosis of ALSci is based on the presence of execution 

dysfunction or language dysfunction or the combination of the two, evaluated as cognitive 

scores on standardized neuropsychological tests falling or below the 5th percentile, 

compared to age- and education-matched healthy individuals. For ALSbi, the diagnosis 

is defined by the detection of apathy with or without behavioral changes or the presence 

of two or more of the following behavioral symptoms: a) disinhibition, b) loss of 

sympathy and empathy, c) perseverative, stereotyped, or compulsive behavior, d) 

hyperorality/dietary change, e) loss of insight (see above), f) psychotic symptoms (e.g., 

somatic delusions, hallucinations, irrational beliefs) (Strong et al., 2017). ALScbi is 

classified including patients who fulfil criteria for both ALSci and ALSbi. Finally, ALS-

FTD is diagnosed by the evidence of progressive deterioration of behavior and/or 

cognition and the presence of at least three of the behavioral/cognitive symptoms 

according to Rascovsky criteria (Rascovsky et al., 2011). Alternatively, ALS-FTD can 

be defined by the presence of at least two of those behavioral/cognitive symptoms, 

together with loss of insight and/or psychotic symptoms, or even the presence of language 

impairment, that may coexist with behavioral/cognitive symptoms meeting criteria for 

semantic dementia/semantic variant PPA or non-fluent variant PPA, defined by Neary et 

al. (Neary et al, 1998) or Gorno-Tempini et al. (Gorno-Tempini et al., 2011). 

 

Neuroimaging in Motor Neuron Disease 

Traditionally, the use of conventional MRI in patients suspected of having ALS has 

been restricted to exclude other causes of symptoms of MND (Filippi et al, 2010). There 

is a growing body of evidence that recognized MRI as a powerful tool to detect in vivo 

brain alterations associated with MND pathology (Chio et al, 2014), providing potential 

markers of disease activity. 

There are many studies in literature that investigated the grey matter loss in patients 

with ALS using VBM technique on high-resolution 3D T1-weighted MRI scans. Such 
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studies show diverging results, on one hand detecting focal atrophy in motor/premotor 

regions (Agosta et al, 2007; Turner et al, 2007), on the other highlighting widespread 

frontotemporal atrophy sparing the motor cortex (Mezzapesa et al, 2007), or even no 

significant atrophy (Abrahams et al, 2005). Such variability might be explained by the 

differences in imaging processing pipelines and statistical approaches applied. Evaluating 

longitudinal structural changes, a significant decrease in grey matter volume over a 6-

month follow-up was found in motor and extra-motor frontotemporal cortex, thalami, and 

caudate nucleus, associated with clinical and cognitive decline (Menke et al, 2014).  

Another method to assess grey matter changes is the surface-based morphometry that 

estimates cortical thickness. Studies, which performed such methodological framework, 

have systematically reported in patients with ALS significant cortical thinning in the 

primary motor areas (Agosta et al, 2012b; Verstraete et al, 2010), along with extra-motor 

involvement more severe in ALS patients with cognitive/behavioral deficits (Agosta et 

al, 2016; Schuster et al, 2014). Moreover, the specific investigation of subcortical 

structures has revealed the involvement of caudate nucleus, accumbens (Bede et al, 2013) 

and thalamus (Menke et al., 2014), consistent with the neuropathological 

studies(Brettschneider et al., 2013). 

Numerous studies assessed white matter tract integrity in patients with ALS using DTI. 

From current literature it is consistently reported a “signature” of white matter alterations 

(i.e., decreased FA and increased M) in corticospinal tracts (CSTs) and in the corpus 

callosum, specifically middle and posterior parts (Muller et al, 2016). Additionally, white 

matter damage, similarly to the grey matter atrophy, has also been revealed in extra-motor 

frontotemporal tracts, more evidently in patients with cognitive or neuropsychiatric 

impairment (Agosta et al., 2016; Lillo et al, 2014). 

Although ALS is the most common phenotype of MND and, for such reason the most 

studied, some studies put their effort in evaluating microstructural integrity in patients 

with PLS. Widespread damage in both motor and extra-motor areas correlated with the 

severity of cognitive deficits (Agosta et al, 2014b). On the contrary, there are 

neuroimaging studies that observed the least diffuse white matter damage in patients with 

predominant LMN involvement, with diverging results from literature (Spinelli et al, 

2016; Prudlo et al, 2012; Rosenbohm et al, 2016). 

Regarding fMRI, several studies showed decreased functional connectivity of the 
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sensorimotor network in ALS patients (Mohammadi et al, 2009), whereas others found 

increased connectivity (Douaud et al, 2011), or complex regional patterns of decreased 

and increased functional connectivity (Zhou et al, 2014). Functional brain networks 

involved in cognition and behavior, namely the DMN and frontoparietal network, were 

also found to be altered (Agosta et al, 2013; Luo et al, 2012). What emerges from RS 

fMRI studies is that an increase in functional connectivity might be explained by a 

compensatory mechanism in earlier disease stages, followed by functional failure as the 

pathology worsens. In agree with such hypothesis, patients with less white matter 

damages in CST were characterized by increased functional connectivity (Agosta et al, 

2011), associated with lower rate of disease progression, shorter disease duration (Luo et 

al., 2012). Furthermore, Menke and colleagues, in a two-year longitudinal study, showed 

a reduction of RS functional connectivity in the sensorimotor and thalamic networks, 

arguably supporting the neuroanatomical and clinical decline in patients with ALS 

(Menke et al, 2018). Conversely, other studies demonstrated an increase of functional 

connectivity in regions known to be affected by ALS  pathology correlating with a higher 

disease progression rate (Douaud et al., 2011), and a worsening of clinical manifestations 

and executive cognitive functions (Agosta et al, 2014a). 
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2.  HUMAN BRAIN CONNECTOME 
A human brain comprises about 100 billion neurons connected by about 100 trillion 

synapses, which are anatomically organized over multiple scales of space and 

functionally interactive over multiple scales of time (Fornito, 2016). Attempts to 

comprehensively map the neural connections are motivated by brain is not rigid 

architecture organized in individual regions, but rather its functioning is based on 

interaction patterns across the entire network (Filippi et al, 2013). Indeed, brain is a 
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macroscopic network of white matter pathways, that enable functional communication 

between distinct and anatomically separated regions of the brain. Cognitive and 

behavioral functions rely on these interaction patterns. Recent advances in neuroscience 

have enabled initiatives and collaborative projects to map brain networks more 

comprehensively and in greater detail, focusing on quantifying, visualizing, and 

understanding brain network organization not only in a healthy condition but also in 

pathological one. In the latter context, this might provide some help in clarifying 

fundamental pathophysiological aspects of neurological and psychiatric disorders and, in 

the near future, such knowledge might even help to develop new individualized 

therapeutic/rehabilitative strategies. 

In order to better understand how brain works, useful and powerful approaches are 

network science and graph theory, a branch of mathematics dealing with the formal 

description and analysis of graphs, which are defined as sets of nodes or vertices linked 

by connections or edges. Network science and graph theory methods might help in 

understanding brain architecture, its function and dysfunction (Bullmore & Sporns, 2009; 

Griffa et al, 2013) and, in addition, in exploring how cognitive processes are related to 

the morphological substrates evaluating the linkage between structural changes and 

functional derangement (Sporns et al, 2005).  

The human brain is probably the most highly complex, nonlinear and parallel 

information processing system in nature, with the ability to build its own rules based on 

experience and consisting of a multitude of interconnected networks. It presents an 

intractable computational problem, a constant challenge in revealing its operation, to such 

an extent that the ‘‘network science of the brain” remains a very recent challenging field. 

The network science defines the whole set of connections within the human brain as 

“Connectome”. 

The term “connectome” was proposed in 2005 by Dr. Olaf Sporns and refers to the 

full set of elements and connections comprising a nervous system (Sporns et al., 2005). 

“Connectomics” is a scientific research field that includes all those approaches that study 

the connectome as the description of the functional and structural connectivity patterns 

of the human brain by mapping neural units and their connections at individual or group 

level (Sporns et al., 2005). There are many advantages of such analysis approach:  

1. Complex network analysis promises to reliably quantify brain networks with a 
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small number of neurobiologically meaningful and easily computable measures 

(Sporns & Zwi, 2004). 

2. Network analysis allow to explore structural–functional connectivity relationship 

(Honey et al, 2009; Schmidt et al, 2014; Suarez et al, 2020). 

3. Comparisons of structural or functional network organization in case-control 

studies are likely to reveal connectivity abnormalities in neurological and 

psychiatric disorders (Griffa et al., 2013; Pievani et al, 2014; Wang et al, 2009). 
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2.1 GRAPH THEORETICAL MODEL 
Graph theory is a field of mathematics that allows to model and simplify the complex 

nature of processes in different fields in order to investigate and better understand such 

phenomena. When describing a real-world system, a graph provides an abstract 

representation of the system's elements and their interactions (Bullmore & Sporns, 2009; 

Sporns, 2018). One of the most interesting applications of such approach can be found in 

network neuroscience, where graphs provide a theoretical framework to model pairwise 

communications between the elements of a network and allows the analysis of its 

topology.  

The brain network is represented by nodes, i.e., brain regions, linked by edges, 

expressing structural or functional connections between the nodes. Mathematically, a 

network might be considered as a matrix, where each row and column represent different 

nodes (brain regions) and the cells of matrix carried the information on the interaction 

(structural or functional) of pairwise nodes.  

A graph may be classified as undirected or directed depending on whether links have 

directions or not (Figure 5) (Farahani et al, 2019). Weighted links can represent the size 

or the density of anatomical tracts in the structural architecture of the network, while in 

the functional network they represent the strength of correlation or causal interactions. 

Unweighted (binary) networks indicated the only existence or absence of connection. 

Weighted network analysis can provide a more informative description of the structural 

and functional brain architecture, which has led to a greater interest and investigation over 

the years (Telesford et al, 2011). 

 

 

Farahani et al. Graph Theory and Brain Networks

between fMRI time-courses may be a common shortcoming for
most of them (Dang et al., 2017).

Bayesian network (BN)
BN is a probabilistic model well suited for representing the
conditional dependencies over a set of random variables through
a directed acyclic graph (DAG) (Friedman et al., 1997). Each edge
indicates a dependency between two variables (nodes), where the
lack of connection between any pair of nodes reflects conditional
independence. Each node has a probability distribution: In
root nodes, this is prior probability, while in child nodes this
is the conditional probability (Das, 2004; Daly et al., 2011).
Gaussian BN (Li et al., 2009b) and discrete dynamic BN (DBN)
(Rajapakse and Zhou, 2007; Zeng and Ji, 2010) are the most
commonly used techniques in this area. Due to the static
nature of Gaussian BNs, they are unable to explicitly model the
temporal interactions between multiple processes in different
parts of the brain (Rajapakse and Zhou, 2007). Compared with
Gaussian BN, discrete DBN is not limited by linear assumptions,
and it can model temporal processes via a first-order Markov
chain (Rajapakse and Zhou, 2007). However, the presence of
multinomial distribution in the nodes of discrete DBN causes
discretization of the data, leading to a huge loss of information.
To overcome the primary limitations of both methods, Wu et al.
(2014) proposed a method called Gaussian DBN based on a
first-order linear dynamic system.

Transfer entropy (TE)
TE is a non-parametric approach measuring the transfer of
information between joint processes based on information theory
(Schreiber, 2000). Because of its non-linear nature, this method
is able to properly detect directional connectivity even if there is
a wide distribution of interaction delays between the two fMRI
signals (Vicente et al., 2011; Sharaev et al., 2016). Although TE
and GC are relatively equivalent for Gaussian variables (Barnett
and Seth, 2009), TE needs much less computational time than
GC for high model orders and greater numbers of nodes. In
addition, TE does not assume any particular model as underlying
the interactions, therefore, its sensitivity to all order correlations
becomes a privilege for exploratory analyzes over GC or other
model-based methods (Vicente et al., 2011; Montalto et al.,
2014). However, contrary to the model-based methods, it is
more difficult to interpret this measure in functional connectivity
analysis due to its generality (Bastos and Schoffelen, 2016).

Graph Theory: Analysis of the Brain as a
Large, Complex Network
The first application of graph theory and network analysis can be
traced back to 1736 when Leonhard Euler solved the Königsberg
Bridge Problem (Euler, 1736). In this regard, a graph consists of a
finite set of vertices (or nodes) that are connected by links called
edges (or arcs). Following the emergence of promising results in
electrical circuits and chemical structures in its early applications,
graph theory has now become influential in addressing a large
number of practical problems in other disciplines, such as
transportation systems, social networks, big data environments,
the internet of things, electrical power infrastructures, and

FIGURE 2 | A network can be designed as binary (A) or weighted (B) graphs,

and can represent the direction of causal effects (C,D) among different regions.

biological neural networks (Watts and Strogatz, 1998; Boccaletti
et al., 2006; Schweitzer et al., 2009).

The turning point of the complex brain network studies using
graph theory goes back to the introduction of the “Human
Connectome” (Sporns et al., 2005). In graph theory, an N×N
adjacency matrix (also called a connection matrix) with the
elements of zero or non-zero indicates the absence or presence
of a relationship between the vertices of a network with N nodes.
By extracting different metrics from this matrix, one can obtain a
topological analysis of the desired graph (e.g., the human brain
network). A brain graph may be classified as either directed
or undirected (Figure 2) based on whether the links between
vertices carry directional information (e.g., causal interaction).
Up to now, most human brain investigations have been devoted
to the undirected networks because of the technical constraints
surrounding the inference of directional networks (Liao et al.,
2017). A brain graph can also be categorized as either weighted or
binary (Figure 2) based onwhether the links between vertices can
take different values. For instance, in a white matter anatomical
network taken by diffusion MRI, we can obtain a weighted
network using various information, such as fiber number,
fiber length, and fractional anisotropy (Fornito et al., 2013;
Zhong et al., 2015).

In 1998, Watts and Strogatz showed that many social,
biological, and geoscience-based networks have a very striking
organization, called “small-world” architecture, that makes them
act as regular networks, while they occasionally experience
random activity (Watts and Strogatz, 1998; Figure 4C). Small-
world networks represent the shortest path between each pair
of nodes in the network using the minimum number of edges.
In small-world networks, the clustering coefficient (also referred
to as transitivity) is high, and the average path length is short.
These two characteristics are the result of a natural process
to satisfy the balance between minimizing the resource cost
and maximizing the flow of information among the network
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Figure 5: A network can be designed as A) binary (unweighted) B) weighted graphs and might 
represent the direction of causal effects in different regions (C, D) (Farahani et al., 2019). 
 

The architecture of the brain network can be described as a “small world” network 

(Figure 6-C) in which most nodes are not near each other but can be reached from every 

other node by a small number of steps (Farahani et al., 2019; Sporns & Honey, 2006). 

Small-world property is characterized by the shortest path between each pair of nodes in 

the network using the minimum number of edges (Figure 6-B) and the highest clustering 

coefficient (Figure 6-A) to satisfy the balance between minimizing the resource cost and 

maximizing the flow of information among the network components (Farahani et al., 

2019; Sporns & Honey, 2006). Such architecture is crucial for healthy brain function and 

has an important role in cognitive abilities (van den Heuvel et al, 2009). On the other 

hand, disruption of the connectome, likely affects both network topological organization 

and function (Filippi et al., 2013). 

 
Figure 6: Summary of global graph measures. (A) Clustering coefficient quantifies how much 
neighbors of a given node are interconnected; modularity is related to clusters of nodes that have 
dense interconnectivity within clusters but sparse connections with nodes in other clusters. (B) 
characteristic path length determined as the average shortest path length across all pairs of nodes. 
(C) A regular network (left) displays a high clustering coefficient and a long average path length, 
while a random network (right) displays a low clustering coefficient and a short average path 
length. A small-world network (middle) illustrates an intermediate balance between regular and 
random networks, reflecting a high clustering coefficient and a short path length. Adapted from 
(Farahani et al., 2019). 
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2.1.1 Graph metrics 

As abovementioned, graph theory can be applied to model, simplify, and abstract the 

complex nature of brain and to describe several properties of network brain architecture 

from both structural and functional point of view. Although it is not yet established which 

measures are most appropriate for the analysis of brain networks, the most examined 

graph metrics in brain connectomics include degree, clustering, global efficiency and 

modularity (Figure 7).  

The degree of a node is defined as the node’s number of connections and provides a 

metric of the effect that a node has on the overall network infrastructure. Nodes with high 

degrees and an overall central position in a network’s topological organization are often 

described as hubs (Filippi et al., 2013). The level of clustering or local efficiency 

expresses the level of local connectedness of a network. The shortest path length describes 

the minimum number of steps needed to travel between two nodes. Global efficiency, 

calculated as the inverse of this measure, expresses the capacity of the network to 

communicate between remote regions. 

 

 
Figure 7. Summary of the main measures estimated with graph analysis. (A) A graph is a 
mathematical description of a network, consisting of a collection of nodes and connections. (B) 
A weighted graph includes information about the strength of the connections. (C–F) Local and 
global metrics can provide insight into the topological organization of a network. (C) The 
clustering coefficient describes the tendency of nodes to form local triangles, providing insight 
into the local organization of the network. (D) The shortest path length describes the minimum 
number of steps needed to travel between two nodes and describe the network capacity to 
communicate between distant regions. (E) The degree of a node describes its number of 
connections. (F) High-level connectivity between nodes (Filippi et al., 2013). 

 

Recent evidence suggests that a stable property of cortical brain network architecture 

is represented by central regions interconnecting distinct, functionally specialized 
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systems (i.e., regions displaying disproportionately numerous connections with other 

brain areas), known as hubs (Filippi et al., 2013; van den Heuvel & Hulshoff Pol, 2010). 

Hubs are defined as heavily connected nodes in a network. Accordingly, hubs have a high 

node degree and a stronger potential effect on the overall network infrastructure. Hubs 

can be distinguished in “connector” or “provincial” according to their participation 

coefficient, high or low respectively. Connector hubs are usually those nodes that 

potentially play a role in between-module communication and in interconnecting nodes 

of the network (Bertolero et al, 2015). On the other hand, provincial hubs are thought to 

serve as hubs that integrate information within modules to support the functional 

specialization (Bertolero et al., 2015). Hubs of a network tend to be more densely 

connected among themselves than nodes of a lower degree, organizing as a “rich club” 

network (van den Heuvel & Sporns, 2011). 

 

2.1.2 Network Based Statistics 

Network-based statistic (NBS) (Zalesky et al, 2010) is a powerful statistical approach 

to identify connections in brain network that may be associated with a pathological status 

in case-control studies. The purpose of the NBS in these studies is to identify any pairwise 

associations that are significantly different between groups. Such approach is a method 

to control the family-wise error (FWE) rate when mass-univariate testing is performed at 

every connection comprising the graph.  

Specifically, the test statistic independently computed for each link is thresholded to 

construct a set of suprathreshold links. Connections comprising this set represent 

potential candidates for a statistical difference between groups, although at this stage 

statistical significance cannot be established. Such connections are stored and topological 

clusters, i.e., connected graph components, are identified within the suprathresholded 

connection step. The presence of a component might be the evidence of a non-chance 

structure for which the null hypothesis can be rejected, but such framework is not 

applicable for any individual connection. Finally, permutation testing is used to assign 

FWE-corrected p-value to each connected component based on its size.  

NBS results in a more powerful tool than link-based controlling procedures (i.e., false 

discovery rate), as long as connectivity differences were structured in such a way that 

they formed connective components. Furthermore, its advantageous lies on its 
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applicability in the context of graph-based models where there is a massive number of 

multiple comparisons, arising when it is of interest evaluating every connection. The 

potential gain offered by NBS comes at a price: the null hypothesis can only be rejected 

on a component-by-component basis. This meaning that, with the NBS, it is never 

possible to declare individual links as being significant, only the component to which 

they belong can be declared significant. 
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2.2 STRUCTURAL AND FUNCTIONAL BRAIN NETWORKS 
2.2.1 Structural brain network 

According to graph theory, structural brain networks can be described as graphs that 

are composed of nodes, such as brain regions, that are linked by edges representing 

structural connections. Although graph theory emphasizes topological connectivity 

patterns, the topological and physical distances between elements in brain networks are 

often intricately related.  

Graph theory allows to map white matter tracts individually using DTI. Maps of 

structural connectivity are created following the following steps:  

1. Identification of nodes: network nodes are identified by applying a selected atlas 

of GM structures to the brain. 

2. Reconstruction of white matter tracts: once brain regions are defined, white matter 

tracts between such regions are reconstructed using DTI. 

3. Identification of Streamlines: streamlines touching each couple of the segmented 

grey matter nodes are selected and the number of streamlines is calculated for each 

white matter tract and inserted into a matrix, defining structural connections. 

4. Extraction of microstructural integrity measures: for each structural connection, 

mean fractional anisotropy, mean diffusivity, radial diffusion and axial diffusion 

values are extracted as common measures of microstructural integrity. 

5. Creation of structural connectome: finally, all values of such measures are 

inserted in different matrices, separately. 

Analyzing the matrices, it is possible to provide information concerning the 

topological organization of network architecture (Stam & van Straaten, 2012). 

 

2.2.2 Functional brain network 

Although analyzing structural networks helps us to understand the fundamental 

architecture of the brain, it is also interesting to study functional networks in order to 

elucidate how the brain architecture supports neurophysiological dynamics.  

Maps of functional connectivity are created following the following steps: 

1. Identification of nodes: network nodes are identified by applying a selected atlas 

of grey matter structures to the brain. 
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2. Extraction of mean RS fMRI time-series: a mean RS fMRI time-series are 

obtained averaging the time-series of all voxels contained in each brain region. 

Likewise, a mean RS fMRI time-series are obtained for each region. 

3. Creation of functional connectome: the Pearson correlation coefficient between 

these mean time-series, indicating the level of functional connectivity between 

pairwise regions, are entered into cell c(i,j) of an association matrix. Moreover, 

negative correlation coefficients, reflecting functional distinct brain regions, will 

be set to 0 to mark these brain regions as unconnected. 

Graph-based approach might be applied to the association matrix of functional 

connectivity to provide information concerning the functional organization of brain 

architecture (Stam & van Straaten, 2012). 

The functional connectivity matrix is used to be often “thresholded”, meaning that only 

those connections that reach a specific value are considering. Thresholding is a commonly 

applied approach in studying functional connectome to remove spurious connections and 

to obtain connected matrices with a stronger biological interpretation, even though some 

studies suggested that this operation may ignore potentially valuable information in the 

functional network reconstruction (Gallos et al, 2012; Santarnecchi et al, 2014). Some 

most commonly applied approaches to perform this thresholding include the “absolute 

threshold” and the “proportional threshold” approach. The first approach describes the 

selection of those network edges that exceed an absolute threshold T ‘a priori’ defined. 

Another approach includes the selection of a pre-defined number of strongest connections 

as network edges, ensuring equal network density across datasets (van den Heuvel et al, 

2017). Finally, another approach involves masking functional connectivity matrices with 

a comprehensive structural healthy connectome. Indeed, the healthy connectome might 

ideally represent all the possible structural connections existing in the human brain, in 

contrast to the pathological condition which might have already altered the structural 

connectome. Such framework allows not only to avoid taking into account false-positive 

functional connections, enhancing the biological interpretation of the results, but also to 

minimize the risk of including spurious functional connections (Filippi et al, 2017; 

Migliaccio et al, 2020; Schmidt et al., 2014).  

Effective connectivity models, that are specific functional connectivity approach for 

generating directed graphs, aim to estimate causal influence that each element of the 
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network exerts on the other elements. Among such models the most commonly applied 

are dynamic causal modelling (Friston et al, 2003) or Granger causality (Brovelli et al, 

2004). 

 

2.3 STATE OF ART IN NEURODEGENERATIVE DISEASES AND 

AGING 
The application of the abovementioned graph theoretical approach has opened new 

avenues toward studying the functional and structural brain topological organization in 

order to identify the underpinning mechanisms to healthy aging and pathological 

conditions as neurodegenerative diseases. 

Common findings among RS fMRI studies have indicated that aging affects the 

functional modular organization and functional hubs of the human brain (Zhang et al, 

2020). In particular, aging is accompanied by changes in balance of network’s cost of 

wiring and communication efficiency (defined as the minimum path length between 

regions) that implies decreasing local efficiency within networks and requires multi-step 

less efficient paths between regions mainly in frontal and temporal cortical regions 

(Betzel et al, 2014; Chan et al, 2014; Geerligs et al, 2015). This underlies an overall shift 

in the functional connectome topology, moving towards a predominance of long-range 

rather than short-range communication.  

Overall, the most consistent findings of functional changes involve particularly higher-

order networks specialized for cognition, such as the DMN (Geerligs et al., 2015; Betzel 

et al., 2014; Siman-Tov et al, 2016). Age-related functional differences have also been 

observed in other brain networks such as dorsal attention and the salience network (Grady 

et al, 2016; Tomasi & Volkow, 2012). These networks appear the most affected resting-

state network in aging, with weakened within-network functional connectivity in different 

studies using graph theory (Grady et al., 2016). In general, the idea is that intra-modular 

connectivity becomes weak during aging while inter-modular connections keep 

developing to balance the modular structure in the brain network (Spreng et al, 2016). 

Finally, among lifespan, there is greater recruitment of hubs in old subjects compared to 

young and middle age groups in the left hemisphere (Zhang et al., 2020), supporting the 

right hemi-aging model, according to which age-related declines preferentially affect 

functions attributed to the right hemisphere than those associated with the left hemisphere 
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(Dolcos et al, 2002). 

Regarding to structural connectivity, one of the main findings is that the topological 

efficiency of the white matter structural networks shows an inverted U-shaped trajectory 

across lifespan, with the peak age at approximately the third decade (Zhao et al, 2015). 

Indeed, in old age the structural organization eventually altered greatly, shifting to a more 

localized organization: such phenomena might be explained by increased shortest path 

length and clustering coefficient (Otte et al, 2015), but also by the opposite trend of the 

local and global efficiency: the local efficiency decreased, at first, but then increased, 

whereas global efficiency increased and then decreased with aging (Wu et al, 2012). 

Moreover, the hub integration decreased linearly with age, especially accompanied by the 

loss of frontal hubs and their connections (Zhao et al., 2015). Moreover, the most 

prominent structural changes were found in frontal and temporal cortices (Coelho et al, 

2021; Zhao et al., 2015), consistent with the last-in-first-out hypothesis which posits that 

brain regions that reach full maturation later are more vulnerable to age-related atrophy. 

Graph theory-based methods have found application also in the field of 

neurodegenerative diseases, which can be described as dysconnectivity syndromes, since 

their clinical manifestations might be related to disrupted integration of spatially 

distributed regions of the brain, part of large-scale networks. By applying such methods, 

it is possible to characterize the structural and functional brain topological organization 

in patients with different neurological disorders, as mild cognitive impairment, AD, 

bvFTD and MND. 

Abnormal topological properties have been described in the structural brain networks 

of patients with AD (Filippi et al, 2020; Tijms et al, 2013). Studies suggested a greater 

segregation and a disrupted integration of topological organization in AD based on the 

network construction (He et al, 2008). Moreover, studies of structural brain networks in 

patients with AD showed increased inter-regional correlations within the local brain lobes 

and disrupted long-distance inter-regional correlations (Yao et al, 2010) and found an 

association between abnormal patterns of white matter connectivity and cognitive 

deficits. 

Graph analysis has also been used to analyze RS fMRI data of patients with AD (Sanz-

Arigita et al, 2010) and bvFTD (Agosta et al, 2013; Saba et al, 2019). In these studies, it 

emerges that altered functional connectivity involved brain regions closely associated 
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with neuropathological changes of such disorders, including posterior cingulate cortex 

and precuneus, the inferior parietal lobule, and the medial frontal cortex (components of 

default mode network) for AD (Zhao et al, 2012), and frontotemporal lobes and 

subcortical regions for bvFTD (Agosta et al., 2013). Furthermore, through the 

reconstruction of functional connectome in patients with bvFTD, a global fragmentation 

of the functional brain network with severe disruption of the information-flow highways 

was observed in these patients, showing above all that the frontotemporal areas were less 

compact, more isolated, and concentrated in less integrated structures, compared to 

healthy controls (Saba et al., 2019). Moreover, graph analysis and connectomics turn out 

to be useful tools to differentiate early onset AD from bvFTD, revealing disease-specific 

patterns of functional network topology and connectivity alterations (Filippi et al., 2017). 

In addition, graph theory metrics have demonstrated their strength in the differentiation 

of individuals across the AD spectrum (Filippi et al., 2020; Hojjati et al, 2017; Khazaee 

et al, 2015). 

Graph analysis and connectomics were also applied to investigate ALS. Evaluating 

structural brain network in ALS, the most consistent finding is the reduced WM 

connectivity, centered around the primary motor connections as well as secondary motor 

connections (frontal cortex) (Fortanier et al, 2019; Verstraete et al, 2011). In addition, 

overall efficiency and clustering coefficient were found to be decreased in ALS 

patients(Verstraete et al., 2011). Moreover, since ALS is now recognized as a system 

failure, involving not only clinical motor symptoms but also cognitive symptoms, a recent 

study applied a connectomic approach to better characterized ALS patients with 

cognitive/behavioral deficits revealing widespread cerebral white matter changes 

affecting frontotemporal regions in ALS with mild cognitive deficits relative to ALS with 

only motor impairment (van der Burgh et al, 2020). Few studies applied network-based 

analyses to the assessment of functional alterations in ALS patients using RS fMRI 

(Geevasinga et al, 2017; Zhou et al, 2016), demonstrating complex connectivity 

alterations encompassing frontal, temporal and occipital regions.  

On the other hand, there is a paucity in literature of studies that applying connectomic 

approaches in MND variants such as PLS and PMA. Up to date, the study from our group 

(Basaia et al, 2020) is the first and only study that applied graph theory in these MND 

phenotypes, highlighting that PLS patients are characterized by widespread structural and 
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functional alterations encompassing both motor and extra-motor areas with a pattern 

resembling classic ALS patients in line with previous studies (Agosta et al, 2014; Muller 

et al, 2018). By contrast, PMA patients did not show any structural or functional damage 

relative to healthy controls, in line with previous studies (Rosenbohm et al, 2016; Spinelli 

et al, 2016), even using a technique that is highly sensitive to local disruptions in the brain 

networks.  
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2.4 NOVEL GRAPH THEORY METRICS (STEPWISE) 
While most graph theory MRI studies emphasize the separation and isolation of 

networks in the brain, recent studies focused attention on how brain systems are bound 

together. In order to address this question, a novel graph method called ‘stepwise 

connectivity’ (SFC) has specifically developed to explore the convergence and 

interactions of sensory systems at the connectivity level (Sepulcre et al, 2012). SFC 

analysis aims to characterize regions that connect to specific seed brain areas at different 

levels of link-step distances. A step is referred to the number of links (edges) that belongs 

to a path connecting a node to the seed area.  

Many graph theory metrics are based on the direct strength or number of connections 

that a given region or voxel displays, without taking into account of the position or 

distance of a given node from other proximal and distal regions. Recently, to overcome 

this caveat, graph theory metric based on SFC analysis has been developed. This metric 

calculates the relative network distance of every voxel in the brain and quantifies the 

precise or optimal location of that voxel with reference to all other voxels (Gao et al, 

2018; Qian et al, 2018). In other words, the optimal connectivity distance metric captures 

the distance at which two nodes reach their maximal degree of connectivity.  
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2.5 ADVANCED DIFFUSION MRI MODEL  
Diffusion MRI provides unique insight into tissue microstructure and is, without a doubt, 

the most promising technique for in vivo quantification of neurite morphology. The 

principle behind it is the measurement of the displacement of water molecules undergoing 

diffusion. Indeed, the water displacement pattern is influenced by tissue 

microarchitecture and, consequently, diffusion MRI measures support inferences on 

tissue microstructural integrity (Alexander et al, 2019; Zhang et al, 2012). 

Currently, DTI is the most common MRI-based neuroimaging technique that allows to 

investigate white matter microstructural changes (Assaf & Cohen, 2000). This diffusion 

model allows to obtain indirect measures of microstructural white matter changes such as 

FA, MD, radial and axial diffusivity, not only in a condition of normal brain aging, but 

also in presence of neurodegenerative diseases or psychiatric disorders (Goveas et al, 

2015; Wassenaar et al, 2019; Pasternak et al, 2018).  

Despite its simple implementation and its microstructural sensitivity, the model 

underlying DTI is unspecific to biological changes. Indeed, reduction in FA might be 

caused by a decrease in neurite density but also by a dispersion of neurite orientation 

distribution (Zhang et al., 2012). To better understand the direct neurobiological 

relevance from diffusion MRI, multicompartment biophysical models are needed. 

The recent research in diffusion MRI is developing more advanced tools that can better 

model tissue microstructure and extract microstructural integrity features directly. A 

successful model of white matter microstructure consists of designing glial cells, axons, 

and extra-cellular space as individual compartments, since they show different diffusion 

behavior. Such approach is called Neurite orientation dispersion and density imaging 

(NODDI) and allows to investigate the exchange of water between the intra-cellular and 

extra-cellular compartments (Zhang et al., 2012). 

 

2.5.1 NODDI model 

At the state-of-art, a novel model for the estimation of microstructural integrity is the 

NODDI (Parker et al, 2021; Zhang et al., 2012). It is a multi-compartment model that 

enables the evaluation of three key aspects of neural tissue at each voxel: intra-cellular, 

extra-cellular, and CSF compartments. The intra-neurite compartment considers the 

tissue component of axons and dendrites, the extra-neurite compartment considers the 
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tissue component of cell bodies and glial cells, and the non-tissue comportment (e.g., 

CSF) accounts for free water (Figure 8)(Tariq et al, 2016). 

 

 
Figure 8. Breakdown of the total normalized diffusion MRI signal as modelled by NODDI. The 
contributions of the tissue and non-tissue components of the brain are modelled separately. The 
tissue signal is further broken down to account for the signal originating from the highly restricted 
neurites and the hindered space outside the neurites. The non-tissue compartment is modelled by 
isotropic Gaussian diffusion. The intra-neurite compartment models the neurites as orientationally 
dispersed sticks, while the space around the neurites is prescribed an anisotropic diffusion model 
(Tariq et al., 2016). 
 
Such model considers the behavior of water diffusion within the environment (e.g., brain) 

in a more detailed and complex way and gives rise to a separate normalized MR signal. 

NODDI allows to estimate the density and the orientation dispersion of neurites by 

calculating tissue and non-tissue metrics such as neurite density index, also called intra-

cellular volume fraction (ICVF), orientation dispersion index (ODI) and CSF volume 

fraction, also called isotropic water diffusion (ISO) (Tariq et al., 2016; Zhang et al., 

2012). ICVF and ODI are strictly related to the density and the structural integrity of 

axons in white matter and dendrites in grey matter, that are fundamental for neural 

communication and might provide useful biomarkers of brain function in aging and 

neurodegenerative diseases(Parker et al., 2021). Indeed, alterations in such metrics have 

been revealed in healthy aging (Kodiweera et al, 2016) and in neurological phenotypes, 

as amyotrophic lateral sclerosis (Gatto et al, 2018), frontotemporal dementia (Wen et al, 



 

 

 51 

2019a), Alzheimer’s disease (Colgan et al, 2016; Fu et al, 2020; Parker et al, 2018; 

Slattery et al, 2017; Wen et al, 2019b) and Parkinson’s disease (Kamagata et al, 2018). 
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3.  AIMS OF THE WORK 
 

Neurodegenerative diseases have two main characteristics: an insidious progression and 

a selective predilection in the breakdown of specific brain regions. Both aspects are also 

shared with aging process. Irreversibility and steady progression of clinical 

manifestations are common features between brain aging and neurodegeneration 

conditions. Moreover, selective regional vulnerability defines the clinical features of 

different neurodegenerative diseases, as well as aging seems to affect specific brain 

regions paving the way (additive effect) to the onset of neurodegenerative diseases 

(Bischof et al, 2019; Pandya & Patani, 2020; Pichet Binette et al, 2020). Defining this 

separation line is however shadowy, as the aging and the neurodegenerative processes are 

intermingled. 

In order to shed light on brain changes related to aging and those caused by 

neurodegenerative diseases, MRI advanced techniques, such as connectome-based 

approaches, represent valuable in vivo technical innovation. Connectomics allow to 

model better the complex organizational nature of the brain in order to understand the 

underlying brain circuitry and the underpinnings mechanisms with a network-based 

approach, relying on the interplay between segregation and integration properties 

(Sporns, 2013). This has paved the way to investigate comprehensively several 

neurodegenerative diseases, including ALS and FTD. A growing body of evidence 

supports the notion of clinical, pathological and genetic overlap between ALS and the 

wide spectrum of FTD (Burrell et al, 2016; Devenney et al, 2015).  

During my PhD studies, I have applied graph theory-based approaches and connectomics 

to explore brain structural and functional changes across FTD-ALS spectrum with the 

goal of mapping spatiotemporal patterns of degeneration in these conditions. Moreover, 

I applied novel advanced MRI techniques on healthy aging to identify specific structural 

and functional brain changes in order to answer the question of whether 

neurodegeneration-related patterns of damage represent accelerated aging or a distinct 

process. 

The studies are described in chapters 4 and 5, and the results are jointly discussed in 

chapter 6.  
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Specific aims of the project included: 

1. Investigating structural and functional brain network architecture in MND clinical 

phenotypes (chapter 4.1). The global topology and regional effects on the structural and 

functional brain connectome were investigated in patients with ALS, PLS and PMA.  

2. Chapter 4.2 was focused on the specific and more common phenotype of MND 

(i.e., ALS). The aim of the present study was to investigate structural and functional 

network correlates of cognitive/behavioral impairment in patients within the ALS-FTD 

continuum. Using up-to-date MRI approaches, I assessed distinctive patterns of network 

disruption (i.e., “ALS-cn-like pattern” and “bvFTD-like pattern”) that may prove useful 

for accurate classification at a single-patient level. 

3. In Chapter 5, I put my effort in understanding the role played by healthy aging in 

neurodegenerative diseases, studying the age-related vulnerability of the human brain 

connectome (chapter 5.1). The goal here was to better understand how aging might pave 

the way to the onset of neurodegenerative diseases, as dementia. 

4. Finally, in chapter 5.2 I assessed white matter integrity using novel and advanced 

diffusion metrics, able to identify the tracts affected during aging. The identification of 

such changes might help to understand the substrate and the regional variability of age-

related degeneration.  

5. Chapter 7 listed other studies and projects I have played an active role and 

participated in their implementation during my PhD. 
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NEURON DISEASE - FRONTOTEMPORAL DEGENERATION 
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4.1. STRUCTURAL AND FUNCTIONAL BRAIN CONNECTOME IN 

MOTOR NEURON DISEASES: A MULTICENTER MRI STUDY 
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INTRODUCTION 

Motor neuron diseases (MND) are progressive neurodegenerative conditions 

characterized by the breakdown of the motor system. The involvement of the upper motor 

neurons (UMN) and/or lower motor neurons (LMN) defines different clinical phenotypes, 

including amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS) and 

progressive muscular atrophy (PMA)(Norris et al, 1993). Compared with ALS, PLS and 

PMA patients are characterized by a slower rate of progression and a more benign 

prognosis(Chio et al, 2011). 

Validation of noninvasive biomarkers to characterize different MND phenotypes is a 

challenge of growing importance in order to recognize subjects known to be at risk of 

more rapid progression (i.e., conversion to the ALS phenotype) prior to the appearance 

of clinically apparent disease. Brain magnetic resonance imaging (MRI) has shown to be 

promising, over the last decades, to detect in vivo structural and functional brain 

abnormalities and to monitor degeneration within the central nervous system of MND 

patients (Basaia et al, 2019). To date, it is of great relevance to evaluate whether MRI 

biomarkers are suitable and reliable in a multicenter context. 

In ALS patients, many diffusion tensor (DT) MRI studies have consistently identified 

structural alterations in a “signature” white matter (WM) region involving the 

corticospinal tract (CST) and the middle and posterior parts of the corpus callosum 

(Muller et al, 2016). DT MRI has proven useful in distinguishing MND variants (Agosta 

et al, 2014b; Rosenbohm et al, 2016; Spinelli et al, 2016), as PLS patients showed more 

widespread DT MRI damage compared to ALS (Agosta et al., 2014b), whereas the least 

diffuse WM damage was observed in patients with predominant LMN involvement 

(Rosenbohm et al., 2016; Spinelli et al., 2016). 

In ALS, resting-state functional MRI (RS fMRI) studies reported inconsistent results, 

showing either decreased or increased functional connectivity in the premotor, motor and 

subcortical regions (Agosta et al, 2014a; Menke et al, 2016). To date, other MND 

phenotypes are yet to be explored using RS fMRI, as only one study reported increased 

functional connectivity within the sensorimotor, frontal, and left frontoparietal networks 

of PLS patients (Agosta et al., 2014a), and no studies assessed brain functional 

underpinnings of PMA. 
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In the last decade, neuroimaging research has zeroed in on the study of changes in 

structural and functional connectivity at a whole-brain-system level, rather than on 

alterations in single brain regions (Bullmore & Sporns, 2009), applying the ‘graph theory’ 

analysis (Tijms et al, 2013). It has been widely demonstrated that this approach is a 

powerful tool to measure structural and functional reorganization in neurodegenerative 

diseases (van den Heuvel & Sporns, 2019), including ALS (Geevasinga et al, 2017; 

Verstraete et al, 2014). To date, no studies used graph analysis and connectomics to 

investigate structural and functional networks in different phenotypes of MND. In 

addition, previous network-based studies involved single-center cohorts, thus limiting the 

generalizability of findings.  

Considering this background, the aim of the present study was to investigate structural 

and functional neural organization in ALS, PLS and PMA patients using graph analysis 

and connectomics. One of the main novelties of our study was the use of data from 

different centers, neuroimaging protocols and scanners, in order to reach both reliability 

and reproducibility of results. 

 

METHODS 

The present work is a prospective and multicenter study. Subjects were recruited and 

clinically evaluated at three Italian ALS centers (San Raffaele Scientific Institute, Milan; 

Azienda Ospedaliera Città della Salute e della Scienza, Turin; and Università degli Studi 

della Campania “Luigi Vanvitelli”, Naples) from 2009 to 2017 in the framework of a 

large, observational study. MRI scans were obtained from all participants using two 3T 

scanners: Philips Medical Systems Intera machine (for Milan and Turin patients) and GE 

Signa HDxt machine (for Naples patients). All MRI data were analyzed at the 

Neuroimaging Research Unit, Division of Neuroscience, San Raffaele Scientific Institute 

and Vita-Salute San Raffaele University, Milan, Italy. 

 

Participants 

239 sporadic MND patients (173 cases with classic ALS, 38 with PLS, and 28 with 

PMA) were consecutively recruited from those routinely evaluated at the three clinical 

centers (Table 1). Classic ALS patients (131 from Milan/Turin and 42 from Naples) met 

a diagnosis of probable or definite ALS according to the revised El Escorial criteria 
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(Brooks et al, 2000). Thirty-eight patients (all from the Milan/Turin dataset) were 

diagnosed as PLS according to Pringle’s criteria at the last available clinical follow up 

(Pringle et al, 1992). Twenty-eight patients had PMA (all from the Milan/Turin dataset) 

(van den Berg-Vos et al, 2003). All patients were receiving riluzole at study entry. 

Seventy-nine age- and sex-matched healthy controls (61 from Milan/Turin and 18 from 

Naples) were recruited by word of mouth (Table 1), based on the following criteria: 

normal neurological assessment; mini mental state examination (MMSE) score ≥28; no 

family history of neurodegenerative diseases. Exclusion criteria for all subjects (i.e., 

patients and healthy controls) were: medical illnesses or substance abuse that could 

interfere with cognitive functioning; any (other) major systemic, psychiatric, or 

neurological diseases; other causes of brain damage, including lacunae and extensive 

cerebrovascular disorders at MRI.  

Disease severity was assessed using the ALS Functional Rating Scale-revised 

(ALSFRS-r) (Cedarbaum et al, 1999). The baseline rate of disease progression was 

defined according to the following formula: (48–ALSFRS-r score)/time between 

symptom onset and first visit. Muscular strength was assessed by manual muscle testing 

based on the Medical Research Council (MRC) scale, and clinical upper motor neuron 

(UMN) involvement was graded by totaling the number of pathological UMN signs on 

examination (Turner et al, 2004). For the UMN score, we also considered the presence 

of non-definite UMN signs such as reduced, but still evocable reflexes in muscles with 

LMN signs, which were detected in few PMA individuals. 

 

Standard Protocol Approvals, Registrations, and Patient Consents 

Local ethical standards committee on human experimentation approved the study 

protocol and all participants provided written informed consent (Ethical committee 

numbers: RF-2011-02351193 and ConnectALS). 

 

Neuropsychological assessment  

Neuropsychological assessments were performed by experienced neuropsychologists 

unware of the MRI results (data available from Appendix, E-Table 1). The following 

cognitive functions were evaluated: global cognitive functioning with the MMSE 

(Folstein et al, 1975); long and short term verbal memory with the Rey Auditory Verbal 
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Learning Test (Carlesimo et al, 1996) and the digit span forward (Orsini et al, 1987), 

respectively; executive functions with the digit span backward (Monaco et al, 2013). the 

Stroop interference test (Barbarotto et al, 1998), the Cognitive Estimation Task (Della 

Sala et al, 2003), the Weigl’s Sorting test (Tognoni, 1987), the Wisconsin Card Sorting 

Test (Laiacona et al, 2000) or the Modified Card Sorting Test (Caffarra et al, 2004), and 

the Raven’s coloured progressive matrices (Basso et al, 1987); fluency with the phonemic 

and semantic fluency tests (Carlesimo et al., 1996; Novelli, 1986; Tognoni, 1987) and the 

relative fluency indices (controlling for individual motor disabilities) (Abrahams et al, 

2000); language with the Italian battery for the assessment of aphasic disorders (Miceli 

et al, 1994). Mood was evaluated with the Hamilton depression rating scale (Hamilton, 

1960) or Beck Depression Inventory (Beck et al, 1961). The presence of behavioral 

disturbances was assessed with the Frontal Behavioral Inventory (Alberici et al, 2007) 

and the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia-Questionnaire (ALS-

FTD-Q) (Raaphorst et al, 2012) administered to patients’ caregivers. Healthy controls 

underwent the entire assessment except for the Stroop interference test, the Cognitive 

Estimation Task and the Weigl’s Sorting test.  

Cognitive test scores were not available for all patients. Data available from Appendix 

(E-Table 1) reports the number of patients that performed each cognitive test.  

 

MRI analysis 

Using two 3T MR scanners, T1-weighted, T2-weighted, fluid-attenuated inversion 

recovery, DT MRI and RS fMRI sequences were obtained from all participants (data 

available from Appendix, E-Table 2 for MRI sequence parameters). An experienced 

observer, blinded to participants’ identity and diagnosis, performed MRI analysis. Grey 

matter (GM) was parcellated into 220 similarly-sized brain regions, which included 

cerebral cortex and basal ganglia but excluded the cerebellum (figure 1-Ia) (Filippi et al, 

2017). DT MRI and RS fMRI pre-processing and construction of brain structural and 

functional connectome have been described previously (Filippi et al, 2020) (figure 1-Ia 

and Ib). 

 

Global brain and lobar network analysis 
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Global and mean lobar structural and functional network characteristics were explored 

using the Brain Connectivity Matlab toolbox (http://www.brain-connectivity-

toolbox.net). Network metrics, including nodal strength, characteristic path length, local 

efficiency and clustering coefficient were assessed to characterize the topological 

organization of global brain and lobar networks in patients and healthy controls (figure 

1-II) (Sporns & Zwi, 2004). In order to investigate the network characteristics in different 

areas of the brain, the 220 regions of interest (ROIs) from both hemispheres were grouped 

into six anatomical macro-areas (hereafter referred to as brain lobes): temporal, parietal, 

occipital, fronto-insular, basal ganglia, and sensorimotor areas (Filippi et al., 2017). 

Structural network properties were generated according to fractional anisotropy (FA) 

values, while analysis of brain network function was based on functional connectivity 

strength values (z-transformed Pearson’s correlation coefficients). Global and lobar 

metrics were compared between groups using age-, sex- and MR scanner-adjusted 

ANOVA models, followed by post-hoc pairwise comparisons, Bonferroni-corrected for 

multiple comparisons (p<0.05, SPSS Statistics 22.0). In addition, to evaluate the effect of 

the full-blown dementia patients into the results, the analyses were performed also 

without the eight ALS-FTD patients. Furthermore, the comparison between ALS and 

controls subjects, recruited only from Milan/Turin centers, was performed in order to 

assess the reproducibility of the findings when MRI were obtained using a single MR 

scanner.  

 

Connectivity analysis 

Network Based Statistics (NBS) (Zalesky et al, 2010a) were performed to assess 

regional FA and functional connectivity strength network data in patients and controls at 

the level of significance p<0.05 (figure 1-III). The largest (or principal) connected 

component and the smaller clusters of altered connections, which were not included in 

the principal component, were studied (Galantucci et al, 2017; Zalesky et al., 2010a). A 

corrected p value in the direct comparison between ALS patients and healthy controls 

(both provided by Milan/Turin and Naples centers) was calculated for each component 

using an age-, sex-, and MR scanner-adjusted permutation analysis (10000 permutations). 

Regarding the other comparisons, only MND patients and controls from Milan/Turin 

centers were included in the age- and sex-adjusted permutation analysis. In line with 
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previous global and lobar network analysis, NBS was performed also excluding ALS-

FTD patients and ALS/controls subjects recruited at the Naples center. 

 

Correlation analysis 

To assess the relationship between structural and functional brain network properties 

and clinical and neuropsychological variables, correlation analysis was performed in each 

patient group. Partial correlations between MRI measures (exhibiting significant 

differences between patients and controls), clinical variables and cognitive data were 

estimated using Pearson’s correlation coefficient (R), at the level of significance p<0.05 

(figure 1-IV). Correlation analyses were adjusted for age, sex (in PLS patients) and age, 

sex, and MR scanner (in ALS patients). Relationship with neuropsychological data were 

also adjusted for education and ALSFRS-r. Correlation analyses at global/lobar and 

regional level were also controlled for multiple comparisons, applying respectively 

Bonferroni and false discovery rate (FDR) adjustment. 

 

Data availability 

The dataset used and analyzed during the current study will be made available by the 

corresponding author upon request to qualified researchers (i.e., affiliated to a university 

or research institution/hospital). Additional Tables and Figures are available from 

Appendix (E-Tables 1-7 and Additional figures 1-2). 

 

RESULTS 

A summary of structural and functional altered metrics at global, lobar and regional 

levels in the different MND phenotypes has been reported in figure 2.  

 

Patients with ALS vs healthy controls  

Compared to healthy controls, ALS patients showed altered structural global network 

properties (lower mean local efficiency) (data available from Appendix, E-Table 3). ALS 

patients showed a reduced mean structural local efficiency in the sensorimotor, basal 

ganglia and frontal networks and longer path length in basal ganglia, frontal and temporal 

networks relative to healthy controls (figure 3; data available from Appendix, E-Table 4). 

They showed also reduced mean nodal strength in frontal and temporal regions relative 



 

 

 69 

to controls (figure 3; data available from Appendix, E-Table 4). ALS patients had 

preserved global and lobar functional nodal properties compared to controls (data 

available from Appendix, E-Tables 3 and 4). NBS showed structural changes in ALS 

patients relative to controls: decreased FA in the sensorimotor networks, including 

precentral and postcentral gyri, supplementary motor area and basal ganglia, and among 

the connections of the medial and lateral prefrontal cortex (figure 4A). ALS patients 

showed also increased functional connectivity compared to controls involving precentral 

gyrus, middle and superior frontal gyri (figure 4B). The listed results were confirmed 

excluding from the analysis ALS-FTD patients (data available from Appendix, E-Table 

5 and figure 1) or ALS and healthy controls acquired at the Naples center (data available 

from Appendix, E-Table 6 and figure 3). 

 

Patients with PLS vs healthy controls  

Compared to healthy controls, PLS patients showed altered structural global network 

properties (lower mean local efficiency and clustering coefficient, longer mean path 

length) (data available from Appendix, E-Table 3). PLS patients showed a reduced mean 

structural local efficiency and clustering coefficient and longer path length in the 

sensorimotor, basal ganglia, frontal and parietal areas relative to healthy controls (figure 

3; data available from Appendix, E-Table 4). PLS patients had a relatively preserved 

global and lobar functional nodal properties compared to controls (figure 3; data available 

from Appendix, E-Tables 3 and 4). Using NBS, widespread structural changes were 

observed in PLS patients relative to controls: decreased FA within the sensorimotor 

networks, including precentral and postcentral gyri, supplementary motor area and basal 

ganglia, and among connections within temporal and occipito-parietal areas (figure 4A). 

NBS analysis showed that PLS patients had higher functional connectivity in the 

sensorimotor, basal ganglia and temporal networks relative to controls (figure 4B). PLS 

structural and functional damage mimics the one observed in classical ALS (figure 5).  

 

Patients with PMA vs healthy controls 

PMA patients did not show differences in structural and functional graph and 

connectivity properties at both global and regional level (figures 3 and 4; data available 

from Appendix, E-Tables 3 and 4).  
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Patients with ALS vs patients with PLS 

ALS and PLS patients did not show differences in structural and functional graph 

properties at global level (data available from Appendix, E-Table 3). PLS patients 

demonstrated altered local structural, but not functional, alterations in sensorimotor 

network relative to ALS group (longer path length) (figure 3; data available from 

Appendix, E-Table 4). NBS did not show differences between ALS and PLS patients 

(figure 4). These findings were confirmed excluding ALS-FTD patients from the analysis 

(data available from Appendix, E-Table 5 and figure 1). 

 

Patients with ALS vs patients with PMA 

ALS and PMA patients did not show differences in structural and functional graph 

properties at both global and lobar level (figure 3; Additional data available from 

Appendix, E-Tables 3 and 4). However, ALS patients showed decreased FA relative to 

PMA cases within the sensorimotor network including precentral and postcentral gyri and 

frontal network (figure 4A). NBS did not show functional connectivity differences 

between ALS and PMA patients (figure 4B). The presented results have been validated 

excluding ALS-FTD patients from the analysis (data available from Appendix, E-Table 

5 and figure 1). 

 

Patients with PLS vs patients with PMA 

PLS and PMA patients did not show differences in structural and functional graph 

properties at global level (data available from Appendix, E-Table 3). PLS patients 

demonstrated altered local structural, but not functional, alterations in sensorimotor and 

frontal networks relative to PMA group (lower mean local efficiency and clustering 

coefficient and longer mean path length) (figure 3; data available from Appendix, E-Table 

4). In the NBS analysis, PLS patients showed decreased FA relative to PMA cases in the 

connections within and among sensorimotor network basal ganglia, frontal and parieto-

occipital areas (figure 4A). NBS did not show functional connectivity differences 

between PLS and PMA patients (figure 4B). 

 

Correlation analysis 
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In ALS patients, graph analysis structural brain changes mostly correlated with clinical 

disease severity (figure 6A). Indeed, a longer path length was related to disease 

progression rate (Ddp) both at the global (R= 0.25, p= 0.01) and lobar levels, particularly 

within sensorimotor (R= 0.23, p= 0.01), basal ganglia (R= 0.22, p= 0.02) and frontal-

insular (R= 0.22, p= 0.02) networks. Moreover, structural local efficiency in parietal 

network correlated negatively with Ddp (R= -0.20, p= 0.03) and positively with ALSFRS-

r score (R= 0.29, p< 0.001). Regarding regional analysis, in ALS patients, a decreased 

FA of the connections within temporal network correlated with a worse performance in 

global cognition (R= 0.36, p=0.03), while a higher disruption within the sensorimotor 

areas correlated with longer disease duration (R ranging from -0.51 to -0.28, p <0.05) and 

greater disease severity (R ranging from -0.34 to 0.30, p <0.05). In ALS patients, 

functional connectivity changes within basal ganglia network and connections between 

basal ganglia and premotor areas correlated with disease progression (R ranging from -

0.60 to 0.24, p <0.05). Moreover, higher functional connectivity, within extra-motor areas 

(temporo-frontal network), correlated with worse performance at executive (R= 0.37, p= 

0.01) and behavioral tests (R= 0.50, p= 0.04). In PLS patients, disrupted structural 

connections within motor and premotor areas correlated with lower ALSFRS-r scores 

(R= 0.56, p=0.02) (figure 6B). On the other hand, functional connectivity alterations were 

more related to cognitive performance. Particularly, functional clustering coefficient 

correlated with executive dysfunctions within basal ganglia network (R= -0.65, p= 0.04). 

Moreover, higher functional connectivity of the connections among temporal and frontal 

areas correlated with a worse performance at behavioral test (R ranging from 0.65 to 0.72, 

p <0.05). Correlations were not assessed in the PMA group since no significance 

structural and functional differences were found in the previous analyses relative to 

controls.  

 

DISCUSSION 

Using graph analysis and connectomics to explore structural and functional brain 

networks, the present multicenter study showed that clinical variants within the MND 

spectrum result in different patterns of brain network changes. ALS patients showed 

altered structural global and lobar network properties and regional connectivity, with a 

specific involvement of sensorimotor, basal ganglia, frontal and temporal areas. On the 
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same line, the structural damage in the PLS group was found in the sensorimotor network, 

together with a more widespread damage in extra-motor regions, such as the parietal lobe. 

On the contrary, PMA patients showed preserved structural and functional connectomes. 

Finally, in both ALS and PLS groups, alterations in structural connectivity correlated with 

measures of motor impairment, while functional connectivity disruptions were mostly 

related to executive dysfunctions and behavioral disturbances. These results proved to be 

independent of the presence of full-blown dementia, being confirmed also excluding eight 

ALS-FTD patients from the analyses. 

To date, several MRI studies have highlighted structural (Muller et al., 2016; Spinelli 

et al., 2016) and/or functional (Agosta et al., 2014a; Menke et al., 2016) ‘signatures’ of 

different phenotypes within the MND spectrum. However, while DT MRI studies have 

described consistent results, the literature of functional studies have reported inconsistent 

findings. Moreover, the above-mentioned studies have zeroed in on the study of structural 

and functional alterations at a voxel or regional level, rather than on alterations at brain-

system level (Bullmore & Sporns, 2009). In order to overcome this limitation, the present 

study has applied advanced network-based neuroimaging techniques, aiming to provide 

information about how networks are embedded and interact in the brain of different 

phenotypes within the MND spectrum, deepening previous findings of standard MRI 

techniques. Whereas whole-brain approaches might detect alterations at voxel or regional 

level, connectome analysis considers the relationships between degenerating connections 

and is able to provide connectivity information about the integrated nature of brain 

(Crossley et al, 2014). Another advantage of this new approach is that it may help in 

bridging the gap between different types of data, such as anatomical and functional 

connectivity. In fact, the use of a common parcellating system and the same statistical 

approach allows a straightforward comparison between the two types of information. 

Up to date, graph analysis and connectomics have already been applied to characterize 

structural and functional damage in ALS patients. Particularly, our findings are consistent 

with previous DT MRI studies that reported the presence of an impaired subnetwork 

including bilateral primary motor regions, supplementary motor areas and basal ganglia 

(Buchanan et al, 2015). Furthermore, our study highlights that affected extra-motor 

regions are structurally connected to the sensorimotor network, known to be the 

“epicenter” of the degenerative process of the disease (Brettschneider et al, 2013). This 
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hypothesis is consistent with the pattern of progression of TDP-43 pathological burden 

described by Brettschneider et al. (Brettschneider et al., 2013) in post mortem tissue, and 

supports a network-based degeneration model in ALS (Seeley et al, 2009), although 

longitudinal MRI studies are needed to validate this hypothesis. 

On the other hand, very few RS fMRI studies applied network-based analyses on ALS 

patients, demonstrating complex connectivity alterations encompassing frontal, temporal, 

occipital and subcortical regions (Geevasinga et al., 2017; Zhou et al, 2016). In our study, 

we found increased functional connectivity in sensorimotor, basal ganglia and frontal 

areas in ALS patients. Our results are mostly consistent with previous studies, although 

showing more focal functional rearrangements, possibly due to differences in disease 

stage and methodology (as in our study only functional edges with existing structural 

connections were considered). Although our study confirms previous findings, our 

strength is the application of advanced neuroimaging techniques in an unprecedented 

number of ALS patients due to the fact that is a multicenter study. In light of this, the 

great number of patients have a strong impact on the statistical power of the analysis and 

influenced the quality and reliability of our results. Of note, this is the first study that 

applied graph theory in patients with PLS and PMA. Particularly, PLS patients showed 

widespread structural and functional alterations encompassing both motor and extra-

motor areas with a pattern resembling classic ALS patients (figure 4), in line with 

previous studies (Agosta et al., 2014b; Muller et al, 2018). By contrast, PMA patients did 

not show any structural or functional damage relative to healthy controls. These findings 

are in line with previous studies that could not demonstrate central nervous system 

damage in PMA patients (Rosenbohm et al., 2016; Spinelli et al., 2016), even using a 

technique that is highly sensitive to local disruptions in the brain networks. Therefore, 

here we have demonstrated the high sensitivity of graph-based analysis to detect different 

disease related disconnection patterns and its potential use to facilitate clinical diagnosis 

and offer new insights into syndromes’ clinical diversity.  

Noteworthy, ALS and PLS patients are characterized by more widespread structural 

than functional damage relative to healthy controls (figure 3). The presence of 

functionally unaffected, but structurally impaired nodes and connections in both groups 

suggests that structural alterations may be earlier in the course of the disease compared 

with functional network abnormalities. In keeping with the network-based hypothesis 
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(Jucker & Walker, 2013), pathological alterations physically spread along 

neuroanatomical connections in the brain; therefore, it is reasonable to speculate that 

functional connectivity alterations may follow the structural disruption of the brain 

network. These findings are also in line with those recently observed in other 

neurodegenerative diseases (Filippi et al., 2020). However, it should also be considered 

that this cross-sectional study cannot fully address the temporal sequence or causal 

relationships between structural and functional abnormalities, and different techniques 

(i.e., DT MRI and RS fMRI) may intrinsically show different sensitivities to underlying 

biological processes. 

In the present study, the regional (i.e., NBS) analysis showed greater sensitivity for 

the detection of structural and, particularly, functional damage of brain networks, 

compared with the evaluation of single network properties. Moreover, the results of the 

global/lobar structural analysis provided some apparent inconsistencies across different 

network measures. For example, although structural nodal strength did not show 

significant alterations in the sensorimotor regions of MND patients compared with 

healthy controls, all other graph theoretical measures (i.e., local efficiency, clustering 

coefficient and path length) did. Given the inter-dependence of these measures, and the 

fact that nevertheless nodal strength was on average lower than healthy controls in all 

MND groups, we argue that nodal strength might simply be less sensitive than other 

measures to the structural disruption of the sensorimotor network in our cohort. This 

might differ in other anatomical areas with different topological organization, such as the 

temporal regions (which are also affected in MND (Verstraete et al., 2014)), where nodal 

strength and path length were significantly altered in ALS patients, in contrast with the 

sparing of other network properties. Therefore, our results support the utility of graph 

theoretical measures used in combination, rather than as single measures, also considering 

the current impossibility of establishing a clear-cut neuropathological substrate for each 

of these. 

 Concerning the correlation analysis, our findings suggest that the presence of 

structural damage in ALS patients in motor, premotor and parietal regions, key elements 

for the correct programming and processing/execution of the movement, is specifically 

related to clinical measures of motor impairment, rate of progression and disease 

duration. Particularly, the rate of progression was more closely related to global and lobar 
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alterations, while measures of disease severity and duration were associated with regional 

connectivity disruption, although correlation coefficients were generally moderate in size 

(0.2 to 0.4). By contrast, the (possibly, maladaptive) increase of functional connectivity 

in frontal and temporal regions was related to executive dysfunctions and behavioral 

impairment, as previously shown (Agosta et al., 2014a). PLS patients showed a similar 

pattern of correlations, although with a lower number of significant findings, partly due 

to the small sample size. Nevertheless, a strong relationship between functional 

connectivity in extra-motor areas and behavioral impairment was found, to point out that 

the cognitive profile in PLS patients traced the one in ALS patients, with more prominent 

deficits in the behavioral domain. 

One of the most important caveats of previous studies is the single-center origin of 

imaging data that limits the generalizability of findings. In light of this, one of the main 

novelties of our study was including data from different centers, neuroimaging protocols 

and scanners. Although MRI protocols were not harmonized between the two acquisition 

centers, the obtained results proved to be solid (as shown by the single-center sub-

analysis) and the approach was easily reproducible despite protocol differences. On the 

other hand, this study is not without limitations. First, the PLS and PMA groups were 

relatively small, affecting the statistical power of the results. In particular, the absence of 

differences between PMA patients and healthy controls might partially depend on the 

relatively small sample size. However, PMA also showed significant structural sparing 

compared with both ALS and PLS patients, consistent with previous studies performed 

using different techniques (Rosenbohm et al., 2016; Spinelli et al., 2016), as well as with 

the common notion of PMA as a predominant lower motor neuron disease. Second, 

cognitive test scores were not available for all patients. However, we selected tests for 

which patient samples were sufficiently represented. Third, healthy controls showed 

higher education than ALS and PLS patients, although the analyses involving 

neuropsychological data were adjusted for education. Fourth, we chose arbitrarily to 

parcellate the brain into 220 similarly sized regions based on the Automated Anatomical 

Labeling (AAL) atlas, excluding the cerebellum. Technically, network science applied to 

the human brain has yet to reach consensus regarding the best way to divide the brain into 

its most relevant anatomical units (Zalesky et al, 2010b) as well as to threshold 

connectivity matrices (van den Heuvel et al, 2017). The definition of an optimal 
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framework has not yet been reached in the neuroscience community, and the field of 

network data analysis remains an area of active methodological development. However, 

it is generally acknowledged that similarly sized regions of interest avoid larger regions 

to have higher connectivity because of their larger surface. The exclusion of the 

cerebellum was motivated by the fact that the AAL atlas is rather inaccurate to segment 

this anatomical region, and other, unbiased ad-hoc methods should be preferred in future 

studies. Fifth, although RS-fMRI data were carefully registered to and masked with GM 

maps to avoid a regional atrophy influence, a possible partial volume effect on our results 

cannot be excluded. Finally, this is a cross-sectional study. Longitudinal studies are 

needed to evaluate structural and functional changes along with the disease progression 

over time and are warranted in order to confirm the role of MRI network-based analysis 

for a differential diagnosis and prognosis of MND in a clinical context, as well to support 

the hypothesis of a single continuum from ALS to FTD. 

In conclusion, this study showed a considerable motor and extra-motor network 

degeneration in ALS patients and an even more widespread damage in PLS patients, 

suggesting that graph analysis and connectomics might represent a powerful approach to 

detect overlapping and specific regions of damage in different MND phenotypes. 

Importantly, these techniques have proven robust and suitable to manage the multicenter 

setting variability. Network-based advanced MRI analyses hold the promise to provide 

an objective in vivo assessment of MND-related pathological changes, delivering 

potential prognostic markers. 
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Table 1. Demographic and clinical features of ALS, PLS and PMA patients and matched healthy controls. 
 

 HC ALS PLS PMA 

p 

ALS  
vs  

HC  

p 

PLS  
vs  

HC 

p 
PMA 

 vs  
HC 

p 

ALS  
vs  

PLS  

p 
ALS  
vs  

PMA  

p 
PLS  
vs  

PMA  

N 79 173 38 28       

Age  
[years] 

 61.84 ± 8.82 
(42.00 - 81.81) 

61.56 ± 10.64 
(28.47 - 86.12) 

63.20 ± 7.89 
(43.87 - 80.26) 

58. 44 ± 8.99 
(39.62 - 73.91) 

1.00 1.00 0.69 1.00 0.71 0.31 

Sex  
[women/men] 46/33 72/101 20/18 8/20 0.02 0.69 0.01 0.28 0.22 0.08 

Education  
[years] 

12.87± 4.38 
(5 - 24) 

10.41 ± 4.42 
(3 - 24) 

10.40 ± 4.43 
(2 - 18) 

10.82 ± 4.81 
(5 - 24) 

<0.001 0.03 0.23 1.00 1.00 1.00 

Onset  
[limb/bulbar] - 128/45 33/5 27/1 - - - 0.10 0.01 0.23 

Disease 
duration 
[months] 

- 
18.97 ± 17.66 

(2 - 136) 
79.32 ± 60.46 

(8 - 247) 
69.14 ± 98.61  

(4 - 457) 
- - - <0.001 <0.001 1.00 

ALSFRS-r  
[0-48] - 

37.92 ± 6.95 
(11 - 47) 

37.16 ± 5.72 
(22 - 44) 

40.14 ± 6.00 
(25 - 48) 

- - - 1.00 0.31 0.22 

UMN score - 
9.82 ± 4.75 

(0 - 16) 
13.67 ± 2.11 

(10 - 16) 
2.14 ± 1.70 

(0 - 5) 
- - - 0.001 <0.001 <0.001 

MRC global 
score - 

96.04 ± 23.86 
(5 - 148) 

112.86 ± 10.43 
(80 - 121) 

96.25 ± 17.73 
(51 - 119) 

- - - 0.004 1.00 0.04 

Disease 
progression rate - 

0.78 ± 0.70 
(0.04 - 4.11) 

0.31 ± 0.49 
(0.03 - 2.89) 

0.33 ± 0.42 
(0 - 2.00) 

- - - <0.001 0.002 1.00 

Values are numbers or means ± standard deviations (range). Disease duration was defined as months from onset to date of MRI scan. P values refer to 
ANOVA models, followed by post-hoc pairwise comparisons (Bonferroni-corrected for multiple comparisons), or Chi-squared test. Abbreviations: ALS= 
Amyotrophic lateral sclerosis; ALSFRS-r= Amyotrophic lateral sclerosis functional rating scale revised; HC= healthy controls; MRC= Medical Research 
Council; N= Number; PLS= Primary lateral sclerosis; PMA= Progressive muscular atrophy; UMN= Upper motor neuron. 
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Figure 1. MRI processing pipeline. (IA) Grey matter was parcellated in 220 similarly-sized 
brain regions, which included cerebral cortex and basal ganglia but excluded the cerebellum. (IB) 
Diagram reported diffusion-tensor MRI and resting-state functional MRI pre-processing steps and 
construction of brain structural and functional connectomes. Structural and functional matrices 
were the input for three distinctive analyses: (II) Global and lobar graph analysis; (III) 
Connectivity analysis; and (IV) Correlation analysis. Abbreviations: AAL= automated 
anatomical labeling; FA= fractional anisotropy; MRI= magnetic resonance imaging. 
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Figure 2. Summary of altered structural and functional metrics in the different MND 
variants. Three shades of green color were used to define the severity of damage in terms of 
percentage of altered metrics (global and lobar analyses) and percentage of altered connections 
between two lobes (connectivity analysis). The three shades of green depicted the following 
ranks: 1-25% (light green), 26-50% (medium green) and 51-75% (dark green). White background 
represents the absence of alterations. Abbreviations: ALS= Amyotrophic Lateral Sclerosis; BG= 
basal ganglia; FA= fractional anisotropy; FI= fronto-insular; O= occipital; P= parietal; PLS= 
Primary Lateral Sclerosis; S= sensorimotor; T= temporal. 
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Figure 3. Graph analysis properties of brain lobar networks in ALS, PLS and PMA patients 
and healthy controls. Box plot of structural nodal strength, path length, local efficiency and 
clustering coefficient of each brain lobe are shown for patient groups and matched healthy 
controls. The red horizontal line in each box plot represents the median, the two lines just above 
and below the median represent the 25th and 75th percentiles, whiskers represent the minimum 
and maximum values, and all the dots outside the confidence interval are considered as outliers. 
*p<0.05. All the comparisons were adjusted for age, sex and MR scanner. Abbreviations: ALS= 
Amyotrophic Lateral Sclerosis; HC= healthy controls; PLS= Primary Lateral Sclerosis; PMA= 
Progressive Muscular Atrophy. 
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Figure 4. Subnetworks showing altered structural and functional connectivity in ALS, PLS 
and PMA patients relative to healthy controls and between patient groups. Altered structural 
(A) and functional (B) connections are represented in magenta and orange, respectively. All the 
comparisons were adjusted for age, sex and MR scanner. Six shades of blue color were used to 
define the belonging of each node to different lobes starting with light blue (frontal lobe) to dark 
blue (posterior lobe, i.e., occipital). Abbreviations: A= anterior; ALS= Amyotrophic Lateral 
Sclerosis; FA= fractional anisotropy; HC= healthy controls; L= left; P= posterior; PLS= Primary 
Lateral Sclerosis; PMA= Progressive Muscular Atrophy; R= right.  
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Figure 5. Subnetworks showing overlapping affected connections. Overlapping affected 
connections in ALS and PLS patients in structural and functional MRI (A) and overlapping 
structural and functional affected connections within the two groups (B) are represented in red. 
Six shades of blue color were used to define the belonging of each node to different lobes starting 
with light blue (frontal lobe) to dark blue (posterior lobe, i.e., occipital). Abbreviations: A= 
anterior; ALS= Amyotrophic Lateral Sclerosis; FA= fractional anisotropy; HC= healthy controls; 
L= left; P = posterior; PLS= Primary Lateral Sclerosis; R= right. 
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Figure 6. Characterization of the relationship between structural and functional MRI 
metrics and clinical/cognitive data in ALS and PLS patients. Each row shows structural and 
functional brain proprieties (data available from Appendix, E-Table 7 for details on brain 
parcellation) and each column clinical and cognitive scores in ALS (A) and PLS (B) patients. 
Color scale represents Pearson’s correlation coefficient. Red square alone or with a hash indicate 
statistical significance, respectively, at a threshold of p<0.05 and p<0.001. Abbreviations: Δdp= 
disease progression rate; ALS= Amyotrophic Lateral Sclerosis; ALSFRS-r= Amyotrophic Lateral 
Sclerosis functional rating scale revised; BG= basal ganglia; CST= Card Sorting Test; FA= 
fractional anisotropy; FBI= Frontal Behavioral Inventory; FRONT-INS= fronto-insular; Inf= 
inferior; L= left; Mid= middle; MMSE= Mini-Mental state examination; MRC= Medical 
Research Council; p=part; PAR= parietal; PLS= Primary Lateral Sclerosis; R= right; 
SENSMOT= sensorimotor; SF= semantic fluency; Sup= superior; Supp= supplementary; UMN= 
upper motor neuron.
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APPENDIX 
 

E-Table 1. Neuropsychological features of ALS, PLS and PMA patients and matched healthy controls. 

 HC ALS PLS PMA 

p 

ALS  
vs  

HC 

p 
PLS  
vs  

HC 

p 

PMA 
vs  

HC 

p 

ALS 
 vs  

PLS 

p 
ALS  
vs 

PMA 

p 
PLS  
vs 

PMA 
Global cognition 

MMSE* 
n 41 

0.98 ± 0.03 
(0.87 - 1.00) 

n 129 
0.94 ± 0.07 
(0.67 - 1.00) 

n 31 
0.97 ± 0.04 
(0.83 - 1.00) 

n 21 
0.95 ± 0.05 
(0.83 - 1.00) 

0.03 1.00 0.35 0.03 1.00 0.32 

Memory 

Digit span forward 
n 40  

5.95 ± 0.96 
(4.00 - 9.00) 

n 101 
5.17 ± 0.95 
(3.00 - 9.00) 

n 31 
5.77 ± 1.41 
(3.00 - 9.00) 

n 20 
5.65 ± 0.81 
(4.00 - 7.00) 

<0.001 1.00 0.59 0.003 0.38 0.95 

RAVLT immediate 
n 40 

46.08 ± 9.43 
(26.00 - 62.00) 

n 102 
39.69 ± 12.04 
(11.00 - 64.00) 

n 31 
39.77 ± 9.94 

(23.00 - 55.00) 

n 19 
43.00 ± 11.26 
(14.00 - 60.00) 

0.50 0.66 1.00 1.00 0.98 0.92 

RAVLT delayed 
n 40 

9.23 ± 3.25 
(3.00 - 15.00) 

n 102 
8.19 ± 3.35 

(0.00 - 15.00) 

n 31 
7.81 ± 3.25 

(0.00 - 14.00) 

n 19 
7.47 ± 3.44 

(0.00 - 13.00) 
1.00 1.00 0.68 1.00 0.38 1.00 

Executive function 

CPM 
n 37 

30.43 ± 3.79 
(22.00 - 36.00) 

n 99 
27.53 ± 5.16 

(14.00 - 36.00) 

n 32 
29.03 ± 3.89 

(21.00 - 35.00) 

n 20 
28.30 ± 7.41 
(6.00 - 36.00) 

0.06 1.00 0.94 0.36 1.00 1.00 

Digit span 
backward 

n 33 
4.45 ± 1.09 
(2.00 - 7.00) 

n 97 
3.52 ± 1.17 
(0.00 - 6.00)  

n 30 
4.33 ± 1.16 
(2.00 - 6.00) 

n 20 
4.15 ± 0.88 
(3.00 - 6.00) 

0.001 1.00 1.00 0.001 0.07 1.00 

Stroop interference 
(seconds) - 

n 65 
42.31 ± 34.26 
(6.00 - 196.00) 

n 22 
42.47 ± 24.81 
(10.00 - 98.00) 

n 19 
43.30 ± 20.47 
(12.00 - 93.00) 

- - - 1.00 1.00 1.00 
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CET - 
n 90 

14.34 ± 4.08 
(6.00 - 25.00) 

n 27 
14.63 ± 2.88 

(10.00 - 22.00) 

n 18 
13.06 ± 3.75 
(6.00 - 20.00) 

- - - 1.00 0.70 0.79 

Test di Weigl - 
n 86 

10.85 ± 3.36 
(1.00 - 15.00) 

n 26 
13.04 ± 2.11 
(7.00 - 15.00) 

n 17 
11.53 ± 4.02 
(0.00 - 15.00) 

- - - 0.002 1.00 0.20 

CST, 
perseverations** 

n 33 
0.11 ± 0.15 
(0.00 - 0.83) 

n 85 
0.17 ± 0.13 
(0.01 - 0.73) 

n 24 
0.12 ± 0.10 
(0.02 - 0.30) 

n 17 
0.18 ± 0.19 
(0.03 - 0.80) 

0.56 1.00 0.79 0.38 1.00 0.92 

Language 

BADA (noun) 
n 22 

29.73 ± 0.63 
(28.00 - 30.00) 

n 99 
28.78 ± 2.12 

(13.00 - 30.00) 

n 31 
29.39 ± 0.72 

(28.00 - 30.00) 

n 19 
29.21 ± 1.08 

(27.00 - 30.00) 
0.16 1.00 1.00 0.33 1.00 1.00 

BADA (action) 
n 22 

27.68 ± 0.57 
(26.00 - 28.00) 

n 99 
26.63 ± 2.22 

(17.00 - 28.00) 

n 30 
26.57 ± 1.48 

(23.00 - 28.00) 

n 19 
26.32 ± 2.52 

(20.00 - 28.00) 
0.11 0.25 0.04 1.00 0.98 1.00 

Fluency 

Index PF*** 
n 29 

4.82 ± 2.17 
(2.60 - 12.05) 

n 102 
8.07 ± 7.99 

(1.81 - 59.00) 

n 27 
7.23 ± 4.61 

(3.41 - 27.19) 

n 21 
6.47 ± 3.88 

(1.90 - 18.80) 
0.44 1.00 1.00 1.00 1.00 1.00 

Index SF*** 
n 29 

4.20 ± 1.62 
(2.49 - 10.90) 

n 101 
5.57 ± 3.51 

(2.20 - 23.00) 

n 27 
4.88 ± 1.61 
(2.61 - 8.70) 

n 19 
4.03 ± 1.02 
(2.76 - 5.89) 

0.07 1.00 1.00 0.21 0.44 1.00 

Mood & Behavior 

BDI  
n 25 

5.00 ± 4.42 
(0.00 - 15.00) 

- - - - - - - - - 

HDRS - 
n 80 

7.33 ± 5.00 
(0.00 - 23.00) 

n 28 
7.29 ± 5.32 

(1.00 - 24.00) 

n 15 
4.60 ± 2.50 
(0.00 - 8.00) 

- - - 1.00 0.24 0.40 

FBI A - n 67 n 22 n 8 - - - 0.13 1.00 1.00 
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4.31 ± 5.07 
(0.00 - 25.00) 

1.77 ± 3.84 
(0.00 - 16.00) 

2.25 ± 2.96 
(0.00 - 8.00) 

FBI B - 
n 67 

1.49 ± 1.93 
(0.00 - 8.00) 

n 22 
0.86 ± 1.88 
(0.00 - 8.00) 

n 8 
1.38 ± 2.33 
(0.00 - 6.00) 

- - - 0.62 1.00 0.92 

FBI total - 
n 73 

5.74 ± 6.41 
(0.00 - 32.00) 

n 24 
2.79 ± 5.28 

(0.00 - 24.00) 

n 11 
3.64 ± 4.82 

(0.00 - 14.00) 
- - - 0.15 1.00 1.00 

ALS-FTD-Q - 
n 62 

11.79 ± 8.88 
(0.00 - 35.00) 

n 5 
14.80 ± 17.85 
(0.00 - 44.00) 

n 5 
20.00 ± 18.83 
(5.00 - 50.00) 

- - - 1.00 0.28 1.00 

Values are numbers or means ± standard deviations (range). Differences between patient groups and healthy controls were assessed using one-way 
ANOVA (statistical contrasts) corrected for age, sex and education. Comparisons among patients were also corrected for ALSFRS-r. *= Ratio between 
the number of correct items and the maximum number of administered items; **= Perseverations are reported as the ratio between perseveration absolute 
number and the maximum number of cards provided during the test; ***= Verbal fluency indices were obtained as following: time for generation condition 
- time for control condition (reading or writing generated words)/total number of items generated. Abbreviations: ALS= Amyotrophic lateral sclerosis; 
ALS-FTD-Q= ALS-FTD questionnaire; BADA= Battery for aphasic deficit analysis; BDI= Beck Depression Inventory; CET= Cognitive estimation test; 
CPM= Colored progressive matrices; CST= Card sorting tests; FBI= Frontal Behavioral Inventory; HDRS= Hamilton Depression Rating Scale; HC= 
Healthy controls; MMSE= Mini-Mental state examination; PF= Phonemic fluency; PLS= Primary lateral sclerosis; PMA= Progressive muscular atrophy; 
RAVLT= Rey auditory verbal learning test; SF= Semantic fluency.
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E-Table 2. MRI acquisition parameters. 
Milan/Turin Philips Medical System Intera 3T scan 

 
T2-

weighted 
SE 

FLAIR 
3D T1-

weighted 
FFE 

Pulsed-
gradient SE 
echo planar 

with 
sensitivity 
encoding 

T2*-
weighted 

single-shot 
EPI 

sequence 
(resting state 

fMRI) 
Repetition 
time (msec) 3500 11000 25 8986 3000 

Echo time 
(msec) 85 120 4.6 80 35 

Flip angle 90° 90° 30° - 90° 
Section 
thickness 
(mm) 

5 5 - 2.5 4 

No. of sections 22 22 220 55 30 for 220 
volumes 

Matrix 512x512 512x512 256x256 96x96 128x128 
Field of view 
(mm2) 230x184 230x230 230x182 240x240 240x240 

Diffusion 
gradient 
directions 

- - - 32 - 

b value 
sec/mm2 - - - 1000 - 

Naples GE Signa HDxt scan 

 
T2-

weigthed 
FSE 

FLAIR 
T1-weigthed 

sagittal 
images 

Gradient 
echo planar 

imaging 

T2*-
weighted 

echo planar 
sequence 

(resting state 
fMRI) 

Repetition 
time (msec) 3444 9052 7000 13000 1508 

Echo time 
(msec) 128 122.4 2848 83.6 32 

Flip angle - - 8° - 90° 
Section 
thickness 
(mm) 

4 4 - - 4 

No. of sections 32 32 - 50 29 for 240 
volumes 

Matrix 512x512 512x512 256x256 128x128 64x64 
Field of view 
(mm2) 240x240 240x240 260x260 320x320 256x256 

Diffusion 
gradient 
directions 

- - - 32 - 



 

 92 

b value 
sec/mm2 - - - 1000 - 

Abbreviations: FFE= fast field echo; FLAIR= fluid-attenuated inversion recovery; FSE= fast spin 
echo; MRI= magnetic resonance imaging; msec= millisecond; mm= millimeter; No= number; 
SE=spin echo; sec=second.  
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E-Table 3. Lobar graph analysis properties of structural and functional brain networks in ALS, PLS and PMA patients and matched healthy controls. 

Regions 
Graph 

analysis 
properties 

 HC ALS PLS PMA 
p 

ALS 
vs 

HC 

p 

PLS 
vs 

HC 

p 

PMA 
vs 

HC 

p 

ALS 
vs 

PLS 

p 
ALS 
vs 

PMA 

p 
PLS 
vs 

PMA 

   79 173 38 28       

Fronto-
insular 

Nodal 
strength 

Structural (FA) 2.61 ± 0.28 
(2.03 - 3.43) 

2.50 ± 0.30 
(1.54 - 3.33) 

2.45 ± 0.23 
(1.90 - 2.87) 

2.62 ± 0.26 
(2.17 - 3.38) 0.01 0.13 1.00 1.00 0.25 0.51 

Functional 2.80 ± 0.51 
(1.70 - 4.26) 

2.73 ± 0.59 
(1.54 - 5.35) 

2.71 ± 0.63 
(1.72 - 4.75) 

2.71 ± 0.42 
(1.92 - 3.71) 1.00 1.00 0.57 1.00 1.00 1.00 

 Path length 
Structural (FA) 12.30 ± 1.05 

(9.97 - 14.87) 

12.70 ± 1.23 
(10.12 - 
18.18) 

13.17 ± 1.07 
(11.53 - 
15.52) 

12.20 ± 1.02 
(9.79 - 13.87) 0.045 0.003 1.00 0.40 0.41 0.03 

Functional 11.80 ± 2.09 
(7.57 - 19.53) 

11.95 ± 2.30 
(5.33 - 19.63) 

12.05 ± 2.65 
(7.07 - 20.96) 

11.55 ± 1.61 
(8.42 - 15.63) 1.00 0.61 1.00 1.00 1.00 1.00 

 Local 
efficiency 

Structural (FA) 0.34 ± 0.02 
(0.30 - 0.37) 

0.33 ± 0.02 
(0.23 - 0.40) 

0.33 ± 0.02 
(0.29 - 0.36) 

0.34 ± 0.02 
(0.30 - 0.41) 0.01 0.02 1.00 1.00 0.07 0.049 

Functional 0.27 ± 0.06 
(0.15 - 0.46) 

0.27 ± 0.07 
(0.12 - 0.55) 

0.26 ± 0.07 
(0.16 - 0.48) 

0.26 ± 0.05 
(0.15 - 0.39) 1.00 1.00 1.00 1.00 1.00 1.00 

 Clustering 
coefficient 

Structural (FA) 0.29 ± 0.02 
(0.25 - 0.34) 

0.29 ± 0.02 
(0.18 - 0.35) 

0.29 ± 0.02 
(0.26 - 0.33) 

0.30 ± 0.02 
(0.25 - 0.33) 0.71 0.62 1.00 1.00 0.94 0.62 

Functional 0.17 ± 0.03 
(0.10 - 0.29) 

0.17 ± 0.04 
(0.09 - 0.36) 

0.16 ± 0.04 
(0.11 - 0.28) 

0.16 ± 0.03 
(0.10 - 0.23) 1.00 1.00 0.63 1.00 1.00 1.00 

Temporal Nodal 
strength 

Structural (FA) 2.49 ± 0.26 
(1.65 - 3.04) 

2.39 ± 0.31 
(1.36 - 2.99) 

2.45 ± 0.20 
(1.86 - 2.81) 

2.48 ± 0.25 
(1.80 - 2.89) 0.02 0.30 0.22 1.00 1.00 1.00 

Functional 2.65 ± 0.54 
(1.33 - 4.29) 

2.65 ± 0.65 
(1.27 - 5.27) 

2.84 ± 0.56 
(1.71 - 4.38) 

2.73 ± 0.45 
(1.83 - 3.62) 1.00 1.00 0.47 1.00 0.64 0.61 

 Path length Structural (FA) 
13.29 ± 1.06 

(11.24 - 
17.05) 

13.77 ± 1.42 
(11.16 - 
21.19) 

13.73 ± 0.85 
(12.40 - 
16.20) 

13.24 ± 1.03 
(10.73 - 15.47) 0.02 0.07 1.00 1.00 1.00 1.00 
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Functional 13.08 ± 2.61 
(7.70 - 23.80) 

13.13 ± 2.91 
(5.66 - 25.69) 

12.47 ± 2.32 
(7.79 - 19.42) 

12.37 ± 1.63 
(10.02 - 17.05) 1.00 1.00 1.00 1.00 1.00 1.00 

 Local 
Efficiency 

Structural (FA) 0.32 ± .0.02 
(0.28 - 0.37) 

0.32 ± 0.02 
(0.23 - 0.36) 

0.32 ± 0.01 
(0.29 - 0.35) 

0.32 ± 0.02 
(0.25 - 0.36) 0.24 0.28 0.66 1.00 1.00 1.00 

Functional 0.29 ± 0.07 
(0.13 - 0.50) 

0.29 ± 0.08 
(0.10 - 0.62) 

0.32 ± 0.08 
(0.14 - 0.56) 

0.30 ± 0.06 
(0.17 - 0.42) 1.00 1.00 0.33 1.00 0.54 0.35 

 Clustering 
coefficient 

Structural (FA) 0.28 ± 0.01 
(0.25 - 0.32) 

0.28 ± 0.02 
(0.21 - 0.34) 

0.28 ± 0.01 
(0.25 - 0.30) 

0.28 ± 0.03 
(0.14 - 0.32) 1.00 1.00 0.93 1.00 1.00 1.00 

Functional 0.18 ± 0.04 
(0.08 - 0.28) 

0.18 ± 0.05 
(0.08 - 0.37) 

0.20 ± 0.05 
(0.10 - 0.34) 

0.18 ± 0.04 
(0.08 - 0.25) 1.00 1.00 0.12 1.00 0.10 0.14 

Parietal Nodal 
strength 

Structural (FA) 2.16 ± 0.31 
(0.87 - 3.29) 

2.11 ± 0.27 
(1.19 - 2.93) 

2.09 ± 0.20 
(1.41 - 2.50) 

2.23 ± 0.23 
(1.75 - 2.66) 0.69 0.93 1.00 1.00 0.82 0.79 

Functional 2.43 ± 0.47 
(1.05 - 3.75) 

2.46 ± 0.51 
(1.31 - 4.80) 

2.57 ± 0.56 
(1.76 - 3.76) 

2.46 ± 0.34 
(1.67 - 2.95) 1.00 1.00 1.00 1.00 0.90 0.99 

 Path length 
Structural (FA) 

14.06 ± 1.54 
(10.38 - 
18.14) 

14.46 ± 1.54 
(10.58 - 
22.75) 

14.98 ± 1.23 
(12.73 -
18.94) 

13.94 ± 1.18 
(11.10 - 16.52) 0.24 0.07 1.00 1.00 0.42 0.10 

Functional 12.96 ± 2.70 
(7.85 - 24.04) 

12.97 ± 3.44 
(5.76 - 36.07) 

12.38 ± 2.71 
(7.89 - 22.14) 

12.36 ± 1.92 
(9.48 - 16.70) 1.00 1.00 1.00 1.00 1.00 1.00 

 Local 
efficiency 

Structural (FA) 0.35 ± 0.03 
(0.21 - 0.42) 

0.35 ± 0.03 
(0.23 - 0.41) 

0.35 ± 0.02 
(0.29 - 0.39) 

0.36 ± 0.02 
(0.30 - 0.40) 0.20 0.01 1.00 0.36 1.00 0.10 

Functional 0.23 ± 0.06 
(0.08 - 0.41) 

0.23 ± 0.07 
(0.10 - 0.45) 

0.24 ± 0.08 
(0.11 - 0.38) 

0.22 ± 0.05 
(0.10 - 0.30) 1.00 1.00 0.30 1.00 0.13 0.48 

 Clustering 
coefficient 

Structural (FA) 0.35 ± 0.03 
(0.28 - 0.44) 

0.34 ± 0.04 
(0.19 - 0.44) 

0.34 ± 0.03 
(0.28 - 0.42) 

0.35 ± 0.03 
(0.30 - 0.41) 0.67 0.02 1.00 0.20 1.00 0.83 

Functional 0.16 ± 0.04 
(0.07 - 0.30) 

0.17 ± 0.05 
(0.07 - 0.31) 

0.18 ± 0.05 
(0.09 - 0.27) 

0.16 ± 0.04 
(0.07 - 0.24) 1.00 1.00 0.24 1.00 0.07 0.36 

Occipital Nodal 
strength 

Structural (FA) 2.03 ± 0.34 
(0.69 - 2.64) 

2.02 ± 0.41 
(0.87 - 2.79) 

2.16 ± 0.20 
(1.71 - 2.49) 

2.20 ± 0.23 
(1.59 - 2.62) 1.00 1.00 1.00 1.00 1.00 1.00 

Functional 2.79 ± 0.87 
(1.21 - 4.97) 

2.79 ± 0.97 
(0.62 - 5.75) 

2.94 ± 0.85 
(1.47 - 5.26) 

2.99 ± 0.79 
(1.91 - 4.97) 1.00 1.00 1.00 1.00 1.00 1.00 
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 Path length 
Structural (FA) 

14.89 ± 1.72 
(12.20 - 
20.48) 

15.17 ± 2.34 
(11.71 - 
28.71) 

14.66 ± 1.14 
(13.18 - 
18.19) 

14.01 ± 1.18 
(12.33 - 17.55) 1.00 1.00 1.00 1.00 1.00 1.00 

Functional 13.28 ± 3.30 
(7.62 - 26.83) 

13.17 ± 3.58 
(6.03 - 28.63) 

12.43 ± 2.61 
(7.43 - 21.60) 

12.29 ± 1.95 
(9.31 - 16.84) 1.00 1.00 1.00 1.00 1.00 1.00 

 Local 
efficiency 

Structural (FA) 0.35 ± 0.03 
(0.16 - 0.40) 

0.34 ± 0.04 
(0.20 - 0.41) 

0.35 ± 0.02 
(0.31 - 0.39) 

0.36 ± 0.02 
(0.32 - 0.40) 1.00 1.00 1.00 1.00 1.00 1.00 

Functional 0.30 ± 0.12 
(0.06 - 0.61) 

0.30 ± 0.13 
(0.02 - 0.63) 

0.34 ± 0.12 
(0.15 - 0.74) 

0.32 ± 0.11 
(0.13 - 0.54) 1.00 1.00 1.00 1.00 1.00 1.00 

 
 

Clustering 
coefficient 

Structural (FA) 0.36 ± 0.04 
(0.22 - 0.47) 

0.36 ± 0.04 
(0.19 - 0.51) 

0.35 ± 0.03 
(0.30 - 0.43) 

0.35 ± 0.03 
(0.31 - 0.44) 1.00 1.00 1.00 1.00 1.00 1.00 

Functional 0.20 ± 0.07 
(0.06 - 0.41) 

0.20 ± 0.08 
(0.01 - 0.44) 

0.22 ± 0.08 
(0.11 - 0.46) 

0.21 ± 0.06 
(0.10 - 0.32) 1.00 1.00 1.00 1.00 1.00 1.00 

Basal 
ganglia 

Nodal 
strength 

Structural (FA) 4.43 ± 0.54 
(3.38 - 6.59) 

4.40 ± 0.67 
(2.88 - 6.56) 

4.12 ± 0.31 
(3.36 - 4.71) 

4.24 ± 0.36 
(3.74 - 5.07) 1.00 1.00 1.00 1.00 1.00 1.00 

Functional 2.65 ± 0.75 
(1.49 - 5.23) 

2.82 ± 0.87 
(1.34 - 6.27) 

2.61 ± 0.67 
(1.48 - 4.55) 

2.75 ± 0.60 
(1.70 - 3.78) 0.91 1.00 1.00 0.37 1.00 1.00 

 Path length 
Structural (FA) 9.57 ± 0.74 

(7.94 - 11.70) 
9.88 ± 0.95 

(8.01 - 14.43) 
10.09 ± 0.63 
(8.93 - 11.53) 

9.59 ± 0.78 
(7.87 - 11.38) 0.04 0.03 1.00 1.00 0.97 0.32 

Functional 10.86 ± 2.21 
(5.97 - 16.65) 

10.86 ± 2.69 
(4.15 - 26.50) 

10.91 ± 2.41 
(7.13 - 19.02) 

10.34 ± 1.58 
(7.93 - 13.62) 1.00 1.00 1.00 1.00 1.00 1.00 

 Local 
efficiency 

Structural (FA) 0.38 ± 0.02 
(0.33 - 0.43) 

0.38 ± 0.02 
(0.30 - 0.41) 

0.38 ± 0.01 
(0.35 - 0.41) 

0.39 ± 0.02 
(0.36 - 0.42) 0.004 0.03 1.00 1.00 1.00 1.00 

Functional 0.18 ± 0.06 
(0.06 - 0.36) 

0.20 ± 0.07 
(0.04 - 0.47) 

0.18 ± 0.05 
(0.08 - 0.32) 

0.20 ± 0.06 
(0.11 - 0.33) 0.10 1.00 1.00 0.24 1.00 1.00 

 Clustering 
coefficient 

Structural (FA) 0.29 ± 0.03 
(0.22 - 0.36) 

0.29 ± 0.04 
(0.18 - 0.39) 

0.30 ± 0.02 
(0.25 - 0.33) 

0.31 ± 0.02 
(0.26 - 0.34) 0.05 0.03 1.00 1.00 1.00 0.56 

Functional 0.12 ± 0.04 
(0.04 - 0.23) 

0.14 ± 0.05 
(0.03 - 0.32) 

0.13 ± 0.03 
(0.05 - 0.21) 

0.14 ± 0.05 
(0.06 - 0.25) 0.12 1.00 1.00 0.67 1.00 1.00 

Sensorimoto
r 

Nodal 
strength Structural (FA) 1.90 ± 0.54 

(1.26 - 3.49) 
1.85 ± 0.48 
(1.18 - 3.38) 

1.55 ± 0.22 
(1.11 - 2.04) 

1.74 ± 0.26 
(1.40 - 2.25) 0.51 0.09 1.00 1.00 1.00 0.20 
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Functional 1.86 ± 0.66 
(0.93 - 4.68) 

1.95 ± 0.63 
(0.61 - 4.41) 

1.79 ± 0.61 
(0.99 - 3.59) 

1.84 ± 0.50 
(1.04 - 2.64) 1.00 1.00 1.00 1.00 1.00 1.00 

 Path length 
Structural (FA) 13.27 ± 1.64 

(9.67 - 16.53) 

13.75 ± 1.71 
(10.00 - 
18.64) 

15.15 ± 1.72 
(12.25 - 
19.02) 

13.42 ± 1.39 
(10.68 - 16.27) 0.10 <0.001 1.00 0.004 0.21 <0.001 

Functional 13.99 ± 5.05 
(8.50 - 51.35) 

13.47 ± 3.01 
(4.72 - 21.53) 

14.06 ± 3.74 
(7.98 - 26.98) 

13.01 ± 2.36 
(9.50 - 20.04) 1.00 1.00 1.00 1.00 1.00 1.00 

 Local 
efficiency 

Structural (FA) 0.35 ± 0.03 
(0.27 - 0.42) 

0.34 ± 0.03 
(0.26 - 0.39) 

0.32 ± 0.03 
(0.24 - 0.37) 

0.35 ± 0.03 
(0.30 - 0.40) 0.01 <0.001 1.00 0.05 0.42 0.004 

Functional 0.16 ± 0.09 
(0.05 - 0.56) 

0.17 ± 0.08 
(0.02 - 0.46) 

0.14 ± 0.06 
(0.04 - 0.36) 

0.15 ± 0.06 
(0.05 - 0.32) 1.00 1.00 1.00 1.00 1.00 1.00 

 Clustering 
coefficient 

Structural (FA) 0.42 ± 0.05 
(0.33 - 0.58) 

0.39 ± 0.05 
(0.27 - 0.51) 

0.39 ± 0.04 
(0.30 - 0.46) 

0.42 ± 0.04 
(0.34 - 0.52) <0.001 <0.001 0.67 0.15 0.82 0.03 

Functional 0.12 ± 0.06 
(0.04 - 0.34) 

0.12 ± 0.05 
(0.02 - 0.30) 

0.11 ± 0.05 
(0.03 - 0.25) 

0.11 ± 0.04 
(0.04 - 0.27) 1.00 1.00 1.00 1.00 1.00 1.00 

Values are reported as mean ± standard deviation (range). Differences between patient groups and healthy controls were assessed using one-way ANOVA 
(statistical contrasts) corrected for age, sex and center. P-values were adjusted for multiple comparisons at significance level 0.05 using Bonferroni post-
hoc test. Abbreviations: ALS= Amyotrophic lateral sclerosis; FA= Fractional anisotropy; HC= Healthy controls; PLS= Primary lateral sclerosis; PMA= 
Progressive muscular atrophy. 
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E-Table 4. Brain nodes of the network. 
N Node Lobe N Node Lobe N Node Lobe 
1 Precentral_L_p1 SENSMOT 75 Insula_L_p2 FRONT-INS 149 Parietal_Inf_L_p1 PAR 
2 Precentral_L_p2 SENSMOT 76 Insula_L_p3 FRONT-INS 150 Parietal_Inf_L_p2 PAR 
3 Precentral_L_p3 SENSMOT 77 Insula_R_p1 FRONT-INS 151 Parietal_Inf_L_p3 PAR 
4 Precentral_L_p4 SENSMOT 78 Insula_R_p2 FRONT-INS 152 Parietal_Inf_R_p1 PAR 
5 Precentral_L_p5 SENSMOT 79 Cingulum_Ant_L_p1 FRONT-INS 153 Parietal_Inf_R_p2 PAR 
6 Precentral_R_p1 SENSMOT 80 Cingulum_Ant_L_p2 FRONT-INS 154 SupraMarginal_L_p1 PAR 
7 Precentral_R_p2 SENSMOT 81 Cingulum_Ant_R_p1 FRONT-INS 155 SupraMarginal_L_p2 PAR 
8 Precentral_R_p3 SENSMOT 82 Cingulum_Ant_R_p2 FRONT-INS 156 SupraMarginal_R_p1 PAR 
9 Precentral_R_p4 SENSMOT 83 Cingulum_Mid_L_p1 FRONT-INS 157 SupraMarginal_R_p2 PAR 
10 Precentral_R_p5 SENSMOT 84 Cingulum_Mid_L_p2 FRONT-INS 158 SupraMarginal_R_p3 PAR 
11 Frontal_Sup_L_p1 FRONT-INS 85 Cingulum_Mid_L_p3 FRONT-INS 159 Angular_L_p1 PAR 
12 Frontal_Sup_L_p2 FRONT-INS 86 Cingulum_Mid_R_p1 FRONT-INS 160 Angular_L_p2 PAR 
13 Frontal_Sup_L_p3 FRONT-INS 87 Cingulum_Mid_R_p2 FRONT-INS 161 Angular_R_p1 PAR 
14 Frontal_Sup_L_p4 FRONT-INS 88 Cingulum_Mid_R_p3 FRONT-INS 162 Angular_R_p2 PAR 
15 Frontal_Sup_L_p5 FRONT-INS 89 Cingulum_Post_L_p1 PAR 163 Precuneus_L_p1 PAR 
16 Frontal_Sup_R_p1 FRONT-INS 90 Cingulum_Post_R_p1 PAR 164 Precuneus_L_p2 PAR 
17 Frontal_Sup_R_p2 FRONT-INS 91 Hippocampus_L_p1 TEMP 165 Precuneus_L_p3 PAR 
18 Frontal_Sup_R_p3 FRONT-INS 92 Hippocampus_R_p1 TEMP 166 Precuneus_L_p4 PAR 
19 Frontal_Sup_R_p4 FRONT-INS 93 ParaHippocampal_L_p1 TEMP 167 Precuneus_L_p5 PAR 
20 Frontal_Sup_R_p5 FRONT-INS 94 ParaHippocampal_R_p1 TEMP 168 Precuneus_R_p1 PAR 
21 Frontal_Sup_Orb_L_p1 FRONT-INS 95 ParaHippocampal_R_p2 TEMP 169 Precuneus_R_p2 PAR 
22 Frontal_Sup_Orb_R_p1 FRONT-INS 96 Amygdala_L_p1 TEMP 170 Precuneus_R_p3 PAR 
23 Frontal_Mid_L_p1 FRONT-INS 97 Amygdala_R_p1 TEMP 171 Precuneus_R_p4 PAR 
24 Frontal_Mid_L_p2 FRONT-INS 98 Calcarine_L_p1 OCC 172 Paracentral_Lobule_L_p1 SENSMOT 
25 Frontal_Mid_L_p3 FRONT-INS 99 Calcarine_L_p2 OCC 173 Paracentral_Lobule_L_p2 SENSMOT 
26 Frontal_Mid_L_p4 FRONT-INS 100 Calcarine_L_p3 OCC 174 Paracentral_Lobule_R_p1 SENSMOT 
27 Frontal_Mid_L_p5 FRONT-INS 101 Calcarine_R_p1 OCC 175 Caudate_L_p1 BG 
28 Frontal_Mid_L_p6 FRONT-INS 102 Calcarine_R_p2 OCC 176 Caudate_R_p1 BG 
29 Frontal_Mid_L_p7 FRONT-INS 103 Calcarine_R_p3 OCC 177 Putamen_L_p1 BG 
30 Frontal_Mid_R_p1 FRONT-INS 104 Cuneus_L_p1 OCC 178 Putamen_R_p1 BG 
31 Frontal_Mid_R_p2 FRONT-INS 105 Cuneus_L_p2 OCC 179 Pallidum_L_p1 BG 
32 Frontal_Mid_R_p3 FRONT-INS 106 Cuneus_R_p1 OCC 180 Pallidum_R_p1 BG 
33 Frontal_Mid_R_p4 FRONT-INS 107 Cuneus_R_p2 OCC 181 Thalamus_L_p1 BG 
34 Frontal_Mid_R_p5 FRONT-INS 108 Lingual_L_p1 OCC 182 Thalamus_R_p1 BG 
35 Frontal_Mid_R_p6 FRONT-INS 109 Lingual_L_p2 OCC 183 Heschl_L_p1 TEMP 
36 Frontal_Mid_R_p7 FRONT-INS 110 Lingual_L_p3 OCC 184 Heschl_R_p1 TEMP 
37 Frontal_Mid_Orb_L_p1 FRONT-INS 111 Lingual_R_p1 OCC 185 Temporal_Sup_L_p1 TEMP 
38 Frontal_Mid_Orb_R_p1 FRONT-INS 112 Lingual_R_p2 OCC 186 Temporal_Sup_L_p2 TEMP 
39 Frontal_Inf_Oper_L_p1 FRONT-INS 113 Lingual_R_p3 OCC 187 Temporal_Sup_L_p3 TEMP 
40 Frontal_Inf_Oper_R_p1 FRONT-INS 114 Occipital_Sup_L_p1 OCC 188 Temporal_Sup_R_p1 TEMP 
41 Frontal_Inf_Oper_R_p2 FRONT-INS 115 Occipital_Sup_L_p2 OCC 189 Temporal_Sup_R_p2 TEMP 
42 Frontal_Inf_Tri_L_p1 FRONT-INS 116 Occipital_Sup_R_p1 OCC 190 Temporal_Sup_R_p3 TEMP 
43 Frontal_Inf_Tri_L_p2 FRONT-INS 117 Occipital_Sup_R_p2 OCC 191 Temporal_Sup_R_p4 TEMP 
44 Frontal_Inf_Tri_L_p3 FRONT-INS 118 Occipital_Mid_L_p1 OCC 192 Temporal_Pole_Sup_L_p1 TEMP 
45 Frontal_Inf_Tri_R_p1 FRONT-INS 119 Occipital_Mid_L_p2 OCC 193 Temporal_Pole_Sup_L_p2 TEMP 
46 Frontal_Inf_Tri_R_p2 FRONT-INS 120 Occipital_Mid_L_p3 OCC 194 Temporal_Pole_Sup_R_p1 TEMP 
47 Frontal_Inf_Tri_R_p3 FRONT-INS 121 Occipital_Mid_L_p4 OCC 195 Temporal_Pole_Sup_R_p2 TEMP 
48 Frontal_Inf_Orb_L_p1 FRONT-INS 122 Occipital_Mid_R_p1 OCC 196 Temporal_Mid_L_p1 TEMP 
49 Frontal_Inf_Orb_L_p2 FRONT-INS 123 Occipital_Mid_R_p2 OCC 197 Temporal_Mid_L_p2 TEMP 
50 Frontal_Inf_Orb_R_p1 FRONT-INS 124 Occipital_Mid_R_p3 OCC 198 Temporal_Mid_L_p3 TEMP 
51 Frontal_Inf_Orb_R_p2 FRONT-INS 125 Occipital_Inf_L_p1 OCC 199 Temporal_Mid_L_p4 TEMP 
52 Rolandic_Oper_L_p1 FRONT-INS 126 Occipital_Inf_R_p1 OCC 200 Temporal_Mid_L_p5 TEMP 
53 Rolandic_Oper_R_p1 FRONT-INS 127 Fusiform_L_p1 TEMP 201 Temporal_Mid_L_p6 TEMP 
54 Rolandic_Oper_R_p2 FRONT-INS 128 Fusiform_L_p2 TEMP 202 Temporal_Mid_L_p7 TEMP 
55 Supp_Motor_Area_L_p1 SENSMOT 129 Fusiform_L_p3 TEMP 203 Temporal_Mid_R_p1 TEMP 
56 Supp_Motor_Area_L_p2 SENSMOT 130 Fusiform_R_p1 TEMP 204 Temporal_Mid_R_p2 TEMP 
57 Supp_Motor_Area_L_p3 SENSMOT 131 Fusiform_R_p2 TEMP 205 Temporal_Mid_R_p3 TEMP 
58 Supp_Motor_Area_R_p1 SENSMOT 132 Fusiform_R_p3 TEMP 206 Temporal_Mid_R_p4 TEMP 
59 Supp_Motor_Area_R_p2 SENSMOT 133 Postcentral_L_p1 SENSMOT 207 Temporal_Mid_R_p5 TEMP 
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60 Supp_Motor_Area_R_p3 SENSMOT 134 Postcentral_L_p2 SENSMOT 208 Temporal_Mid_R_p6 TEMP 
61 Olfactory_L_p1 FRONT-INS 135 Postcentral_L_p3 SENSMOT 209 Temporal_Pole_Mid_L_p1 TEMP 
62 Olfactory_R_p1 FRONT-INS 136 Postcentral_L_p4 SENSMOT 210 Temporal_Pole_Mid_R_p1 TEMP 
63 Frontal_Sup_Medial_L_p1 FRONT-INS 137 Postcentral_L_p5 SENSMOT 211 Temporal_Pole_Mid_R_p2 TEMP 
64 Frontal_Sup_Medial_L_p2 FRONT-INS 138 Postcentral_R_p1 SENSMOT 212 Temporal_Inf_L_p1 TEMP 
65 Frontal_Sup_Medial_L_p3 FRONT-INS 139 Postcentral_R_p2 SENSMOT 213 Temporal_Inf_L_p2 TEMP 
66 Frontal_Sup_Medial_L_p4 FRONT-INS 140 Postcentral_R_p3 SENSMOT 214 Temporal_Inf_L_p3 TEMP 
67 Frontal_Sup_Medial_R_p1 FRONT-INS 141 Postcentral_R_p4 SENSMOT 215 Temporal_Inf_L_p4 TEMP 
68 Frontal_Sup_Medial_R_p2 FRONT-INS 142 Postcentral_R_p5 SENSMOT 216 Temporal_Inf_R_p1 TEMP 
69 Frontal_Sup_Medial_R_p3 FRONT-INS 143 Parietal_Sup_L_p1 PAR 217 Temporal_Inf_R_p2 TEMP 
70 Frontal_Mid_Orb_L_p2 FRONT-INS 144 Parietal_Sup_L_p2 PAR 218 Temporal_Inf_R_p3 TEMP 
71 Frontal_Mid_Orb_R_p2 FRONT-INS 145 Parietal_Sup_L_p3 PAR 219 Temporal_Inf_R_p4 TEMP 
72 Rectus_L_p1 FRONT-INS 146 Parietal_Sup_R_p1 PAR 220 Temporal_Inf_R_p5 TEMP 
73 Rectus_R_p1 FRONT-INS 147 Parietal_Sup_R_p2 PAR    
74 Insula_L_p1 FRONT-INS 148 Parietal_Sup_R_p3 PAR    

Abbreviations: Ant= anterior; BG= basal ganglia; FRONT-INS= fronto-insular; Inf= inferior; L= 
left; Mid= middle; N= region number; Oper= operculum; OCC= occipital; Orb= orbital; p= part; 
PAR= parietal; Post= posterior; R= right; SENSMOT= sensorimotor; Sup= superior; Supp= 
supplementary; TEMP= temporal; Tri= triangularis. 
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Additional figure 1. Subnetworks showing altered structural and functional connectivity in ALS 
(excluding ALS-FTD patients), PLS and PMA patients and healthy controls. Altered structural 
(A) and functional (B) connections are represented in magenta and orange, respectively. ALS 
patients and healthy controls comparison was adjusted for age, sex, and MR scanner. All the other 
comparisons were adjusted for age and sex. Six shades of blue color were used to define the 
belonging of each node to different lobes starting with light blue (frontal lobe) to dark blue 
(posterior lobe, i.e., occipital). Abbreviations: A= anterior; ALS= Amyotrophic Lateral Sclerosis; 
FA= fractional anisotropy; FTD= frontotemporal dementia; HC= healthy controls; L= left; P = 
posterior; PMA= Progressive muscular atrophy; R= right. 
 
 

 
Additional figure 2. Subnetworks showing affected connections between groups acquired in 
Milan. Altered structural (A) and functional (B) connections are represented in magenta and 
orange, respectively. All the comparisons were adjusted for age and sex. Six shades of blue color 
were used to define the belonging of each node to different lobes starting with light blue (frontal 
lobe) to dark blue (posterior lobe, i.e., occipital). Abbreviations: A= anterior; ALS= Amyotrophic 
Lateral Sclerosis; FA= fractional anisotropy; HC= healthy controls; L= left; P = posterior; R= 
right.
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4.2 AMYOTROPHIC LATERAL SCLEROSIS-FRONTOTEMPORAL 

DEMENTIA: SHARED AND DIVERGENT NEURAL CORRELATES 
ACROSS THE CLINICAL SPECTRUM 
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Abstract 

Objectives. A significant overlap between amyotrophic lateral sclerosis (ALS) and 
behavioral variant of frontotemporal dementia (bvFTD) has been observed at clinical, 
genetic and pathological levels. Within this continuum of presentations, the presence of 
mild cognitive and/or behavioral symptoms in ALS patients has been consistently 
reported, although it is unclear whether this is to be considered a distinct phenotype or, 
rather, a natural evolution of ALS. Here, we used mathematical modeling of MRI 
connectomic data to decipher common and divergent neural correlates across the ALS-
FTD spectrum. 
Methods. We included 83 ALS patients, 35 bvFTD patients and 61 healthy controls, who 
underwent clinical, cognitive and MRI assessments. ALS patients were classified 
according to the revised Strong criteria into 54 ALS with only motor deficits (ALS-cn), 
21 ALS with cognitive and/or behavioral involvement (ALS-ci/bi), and 8 ALS with 
bvFTD (ALS-FTD). First, we assessed the functional and structural connectivity patterns 
across the ALS-FTD spectrum. Second, we investigated whether and where MRI 
connectivity alterations of ALS patients with any degree of cognitive impairment (i.e., 
ALS-ci/bi and ALS-FTD) resembled more the pattern of damage of one (ALS-cn) or the 
other end (bvFTD) of the spectrum, moving from group-level to single-subject analysis. 
Results. As compared with controls, extensive structural and functional disruption of the 
frontotemporal and parietal networks characterized bvFTD (bvFTD-like pattern), while a 
more focal structural damage within the sensorimotor-basal ganglia areas characterized 
ALS-cn (ALS-cn-like pattern). ALS-ci/bi patients demonstrated an “ALS-cn-like” 
pattern of structural damage, diverging from ALS-cn with similar motor impairment for 
the presence of enhanced functional connectivity within sensorimotor areas and 
decreased functional connectivity within the “bvFTD-like” pattern. On the other hand, 
ALS-FTD patients resembled both structurally and functionally the bvFTD-like pattern 
of damage with, in addition, the structural ALS-cn-like damage in the motor areas. 
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Conclusions. Our findings suggest a maladaptive role of functional rearrangements in 
ALS-ci/bi concomitantly with similar structural alterations compared to ALS-cn, 
supporting the hypothesis that ALS-ci/bi might be considered as a phenotypic variant of 
ALS, rather than a consequence of disease worsening. 
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INTRODUCTION 

Amyotrophic lateral sclerosis (ALS) is the most common clinical presentation of 

motor neuron disease, characterized by progressive neurodegeneration of upper and lower 

motor neurons. A growing body of evidence supports the notion of clinical, pathological 

and genetic overlap between ALS and the wide spectrum of frontotemporal dementia 

(FTD) (Burrell et al, 2016). Indeed, at least 50% of ALS patients develop cognitive 

symptoms – mostly affecting executive functions – and behavioral alterations along the 

course of the disease, leading to a full-blown diagnosis of FTD in 5-25% of cases (Saxon 

et al, 2017; Strong et al, 2017). Considering that comorbid cognitive impairment is a 

known negative prognostic factor associated with more rapid progression to death or 

tracheostomy in ALS patients (Calvo et al, 2017; Elamin et al, 2013), a better definition 

and understanding of this condition has clear clinical relevance.  

The revised Strong criteria (Strong et al., 2017) established a recognized nomenclature 

for the ALS-FTD clinical continuum ranging from ALS cognitively normal (ALS-cn) to 

ALS with FTD (ALS-FTD), including ALS with cognitive impairment (ALSci), ALS 

with behavioural impairment (ALSbi), and ALS with combined cognitive and 

behavioural impairment (ALS-cbi). Nevertheless, there is currently great debate 

regarding the pathological underpinnings distinguishing ALS-cn from ALS-ci/bi and 

ALS-FTD cases, and whether this is to be considered a distinct phenotype or, rather, a 

natural evolution of ALS. Cross-sectional studies reported an increasing percentage of 

ALS-ci/bi in disease stages with more severe motor impairment (Chio et al, 2019), and 

even a sequential cognitive staging system has been proposed for ALS (Lule et al, 2018), 

mirroring regions involved in pathological stages of TDP-43 deposition (Brettschneider 

et al., 2013). However, findings of the few available longitudinal neuropsychological 

studies in ALS diverge, as some support a stability of cognitive and behavioral changes 

over time, when present (Kasper et al, 2015; Kilani et al, 2004), whereas others suggest 

a subtle progression of cognitive deficits (Beeldman et al, 2020; Castelnovo et al, 2021). 

The largest study in this context5 showed that patients who were cognitively impaired at 

baseline had a faster decline, in contrast with a tendency to remain cognitively intact in 

those who were cognitively unimpaired at study entry.  

In this context, advanced magnetic resonance imaging (MRI) has provided a useful 

tool to investigate brain architecture in ALS and FTD. Several MRI studies evaluated 
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patients with behavioral variant of FTD (bvFTD), using both conventional MRI (Gordon 

et al, 2016; Seeley et al, 2008; Trojsi et al, 2015; Whitwell et al, 2011) and connectomic 

approaches (Agosta et al, 2013b; Filippi et al., 2017), reporting specific patterns of 

structural and functional damage within frontoinsular and temporal networks. In ALS, 

widespread grey matter (GM) (Agosta et al, 2016; Alruwaili et al, 2018; Illan-Gala et al, 

2020) and white matter (WM) damage (Agosta et al., 2016; Alruwaili et al., 2018; Kasper 

et al, 2014) has been shown in patients cognitively impaired relative to ALS-cn patients, 

involving not only motor but also extra-motor areas, including frontotemporal, parietal, 

insular and cingulate regions. A recent study using a connectomic approach revealed 

widespread cerebral WM changes affecting frontotemporal regions in ALS-ci/bi patients 

relative to ALS-cn patients (van der Burgh et al, 2020). Available functional MRI studies 

have reported conflicting results, as executive dysfunction and behavioral disturbances in 

ALS have been associated with either enhanced functional connectivity in frontoparietal 

and temporal networks (Basaia et al, 2020; Castelnovo et al, 2020; Schulthess et al, 2016) 

or suppressed connectivity within frontoparietal, salience and executive networks 

(Mohammadi et al, 2009; Trojsi et al., 2015). However, in the current literature, there is 

a lack of MRI studies specifically assessing functional brain alterations in ALS with mild 

cognitive/behavioral decline, as only one study suggested an enhanced functional 

connectivity in patients with cognitive decline relative to ALS-cn (Hu et al, 2020). 

To date, a direct evaluation of brain network reorganization in ALS-ci/bi compared 

with the opposite ends of the ALS-FTD spectrum (i.e., ALS-cn and full-blown FTD) is 

still needed. Moreover, no studies have combined the structural and functional 

information using graph analysis and connectomics to investigate neural correlates of 

cognitive and behavioral decline within patients of the spectrum. The aim of the present 

study was to bridge this gap, investigating structural and functional network correlates of 

cognitive/behavioral impairment in patients within the ALS-FTD continuum, who were 

fully characterized according to the revised Strong criteria (Strong et al., 2017). Using 

up-to-date MRI approaches, we assessed distinctive patterns of network disruption (i.e., 

“ALS-cn-like pattern” and “bvFTD-like pattern”) that may prove useful for accurate 

classification at a single-patient level.  

 

METHODS 
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An overview of the Methods is provided in Figure 1. 

 

Participants 

Eighty-three ALS and 35 bvFTD patients were recruited at the IRCCS Ospedale San 

Raffaele, Milan, Italy, in the framework of an observational study (Fig. 1.I). Only 

sporadic patients (i.e., with no family history of dementia or motor neuron disease) who 

proved negative for mutations in the major genes associated with ALS/FTD (i.e., 

C9ORF72, GRN, MAPT, TARDBP, SOD1, FUS, TBK1, TREM2, OPTN and VCP) were 

included. The diagnosis of ALS was based on the revised El Escorial criteria (Brooks et 

al., 2000), whereas bvFTD was diagnosed according to Rascovsky criteria (Rascovsky et 

al, 2011). Patients underwent a comprehensive evaluation including neurological history, 

clinical assessment (Table 1), neuropsychological testing (eTable 1) and MRI scan. For 

ALS patients, the site of disease onset was recorded; disease severity was assessed using 

the ALSFRS-r (Cedarbaum et al., 1999); rate of disease progression was defined as [48–

ALSFRS-r score]/time from symptom onset; and muscular strength was assessed by 

manual muscle testing based on the Medical Research Council (MRC) scale. ALS 

patients were receiving riluzole at study entry. For bvFTD patients, disease severity was 

assessed using the Clinical Dementia Rating scale (Knopman et al, 2008). 

Sixty-one healthy controls were recruited by word of mouth, based on the following 

criteria: no history of neurologic and psychiatric diseases, no family history of 

neurodegenerative diseases, and a normal neurological assessment (Table 1). 

Exclusion criteria for all subjects were: (other) significant medical illnesses or 

substance abuse that could interfere with cognitive functioning; any (other) major 

systemic, psychiatric, or neurological illnesses; and other causes of focal or diffuse brain 

damage, including lacunae and extensive cerebrovascular disorders at routine MRI.  

 

Cognitive and Behavioral Assessment  

Patient classification (Fig. 1.I). Comprehensive multi‐domain cognitive testing was 

performed by trained neuropsychologists unaware of MRI results. Tested cognitive 

domains were: global cognitive functioning, memory, executive function, visuospatial 

abilities, fluency, language, mood and behaviors, as previously described (Basaia et al., 

2020; Filippi et al., 2017) (eTable 1). According to the revised Strong criteria (Strong et 
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al., 2017), patients with ALS were classified into 54 cases with motor impairment only 

(ALS-cn), 21 cases with cognitive and/or behavioral deficits (ALS-ci/bi) and 8 ALS 

patients with bvFTD (ALS-FTD). 

 

MRI acquisition and pre-processing 

MRI scans were obtained using a 3T Philips Medical Systems Intera machine scan. 

T1-weighted, T2-weighted, fluid-attenuated inversion recovery, diffusion tensor MRI 

(DT MRI) and resting-state functional MRI (RS fMRI) sequences were acquired. Full 

details of the MRI acquisition protocol are reported in eTable 2. MRI analyses were 

performed by experienced observers blinded to subjects’ identity.  

Connectome Reconstruction (Fig. 1.II). Brain parcellation, DT MRI and RS fMRI 

pre-processing, and construction of brain structural and functional connectome have been 

described previously (Basaia et al., 2020; Filippi et al., 2017). Briefly, brain was 

parcellated into 220 similarly-sized GM cortical and subcortical regions (eTable 3). 

Applying a graph theoretical approach, the 220 brain regions are represented as nodes 

and structural/functional connections linking each pair of nodes as edges. Edges for 

structural connectivity are represented by fractional anisotropy (FA), whereas functional 

edges are represented by Pearson’s correlation coefficients between each pair of nodes. 

Once the structural macroscale connectome was reconstructed per each subject, we 

applied the structural connectome of an independent healthy control group as a 

comprehensive brain connection mask (Filippi et al., 2017). Then, the masked structural 

connectome of each subject was used as mask for the respective functional connectome, 

in order to investigate the functional alterations only where structural connections exist, 

enhancing the biological interpretation of the results (Schmidt et al, 2014). 

 

Statistical analysis 

Characterization of functional and structural connectivity across the ALS-FTD 

spectrum 

Regional connectivity analysis (Fig. 1.III). We investigated structural and functional 

network features in the different subject groups at regional level. Network Based Statistic 

(NBS) (Zalesky et al., 2010a) was performed to assess regional structural and functional 

connectivity strength at the level of significance p<0.05. All possible combinations of 
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comparisons between groups were performed. The largest (or principal) connected 

component and the smaller clusters of altered connections were identified (Basaia et al., 

2020; Zalesky et al., 2010a). A corrected p-value was calculated for each contrast using 

an age-, sex-, and education-adjusted permutation analysis (10000 permutations).  

 

Investigation of ALS-cn-like or bvFTD-like patterns of alterations in ALS-ci/bi and 

ALS-FTD 

The following analyses were focused firstly on identifying the specific structural and 

functional connectivity patterns that characterize the ends of the ALS-FTD spectrum 

(ALS-cn and bvFTD). Secondly, we investigated whether and where ALS-ci/bi and ALS-

FTD patients showed an ALS-cn-like or a bvFTD-like connectivity pattern. 

Distribution analysis (Fig. 1.IV). Distribution analysis was performed to assess the 

structural and functional connectivity alterations in patient groups. The connectivity 

values of each connection for each patient were normalized relative to controls as follows:  

!!"# =
#!"# − %
&  

where #!"#  is the structural/functional connectivity value of the connection between 

node i and j for subject s; μ is the mean structural/functional connectivity value of the 

considered connection in the control group; and σ is the standard deviation of the 

structural/functional connectivity value of such connection in the control group. 

Subsequently, the 220 regions from both hemispheres were grouped into six anatomical 

macro-areas (hereafter referred to as brain areas): temporal, parietal, occipital, fronto-

insular, basal ganglia, and sensorimotor. Per each patient group (ALS-cn, ALS-ci/bi, 

ALS-FTD, and bvFTD), the mean values of intra- and inter-area connectivity were 

calculated averaging the normalized structural/functional connections belonging to an 

area (intra) or linking two distinct areas (inter), respectively. The percentage of patients 

with connectivity value below the reference value (i.e., control mean value) was 

calculated per each intra- and inter-area network. Finally, the intra- and inter-area 

connectivity values were compared between patient groups using age-, sex-, and 

education-adjusted analysis of variance models, followed by post hoc pairwise 

comparisons, Bonferroni-corrected for multiple comparisons (p<0.05, SPSS Statistics 

26.0 [SPSS Inc., Chicago, IL]).  
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Classification analysis (Fig. 1.V). Classification analysis was performed to define the 

characteristic structural/functional patterns of damage of the two ends of the spectrum 

(ALS-cn and bvFTD). For this purpose, we selected the structural and functional 

connectivity values only in those intra- and inter-area networks, where ALS-cn and 

bvFTD showed significantly different patterns in the distribution analysis. Receiver 

Operator Characteristic (ROC) curve analysis was performed in these selected networks. 

The area under the curve (AUC), as derived measure of accuracy, was considered to 

assign a specific set of structural/functional alterations to ALS-cn (ALS-cn-like pattern) 

or to bvFTD (bvFTD-like pattern). Per each intra- and/or inter-area connectivity value 

involved in one of the two patterns, Youden Index was calculated, providing the best 

tradeoff between sensitivity and specificity. Finally, patients of each group were 

classified in those with connectivity values above or below the identified optimal cut-

offs. 

Frequency analysis (Fig. 1.VI). Aiming to assess, at the single-subject level, whether 

and where ALS-ci/bi and ALS-FTD patients showed commonalities and differences with 

ALS-cn-like or bvFTD-like patterns, we performed a frequency analysis using the Chi-

squared test (p < 0.05). Specifically, we identified and compared between groups the 

frequency of subjects with connectivity values above and below the optimal cut-offs 

belonging to the ALS-cn-like and the bvFTD-like pattern. ALS-cn group was excluded 

in the frequency analysis of the ALS-cn-like pattern, as well as the bvFTD group was not 

considered in the bvFTD-like pattern analysis. 

 

Data availability 

The dataset used during the current study will be made available by the corresponding 

author upon request to qualified researchers (i.e., affiliated to a university or research 

institution/hospital).  

 

Standard Protocol Approvals, Registration, and Patient Consents 

Local ethical standards committee on human experimentation approved the study 

protocol and all participants (or their caregivers) provided written informed consent. 

 

RESULTS 
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Clinical and neuropsychological features 

Demographic and clinical characteristics of study groups are reported in Table 1, while 

neuropsychological features in eTable 1. Relative to controls, ALS-cn and bvFTD 

patients showed a larger proportion of male individuals. In addition, ALS-ci/bi and 

bvFTD patients showed lower education relative to controls. ALS groups and bvFTD 

patients were different for disease duration at MRI, which was shorter in ALS patients. 

ALS groups were comparable in terms of disease severity, as assessed by ALSFRS-r and 

MRC global score, disease progression rate and site of clinical onset, although ALS-ci/bi 

were older than ALS-cn. The neuropsychological assessment did not reveal differences 

between controls and ALS-cn. bvFTD and ALS-FTD patients performed worse than 

controls and ALS-cn cases in all investigated cognitive domains. The ALS-ci/bi group 

performed worse than controls in naming (actions) and better than bvFTD and ALS-FTD 

patients in fluency tests, with additional higher performance in global cognition, verbal 

memory, and abstract reasoning compared to bvFTD group only (eTable 1). 

 

Characterization of functional and structural connectivity across the ALS-FTD 

spectrum (Fig. 2) 

Structural connectivity. Regional connectivity analysis showed alterations involving 

the connections within and among the sensorimotor network, basal ganglia, frontal, 

temporal and parietal areas, in addition to minimal involvement of the occipital 

connections, in ALS-cn patients relative to controls (p=0.01; Fig. 2A[1]). This structural 

pattern of damage was also found in ALS-ci/bi and ALS-FTD cases relative to controls 

(p=0.02 and p=0.001, Fig. 2A[2,3], respectively), with a more widespread disruption of 

the same networks in ALS-FTD reflecting increasing severity of impaired behavior and 

cognition (Fig. 2A[3]). ALS-FTD patients showed also a more severe structural damage, 

mainly within frontal areas, relative to ALS-cn cases (p=0.01; Fig. 2A[6]). Additionally, 

ALS-cn patients showed greater structural alterations relative to bvFTD (p=0.03; Fig. 

2A[5]) in few connections within and among sensorimotor regions, parietal areas, and 

basal ganglia, especially involving thalamus and those connections from pallidum and 

putamen towards precentral, postcentral and precuneus bilaterally. Patients with bvFTD 

showed a widespread structural damage relative to controls, ALS-cn and ALS-ci/bi 
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patients across the whole brain (p<0.001; Fig. 2A[4,7,8], respectively). No further 

differences were observed in the remaining comparisons. 

Functional connectivity. NBS analysis did not show differences in functional 

connectivity in ALS groups relative to controls, although ALS-ci/bi patients showed a 

trend toward an enhanced functional connectivity relative to controls within frontal and 

basal ganglia areas (p=0.06). On the other hand, bvFTD patients were characterized by 

reduced functional connectivity relative to controls (p=0.02; Fig. 2B[1]), ALS-cn 

(p=0.01; Fig. 2B[3)) and ALS-ci/bi (p<0.001; Fig. 2B[4]) cases, mainly involving the 

connections within the frontotemporal regions and between frontal and sensorimotor 

areas. ALS-FTD relative to ALS-ci/bi patients showed reduced functional connectivity 

within and between the frontal, temporal and motor areas similarly to bvFTD cases 

(p=0.02; Fig. 2B[2]). No further differences were observed in the remaining comparisons. 

 

Investigation of ALS-cn-like and bvFTD-like patterns of alterations in ALS-ci/bi 

and ALS-FTD: structural connectivity (Fig. 3-4) 

Distribution analysis. Compared with ALS-cn, bvFTD patients showed greater 

structural intra-area disruption within frontal, temporal and parietal areas (Fig. 3[1], Fig. 

4[3,4] and eTable 4; p<0.05) and inter-area disruption in the frontal, temporal and 

occipital connections toward parietal lobe (p=0.01, Fig. 3[2] and Fig. 4[2,5]), in the 

frontal, basal ganglia and occipital connections toward temporal areas (p=0.002, p<0.001 

and p=0.03, Fig. 3[3] and Fig. 4[1,6] respectively), and in the connections between frontal 

and basal ganglia (p<0.001) (Fig. 3[5] and eTable 4). Most of bvFTD patients (from 83 

to 100%) were found severely disrupted in these networks (eTable 4). On the other hand, 

most of ALS-cn patients (81%) were characterized by a greater damage within the motor 

network, specifically among the sensorimotor – basal ganglia connections, relative to 

bvFTD cases (p=0.01, Fig. 3[7]). Additionally, ALS-FTD patients showed structural 

connectivity alterations within the motor areas, resembling the ALS-cn damage. In 

particular, 88% of ALS-FTD revealed a significant structural disruption in the 

sensorimotor-basal ganglia connections compared with bvFTD (p=0.01; Fig. 3[7] and 

eTable 4). Among the other brain regions, ALS-ci/bi and ALS-FTD patients behaved 

differently. ALS-ci/bi patients showed significant structural connectivity differences 

within frontal and temporal lobe (Fig. 3[1] and Fig. 4[3]) and between frontal, temporal 
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and basal ganglia areas compared to bvFTD (p<0.05, (Fig. 3[3,5] and Fig. 4[1]), 

embracing a pattern of damage more like ALS-cn. On the other hand, ALS-FTD revealed 

a behavior more like bvFTD, showing a greater structural disruption within frontal 

(p=0.03) and in frontal -sensorimotor connections (p=0.02) compared to ALS-cn (Fig. 

3[1,4] and eTable 4). 

Classification analysis. From ROC curve analysis, two characteristic patterns of 

damage were identified: the “ALS-cn-like pattern” defined by a focal structural damage 

within sensorimotor-basal ganglia areas that distinguished ALS-cn from bvFTD patients 

(accuracy [AUC]=0.67, eFigure. 1A-blue line), and the “bvFTD-like pattern” 

characterized by structural alterations of the frontotemporal and parietal networks that 

discriminated bvFTD from ALS-cn cases with AUC ranging from 0.67 and 0.88 (eFigure. 

1A-red lines). The best cutoff of structural connectivity per each significant network are 

reported in Table 2.  

Frequency analysis. The ALS-cn-like pattern was identified more frequently in ALS-

ci/bi and ALS-FTD compared with bvFTD patients (ALS-ci/bi vs bvFTD p=0.04; ALS-

FTD vs bvFTD non-significant trend p=0.07) (eTable 5). On the other hand, the bvFTD-

like pattern was found to be more frequent neither in ALS-ci/bi nor ALS-FTD compared 

to ALS-cn, except for a non-significant trend (p=0.08) within frontal and among frontal-

basal ganglia, temporal-occipital areas in ALS-FTD relative to ALS-cn cases (eTable 5). 

 

Investigation of ALS-cn-like and bvFTD-like patterns of alterations in ALS-ci/bi 

and ALS-FTD: functional connectivity (Fig. 5) 

Distribution analysis. Regarding functional connectivity distribution analysis, 

decreased functional connectivity within frontotemporal (p=0.001) and between 

sensorimotor and parietal connections (p<0.02) was found in bvFTD compared with 

ALS-cn patients (Fig. 5[1,2] and eTable 4). ALS-ci/bi patients showed significant 

enhanced functional connectivity relative to bvFTD in the frontal-sensorimotor 

connections (p=0.001), parietotemporal connections (p=0.03) and within sensorimotor 

areas (p<0.001, Fig. 5[3,4,5] and eTable 4). Additionally, ALS-ci/bi showed increased 

functional connectivity within sensorimotor areas relative to ALS-cn (p<0.04, Fig. 5[4] 

and eTable 4). Of note, most ALS-ci/bi patients (a percentage ranging from 67 to 76%) 

revealed normalized values of functional connectivity greater than zero in these 
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abovementioned networks (i.e., frontal-sensorimotor, parietotemporal and sensorimotor). 

Moreover, ALS-FTD patients showed a significant greater reduced functional 

connectivity in temporal-sensorimotor connections compared to ALS-cn (p=0.03) and 

ALS-ci/bi (p<0.01, Fig. 5[6] and eTable 4). 

Classification analysis. The ROC curve analysis on functional connectivity data 

identified only a “bvFTD-like pattern” of functional damage, involving frontotemporal 

and sensorimotor-parietal connections, with an AUC of 0.77 and 0.67 in discriminating 

bvFTD from ALS-cn, respectively (eFigure. 1B-red lines). The best cutoff values of 

functional connectivity for each significant network are reported in Table 2.  

Frequency analysis. Within frontotemporal connections, ALS-ci/bi patients were 

characterized by a greater proportion of cases showing bvFTD-like decreased functional 

connectivity compared with ALS-cn (p=0.03; eTable 5), but a lower proportion compared 

with ALS-FTD (p=0.02), who mostly showed a typical bvFTD-like pattern with a 

decreased functional connectivity relative to ALS-cn patients (p<0.001; eTable 5). 

 

DISCUSSION 

The present multiparametric MRI study provides a comprehensive characterization of 

the neural correlates across the spectrum of ALS-FTD clinical presentations. A 

connectome-based approach was adopted, first, to identify the connectivity signatures of 

ALS-cn and bvFTD (i.e., the two ends of this spectrum) and, subsequently, to characterize 

the alterations underlying mild cognitive/behavioral deficits and full-blown dementia in 

ALS patients, with the aid of mathematical models and single-subject analysis. An ALS-

cn-like pattern was defined by a focused structural damage within the motor areas. By 

contrast, a bvFTD-like pattern was delineated by a widespread structural damage and 

decreased functional connectivity, specifically in frontal, temporal and parietal areas. 

ALS-ci/bi patients showed a pattern of structural damage mostly overlapping with the 

ALS-cn-like pattern, whereas functional data diverged from ALS-cn for the presence of 

enhanced functional connectivity within the sensorimotor regions and decreased 

functional connectivity in the frontotemporal areas (i.e., mirroring a bvFTD-like pattern). 

Finally, ALS-FTD resembled the bvFTD-like pattern of damage both structurally and 

functionally, with, in addition, the structural ALS-cn-like damage in the motor areas. 

Although connectivity data alone cannot fully address the homogeneity or heterogeneity 
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of this spectrum, our findings suggest a maladaptive role of functional rearrangements in 

ALS-ci/bi concomitantly with similar structural alterations compared to ALS-cn, 

supporting the hypothesis that ALS-ci/bi might be considered as a phenotypic variant of 

ALS, rather than a consequence of disease worsening. 

When considering the results of the present study, some limitations should be noted. 

Despite the robust size of the overall ALS cohort, some subgroups were small (i.e., ALS-

FTD), although this is indicative of the relative incidence of cognitive alterations. This 

aspect has also influenced our choice to bring together patients with mild cognitive 

dysfunction (i.e., ALS-ci) and patients with mild behavioral disturbances (i.e., ALS-bi), 

to avoid dispersion of data and the reduced statistical power that would result. 

Furthermore, the lack of information of a definite pathological diagnosis for bvFTD 

patients is an important limitation of the present study, even though the aim of the work 

was to explore the neural correlates of the clinical rather than the pathological 

heterogeneity of the ALS-FTD spectrum. Another issue lies in the cross-sectional nature 

of the study. In this context, longitudinal studies are warranted to verify whether 

cognitive/behavioral dysfunction is a stable or progressive feature of the ALS trajectory, 

and to assess the evolution of associated network alterations over time.  

The inherent limitations of MRI connectomic should also be acknowledged(Pandya et 

al, 2017; Reyes et al, 2018) including, among others, the lack of an optimal framework, 

i.e., a reference standard for the regional parcellation of brain MR imaging. It is also 

important to note that the accuracy of any attempt to model the connectome is biased by 

the intrinsic limitations of the imaging techniques used. For example, fibre tracking based 

on DT MRI is known to be poor at points where only limited information about the WM 

fibre direction is available such as where multiple tracts cross. This results in incomplete 

reconstruction of tracts and a general under-representation of long-distance connections 

in the brain. Despite these shortcomings, our study highlights the potential of 

multiparametric connectome-based approaches for providing novel pathophysiological 

insights and biomarkers of cognitive dysfunction in the context of ALS-FTD. A key point 

of our study was the demonstration of characteristic brain structural damage and 

functional rearrangements across ALS cognitive phenotypes, as defined based on the 

application of revised Strong criteria to a sizeable monocentric cohort. Our conclusions 

were made possible by the extensive clinical and neuropsychological characterization of 
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the sample, as well as by the multiparametric nature of this study. Current MRI literature 

has generally provided results based on the assessment of structural and functional 

alterations separately, at voxel or regional level, without a straightforward investigation 

of their relationship. Conversely, a connectomic approach gave us the potential to bridge 

the gap of the anatomo-functional link thanks to the application of the same parcellation 

system, connectome reconstruction framework and statistical approach. Whereas the 

capability of connectome-based approach to provide information on the brain network 

architecture was achieved by a group-level analysis, smoothing out the inter-individual 

variability, a further innovative aspect of our study was the transition to the single-level 

analysis by the help of mathematical models. Indeed, the study framework was able to 

identify the ALS-cn-like or bvFTD-like patterns of damage, and to characterize the type 

of damage that each ALS-ci/bi and ALS-FTD patient shared with such signatures of 

network alterations. 

The selective involvement of motor WM regions in the ALS-cn sample is largely 

consistent with previous literature (Basaia et al., 2020; Illan-Gala et al., 2020; Muller et 

al, 2021), confirming a “signature” pattern of frank decline in FA of the subnetworks 

connecting primary motor, supplementary motor and premotor areas, as well as basal 

ganglia – specifically, the thalamus (Tu et al, 2018). The structural disruption of the 

sensorimotor network supports the current view of this network as the epicenter of 

degenerative process of the disease, in line with proposed neuropathological and MRI-

based disease staging systems (Brettschneider et al., 2013; Meier et al, 2020). As for the 

functional MRI findings, the current literature counts on a number of studies reporting 

reduced (Mohammadi et al., 2009; Trojsi et al., 2015) or increased functional 

connectivity in ALS patients (Basaia et al, 2020; Castelnovo et al, 2020; Schulthess et al, 

2016), or even a mixed picture (Agosta et al, 2013a). Nevertheless, there is a shortage of 

MRI studies focusing on functional brain rearrangements in ALS related to cognitive 

status, and our findings contribute to fill this gap. Of note, both regional (i.e., NBS) and 

distribution analyses suggest that ALS-cn patients are characterized by a quite preserved 

functional connectivity comparable to the functional healthy-brain organization.  

The bvFTD-like pattern included a widespread brain structural disruption, with a 

predominant damage in the frontotemporoparietal network and the involvement of the 

striatum, and functional connectivity breakdown within the same networks. Our findings 
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confirm previous evidence that see the disconnection of the frontoinsular and temporal 

regions as hallmark of the behavioral clinical syndrome of FTD both at structural and 

functional levels (Agosta et al., 2013b; Filippi et al., 2017; Gordon et al., 2016; Whitwell 

et al., 2011). Herein, we extend these results by highlighting the relative preservation of 

the motor areas in bvFTD, in contrast with a widespread structural and functional 

involvement of the anterior frontal lobes, as well as a differential involvement of the basal 

ganglia circuits when compared with ALS-cn (i.e., greater involvement of striatal 

connections in bvFTD, in contrast with thalamic involvement in ALS-cn). These findings 

are in line with previous reports (Bede et al, 2018; Tu et al., 2018), and support the notion 

of a diverging network vulnerability to disease pathology in the two opposite ends of the 

ALS-FTD spectrum. 

The focus of the current study was on elucidating MRI connectomic underpinnings of 

mild or full-blown cognitive deficits in ALS, possibly addressing the long-standing 

debate on the nature of cognitive deficits in the course of the disease, as an early or, rather, 

a late-stage feature. Regarding the structural brain network, the presence of mild cognitive 

and/or behavioral impairment in ALS patients did not contribute significantly to an 

additional microstructural damage relative to ALS-cn with otherwise comparable clinical 

characteristics – including measures of motor impairment and disease duration. Although 

previous literature has suggested greater structural damage related to cognitive 

impairment in ALS (Agosta et al., 2016; Alruwaili et al., 2018; Illan-Gala et al., 2020; 

Kasper et al., 2014; van der Burgh et al., 2020), such damage was generally subtle and 

possibly driven by the inclusion of ALS-FTD subjects. By contrast, our study highlighted 

shared structural damage between ALS-ci/bi and ALS-cn patients, involving mainly the 

motor networks. On the other hand, the analysis of functional connectivity alterations 

played an important role for the differentiation of ALS-ci/bi from ALS-cn. Indeed, ALS-

ci/bi patients showed a rearrangement of the functional networks, which was divergent 

from ALS-cn, with enhanced functional connectivity within motor areas and decreased 

connectivity in the frontotemporal networks. The concomitant absence of significant 

structural alterations, compared with the ALS-cn group, apparently supports a 

maladaptive role of such functional rearrangements in ALS-ci/bi, as previously 

hypothesized (Basaia et al., 2020; Menke et al, 2018). The biological underpinnings of 

such functional disequilibrium have been suggested to lie in the known 
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excitatory/inhibitory imbalance due to interneuron pathology in ALS, causing a reduction 

in recurring inhibition that has been associated with disease severity (Crabe et al, 2020; 

Van den Bos et al, 2018). We argue that functional imbalance between motor and extra-

motor frontal networks might be particularly severe in ALS-ci/bi, causing mild cognitive 

disturbances even in early phases of the disease – consistent with the relatively short 

disease duration of the present cohort. Therefore, our data suggest that ALS-ci/bi might 

be considered as a phenotypic variant of ALS, rather than a consequence of disease 

worsening (Chio et al., 2019; Lule et al., 2018). These findings may find support in one 

of the few longitudinal neuropsychological studies in this context (Elamin et al., 2013), 

in which cognition decline was faster in patients who were already cognitively impaired 

at baseline, while normal cognition tended to remain intact with slower motor and 

cognitive progression. Of note, education levels of ALS-ci/bi patients were lower than 

ALS-cn in our sample, consistent with the recently highlighted influence of 

environmental factors that collectively constitute the cognitive reserve (i.e., education, 

occupation and physical activity) over an early development of cognitive symptoms in 

ALS (Costello et al, 2021). 

In contrast with ALS-ci/bi cases, when ALS patients had co-occurrent dementia (ALS-

FTD), our study has outlined not only a pattern of microstructural damage involving the 

motor networks (i.e., the characteristic ALS-cn-like pattern), but also a disruption of 

frontal, temporal, parietal and striatal circuits, both from a structural and a functional 

point of view – therefore, resembling the bvFTD-like pattern (Saxon et al, 2020). These 

findings agree with the pattern of widespread hypometabolism recently demonstrated in 

ALS cases with severe cognitive impairment (Canosa et al, 2020), possibly mirroring the 

most advanced stages of TDP-43 neuropathological models which have been proposed 

both in ALS (Brettschneider et al., 2013) and bvFTD (Braak et al, 2013), here sharing 

the same pathological signature (Omer et al, 2017; Rohrer et al, 2010). Similar to ALS-

ci/bi, ALS-FTD patients showed similar severity of motor symptoms and disease duration 

when compared with ALS-cn, supporting a view of this clinical presentation as a specific 

phenotype within the frontotemporal lobar degeneration spectrum, characterized by a 

combined, severe involvement of both motor and extra-motor brain networks, rather than 

an evolution of either ALS or bvFTD. 
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Table 1. Demographic and clinical features of healthy controls, bvFTD patients and ALS 
patient groups.  

 Healthy 

controls ALS-cn ALS-ci/bi ALS-FTD bvFTD 

N 61 54 21 8 35 

Age  

[years] 
63.04 ± 8.46 

(43.36 – 81.81) 
61.08 ± 9.96 

(36.38 – 81.26) 
67.99 ± 11.77^ 
(39.89 – 86.12) 

60.28 ± 10.54 
(44.68 – 70.06) 

63.18 ± 9.13 
(45.51 – 74.83) 

Sex  

[women/men] 36/25 19/35* 11/10 5/3 12/23* 

Education  

[years] 
12.89 ± 4.79 

(5.00 – 24.00) 
11.06 ± 4.52 

(5.00 – 24.00) 
8.38 ± 3.72* 

(3.00 – 18.00) 
11.50 ± 5.95 

(4.00 – 18.00) 
9.56 ± 3.65* 

(4.00 – 17.00) 

Onset  

[limb/bulbar/ 

limb+bulbar] 
- 41/12/1 16/5/0 3/5/0 - 

Disease 

duration 

[months] 
- 23.76 ± 23.96# 

(4.00 – 136.00) 
16.62 ± 12.11# 
(4.00 – 47.00) 

23.25 ± 17.06 
(7.00 – 56.00) 

41.00 ± 29.63 
(6.87 – 144.70) 

ALSFRS-r  

[0-48] - 38.31 ± 5.46 
(23.00 – 47.00) 

39.00 ± 5.72 
(28.00 – 46.00) 

35.63 ± 7.84 
(24.00 – 45.00) - 

UMN score - 11.22 ± 4.39 
(0.00 – 16.00) 

10.45 ± 3.78 
(2.00 – 16.00) 

12.67 ± 5.47 
(2.00 – 16.00) - 

MRC global 

score - 102.94 ± 15.39 
(60.00 – 148.00) 

101.20 ± 17.62 
(71.00 – 127.00) 

108.17 ± 8.33 
(98.00 - 118) - 

Disease 

progression rate - 0.64 ± 0.56 
(0.04 – 2.67) 

0.77 ± 0.67 
(0.13 – 2.86) 

0.57 ± 0.22 
(0.33 – 1.00) - 

ADL - - - - 5.62 ± 0.85 
(2.00 – 6.00) 

IADL - - - - 4.77 ± 2.29 
(1.00 – 8.00) 

CDR - - - - 0.96 ± 0.57 
(0.50 – 2.00) 

CDR SB - - - - 4.81 ± 2.53 
(1.00 – 9.50) 

Values are numbers or means ± standard deviations (range). Disease duration was defined as 
months from onset to date of MRI scan. The rate of disease progression in ALS patients was 
defined as follows: (48–ALSFRS-r score)/time from symptom onset. P values refer to ANOVA 
models, followed by post-hoc pairwise comparisons (Bonferroni-corrected for multiple 
comparisons), or Chi-squared test. *: p < 0.05 vs HC; #: p < 0.05 vs bvFTD; ^: p < 0.05 vs ALS-
cn. Abbreviations: ADL= Activities of Daily Living; ALS-ci/bi= ALS with cognitive and/or 
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behavioral impairment; ALS-FTD= ALS with Frontotemporal Dementia; ALS-cn= Amyotrophic 
lateral sclerosis with only motor impairment; ALSFRS-r= Amyotrophic lateral sclerosis 
functional rating scale revised; bvFTD= behavioral variant of Frontotemporal Dementia; CDR= 
Clinical dementia rating; CDR sb= Clinical dementia rating sum of boxes; HC= healthy controls; 
IADL= Instrumental Activities of Daily Living; MRC= Medical Research Council; N= Number; 
UMN= Upper motor neuron. 
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Table 2. Classification (ROC curves) analysis for identification of the “ALS-cn-like 
pattern” and the “bvFTD-like pattern”. 

Structural Connectivity 

Intra-area and Inter-areas 
connections 

AUC 
bvFTD vs ALS-cn 

AUC 
ALS-cn vs bvFTD 

Best Cut-off 
(Youden’s 

index) 
Frontal 0.88 0.12 -0.21 (0.68) 
Frontal-Basal Ganglia 0.82 0.18 -0.67 (0.52) 
Frontal-Parietal 0.71 0.29 -0.30 (0.37) 
Frontal-Temporal 0.76 0.24 -0.20 (0.44) 
Sensorimotor-Basal Ganglia 0.33 0.67 -0.55 (0.30) 
Basal Ganglia-Temporal 0.78 0.22 -0.52 (0.45) 
Basal Ganglia-Occipital 0.72 0.28 -0.47 (0.42) 
Parietal 0.67 0.33 0.003 (0.31) 
Parietal-Temporal 0.72 0.28 -0.36 (0.43) 
Parietal-Occipital 0.69 0.31 -0.08 (0.35) 
Temporal 0.75 0.25 -0.2 (0.41) 
Temporal-Occipital 0.70 0.30 -0.40 (0.35) 

Functional Connectivity 

Frontal-Temporal 0.77 0.23 -0.27 (0.48) 
Sensorimotor-Parietal 0.67 0.33 -0.04 (0.34) 

The Area Under the ROC curve represents the capability of the structural and functional 
connectivity damage within the reported intra- and inter-areas to discriminate bvFTD from ALS-
cn and viceversa. Only intra-area and inter-areas connections significantly different between the 
two groups were considered. Bold values in the column “bvFTD vs ALS-cn” identify the 
“bvFTD-like pattern”. Bold values in the column “ALS-cn vs bvFTD” identify the “ALS-cn-like 
pattern”. The optimal cut-off per each connectivity distribution was calculated through the 
Youden’s index, maximizing sensibility and specificity. Cut-off= sensibility-(1-specificity). 
Abbreviations: ALS-cn= Amyotrophic lateral sclerosis with only motor impairment; AUC= Area 
Under the ROC curve; bvFTD= behavioral variant of Frontotemporal Dementia. 
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Figure 1. Study Framework. (I) Patient classification. Revised Strong’s Criteria were applied 
to identify ALS patients with and without cognitive/behavioral impairments or dementia deficits. 
(II) Connectome Reconstruction. Connectomics was apply on DT MRI and RS fMRI, after 
parcellating the brain into 220 regions. Structural and functional connectomes of all subjects were 
reconstructed. (III) Regional connectivity analysis. The Network based Statistics was performed 
performing all possible comparisons between groups. (IV) Distribution analysis. After 
reconstructing the structural and functional connectome of each patient and control of the study, 
all connections per each patient were normalized relative to controls and grouped into 6 macro-
areas. Intra-area and inter-area connectivity distribution were plotted and statistically compared 
between groups. (V) Classification analysis. ROC curve analysis was performed to discriminate 
ALS-cn from bvFTD and vice versa, considering intra and inter-area connectivity that resulted 
significantly different between these two groups in the distribution analysis. (VI) Frequency 
analysis. After ROC curve analysis, the optimal cut-off was identified using the Youden’s index. 
ALS-ci/bi and ALS-FTD cases were then subdivided in those under and above the optimal cutoff. 
Chi-squared test was performed in order to identify the behavior of these two groups. 
Abbreviations: ALS= Amyotrophic lateral sclerosis; ALS-ci/bi= ALS with cognitive and/or 
behavioral impairment; ALS-cn= ALS with motor impairment only; ALS-FTD= ALS with 
Frontotemporal Dementia; bvFTD= behavioral variant of Frontotemporal Dementia; DT MRI= 
diffusion tensor MRI; fMRI= functional MRI; HC= healthy controls; Sbj= subject.
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Figure 2. Alterations in structural and functional connectivity in ALS and bvFTD patients 
relative to healthy controls and each other. Altered structural (A) and functional (B) 
connections are represented per each significant contrast, respectively (p<0.05). The comparisons 
were adjusted for age, sex and education. The node color represents its belonging to specific 
macro-areas (frontal, sensorimotor, basal ganglia, parietal, temporal and occipital). The node size 
is proportional to the number of affected connections (the higher the number of disrupted 
connections, the bigger the node). Abbreviations: A= anterior; ALS= Amyotrophic lateral 
sclerosis; ALS-ci/bi= ALS with cognitive and/or behavioral impairment; ALS-cn= ALS with 
motor impairment only; ALS-FTD= ALS with Frontotemporal Dementia; bvFTD= behavioral 
variant of Frontotemporal Dementia; FA= fractional anisotropy; HC= healthy controls; L= left; 
P= posterior; R= right.
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Figure 3. Distribution analysis of the structural connectivity damage in patient groups. The 
distribution of the structural connectivity alterations within frontal and motor areas and in the 
connections towards these areas is displayed. Distribution curves are normalized relative to 
control values. The more the curve is shifted towards negative values, the greater is the structural 
damage. All significant contrasts (p<0.05) – displayed with colored stars – are reported according 
to age-, sex- and education-adjusted ANOVA models, Bonferroni-corrected for multiple 
comparisons. Abbreviations: ALS= Amyotrophic lateral sclerosis; ALS-ci/bi= ALS with 
cognitive and/or behavioral impairment; ALS-cn= ALS with motor impairment only; ALS-FTD= 
ALS with Frontotemporal Dementia; bvFTD= behavioral variant of Frontotemporal Dementia.
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Figure 4. Distribution analysis of the structural connectivity damage in patient groups. The 
distribution of the structural connectivity alterations within parietal and temporal areas and in the 
connections towards these areas is displayed. Distribution curves are normalized relative to 
control values. The more the curve is shifted towards negative values, the greater is the structural 
damage. All significant contrasts (p<0.05) – displayed with colored stars – are reported according 
to age-, sex- and education-adjusted ANOVA models, Bonferroni-corrected for multiple 
comparisons. Abbreviations: ALS= Amyotrophic lateral sclerosis; ALS-ci/bi= ALS with 
cognitive and/or behavioral impairment; ALS-cn= ALS with motor impairment only; ALS-FTD= 
ALS with Frontotemporal Dementia; bvFTD= behavioral variant of Frontotemporal Dementia. 
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Figure 5. Distribution analysis of the functional connectivity damage in patient groups. 
Functional connectivity damage distribution within area and among areas is reported. Distribution 
curves are normalized relative to control values. The more the curve is shifted towards negative 
values, the more reduced is the functional connectivity. All significant contrasts (p<0.05) – 
displayed with colored stars – are reported according to age-, sex- and education-adjusted 
ANOVA models, Bonferroni-corrected for multiple comparisons. Abbreviations: ALS= 
Amyotrophic lateral sclerosis; ALS-ci/bi= ALS with cognitive and/or behavioral impairment; 
ALS-cn= ALS with motor impairment only; ALS-FTD= ALS with Frontotemporal Dementia; 
bvFTD= behavioral variant of Frontotemporal Dementia. 
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APPENDIX 

eTable 1. Neuropsychological features of the healthy controls, ALS subgroups and 
bvFTD patients. 
 HC ALS-cn ALS-ci/bi ALS-FTD bvFTD 

Global cognition 

MMSE*(Folstein et 

al., 1975) 
29.34 ± 0.97 

(26.00 – 30.00) 
28.41 ± 1.65 

(21.00 – 30.00) 
27.43 ± 2.52 

(20.00 – 30.00) 
24.75 ± 3.15$ 

(21.00 – 29.00) 
22.81 ± 5.99$#^ 
(8.00 – 29.00) 

Memory 

Digit span 
forward(Orsini et al., 

1987) 

5.97 ± 0.99 
(4.00 – 9.00) 

4.75 ± 0.93 
(4.00 – 9.00) 

27.43 ± 2.52 
(3.00 – 6.00) 

4.67 ± 0.82 
(4.00 – 6.00) 

4.55 ± 1.03$# 
(3.00 – 6.00) 

RAVLT 
delayed(Carlesimo et 

al., 1996)  

9.19 ± 3.32 
(3.00 – 15.00) 

9.02 ± 3.30 
(1.00 – 15.00) 

7.13 ± 2.42 
(3.00 – 12.00) 

5.14 ± 5.79$# 
(0.00 – 14.00) 

3.53 ± 3.24$#^ 
(0.00 – 10.00) 

Rey Figure 
recall(Caffarra et al, 

2002) 

18.37 ± 5.90 
(9.50 – 33.00) - - - 

8.17 ± 5.73$ 
(0.00 – 26.00) 

Executive function 

CPM(Basso et al., 1987) 30.91 ± 3.41 
(22.00 – 36.00) 

29.54 ± 4.36 
(20.00 – 36.00) 

26.75 ± 5.26 
(16.00 – 35.00) 

22.14 ± 6.62$ 
(14.00 – 33.00) 

20.36 ± 8.08$#^ 
(0.00 – 32.00) 

Digit span 
backward(Monaco et 

al., 2013) 

4.57 ± 1.07 
(2.00 – 7.00) 

4.06 ± 0.91 
(2.00 – 6.00) 

3.44 ± 1.03 
(2.00 – 5.00) 

2.43 ± 1.81$ 
(0.00 – 6.00) 

3.63 ± 0.96 
(2.00 – 5.00) 

CET (Della Sala et al., 

2003)  - 13.66 ± 3.84 
(6.00 – 24.00) 

14.86 ± 4.50 
(10.00 – 23.00) 

19.50 ± 3.87 
(14.00 – 23.00) - 

Weigl’s (Tognoni, 

1987) - 12.45 ± 1.98 
(8.00 – 15.00) 

9.43 ± 4.15 
(1.00 – 15.00) 

7.50 ± 4.14# 
(4.00 – 15.00) - 

CST, 
perseverations** 

(Caffarra et al., 2004; 

Laiacona et al., 2000) 

0.11 ± 0.16 
(0.00 – 0.83) 

0.14 ± 0.14 
(0.00 –0.73) 

0.16 ± 0.13 
(0.04 –0.40) 

0.20 ± 0.18 
(0.01 – 0.46) - 

Visuospatial Abilities 
Rey Figure copy 

(Caffarra et al., 2002) 
33.13 ± 2.46 

(27.00 – 36.00) - -  19.35 ± 9.77$ 
(1.50 – 36.00) 

Language 

BADA 
(noun)(Miceli et al., 

1994)  
29.79 ± 0.54 

(28.00 – 30.00) 
29.22 ± 0.99 

(27.00 – 30.00) 
28.00 ± 1.97 

(24.00 – 30.00) 
25.71 ± 5.94$# 
(13.00 – 30.00) - 

BADA 
(action)(Miceli et al., 

1994) 
27.68 ± 0.58 

(26.00 – 28.00) 
27.22 ± 1.07 

(24.00 – 28.00) 
24.88 ± 2.60$ 

(20.00 – 28.00) 
23.14 ± 4.48$# 
(17.00 – 28.00) - 

Token Test(De 

Renzi & Vignolo, 1962) 
33.20 ± 2.10 

(29.00 – 36.00) - -  27.47 ± 5.25$ 
(13.00 – 36.00) 

Fluency 

Phonemic 
fluency (Novelli, 1986) 

38.50 ± 9.55 
(18.00 – 55.00) 

31.67 ± 9.71 
(16.00 – 59.00) 

26.55 ± 11.89 
(5.00 – 55.00) 

11.80 ± 5.54$# 
(4.00 – 28.00) 

14.38 ± 11.22$#^ 
(0.00 – 37.00) 

Index PF*** 
(Abrahams et al., 2000) 

4.68 ± 2.17 
(2.60 – 12.05) 

5.75 ± 2.54 
(2.76 – 12.42) 

9.34 ± 8.52 
(2.64 – 35.00) 

19.83 ± 12.56$#^ 
(7.17 – 37.20) - 
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Semantic 
fluency(Novelli, 1986) 

43.74 ± 8.83 
(27.00 – 60.00) 

40.38 ± 9.04 
(26.00 – 66.00) 

34.20 ± 9.45 
(20.00 – 55.00) 

21.60 ± 4.88$# 
(16.00 – 27.00) 

22.59 ± 11.44$#^ 
(0.00 – 48.00) 

Index SF*** 
(Abrahams et al., 2000) 

3.89 ± 0.96 
(2.49 – 6.50) 

4.14 ± 1.43 
(2.20 – 8.04) 

6.73 ± 4.93 
(2.63– 22.22) 

13.57 ± 6.85$#^ 
(6.91 – 23.00) - 

Mood & Behavior 

BDI(Beck et al., 1961) 5.00 ± 4.42 
(0.00 – 15.00) - - - - 

HDRS(Hamilton, 1960) - 6.34 ± 4.69 
(0.00 – 22.00) 

4.77 ± 3.44 
(0.00 – 11.00) 

6.60 ± 2.70 
(3.00 – 10.00) - 

FBI total(Alberici et al., 

2007) - 2.11 ± 1.83 
(0.00 – 7.00) 

6.75 ± 7.21 
(0.00 – 23.00) 

9.75 ± 6.02 
(4.00 – 18.00) - 

ALS-FTD-
Q(Raaphorst et al., 2012) - 8.35 ± 5.71 

(2.00 – 20.00) 
20.23 ± 14.29 
(2.00 – 50.00) 

5.00 ± 6.06 
(1.00 – 14.00) - 

NPI(Cummings et al, 

1994) - - - - 
27.00 ± 15.83 

(11.00 – 60.00) 
Values are numbers or means ± standard deviations (range). Differences between patient groups 
and healthy controls were assessed using one-way ANOVA (statistical contrasts) corrected for 
age, sex and education. The number of patients performing each test is reported in table. $: p<0.05 
vs. HC; #: p < 0.05 vs. ALS-cn; ̂ : p < 0.05 vs. ALS-ci/bi. *= Ratio between the number of correct 
items and the maximum number of administered items; **= Perseverations are reported as the 
ratio between perseveration absolute number and the maximum number of cards provided during 
the test; ***= Verbal fluency indices were obtained as following: time for generation condition - 
time for control condition (reading or writing generated words)/total number of items generated. 
Abbreviations: ALS= Amyotrophic lateral sclerosis; ALS-ci/bi= ALS with cognitive/behavioral 
impairment; ALS-FTD= ALS with frontotemporal dementia; ALS-cn= ALS only with motor 
impairment; ALS-FTD-Q= ALS-FTD-questionnaire; BADA= Battery for aphasic deficit 
analysis; BDI= Beck Depression Inventory; bvFTD= behavioral variant of frontotemporal 
dementia; CET= Cognitive estimation test; CPM= Colored progressive matrices; CST= Card 
sorting tests; FBI= Frontal Behavioral Inventory; HDRS= Hamilton Depression Rating Scale; 
HC= Healthy controls; MMSE= Mini-Mental state examination; NPI= Neuropsychiatric 
inventory; PF= Phonemic fluency; RAVLT= Rey auditory verbal learning test; SF= Semantic 
fluency. 
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eTable 2. MRI acquisition parameters. 
 Philips Medical System Intera 3T scan 

 

T2-
weighted 

SE 

FLAIR 
3D T1-

weighted 
FFE 

Pulsed-
gradient SE 
echo planar 

with 
sensitivity 
encoding 

T2*-
weighted 

single-shot 
EPI 

sequence 
(Resting 

state fMRI) 
Repetition 

time (msec) 
3500 11000 25 8986 3000 

Echo time 

(msec) 
85 120 4.6 80 35 

Flip angle 90° 90° 30° - 90° 
Section 

thickness 

(mm) 

5 5 - 2.5 4 

No. of 

sections 
22 22 220 55 30 for 220 

volumes 
Matrix 512x512 512x512 256x256 96x96 128x128 
Field of view 

(mm2) 
230x184 230x230 230x182 240x240 240x240 

Diffusion 

gradient 

directions 

- - - 32 - 

b value 

sec/mm2 - - - 1000 - 

Abbreviations: FFE= fast field echo; FLAIR= fluid-attenuated inversion recovery; FSE= fast spin 
echo; MRI= magnetic resonance imaging; msec= millisecond; mm= millimeter; No= number; 
SE=spin echo; sec=second 
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eTable 3. Brain nodes of the network. 
N Node Lobe N Node Lobe N Node Lobe 
1 Precentral_L_p1 SENSMOT 75 Insula_L_p2 FRONT-INS 149 Parietal_Inf_L_p1 PAR 
2 Precentral_L_p2 SENSMOT 76 Insula_L_p3 FRONT-INS 150 Parietal_Inf_L_p2 PAR 
3 Precentral_L_p3 SENSMOT 77 Insula_R_p1 FRONT-INS 151 Parietal_Inf_L_p3 PAR 
4 Precentral_L_p4 SENSMOT 78 Insula_R_p2 FRONT-INS 152 Parietal_Inf_R_p1 PAR 
5 Precentral_L_p5 SENSMOT 79 Cingulum_Ant_L_p1 FRONT-INS 153 Parietal_Inf_R_p2 PAR 
6 Precentral_R_p1 SENSMOT 80 Cingulum_Ant_L_p2 FRONT-INS 154 SupraMarginal_L_p1 PAR 
7 Precentral_R_p2 SENSMOT 81 Cingulum_Ant_R_p1 FRONT-INS 155 SupraMarginal_L_p2 PAR 
8 Precentral_R_p3 SENSMOT 82 Cingulum_Ant_R_p2 FRONT-INS 156 SupraMarginal_R_p1 PAR 
9 Precentral_R_p4 SENSMOT 83 Cingulum_Mid_L_p1 FRONT-INS 157 SupraMarginal_R_p2 PAR 
10 Precentral_R_p5 SENSMOT 84 Cingulum_Mid_L_p2 FRONT-INS 158 SupraMarginal_R_p3 PAR 
11 Frontal_Sup_L_p1 FRONT-INS 85 Cingulum_Mid_L_p3 FRONT-INS 159 Angular_L_p1 PAR 
12 Frontal_Sup_L_p2 FRONT-INS 86 Cingulum_Mid_R_p1 FRONT-INS 160 Angular_L_p2 PAR 
13 Frontal_Sup_L_p3 FRONT-INS 87 Cingulum_Mid_R_p2 FRONT-INS 161 Angular_R_p1 PAR 
14 Frontal_Sup_L_p4 FRONT-INS 88 Cingulum_Mid_R_p3 FRONT-INS 162 Angular_R_p2 PAR 
15 Frontal_Sup_L_p5 FRONT-INS 89 Cingulum_Post_L_p1 PAR 163 Precuneus_L_p1 PAR 
16 Frontal_Sup_R_p1 FRONT-INS 90 Cingulum_Post_R_p1 PAR 164 Precuneus_L_p2 PAR 
17 Frontal_Sup_R_p2 FRONT-INS 91 Hippocampus_L_p1 TEMP 165 Precuneus_L_p3 PAR 
18 Frontal_Sup_R_p3 FRONT-INS 92 Hippocampus_R_p1 TEMP 166 Precuneus_L_p4 PAR 
19 Frontal_Sup_R_p4 FRONT-INS 93 ParaHippocampal_L_p1 TEMP 167 Precuneus_L_p5 PAR 
20 Frontal_Sup_R_p5 FRONT-INS 94 ParaHippocampal_R_p1 TEMP 168 Precuneus_R_p1 PAR 
21 Frontal_Sup_Orb_L_p1 FRONT-INS 95 ParaHippocampal_R_p2 TEMP 169 Precuneus_R_p2 PAR 
22 Frontal_Sup_Orb_R_p1 FRONT-INS 96 Amygdala_L_p1 TEMP 170 Precuneus_R_p3 PAR 
23 Frontal_Mid_L_p1 FRONT-INS 97 Amygdala_R_p1 TEMP 171 Precuneus_R_p4 PAR 
24 Frontal_Mid_L_p2 FRONT-INS 98 Calcarine_L_p1 OCC 172 Paracentral_Lobule_L_p1 SENSMOT 
25 Frontal_Mid_L_p3 FRONT-INS 99 Calcarine_L_p2 OCC 173 Paracentral_Lobule_L_p2 SENSMOT 
26 Frontal_Mid_L_p4 FRONT-INS 100 Calcarine_L_p3 OCC 174 Paracentral_Lobule_R_p1 SENSMOT 
27 Frontal_Mid_L_p5 FRONT-INS 101 Calcarine_R_p1 OCC 175 Caudate_L_p1 BG 
28 Frontal_Mid_L_p6 FRONT-INS 102 Calcarine_R_p2 OCC 176 Caudate_R_p1 BG 
29 Frontal_Mid_L_p7 FRONT-INS 103 Calcarine_R_p3 OCC 177 Putamen_L_p1 BG 
30 Frontal_Mid_R_p1 FRONT-INS 104 Cuneus_L_p1 OCC 178 Putamen_R_p1 BG 
31 Frontal_Mid_R_p2 FRONT-INS 105 Cuneus_L_p2 OCC 179 Pallidum_L_p1 BG 
32 Frontal_Mid_R_p3 FRONT-INS 106 Cuneus_R_p1 OCC 180 Pallidum_R_p1 BG 
33 Frontal_Mid_R_p4 FRONT-INS 107 Cuneus_R_p2 OCC 181 Thalamus_L_p1 BG 
34 Frontal_Mid_R_p5 FRONT-INS 108 Lingual_L_p1 OCC 182 Thalamus_R_p1 BG 
35 Frontal_Mid_R_p6 FRONT-INS 109 Lingual_L_p2 OCC 183 Heschl_L_p1 TEMP 
36 Frontal_Mid_R_p7 FRONT-INS 110 Lingual_L_p3 OCC 184 Heschl_R_p1 TEMP 
37 Frontal_Mid_Orb_L_p1 FRONT-INS 111 Lingual_R_p1 OCC 185 Temporal_Sup_L_p1 TEMP 
38 Frontal_Mid_Orb_R_p1 FRONT-INS 112 Lingual_R_p2 OCC 186 Temporal_Sup_L_p2 TEMP 
39 Frontal_Inf_Oper_L_p1 FRONT-INS 113 Lingual_R_p3 OCC 187 Temporal_Sup_L_p3 TEMP 
40 Frontal_Inf_Oper_R_p1 FRONT-INS 114 Occipital_Sup_L_p1 OCC 188 Temporal_Sup_R_p1 TEMP 
41 Frontal_Inf_Oper_R_p2 FRONT-INS 115 Occipital_Sup_L_p2 OCC 189 Temporal_Sup_R_p2 TEMP 
42 Frontal_Inf_Tri_L_p1 FRONT-INS 116 Occipital_Sup_R_p1 OCC 190 Temporal_Sup_R_p3 TEMP 
43 Frontal_Inf_Tri_L_p2 FRONT-INS 117 Occipital_Sup_R_p2 OCC 191 Temporal_Sup_R_p4 TEMP 
44 Frontal_Inf_Tri_L_p3 FRONT-INS 118 Occipital_Mid_L_p1 OCC 192 Temporal_Pole_Sup_L_p1 TEMP 
45 Frontal_Inf_Tri_R_p1 FRONT-INS 119 Occipital_Mid_L_p2 OCC 193 Temporal_Pole_Sup_L_p2 TEMP 
46 Frontal_Inf_Tri_R_p2 FRONT-INS 120 Occipital_Mid_L_p3 OCC 194 Temporal_Pole_Sup_R_p1 TEMP 
47 Frontal_Inf_Tri_R_p3 FRONT-INS 121 Occipital_Mid_L_p4 OCC 195 Temporal_Pole_Sup_R_p2 TEMP 
48 Frontal_Inf_Orb_L_p1 FRONT-INS 122 Occipital_Mid_R_p1 OCC 196 Temporal_Mid_L_p1 TEMP 
49 Frontal_Inf_Orb_L_p2 FRONT-INS 123 Occipital_Mid_R_p2 OCC 197 Temporal_Mid_L_p2 TEMP 
50 Frontal_Inf_Orb_R_p1 FRONT-INS 124 Occipital_Mid_R_p3 OCC 198 Temporal_Mid_L_p3 TEMP 
51 Frontal_Inf_Orb_R_p2 FRONT-INS 125 Occipital_Inf_L_p1 OCC 199 Temporal_Mid_L_p4 TEMP 
52 Rolandic_Oper_L_p1 FRONT-INS 126 Occipital_Inf_R_p1 OCC 200 Temporal_Mid_L_p5 TEMP 
53 Rolandic_Oper_R_p1 FRONT-INS 127 Fusiform_L_p1 TEMP 201 Temporal_Mid_L_p6 TEMP 
54 Rolandic_Oper_R_p2 FRONT-INS 128 Fusiform_L_p2 TEMP 202 Temporal_Mid_L_p7 TEMP 
55 Supp_Motor_Area_L_p1 SENSMOT 129 Fusiform_L_p3 TEMP 203 Temporal_Mid_R_p1 TEMP 
56 Supp_Motor_Area_L_p2 SENSMOT 130 Fusiform_R_p1 TEMP 204 Temporal_Mid_R_p2 TEMP 
57 Supp_Motor_Area_L_p3 SENSMOT 131 Fusiform_R_p2 TEMP 205 Temporal_Mid_R_p3 TEMP 
58 Supp_Motor_Area_R_p1 SENSMOT 132 Fusiform_R_p3 TEMP 206 Temporal_Mid_R_p4 TEMP 
59 Supp_Motor_Area_R_p2 SENSMOT 133 Postcentral_L_p1 SENSMOT 207 Temporal_Mid_R_p5 TEMP 
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60 Supp_Motor_Area_R_p3 SENSMOT 134 Postcentral_L_p2 SENSMOT 208 Temporal_Mid_R_p6 TEMP 
61 Olfactory_L_p1 FRONT-INS 135 Postcentral_L_p3 SENSMOT 209 Temporal_Pole_Mid_L_p1 TEMP 
62 Olfactory_R_p1 FRONT-INS 136 Postcentral_L_p4 SENSMOT 210 Temporal_Pole_Mid_R_p1 TEMP 
63 Frontal_Sup_Medial_L_p1 FRONT-INS 137 Postcentral_L_p5 SENSMOT 211 Temporal_Pole_Mid_R_p2 TEMP 
64 Frontal_Sup_Medial_L_p2 FRONT-INS 138 Postcentral_R_p1 SENSMOT 212 Temporal_Inf_L_p1 TEMP 
65 Frontal_Sup_Medial_L_p3 FRONT-INS 139 Postcentral_R_p2 SENSMOT 213 Temporal_Inf_L_p2 TEMP 
66 Frontal_Sup_Medial_L_p4 FRONT-INS 140 Postcentral_R_p3 SENSMOT 214 Temporal_Inf_L_p3 TEMP 
67 Frontal_Sup_Medial_R_p1 FRONT-INS 141 Postcentral_R_p4 SENSMOT 215 Temporal_Inf_L_p4 TEMP 
68 Frontal_Sup_Medial_R_p2 FRONT-INS 142 Postcentral_R_p5 SENSMOT 216 Temporal_Inf_R_p1 TEMP 
69 Frontal_Sup_Medial_R_p3 FRONT-INS 143 Parietal_Sup_L_p1 PAR 217 Temporal_Inf_R_p2 TEMP 
70 Frontal_Mid_Orb_L_p2 FRONT-INS 144 Parietal_Sup_L_p2 PAR 218 Temporal_Inf_R_p3 TEMP 
71 Frontal_Mid_Orb_R_p2 FRONT-INS 145 Parietal_Sup_L_p3 PAR 219 Temporal_Inf_R_p4 TEMP 
72 Rectus_L_p1 FRONT-INS 146 Parietal_Sup_R_p1 PAR 220 Temporal_Inf_R_p5 TEMP 
73 Rectus_R_p1 FRONT-INS 147 Parietal_Sup_R_p2 PAR    
74 Insula_L_p1 FRONT-INS 148 Parietal_Sup_R_p3 PAR    

Abbreviations: Ant= anterior; BG= basal ganglia; FRONT-INS= fronto-insular; Inf= inferior; L= 
left; Mid= middle; N= region number; Oper= operculum; OCC= occipital; Orb= orbital; p= part; 
PAR= parietal; Post= posterior; R= right; SENSMOT= sensorimotor; Sup= superior; Supp= 
supplementary; TEMP= temporal; Tri= triangularis 
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eTable 4. Structural and functional distribution measures of the normalized inter- and intra-area connectivity values in patient groups. 
Structural Connectivity 

Intra-area and Inter-area 
connections ALS-cn ALS-ci/bi ALS-FTD bvFTD 

p value 
ALS-cn 

vs 
bvFTD 

p value 
ALS-cn 

vs 
ALS-ci/bi 

p value 
ALS-cn 

vs 
ALS-FTD 

p value 
ALS-ci/bi 

vs 
bvFTD 

p value 
ALS-ci/bi 

vs 
ALS-FTD 

p value 
ALS-FTD 

vs 
bvFTD 

Frontal -0.05 ± 0.37 
(56%) 

-0.13 ± 0.48 
(67%) 

-0.53 ± 0.56 
(75%) 

-0.70 ± 0.42 
(100%) <0.001 1.00 0.03 <0.001 0.09 1.00 

Frontal-Sensorimotor -0.22 ± 0.41 
(65%) 

-0.32 ± 0.39 
(81%) 

-0.70 ± 0.63 
(100%) 

-0.45 ± 0.40  
(94%) 0.21 1.00 0.02 1.00 0.10 0.59 

Frontal-Basal Ganglia -0.09 ± 0.51 
(61%) 

-0.09 ± 0.64 
(57%) 

-0.48 ± 0.59 
(75%) 

-0.78 ± 0.57 
(91%) <0.001 1.00 0.44 <0.001 0.45 1.00 

Frontal-Parietal -0.06 ± 0.50 
(63%) 

-0.05 ±0.63 
(52%) 

-0.17 ± 0.64 
(38%) 

-0.41 ± 0.43 
(86%) 0.01 1.00 1.00 0.07 1.00 1.00 

Frontal-Temporal -0.09 ± 0.45 
(59%) 

-0.11 ± 0.52 
(67%) 

-0.44 ± 0.54 
(75%) 

-0.48 ± 0.36 
(92%) 0.002 1.00 0.27 0.01 0.22 1.00 

Sensorimotor-Basal Ganglia -0.50 ± 0.48 
(81%) 

-0.49 ± 0.57 
(81%) 

-0.90 ± 0.88 
(88%) 

-0.13 ± 0.57 
(66%) 0.01 1.00 0.48 0.17 0.47 0.01 

Basal Ganglia-Temporal -0.25 ± 0.42 
(67%) 

-0.16 ± 0.51 
(57%) 

-0.55 ± 0.41 
(100%) 

-0.68 ± 0.42 
(100%) <0.001 1.00 0.46 <0.001 0.11 1.00 

Basal Ganglia-Occipital -0.07 ± 0.68 
(54%) 

-0.17 ± 1.00 
(43%) 

-0.61 ± 0.87 
(75%) 

-0.69 ± 0.94 
(80%) 0.01 1.00 0.77 0.20 1.00 1.00 

Parietal -0.11 ± 0.40 
(59%) 

-0.12 ± 0.44 
(57%) 

-0.41 ± 0.47 
(88%) 

-0.38 ± 0.42 
(89%) 0.04 1.00 0.36 0.11 0.38 1.00 

Parietal-Temporal -0.11 ± 0.51 
(57%) 

-0.22 ± 0.55 
(71%) 

0.05 ± 0.75 
(50%) 

-0.53 ± 0.52 
(83%) 0.01 1.00 1.00 0.14 1.00 0.052 

Parietal-Occipital -0.08 ± 0.42 
(59%) 

-0.12 ± 0.53 
(48%) 

-0.22 ± 0.30 
(75%) 

-0.40 ± 0.45 
(89%) 0.01 1.00 1.00 0.14 1.00 1.00 

Temporal -0.05 ± 0.29 -0.09 ± 0.39 -0.07 ± 0.41 -0.31 ± 0.32 0.01 1.00 1.00 0.03 1.00 0.51 
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(54%) (57%) (38%) (86%) 

Temporal-Occipital -0.02 ± 0.40 
(56%) 

-0.08 ± 0.50 
(52%) 

-0.12 ± 0.31 
(63%) 

-0.30 ± 0.39 
(77%) 0.03 1.00 1.00 0.28 1.00 1.00 

Functional Connectivity 

Frontal-Sensorimotor 0.11 ± 0.56 
(48%) 

0.41 ± 0.59 
(33%) 

0.14 ± 0.40 
(50%) 

-0.12 ± 0.33 
(63%) 0.21 0.09 1.00 0.001 1.00 0.70 

Frontal-Temporal 0.03 ± 0.55 
(52%) 

-0.19 ± 0.78 
(67%) 

-0.49 ± 0.19 
(100%) 

-0.45 ± 0.45 
(83%) 0.001 1.00 0.13 0.06 0.44 1.00 

Sensorimotor 0.003± 0.54 
(53%) 

0.23 ± 0.54 
(29%) 

-0.15 ± 0.14 
(88%) 

-0.28 ± 0.41 
(74%) 0.12 0.04 1.00 <0.001 0.15 1.00 

Sensorimotor-Parietal 0.17 ± 0.55 
(37%) 

0.06 ± 0.47 
(43%) 

-0.07 ± 0.34 
(50%) 

-0.17 ± 0.45 
(69%) 0.02 1.00 1.00 0.34 1.00 1.00 

Sensorimotor-Temporal 0.005± 0.83 
(54%) 

0.03 ± 1.06 
(48%) 

-0.98 ±0.41 
(88%) 

-0.28 ± 0.94 
(60%) 1.00 1.00 0.03 0.48 0.01 0.18 

Parietal-Temporal -0.04 ± 0.58 
(52%) 

0.13 ± 0.51 
(24%) 

-0.25 ± 0.33 
(75%) 

-0.28 ±0.45 
(71%) 0.26 1.00 1.00 0.03 0.35 1.00 

Values are numbers or means ± standard deviations (percentage of people with normalized connectivity value below 0). Inter- and intra-area connectivity 
values significantly different in at least one comparison are reported. P values refer to ANOVA models, followed by post-hoc pairwise comparisons 
(Bonferroni-corrected for multiple comparisons). Significant p value < 0.05. Abbreviations: ALS-ci/bi= Amyotrophic lateral sclerosis with cognitive 
and/or behavioral impairment; ALS-FTD= ALS with frontotemporal dementia; ALS-cn= Amyotrophic lateral sclerosis with only motor impairment; 
bvFTD= behavioral variant of Frontotemporal Dementia 
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eTable 5. Frequency analysis for the identification of ALS-cn-like or bvFTD-like patterns in ALS-ci/bi and ALS-FTD patients. 
Structural Connectivity 

Intra-area and Inter-area 
connections 

N 
ALS-cn 
below 
cutoff 
(%) 

N 
ALS-ci/bi 

below 
cutoff 
(%) 

N 
ALS-FTD 

below 
cutoff 
(%) 

N 
bvFTD 
below 
cutoff 
(%) 

p: 
ALS-ci/bi  

vs 
ALS-cn 

p 
ALS-ci/bi 

vs  
bvFTD 

p: 
ALS-FTD 

vs  
ALS-cn 

p: 
ALS-FTD 

vs 
bvFTD 

p: 
ALS-ci/bi  

vs  
ALS-FTD 

Frontal 16 (30%) 10 (48%) 5 (63%) - 0.12 - 0.08 - 0.38 

Frontal-Basal Ganglia 6 (11%) 5 (24%) 3 (38%) - 0.15 - 0.08 - 0.38 

Frontal-Parietal 14 (26%) 8 (38%) 2 (25%) - 0.22 - 0.66 - 0.42 

Frontal-Temporal 18 (33%) 9 (43%) 5 (63%) - 0.31 - 0.12 - 0.43 

Sensorimotor-Basal Ganglia - 9 (43%) 4 (50%) 6 (17%) - 0.04 - 0.07 0.53 

Basal Ganglia-Temporal 11 (20%) 5(24%) 4 (50% - 0.48 - 0.09 - 0.18 

Basal Ganglia-Occipital 15 (28%) 7 (33%) 3 (38%) - 0.42 - 0.42 - 0.58 

Parietal 31 (57%) 12 (57%) 7 (88%)  0.59 - 0.10 - 0.14 

Parietal-Temporal 14 (26%) 8 (38%) 3 (38%) - 0.22 - 0.38 - 0.66 

Parietal-Occipital 23 (43%) 10 (48%) 4 (50%) - 0.45 - 0.49 - 0.62 

Temporal 15 (28%) 7 (33%) 3 (38%) - 0.42 - 0.42 - 0.58 

Temporal-Occipital 6 (11%) 6 (29%) 3 (38%) - 0.07 - 0.08 - 0.48 

Functional Connectivity 
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Frontal-Temporal 14 (26%) 11 (52%) 8 (100%) - 0.03 - <0.001 - 0.02 

Sensorimotor-Parietal 17 (31%) 8 (38%) 4 (50%) - 0.39 - 0.26 - 0.43 
Per each group, the number (N) and the respective percentage (%) of patients with structural/ functional connectivity values below the optimal cutoff are 
reported. Within ‘bvFTD-like pattern’, frequency analysis, using Chi-squared test was performed only between ALS groups, excluding the. Within ‘ALS-
cn-like pattern’, frequency analysis was performed between bvFTD, ALS-ci/bi and ALS FTD, excluding ALS-cn group. Significant results are highlight 
in bold. Abbreviations: ALS-ci/bi= Amyotrophic lateral sclerosis with cognitive and/or behavioral impairment; ALS-FTD= ALS with frontotemporal 
dementia; ALS-cn= ALS with only motor impairment; AUC= Area Under the ROC curve; bvFTD= behavioral variant of Frontotemporal Dementia. 
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eFigure 1. Classification analysis. The ROC curves for the identification of the structural (A) 
and functional (B) characteristic patterns (ALS-cn-like and bvFTD-like) are shown. The curves 
in red represent the discriminative capability to distinguish bvFTD from ALS-cn (lower values 
of structural inter- and intra-area connectivity better identified bvFTD), while the curves in blue 
represent the opposite discriminative capability (lower values of structural inter- and intra-area 
connectivity better identified ALS-cn from bvFTD). Per each ROC curve, the area under the curve 
is reported as well as the optimal cutoff, obtained as Youden’s index. Abbreviations: ALS-cn= 
ALS with motor impairment only; AUC= Area under the curve; bvFTD= behavioral variant of 
Frontotemporal Dementia.  
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5. EXPLORING THE FACES OF BRAIN AGING 
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5.1 AGE-RELATED VULNERABILITY OF THE HUMAN BRAIN 

CONNECTOME 
 

Abstract 

Introduction. Aging is the main risk factor for most neurodegenerative diseases and 
results in complex transformations of the network brain organization. The study aim was 
to investigate whether and how the brain functional connectome architecture relates with 
structural brain changes due to aging. 
Methods. The study cohort included 128 healthy individuals (young [yC] age range: 20-
30 years and old [oC] age range: 41-84 years), who underwent an MRI scan. 
Subsequently, we estimated  
The brain functional matrix for each yC was reconstructed using resting-state functional 
MRI. Stepwise functional connectivity (SFC) analysis was applied to characterize regions 
that connect to specific seed brain areas at different levels of link-step distances. Eight 
well-known hubs of the human connectome were selected as seeds: middle frontal gyrus, 
rostral anterior and posterior cingulate cortex, precuneus, inferior parietal, middle 
temporal (DMN hubs) and lingual gyri and pericalcarine cortex (occipital hubs). Per each 
seed region, the functional brain network architecture was evaluated in yC to identify 
highly functionally connected regions with hubs. Then, structural changes in all the 
cortical regions across lifespan were measured on 3DT1-weighted images. For each 
region, cortical thickness trajectories with advancing age were modelled using Gaussian 
Process Regression, including sex and education as covariates, and regional changes over 
time were calculated. As such, positive values of change reflected regions with the highest 
change rate over time, while negative values present regions with less change. Finally, 
spatial similarity between functional pattern in yC and cortical atrophy in oC was 
estimated for each hub. 
Results. Functional findings in yC revealed that seeds known to be part of the DMN 
showed distributed intra-network direct connections (within DMN regions). On the other 
hand, occipital hubs showed only local connectivity distribution within occipital lobe and 
to sensorimotor areas. Furthermore, at indirect steps, a spatial overlap was observed in 
SFC maps of different hubs reaching a common pattern. Structurally, greater cortical 
thinning was observed in the DMN hubs, while occipital hubs showed small atrophy 
changes across lifespan. Also, additional regions belonging to temporal lobe 
(parahippocampal, entorhinal, superior temporal and fusiform), frontal lobe (lateral 
orbitofrontal, superior and inferior frontal, including pars triangularis and opercularis), 
parietal lobe (the isthmus of cingulate and supramarginal) and the insular cortex showed 
cortical thinning with aging. Significant positive correlation was found between the 
functional pattern in yC of middle frontal hub and the cortical thinning in oC, while 
significant negative correlation emerged between the functional network organization of 
lingual and pericalcarine hubs and the cortical thinning in oC.  
Conclusions. We observed that cortical regions functionally close to the DMN hubs, but 
far from the occipital hubs, became the more atrophic during aging. Our findings revealed 
potential pattern of vulnerability to the onset of neurodegeneration. This might hold the 
promise to understand the additive role of aging in modelling neurodegenerative 
progression trajectories in future longitudinal studies. 
Supported by: European Research Council (StG-2016_714388_NeuroTRACK). 
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INTRODUCTION 

Aging is a complex biological process characterized by an accumulation of molecular 

and cellular damages over the lifespan (Lopez-Otin et al, 2013). It can be depicted as a 

progressive functional decline, or a gradual deterioration of biological functions. Brain is 

a very efficient and integrative system with many different regions having their own 

function, but continuously sharing information with each other (van den Heuvel & 

Hulshoff Pol, 2010). Aging inevitably implies loss of viability among brain regions, and 

increase in susceptibility to death. Thus, the brain changes as we age, and these changes 

can be associated with cognitive decline and neuronal loss.  

In recent years, magnetic resonance imaging (MRI) has become a powerful tool to 

explore alterations in the aging brain (Damoiseaux, 2017). Overall, the most consistent 

finding is that certain networks, above all the default mode network (DMN), showed to 

be particularly susceptible to aging, revealing a decreased functional connectivity in older 

adults relative to younger (Damoiseaux et al, 2007; Onoda et al, 2012; Tomasi & Volkow, 

2012). 

Aging also shows its effects on grey matter structure resulting from loss of 

unmyelinated axons, dendrites, and glial cell, shrinking of neural bodies, changes of 

dendritic morphology or decreased synaptic density. The brain shrinks in volume and the 

ventricular system expands in healthy aging (Fjell & Walhovd, 2010). A consistent result 

is that age-related morphometric changes are widespread across the cortex, although there 

are specific regions with a major and non-linear grey matter losses over time (Terribilli 

et al, 2011). Regionally, structural decline appears more prominent in frontal, parietal and 

temporal cortices (Coelho et al, 2021; Li et al, 2018; Zhang et al, 2020), consistent with 

the last-in-first-out hypothesis, which posits that brain regions that reach full maturation 

later are more vulnerable to age-related atrophy (Fjell et al, 2014a). 

Moreover, by applying up-to-date MRI techniques, such as graph analysis and 

connectomics, it has been shown that the effect of age on functional brain connectome 

leads to reorganization of the human brain (Bertolero et al, 2015; Geerligs et al, 2015; 

Cao et al, 2014; Spreng et al, 2016). As the highways are more important than smaller 

routes in facilitating traffic, so hubs are nodes (brain regions) with special importance in 

the brain network thanks to their central position in the network’s topological 

organization and their many connections (Power et al, 2013). These hubs are pivotal 
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structures of the core neurocognitive functional networks such as the DMN, dorsal-

attention, central-executive, that often result more vulnerable, thereby supporting the idea 

of selective vulnerability to attack (Power et al., 2013). Indeed, a recent study reported a 

greater reorganization of hubs in old subjects compared to young and middle age groups, 

to maintain communication efficiency (Zhang et al., 2020). Moreover, in connectivity-

related studies, aging altered brain networks differently. DMN is typically characterized 

by a decreasing trend in functional connectivity with age (Song et al, 2014), whereas an 

opposite trend was observed in networks involved in primary information processing, 

such as the sensorimotor and visual, where the functional connectivity was even found 

increased with age (Geerligs et al., 2015; Song et al., 2014). 

Much less is known about the role played by functional connectome reorganization 

with aging in laying the groundwork for the gray matter loss. The aim of the present study 

was to investigate whether and how the brain functional connectome architecture relates 

with structural brain changes due to aging. We proposed a model that integrates the 

information of the functional connectome vulnerability, studied through an innovative 

graph-analysis approach (i.e., stepwise functional connectivity), with the gray matter 

cortical thinning in aging. This might lead to identify functional temporo-spatial patterns 

of neuronal dysfunction that might contribute to the cortical brain atrophy in aging. 
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MATERIALS AND METHODS 

For this prospective study, participants were recruited and clinically evaluated at the 

IRCCS San Raffaele Scientific Institute (Milan, Italy) from 2017 to date in the framework 

of an observational study. MRI scans were collected from all participants using a Philips 

Medical Systems Ingenia cx 3T scanner. All MRI data were pre-processed and analyzed 

at the Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele 

Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy. 

 

Participants 

One hundred twenty-eight right-handed healthy controls were recruited by word of 

mouth. None of the participants had any history of psychiatric or neurological disorder, 

drug or alcohol abuse, or any systemic disease that might compromise cognitive function 

or blood flow (e.g., diabetes, untreated hypertension, cardiovascular disease). All 

participants scored in the normal range on the Mini Mental Status Exam (≥27) (Folstein 

et al, 1975). Prior to participation, written informed consent was obtained from all 

participants.  

Participants aged 20-85 years and were divided into two groups according to age: 50 

young healthy adults (≤ 35 years old) and 78 older healthy adults (> 35 years old). At 

study entry, both groups performed a neuropsychological and behavioural evaluation (see 

Table 1 for more details).  

Briefly, the common neuropsychological assessment evaluated: global cognition with 

the Mini-Mental State Examination (MMSE) (Folstein et al., 1975); memory with the 

Rey Auditory Verbal Learning test (Carlesimo et al, 1996), and the delayed recall of a 

complex figure (Rey–Osterrieth (Caffarra et al, 2002) or Benson (Possin et al, 2011) 

(Possin et al., 2011)); attention and executive functions with the Trail Making Test 

(Giovagnoli et al, 1996) and the Modified Card Sorting Test (Caffarra et al, 2004); 

visuospatial abilities with the copy of a complex figure (Rey–Osterrieth (Caffarra et al., 

2002) or Benson (Possin et al., 2011)); and mood with the Beck Depression Inventory 

(Beck et al, 1961).  

In addition, in older adults we further assessed memory with the digit and spatial span 

forward (Orsini et al, 1987); attention and executive functions with the attentive matrices 

(Tognoni, 1987), the Raven coloured progressive matrices (Basso et al, 1987), the digit 
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span backward (Monaco et al, 2013), and the phonemic and semantic fluencies (Novelli, 

1986); visuospatial abilities with the freehand copying drawings with or without guiding 

landmarks(Carlesimo et al., 1996); language with the Token Test (De Renzi & Vignolo, 

1962); and behaviour with the apathy rating scale (Marin et al, 1991). 

On the other hand, in young adults we also assessed attention and executive functions 

with the Pasat 2” test (Amato et al, 2006); visuospatial abilities with the Benton line 

orientation test (Benton et al, 1978); language with naming in response to an oral 

description (CaGi) (Catricala et al, 2013); and physical and mental wellness with the 

Symptom Check List-90-Revised (SCL-90-R).(Derogatis & Savitz, 2000)  

Finally, each participant underwent a brain MRI scan, including 3D T2-weighted, 3D 

fluid-attenuated inversion recovery, 3D high resolution T1-weighted sequences and T2* 

weighted (GE-EPI) as resting-state functional sequence (see Table 2 for more details). 

 

Statistical analysis: Demographic, clinical and cognitive data 

Demographic and cognitive data were compared between young healthy adults and 

old healthy adults using one-way ANOVA models (for continuous variables) or Chi-

squared test (for categorical variables). Cognitive data analysis was corrected for age, sex 

and education. Two-sided p-value <0.05 was considered for statistical significance. P-

values were adjusted for Bonferroni multiple comparisons. Analyses were performed 

using R Statistical Software (version 4.0.3; R Foundation for Statistical Computing, 

Vienna, Austria). 

 

MRI ANALYSIS 

The study framework is reported in Figure 1. First, (i) we identified highly functionally 

connected regions with 8 a priori selected hubs. Then, (ii) functional connectivity 

alterations among hubs themselves and highly connected regions were compared between 

young and old healthy adults. Subsequently (iii) we modelled cortical thickness 

trajectories over time and finally, (iv) gray matter loss of highly connected regions was 

investigated. 

 

(i) Identification of highly functionally connected regions with hubs 
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rs-fMRI Pre-processing. Preprocessing of the rs-fMRI data was performed with Data 

Processing Assistant for Resting-State toolbox (DPARSFA, http://rfmri.org/ DPARSF, 

(Chao-Gan & Yu-Feng, 2010) based on Statistical Parametric Mapping (SPM12, 

http://www.fil.ion.ucl.ac.uk/spm), and the rs-fMRI Data Analysis Toolkit 

[http://www.restfmri.net] (Song et al, 2011). Preprocessing included the following steps: 

removal of the first four volumes of raw rs-fMRI data, slice timing correction (the middle 

slice was used as the reference point), head motion correction applying a six-parameter 

(rigid body) linear transformation and a two-step procedure by registering to the first 

image and then to the mean of the images after the first realignment), spatial 

normalization to the Montreal Neurological Institute (MNI) atlas template with voxel size 

set at 5 × 5 × 5 mm3 for computational efficiency, removal of spurious variance through 

linear regression. This step included 24 parameters from the head motion correction step 

[6 head motion parameters, 6 head motion parameters one time point before, and the 12 

corresponding squared items] (Friston et al, 1996), scrubbing with regression [signal 

spike regression as well as 1 back and 2 forward neighbors] (Yan et al, 2013) at time 

points with a frame-wise displacement (FD)>0.5mm (Jenkinson et al, 2002), linear and 

quadratic trends, global signal, white matter signal, and the cerebrospinal fluid signal. 

The last steps of preprocessing included spatial smoothing with a 4 mm FWHM Gaussian 

Kernel and band-pass temporal filtering (0.01-0.08 Hz) to reduce the effect of low 

frequency drift and high frequency noise (Biswal et al, 1995). 

No participant had more than 2 mm/degree of movement in any of the six directions, 

and no more than 8 volumes removed during scrubbing (1/3 of the total volumes), 

ensuring at least 5 minutes and 30 seconds of functional data per individual. 

Functional connectome reconstruction. As input to the SFC analysis, we first computed 

the individual association matrices for each participant by computing the Pearson 

correlation of each voxel to every other voxel time course within a mask covering cortical 

grey matter. To perform this analysis, the pre-processed rs-fMRI data of each participant 

were previously converted to an N-by-M matrix, where N was the image voxels in MNI 

space, and M was the 320 acquisition time points. From this step, a 11705x11705 matrix 

of Pearson correlation coefficients (i.e., r-values) was obtained per each participant. 

Fisher z transformation was applied to r-values. Then, all negative correlations and 

positive correlations that did not reach any false discovery rate (FDR) correction 
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threshold of p<0.05 were excluded from further analyses (Benjamini et al, 2001). Only 

positive correlations of the association matrix were taken into account, as positive 

connectivity has been proved to drive functional connectivity network topology in the 

human brain (Qian et al, 2018). 

Stepwise functional connectivity analysis. SFC analysis is a graph-theory-based 

method that aims to characterize regions that connect to specific seed brain areas at 

different levels of “link-step” distances. Therefore, it allows to detect both direct and 

indirect functional couplings of a given seed region to other regions in the brain (Qian et 

al., 2018; Gao et al, 2018; Sepulcre et al, 2012). With such a framework, a step refers to 

the number of links (edges) that belongs to a path connecting a node to the seed (or target) 

area. Accordingly, link step and path length are analogous concepts. 

In SFC analysis, the degree of stepwise connectivity of a voxel j for a given step 

distance l and a seed area i ( ) is computed from the count of all paths that (1) connect 

voxel j and any voxel in seed area i, and (2) have an exact length of l.  

Each SFC matrix  of size m-by-m can be recursively represented as follows: 

Equation 1:  

 

Here,  is the functional connectivity matrix with a step distance of l, and  is the 

correlation matrix after Fisher transformation. Matrices were then normalized between 0 

and 1, keeping the final distribution of values intact while making them comparable 

across step distances. In this sense, a larger SFC degree under the step distance l indicates 

stronger paths connecting two voxels via link one, while a smaller degree indicates 

weaker connectivity paths. We explored a wide range of link-step distances, from 1 to 20, 

to characterize the progression of the derived maps. Although the amount of overlap 

between consecutive steps is expected to be high, we aimed to see meaningful relative 

changes between pairs of maps. The SFC patterns are topographically dissimilar between 

consecutive maps from steps one to three and become stable for link-step distances above 

four. Based on this analysis, in our results we show only maps up to four steps. 

Furthermore, we refer to functional connectivity at one-link step as direct connectivity 

and for the functional connectivity at subsequent steps (2-4) as indirect connectivity. 
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SFC analysis uses a priori selected seed voxels of interest. Since the aim of this study 

was to investigate whether and how the functional rearrangement took hold with aging, 

we selected the following eight seed regions as hubs in healthy brain: middle frontal, 

inferior parietal, precuneus, middle temporal, posterior cingulate, rostral anterior 

cingulate (DMN hubs) and pericalcarine and lingual (occipital hubs) (Oldham & Fornito, 

2019; van den Heuvel & Sporns, 2013; Zuo et al, 2012). 

All maps across different link-step distances from one to four (i.e., SFC maps 1 to 4) 

were used in the characterization of functional connectivity alterations between young 

healthy adults and older healthy adults (see section ii for details). 

In order to identify highly connected regions with the eight hubs, four SFC maps for 

each of the four steps were obtained averaging all the young healthy subject maps. 

Consequently, SFC maps were projected onto the cerebral hemispheres of the Population-

Average Landmark and Surface-based (PALS) surface (PALS-B12) provided with Caret 

software (Van Essen & Dierker, 2007) using the “enclosing voxel algorithm” and 

“multifiducial mapping” settings. 

 

(ii) Functional connectivity alterations among hubs themselves and highly connected 

regions 

All maps across different link-step distances from one to four (i.e., SFC maps 1 to 4) 

were used in the characterization of connectivity alterations between young healthy adults 

and older healthy adults. 

Voxel-wise analyses were performed using general linear models as implemented in 

SPM12. Whole-brain two-sample t-test comparisons between groups were performed, 

including age, sex and education as covariates. A threshold-free cluster enhancement 

method, combined with nonparametric permutation testing (5000 permutations) as 

implemented in the Computational Anatomy Toolbox 12 (CAT12, http://www.neuro.uni-

jena.de/cat/) was used to detect statistically significant differences at p<0.05, family-wise 

error (FWE) corrected. These analyses allowed the identification of specific regions that 

demonstrated between-group differences in stepwise connectivity. 

As a final step, all resulting maps from statistical analysis were projected onto the 

cerebral hemispheres of the PALS surface (Van Essen & Dierker, 2007) using the 

“enclosing voxel algorithm” and “multifiducial mapping” settings. 
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(iii) Modelling of cortical thickness trajectories 

Cortical thickness. We estimated cortical thickness on 3D T1-weighted using 

FreeSurfer (version 5.3) image analysis suite (http://surfer.nmr.mgh.harvard.edu/). The 

process involved registration to Talairach space, normalization of intensity and an 

automatic skull stripping to remove extra-cerebral structures. After such processing, 

images were segmented into gray matter (GM), white matter (WM) and cerebrospinal 

fluid (CSF). The cerebral hemispheres were separated. Subcortical regions were not 

included in such analysis due to the low accuracy of such framework for deep cerebral 

structures. The WM/GM boundary was automatically delineated, and the surface was 

deformed following the intensity gradients to optimally recognize WM/GM and GM/CSF 

borders. Thus, WM and pial surface was obtained. The segmentation results were visually 

inspected, and if necessary, edited manually. Finally, the cerebral cortex was parcellated 

into 68 cortical regions based on Desikan atlas (Desikan et al., 2006) and mean cortical 

thickness was calculated per each region as the average shortest distance between WM 

borders and pial surface. 

Modelling regional cortical. To assess cortical thickness changes over time, for each 

cortical region we modelled the relationship between individuals age and cortical 

thickness using a supervised learning method, the Gaussian Process Regression (GPR). 

GPR is a nonparametric Bayesian approach for the probabilistic prediction of continuous 

variables (CKI & Williams, 2006). The advantages of such methods lie on the 

probabilistic nature of the prediction and its interpolation with the observed data. Previous 

studies (Ball et al, 2020; Cole et al, 2018; Ziegler et al, 2014) confirmed its potential to 

model relationship between age and MRI-derived metrics. GPR was implemented using 

Matlab 17. Per each cortical region, we obtained predicted age cortical trajectories 

ranging from 20.5 to 84.6 years, including sex and years of education as covariates. To 

identify the regional cortical thinning, the relative change over time was assessed starting 

from the predicted cortical trajectories. Thus, we performed a rank transformation on 

cortical regions based on their relative thickness at either the end of the observed 

timeframe (20.5 and 84.6 years) to account for nonnormally distribution of cortical 

thicknesses. Regions that showed to be thinner compared to other cortical regions were 

attributed to a higher rank. Then, we evaluated the rank variation per each region by 
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subtracting the starting rank value (at 20.5 year) of each cortical region to its final rank 

value (at 84.6 years): rank variation = final rank – starting rank. As such, positive values 

of change reflected regions with the highest change rate over time, while negative values 

present regions with less change. Based on such rank variation, cortical regions were 

ordered by the region that varies the least to that which varies the most. Finally, rank 

variation was Z-scored and correlated with regional mean thickness to assess the 

relationship between the degree of variation and the cortical thickness of cortical regions. 

 

(iv) Gray matter loss of highly connected regions 

In order to identify gray matter loss of highly connected regions with hubs, we 

investigated spatial similarity between functional pattern and cortical atrophy. The 

hypothesis is that brain regions highly functionally connected with hubs are those that 

change with aging and become atrophic first. Therefore, we computed per each seed 

region the combined version of SFC maps from 1 to 4 into one single map (combined 

SFC maps) within young adult group. Specifically, we considered the SFC maps from 1 

to 4 that were previously calculated per each subject and seed. We identified the highest 

functional connectivity of each voxel among the four values of each map (from 1 to 4) 

and set the values of each voxel with the number of step (from 1 to 4) in which the 

functional connectivity resulted maximized. Thus, we obtained a SFC combined map for 

each subject and seed whose values ranged from 1 to 4 steps (1=closer to the seed; 4=far 

from the seed). A mean combined SFC map of young healthy subjects was obtained 

averaging all the healthy subject maps. 

In order to evaluate gray matter loss, regional cortical thickness of old adults has been 

considered. Regional cortical thickness values per each subject of old adult group were 

normalized relative to the mean and the standard deviation of regional values of young 

adults group. Subsequently, we obtained a mean value of cortical thickness per each 

region by averaging all the normalized values of older subjects. 

Correlation analysis between combined SFC maps and mean cortical thickness was 

performed in order to evaluate spatial similarity between functional pattern and cortical 

atrophy during aging. Finally, the functionally closest regions to each seed (combined 

version of SFC maps <1.5) were selected and the distribution of cortical thickness values 

within older adult group was visually reported. Finally, cortical thickness in such regions 
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were compared between the two groups using ANOVA models, Bonferroni-corrected for 

multiple comparisons at level of 0.05 adjusted for sex and years of education. 
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RESULTS 

(i) Identification of highly functionally connected regions with hubs 

Investigating the average maps of functional connectivity within the young healthy 

adults, we found that all seed regions exhibited a dense and predominant regional-local 

direct functional connectivity (Figure 2). All seed regions, expect for the two occipital 

seeds (lingual and pericalcarine), revealed a common pattern of direct connections, 

reaching firstly superior frontal gyrus, supramarginal gyrus, superior and inferior parietal, 

isthmus and posterior cingulate and precuneus (Figure 2). On the other hand, 

pericalcarine and lingual regions shared a pattern of dense direct connections within 

occipital lobe (lateral occipital gyrus, cuneus, lingual, pericalcarine) and the sensorimotor 

areas (precentral, postcentral and paracentral gyri) (Figure 2). Of note, the precuneus hub 

is the only seed region directly connected to occipital hubs (lingual and pericalcarine) and 

the other selected hubs (middle frontal gyrus, rostral anterior cingulate, inferior parietal 

gyrus, posterior cingulate and middle temporal gyrus) (Figure 2).  

At indirect connectivity (intermediate steps), all seed regions, except for the occipital 

seeds, revealed a common pattern reaching occipital regions (cuneus, lingual and 

fusiform), the superior temporal and the sensorimotor areas (paracentral, precentral and 

postcentral gyri) more prominently in the third and the fourth step. The occipital seeds 

(pericalcarine and lingual) indirectly connected to the superior frontal, the caudal anterior 

cingulate and the superior temporal (Figure 2). 

 

(ii) Functional connectivity alterations among hubs themselves and highly connected 

regions 

Middle frontal gyrus seed (Figure 3A). Older healthy adults showed decreased direct 

functional connectivity in frontal lobe (superior frontal gyri, right rostral middle frontal 

gyrus and medial orbitofrontal cortex), parietal lobe (right inferior parietal and right 

supramarginal gyrus) and temporal lobe (right middle and inferior temporal gyri) relative 

to young healthy adults. Decreased indirect functional connectivity was observed in 

frontal lobe (superior frontal gyri, medial orbitofrontal cortex and right caudal anterior 

cingulate), right inferior parietal cortex, left insula in older adults compared to young. 

Concerning the opposite contrast, older subjects exhibited a significantly increased direct 

functional connectivity in superior parietal cortex, temporal lobe (superior temporal 
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gyrus, fusiform, right entorhinal cortex, right parahippocampal gyrus and left 

hippocampus), and occipital lobe (lingual gyrus, left pericalcarine, left cuneus, and left 

lateral occipital cortex). Enhanced indirect connectivity was also observed in 

sensorimotor cortex (precentral and postcentral gyri), parietal lobe (superior parietal 

cortex and right supramarginal gyrus), temporal lobe (right superior temporal gyrus, right 

fusiform and left hippocampus) and occipital lobe (lingual gyri, left pericalcarine and left 

cuneus).  

Rostral anterior cingulate seed (Figure 3B). Decreased direct connectivity in the 

frontal lobe (superior frontal gyri, medial orbitofrontal cortex and rostral anterior 

cingulate cortex), temporal lobe (left entorhinal cortex and right hippocampus) and right 

isthmus cingulate cortex was found in older adults relative to young adults. Reduced 

indirect functional connectivity was found in frontal lobe (superior frontal gyri, medial 

orbitofrontal cortex, rostral anterior cingulate and right caudal anterior cingulate), 

temporal lobe (left entorhinal cortex and right hippocampus), parietal lobe (precuneus, 

right posterior cingulate and right isthmus cingulate), and left insula. Moreover, with 

regard to the opposite contrast, older adults exhibited significant increased direct 

connectivity in frontal lobe (caudal medial superior frontal gyri, left rostral middle frontal 

gyrus, left pars opercularis and right caudal anterior cingulate), postcentral gyri, and 

parietal lobe (superior parietal cortex and supramarginal gyri) relative to young subjects. 

Additional enhanced indirect connectivity was found in occipital regions (right lingual 

gyrus, right fusiform gyrus and right lateral occipital cortex) in older subjects relative to 

young controls. 

Precuneus seed (Figure 3C). Older adults presented lower direct functional 

connectivity in frontal lobe (superior frontal gyri, medial orbitofrontal cortex, rostral 

anterior cingulate), parietal lobe (precuneus, isthmus cingulate and posterior cingulate), 

left insula and occipital lobe (pericalcarine and cuneus) relative to young adults. Older 

healthy adults showed additional lower indirect connectivity in right inferior parietal 

cortex and left inferior temporal gyrus. Referring to the opposite contrast, older group 

exhibited enhanced direct functional connectivity from precuneus seed to sensorimotor 

(precentral and postcentral gyri), parietal lobe (superior parietal cortex and supramarginal 

gyri), temporal lobe (superior temporal gyri and right fusiform) and occipital lobe (right 

lateral occipital cortex) compared to young subjects. Across subsequent steps, additional 
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enhanced indirect connectivity was found in occipital lobe (lateral occipital cortex, 

lingual gyri, left pericalcarine, left cuneus). 

Posterior cingulate seed (Figure 3D). When comparing older subjects with young 

adults, direct connectivity starting from the posterior cingulate seed revealed decreased 

functional connectivity in frontal lobe (right superior frontal gyrus, medial orbitofrontal 

cortex and caudal anterior cingulate) and right insula. Older adults showed lower indirect 

functional connectivity in frontal lobe (superior frontal gyri, medial orbitofrontal cortex 

and right caudal anterior cingulate), insular cortex and left transverse temporal cortex 

relative to young subjects. Referring to the opposite contrast, older group exhibited 

enhanced direct connectivity from posterior cingulate seed to sensorimotor cortex 

(precentral and postcentral gyri), superior parietal cortex, and left middle temporal gyrus. 

Moreover, older subjects also showed enhanced indirect functional connectivity in 

sensorimotor cortex (precentral and postcentral gyri), superior parietal cortex, right 

fusiform gyrus and occipital lobe (lingual gyri, pericalcarine and cuneus).  

Inferior Parietal cortex seed (Figure 3E). Older adults showed decreased direct 

functional connectivity compared to young adults in frontal lobe (rostral middle frontal 

gyri, medial orbitofrontal cortex and pars orbitalis), parietal lobe (right inferior parietal 

lobule) and left insula, while decreased indirect connectivity was detected within the 

frontal lobe (superior frontal gyri, medial orbitofrontal cortex and right caudal anterior 

cingulate) and insula. Regarding the opposite contrast, older adults exhibited a significant 

increased direct functional connectivity when compared to young subjects in 

sensorimotor cortex (precentral and postcentral gyri), superior parietal cortex, temporal 

lobe (right fusiform gyrus and right parahippocampal gyrus) and occipital lobe (lingual 

gyrus). Additionally, from the inferior parietal seed we observed enhanced indirect 

connectivity with the parietal lobe (superior parietal cortex and right supramarginal), 

temporal (right superior temporal gyrus and right fusiform gyrus) and occipital lobe (right 

lingual gyrus, left pericalcarine and left cuneus) in older group. 

Middle temporal gyrus seed (Figure 3F). Starting from middle temporal gyrus, older 

adults showed decreased direct connectivity in frontal lobe (superior frontal gyri and 

medial orbitofrontal cortex), right inferior parietal cortex and temporal lobe (middle 

temporal and inferior temporal gyri). Additionally, older adults were characterized by 

decreased indirect functional connectivity within left insula, right caudal anterior and 
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right posterior cingulate relative to the young counterparts. Furthermore, older subjects 

showed enhanced direct connectivity relative to young adults within the left rostral 

middle frontal gyrus and left paracentral lobule, along with parietal lobe (superior parietal 

gyri, supramarginal gyri), right insula, temporal lobe (right transverse temporal gyrus, 

superior temporal gyri) and lateral occipital cortex. Finally, increased indirect functional 

connectivity was found within sensorimotor cortex (precentral and postcentral gyri), 

parietal lobe (superior parietal gyrus and right supramarginal gyrus), superior temporal 

gyri, and occipital lobe (lingual gyrus, left pericalcarine and left cuneus). 

Lingual gyrus seed (Figure 3G). Regarding direct functional connectivity from the 

lingual seed, older adults showed decreased connectivity relative to the young group in 

frontal lobe (superior frontal gyri and medial orbitofrontal cortex), isthumus cingulate 

cortex and lingual gyri. Moreover, older group were characterized by decreased indirect 

connectivity within frontal lobe (superior frontal gyri, medial orbitofrontal cortex and 

right caudal anterior cingulate), parietal lobe (precuneus and right posterior cingulate) 

and left insula. Referring to the opposite contrast, older healthy adults showed increased 

direct functional connectivity relative to young subjects within the right caudal middle 

frontal gyrus, the sensorimotor cortex (precentral and postcentral gyri), parietal lobe 

(superior parietal cortex and right supramarginal gyrus), insula and temporal lobe (right 

superior temporal gyrus and inferior temporal gyri). Regarding indirect connectivity, 

older subjects were characterized by additional increased functional connectivity in right 

fusiform gyrus and occipital lobe (lingual gyri, pericalcarine and cuneus). 

Pericalcarine cortex seed (Figure 3H). Older subjects showed decreased direct 

connectivity relative to yound adults in frontal lobe (superior frontal gyri, medial 

orbitofrontal cortex and rostral anterior cingulate), insular cortex, left transverse temporal 

gyrus, isthmus cingulate cortex, occipital cortex (lingual gyri and cuneus), while reduced 

indirect connectivity was found in frontal lobe (superior frontal gyri, medial orbitofrontal 

cortex, left rostral anterior cingulate and right caudal anterior cingulate), parietal lobe 

(precuneus and posterior cingulate), left insula. Regarding the opposite contrast, older 

healthy adults exhibited significant enhanced direct connectivity in sensorimotor cortex 

(precentral and postcentral gyri), parietal lobe (superior parietal cortex and right 

supramarginal gyrus) and temporal lobe (right superior temporal gyrus) and right lateral 

occipital cortex). Additionally, enhanced indirect functional connectivity was found in 
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older adults in sensorimotor cortex (precentral and postcentral gyri), parietal lobe 

(superior parietal cortex and right supramarginal gyrus), temporal lobe (right superior 

temporal gyrus and right fusiform gyrus), occipital lobe (lingual gyri, pericalcarine, 

cuneus and lateral occipital cortex) relative to young adults. 

 

(iii) Modelling of cortical thickness trajectories 

We modelled the regional change in cortical thickness through GPR on the entire cohort 

(n=128) between ages 20.5 and 84.6 years. The 97% of cortical regions showed 

decreasing thickness with advancing age (Figure 4A). Calculating the relative change 

over time, through the rank transformation, the highest cortical thinning was observed in 

the majority of DMN hubs (right middle frontal gyrus, rostral anterior cingulate, 

precuneus, right posterior cingulate, inferior parietal cortex and middle temporal gyrus) 

and in regions belonging to the temporal lobe (parahippocampal, superior temporal gyrus, 

transverse temporal gyrus and fusiform), the frontal lobe (lateral orbitofrontal, superior 

and inferior frontal including pars triangularis, pars opercularis), the parietal lobe (the 

isthmus of cingulate and supramarginal) and in the insular cortex (Figure 4B and Table 

3). On the other hand, occipital hubs (lingual gyrus and pericalcarine cortex), as well as 

other occipital regions (cuneus and lateral occipital) and all the motor and premotor areas 

(precentral, postcentral and paracentral regions), showed the lowest cortical thickness 

change in relation to the whole brain across lifespan (Figure 4B and Table 3). Finally, 

positive correlation was found between regional mean thickness and regional relative 

change over time (r=0.32, p=0.01) (Figure 4C). 

 

(iv) Gray matter loss of highly connected regions 

Correlation analysis between combined SFC maps of each hub in the young group and 

mean regional cortical thickness of older healthy adults was performed to evaluate spatial 

similarity between functional pattern and cortical atrophy during aging. Significant 

positive correlation between functional pattern of middle frontal hub in young adults and 

the cortical thinning in older adults (Figure 5A) was found. Whereas, significant negative 

correlation emerged between the functional network organization of lingual and 

pericalcarine hubs and the cortical thinning in older adults (Figure 5B-C). Functionally 

closest regions to hubs were obtained (combined SFC maps regions <1.5). Considering 
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DMN hubs, frontal pole, caudal middle frontal, pars orbitalis and temporal pole bilaterally 

and left isthmus cingulate, left pars triangularis and right supramarginal (DMN-linked 

regions) were selected. Whereas the functionally closest regions to occipital hubs were 

the hubs themselves (lingual gyrus and pericalcarine cortex) and cuneus (OCC-linked 

regions). Comparing mean regional cortical thickness in DMN- and OCC-linked regions 

between the two groups, older healthy adults showed significant reductions in mean 

regional cortical thickness relative to young adults (Figure 6 and Table 4). However, 

investigating the distribution of normalized cortical thickness value in older adults, 

DMN-linked regions showed a greater mean cortical thinning than OCC-linked regions 

(Figure 6). 
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DISCUSSION 

Brain can be depicted as a highly efficient anatomical and functional organization that 

can be approached for investigation as a complex and comprehensive network (van den 

Heuvel & Sporns, 2013). Within this network, hubs are pivotal brain regions with 

substantial role in integration, enabling efficient neuronal signaling and communication, 

and they represent potential vulnerability ‘stations’ preferentially affected by aging 

(Zhang et al., 2020). Aging is an inherent process of neurodegeneration determined by an 

accumulation of molecular and cellular damages (Lopez-Otin et al., 2013) that reflects in 

functional and structural alterations of the brain. 

For such reason, we selected, based on existing literature, eight human brain hubs 

(middle frontal gyrus, rostral anterior cingulate cortex, inferior parietal cortex, precuneus, 

posterior cingulate cortex, middle temporal gyrus – DMN hubs – , lingual and 

pericalcarine cortex – OCC hubs), which are also demonstrated to be compromised in 

different age-related neurodegenerative disorders (Agosta et al, 2013; Canu et al, 2017). 

Our aim was to evaluate as aging affects functional connectivity of these pivotal 

regions and how such effects influence the vulnerability and structural changes of the 

whole brain. Overall, DMN hubs showed a highly direct functional connectivity with 

themselves and among each other, while OCC hubs showed a direct functional 

connectivity within occipital regions and somatosensory. Investigating cortical thickness 

changing over time in healthy subjects, we observed that DMN hubs were among the 

brain regions that changed the most. On the contrary, OCC hubs showed a quite spared 

cortical thickness across lifespan. The combination of multimodal information of hubs 

atrophy and their functional connectivity pattern allowed us to delineate the vulnerability 

of the remaining brain regions. We observed that regions highly functionally connected 

to DMN hubs were characterized by greater cortical thinning relative to those brain 

regions highly functionally connected to OCC hubs, which, even though showing mild 

cortical thinning, resulted more spared.  

The evaluation of the functional connectivity average maps of young adults provided 

the possibility to identify in vivo the functional pathways starting from the selected hubs. 

Identifying the optimal functional topological organization, we observed that each of the 

DMN hubs was densely and directly (one-step link) connected: (i) within themselves; (ii) 

with other hubs (inferior parietal gyrus, posterior cingulate cortex and precuneus); and 
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(iii) with superior frontal gyrus, isthmus cingulate cortex, supramarginal gyrus and 

superior parietal gyrus. These results are quite expected, since they are regions belonging 

to a common network (DMN) (Raichle, 2015). Furthermore, in recent studies in which 

SFC has been applied, it has been demonstrated that seeds regions are always directly 

connected with themselves (Sepulcre et al., 2012). Moreover, our results highlighted 

direct connections between some of DMN hubs and regions belonging to the salience 

network (i.e., anterior insula, dorsal anterior cingulate cortex), supporting the functional 

link between DMN and salience network, widely reported in literature (Menon, 2015).  

On the other hand, the evaluation of healthy functional organization starting from OCC 

hubs as seeds pointed out that these hubs were densely and directly connected within the 

occipital local regions, sensorimotor regions (precentral, postcentral and paracentral gyri) 

and precuneus, in line with recent studies (Sepulcre et al., 2012). Of note, the occipital 

areas have a deep interconnectivity with primary motor and somatosensory cortices 

suggesting an early integration of somatomotor and visual processing for oculomotor 

functions (Sepulcre et al., 2012). 

An intriguing result regarded the functional connectivity of the precuneus, which 

appeared especially central in linking the other DMN hubs and the OCC hubs, serving as 

functional communication bridge. This is in line with previous studies, which highlighted 

the role of the precuneus as connector hub (Bagarinao et al, 2020; Gordon et al, 2018; 

van den Heuvel & Sporns, 2013). Moreover, this region might play an active role as 

specific node during disease processes.  

Focusing on the indirect connections (intermediate step-link), common connectivity 

patterns at intermediate step-link distances across all seeds was observed. A whole-brain 

stable map of connectivity was identified, where all the selected cortical hubs converge, 

supporting global functional integration properties of the healthy brain (Sporns, 2013).  

Subsequently, investigating topological organization changes during aging, we 

hypothesized that the pattern of functional reorganization with aging primarily affects 

directly connected regions, and then spreads to indirectly connected regions. In support 

of our hypothesis, we found functional connectivity alterations in older adults among 

hubs themselves and areas that were found highly connected at one-step distance. Indeed, 

the direct functional connections within hubs themselves and towards regions, whcih are 

mainly distributed within the DMN, were found significantly decreased with aging. These 
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findings find wide acceptance with previous studies, suggesting that hubs DMN regions 

are more vulnerable to aging effect and easily affected by neurodegenerative disorders 

(Crossley et al, 2014; Damoiseaux, 2017; Siman-Tov et al, 2016; Song et al., 2014). In 

literature, there is a bunch of evidence reporting functional alterations in hub properties 

in the main age-related neurodegenerative diseases as Alzheimer’s disease (Toussaint et 

al, 2014) and frontotemporal dementia (Agosta et al., 2013). In addition, 

neuropathologically, Aβ deposition has been found to preferentially accumulate in 

precuneus and posterior cingulate cortex in Alzheimer’s disease, known to be DMN hubs 

(Buckner et al, 2009). 

In regards with OCC hubs, decreased direct connectivity was found within themselves 

and in the cuneus, highlighting a local reduction within the occipital lobe that might be 

explained by the already seen strong local direct connectivity in the average maps. 

Decreased connectivity within the visual occipital network has been reported in the 

literature and might be related with a deficit of sensory processing in aging (Onoda et al., 

2012). 

Besides decreased direct connectivity, hyperconnectivity was also found in older 

adults compared to young. Particularly, precuneus, superior parietal lobule and 

sensorimotor network are the areas that showed increased functional connectivity with 

both DMN and OCC hubs, respectively. Hyperconnectivity in somatosensory networks 

is in line with previous studies (Geerligs et al., 2015; Song et al., 2014; Tomasi & 

Volkow, 2012). The pattern of increasing functional connectivity among regions 

belonging to different networks could be interpreted as the attempt to compensate for the 

functional decline within network, which may reflect decreased segregation properties. 

This is in keeping with previous studies showing that within-network connectivity 

weakens during normal aging, while between-network connectivity increases to balance 

the modular structure in the functional brain network (Spreng et al., 2016).  

Intrigued by the functional rearrangement of the hubs in a healthy young brain, we 

then focused on the structural changes of the hubs, firstly, and of the other brain regions 

that occur in aging. As well-established in previous literature, we found that cortical 

thickness decreased across the majority (97%) of the cortex between 20 and 85 years 

(Fjell & Walhovd, 2010; Salat et al, 2004; Shaw et al, 2016). We also found that high 

cortical thinning is centered on DMN hubs and regions within frontal (lateral 
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orbitofrontal, superior and inferior frontal, including pars triangularis and opercularis), 

temporal (parahippocampal, entorhinal, superior temporal and fusiform), parietal (the 

isthmus of cingulate and supramarginal) lobes and insular cortex (Fjell et al, 2014b). In 

contrast, we found that slowest thinning is restricted to OCC hubs and motor and pre-

motor cortex (Shaw et al., 2016). Present findings are consistent with the “last in, first 

out” hypothesis, according to which the prefrontal-inferior parietal-temporal brain areas, 

that are late-maturing regions, are preferentially the first to be vulnerable to aging (Raz 

et al, 2005).  

Finally, some interesting observations can be drawn regarding how the grey matter 

atrophy and the functional connectivity pattern of the selected hubs strike the remaining 

brain regions in aging. We observed that regions highly functionally connected to DMN 

hubs were characterized by greater cortical thinning relative to those brain regions highly 

functionally connected to OCC hubs, that, even though they showed mild cortical 

thinning, resulted more spared. This suggests that cortical regions functionally close to 

the DMN hubs, but far from the occipital hubs, became the more atrophic during aging, 

finding, one again, consistency in the ‘last in, first out’ theory (Raz et al., 2005). In 

agreement with our findings, Douaud and colleagues (Douaud et al, 2014) demonstrated 

that transmodal cortex, almost overlapping with DMN and which develops late in 

adolescence, showed accelerated degeneration in old age compared with the rest of the 

brain. Moreover, our results find their consent in a previous study (Vidal-Pineiro et al, 

2014), where dysfunctional DMN connectivity was related to structural changes in brain 

aging, suggesting maladaptive plasticity mechanisms during the lifespan in the DMN. 

The study is not without limitations. Although the neuropsychological characterization 

of our sample was very comprehensive, there is a lack of information about lifestyle risk 

factors (i.e., smoking, obesity, lifestyle, health risk factors), which might modulate the 

brain aging changes. Another limitation lies in the cross-sectional nature of the study. Our 

findings may relate to the nature of the aging profiles, which represent snapshots in time. 

In this context, longitudinal studies are warranted to verify the trajectories of functional 

changes, assessing the evolution of alterations over time. Regarding methodological 

concerns, computational constraints required us to downsample data to relatively large 

voxels (5 mm3). Finally, due to methodological limitations of thickness measurement in 
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subcortical regions, we restricted our analysis to the cortical regions, only. Further 

investigations are warranted to evaluate the aging effect on subcortical areas. 

Our findings revealed potential patterns of vulnerability to aging, pointing out how 

functional network rearrangements of brain hubs and their structural change trajectories 

across lifespan influence the functional and structural trend of changes of the remaining 

brain regions. 
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Table 1. Sociodemographic data and comprehensive neuropsychological evaluation in 

young and older healthy adults.  

Sociodemographic data 

  
Young healthy 

adults 
Older healthy 

adults 
p-value 

 

Age [years] 25.44 ± 3.01 
(20.48 – 31.69) 

62.82 ± 9.35 
(36.82 – 84.59) 

<0.001 

Sex [M/W] 27/23 22/56 0.01 

Education [years] 15.56 ± 2.98 
(8.00 – 24.00) 

12.04 ± 3.75 
(5.00 – 20.00) 

<0.001 

Neuropsychological data 

Global 
cognition 

MMSE 29.82 ± 0.39 
(29.00 – 30.00) 

29.38 ± 0.82 
(27.00 – 30.00) 

0.002 

Memory 

Digit Span, forward - 5.96 ± 1.00 
(4.00 – 8.00) 

- 

RAVLT 
[immediate recall] 

57.54 ± 6.74 
(43.00 – 70.00) 

48.99 ± 7.37 
(31.00 – 67.00) 

<0.001 

RAVLT [delayed recall] 12.79 ± 1.80 
(8.00 – 15.00) 

10.64 ± 2.44 
(4.00 – 15.00) 

<0.001 

RAVLT [recognition] 14.88 ± 0.44 
(13.00 – 15.00) 

14.30 ± 1.38 
(6.00 – 15.00) 

0.03 

RAVLT [false positives] 0.62 ± 2.00 
(0.00 – 13.00) 

0.68 ± 1.71 
(0.00 – 13.00) 

0.77 

Spatial span, forward - 5.29 ± 1.10 
(3.00 – 7.00) 

- 

Rey’s figure [delayed 
recall] 

23.19 ± 5.48 
(1.00 – 33.00) 

15.00 ± 5.76 
(6.50 – 23.00) 

<0.001 

Benson’s figure [delayed 
recall] - 11.12 ± 3.16 

(4.00 – 17.00) 
- 

Benson’s figure 
[recognition] 

- 1.00 ± 0.00 
(1.00 – 1.00) 

- 

Attention 
and executive 

functions 

Trail Making Test (B-A) 36.07 ± 14.47 
(14.01 – 105.40) 

64.62 ± 38.03 
(19.99 – 209.69) 

<0.001 

Digit Span, backward - 4.77 ± 1.24 
(3.00 – 8.00) 

- 

Attentive matrices - 51.77 ±8.46 
(4.00 – 60.00) 

- 

Phonemic fluency - 37.60 ± 8.18 
(18.00 – 59.00) 

- 

Semantic fluency - 47.48 ± 9.26 
(27.00 – 70.00) 

- 

Raven CPM - 32.00 ± 3.29 
(17.00 – 36.00) 

- 

MCST, categories 5.52 ± 0.88 4.42 ± 1.34 <0.001 
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(3.00 – 6.00) (1.00 – 6.00) 

MCST, perseverations 1.30 ± 2.32 
(0.00 – 10.00) 

3.57 ± 3.51 
(0.00 – 16.00) 

<0.001 

Pasat 2” 40.83 ± 10.17 
(18.00 – 58.00) 

- - 

Language 
Token Test - 34.14 ± 1.70 

(28.00 – 36.00) 
- 

Naming to oral description 
[CaGi] 

47.13 ± 1.19 
(43.00 – 48.00) 

- - 

Visuospatial 

Rey’s figure [copy] 32.86 ± 2.12 
(26.00 – 36.00) 

28.79 ± 3.75 
(19.50 – 33.00) 

<0.001 

Benson’s figure [copy] - 15.72 ± 0.77 
(14.00 – 17.00) 

- 

Copy of drawings 
[freehand] 

- 10.27 ± 1.63 
(4.00 – 12. 00) 

- 

Copy of drawings with 
landmarks - 67.37 ± 3.60 

(51.00 – 70.00) 
- 

Benton line orientation [30 
lines] 

27.40 ± 2.61 
(18.00 – 30.00) 

- - 

Mood 
and 

behavior 

BDI  5.40 ± 4.68 
(0.00 – 24.00) 

7.26 ± 4.94 
(0.00 – 23.00) 

0.31 

Apathy Rating Scale - 6.33 ± 5.10 
(0.00 – 19. 00) 

- 

SCL-90-R [Total] 28.95 ± 30.64 
(2.00 – 163.00) 

- - 

Values are reported as mean ± standard deviation (range). Differences in sociodemographic data 
were assessed using ANOVA models or Chi-squared test (p<0.05). On the other hand, differences 
in neuropsychological profile between young and older healthy adults were assessed using one-
way ANOVA corrected for age, sex and education (p<0.05). P values were adjusted for 
Bonferroni- multiple comparison. Abbreviations: BDI= Beck Depression Inventory; CPM= 
coloured progressive matrices; MCST= Modified Card Sorting test; M= Men; MMSE= Mini 
Mental State Examination; RAVLT= Rey Auditory Verbal Learning Test; SCL-90-R=Symptom 
Checklist-90-Revised, W= Women. 
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Table 2. MRI acquisition parameters. 

Milan Philips Medical System Intera 3T scan 

 
3D T2-

weighted 
SE 

3D FLAIR 
3D T1-

weighted 
TFE 

Diffusion 
weighted 
sequence 

T2*-
weighted 

single-shot 
EPI 

sequence 
(RS fMRI) 

Repetition 
time (msec) 2500 4800 7 5900 1567 

Echo time 
(msec) 330 267 3.2 78 35 

Flip angle - 90° 9° - 70° 
Section 
thickness 
(mm) 

1 1 1 2.3 3 

No. of sections 192 192 204 56 48 for 320 
volumes 

Matrix 256x256 256x256 256x240 112x85 - 
Field of view 
(mm2) 256x256 256x256 256x240 240x232 240x240 

Diffusion 
gradient 
directions 

- - - 6/30/60 - 

b value 
sec/mm2 - - - 700/1000/2855 - 

Abbreviations: FFE= fast field echo; FLAIR= fluid-attenuated inversion recovery; MRI= 
magnetic resonance imaging; msec= millisecond; mm= millimeter; No= number; RS fMRI= 
resting state functional MRI; SE=spin echo; sec=second.  
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Table 3. Rank of the cortical regions based on their cortical thinning across lifespan. 

Desikan regions Final Rank Desikan regions Final Rank 
L parahippocampal 66 L inferior parietal 33 
R pars triangularis 65 R rostral anterior cingulate 32 
R superior temporal 64 R lateral occipital 31 
R middle temporal 63 L pars triangularis 30 
R superior frontal 62 L lateral occipital 29 
L middle temporal 61 R precentral 28 
L superior temporal 60 R pars orbitalis 27 
R pars opercularis 59 L lateral orbitofrontal 26 
L transverse temporal 58 L lingual 25 
R parahippocampal 57 L precentral 24 
R precuneus 56 R inferior temporal 23 
R insula 55 L medial orbitofrontal 22 
R bankssts 54 L frontal pole 21 
L fusiform 53 L posterior cingulate 20 
L pars opercularis 52 R paracentral 19 
L isthmus cingulate 51 R lingual 18 
R isthmus cingulate 50 L superior parietal 17 
R supramarginal 49 L postcentral 16 
L bankssts 48 R entorhinal 15 
R posterior cingulate 47 R postcentral 14 
R fusiform 46 L inferior temporal 13 
L insula 45 R superior parietal 12 
L temporal pole 44 L paracentral 11 
L supramarginal 43 R temporal pole 10 
R transverse temporal 42 L cuneus 9 
L precuneus 41 R medial orbitofrontal 8 
L superior frontal 40 R caudal anterior cingulate 7 
L pars orbitalis 39 L middle frontal 6 
L entorhinal 38 R cuneus 5 
R middle frontal 37 R frontal pole 4 
R lateral orbitofrontal 36 L pericalcarine 3 
L rostral anterior cingulate 35 R pericalcarine 2 
R inferior parietal 34 L caudal anterior cingulate 1 

Considered cortical regions were ordered by the region that varies the least (position 1) to that 
which varies the most (position 66), based on rank variation of each brain region. The rank 
variation has been calculated as the difference between the rank position at the end of the observed 
timeframe and the rank position at the beginning of the observed timeframe. Abbreviations: 
L=left; R=right. 
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Table 4. Differences in cortical thickness of brain regions highly functionally connected 

to DMN and OCC hubs between young adults and older adults. 

Highly functionally 
connected regions 

to 

Young healthy 
adults 

Older healthy 
adults p value 

DMN hubs 
R frontal pole 2.91 ± 0.27 2.71 ± 0.27 <0.001 
L frontal pole 2.88 ± 0.20 2.70 ± 0.24 0.001 

R caudal middle 
frontal 2.61 ± 0.11 2.46 ± 0.12 <0.001 

L caudal middle 
frontal 2.56 ± 0.12 2.46 ± 0.14 0.02 

R pars orbitalis 2.79 ± 0.18 2.62 ± 0.18 <0.001 
L pars orbitalis 2.84 ± 0.21 2.66 ± 0.20 <0.001 
R temporal pole 4.05 ± 0.20 3.84 ± 0.26 0.001 

L temporal pole 3.99 ±0.23 3.78 ±0.28 0.002 

L isthmus cingulate 2.55 ± 0.17 2.36 ± 0.21 <0.001 

L pars triangularis 2.52 ±0.15 2.35 ± 0.17 <0.001 

R supramarginal 2.66 ± 0.11 2.49 ± 0.12 <0.001 

Occipital hubs 

R cuneus 1.83 ± 0.14 1.75 ± 0.13 0.01 
L cuneus 1.86 ± 0.17 1.76 ± 0.13 0.01 
R lingual 2.00 ± 0.11 1.92 ± 0.13 0.01 
L lingual 2.00 ± 0.13 1.91 ± 0.13 0.001 

R pericalcarine 1.48 ± 0.13 1.45 ± 0.13 0.04 
L pericalcarine 1.52 ± 0.14 1.45 ± 0.13 0.003 

L lateral occipital 2.25 ± 0.10 2.18 ±0.15 0.13 
Values are means ± standard deviation. P values referred to analysis of variance models, followed 
by post-hoc pairwise comparisons (Bonferroni-corrected for multiple comparisons). Education 
and sex were included as covariates. Abbreviations: L=left; R=right. 
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Figure 1. Study framework. Selection of hubs as pivotal regions of the functional brain network 
(Top row). I. Characterization of functional connectivity patterns of each hub to identify regions 
highly functionally connected to hubs. II. Hub grey matter loss: evaluation of cortical thickness 
changes over time for selected hubs and the remaining brain regions. III. Evaluation of functional 
connectivity alterations among hubs and highly connected regions during aging IV. The effect of 
functional vulnerability and atrophy of hubs on highly connected regions. 
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Figure 2. Stepwise functional connectivity average maps of young healthy adults. Cortical maps represent characterization of stepwise connectivity 
analysis from the DMN the OCC hubs in healthy young adults. Results are depicted in surface space per each of the eight well-known hubs. Yellow/red 
areas represent strong functional connectivity with the considered hub, whereas blue/violet areas represent weak functional connectivity. 
Abbreviations: DMN = Default Mode Network; OCC = occipital. 
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Figure 3. Differences between young and old healthy adults in stepwise functional 
connectivity of the eight hubs. Cortical maps represent the significant differences in 
stepwise functional connectivity values between young healthy adults and older healthy 
adults. Statistical analysis was adjusted for gender and education. Results were corrected 
for multiple comparisons using a threshold-free cluster enhancement method combined 
with nonparametric permutation testing at p<0.05 FWE-corrected. Color bars show the t-
statistic applicable to the image. Red-yellow areas represent decreased functional 
connectivity in older adults relative to young adults, whereas blue/green areas represent 
enhanced functional connectivity in older adults compared to young. 
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Figure 4. Modelling of cortical thickness trajectories over time. A. The estimated trajectories 
for each cortical region in the observed timeframe are reported, colored by mean cortical thickness 
(red= the highest value, blue= the lowest value). B. The demeaned estimated cortical trajectories 
for each region are reported (blue = greater change). C. Correlation between regional mean 
cortical thickness and the relative change over time. 
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Figure 5. Correlation analysis between combined SFC maps of young group and normalized 
cortical values in older adults. Relationship between combined SFC maps middle frontal 
gyrus (DMN hub) [A] and OCC hubs [B, C] and the cortical thickness of older adults 
normalized relative to young adults. Abbreviations: DMN= Default Mode Network; 
OCC=occipital; SFC= Stepwise Functional Connectivity. 
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Figure 6. Boxplot of normalized cortical thickness values of hubs highly connected regions 
in older healthy adults. Cortical thickness value distribution of brain regions highly functionally 
connected to DMN hubs and OCC hubs. The red dotted line qualitatively highlights that cortical 
thickness values of the DMN-linked regions are lower than those of OCC-linked regions. 
Abbreviations: DMN= Default Mode Network; OCC=Occipital. 
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5.2 WHITE MATTER MICROSTRUCTURAL CHANGES IN HEALTHY 

AGING: A DTI AND NODDI STUDY (preliminary data) 
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INTRODUCTION 

An accurate investigation of structural alterations in healthy aging plays a crucial role 

for detecting the major age-related effects on the complex brain microstructural 

architecture. The identification of such changes might help to understand the substrate 

and the regional variability of age-related degeneration. The goal of this preliminary study 

was to assess white matter (WM) integrity using different diffusion metrics able to 

identify the tracts affected during aging in a cohort of young and older adults. 

 

METHODS 

Participants 

Forty-eight young healthy subjects, aged 20-31 years, and 65 older healthy adults, aged 

40-85 years, were enrolled and underwent MRI scan.  

 

Diffusion tensor (DT) MRI analysis 

The diffusion-weighted data were skull-stripped using the Brain Extraction Tool 

implemented in FSL and were corrected for distortions caused by eddy currents and 

movements. The diffusion tensor was estimated on a voxel-by-voxel basis using 

diffusion-tensor imaging fit provided by the FMRIB Diffusion Toolbox. Maps of 

fractional anisotropy (FA) and mean diffusivity (MD) were computed. 

Furthermore, using the NODDI Matlab Toolbox, Intra-cellular Volume Fraction 

(ICVF), Orientation Dispersion Index (ODI) and Isotropic Volume Fraction (ISO) maps 

were estimated using the Neurite Orientation Density and Dispersion Imaging (NODDI) 

model, providing a direct quantification of neurite morphology and its integrity. 

To assess significant variability of the quantified metrics between the two groups of 

participants, a whole-brain Tract-Based Spatial Statistic (TBSS) analysis (p<0.05, family-

wise error corrected, 5000 permutations) was conducted. The analysis was adjusted for 

sex and years of education.  

 

RESULTS 

A widespread age-related reduction of FA was detected in supratentorial regions in 

older healthy adults relative to young adults. On the other hand, a more focal decrease of 

ICVF was found in older adults relative to young adults in the WM frontal fibers, 
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specifically in the anterior sub-regions of corpus callosum, anterior corona radiata, frontal 

fibers of the superior longitudinal fasciculus, inferior fronto-occipital fasciculus and 

uncinate fasciculus. When the MD and the ISO maps were compared between the two 

groups, a widespread increase of MD and ISO was observed in older adults relative to 

young adults replicating the widespread WM alteration pattern obtained by FA results. 

Furthermore, an increased ODI of the WM fibers in older adults relative to young subjects 

was identified, involving not only the supratentorial regions but also the cerebellar 

architecture. 

 

DISCUSSION 

Thanks to the NODDI model, it was possible to identify a reduction of intra-neuritic 

volume (i.e., a loss of axon integrity) with aging, measured by the ICVF metric, 

specifically in the main frontal WM pathways. These findings suggest that the fibers of 

frontal regions are characterized by greater damage and are the most vulnerable to aging, 

followed by the parietal and temporal fibers. The information provided by multi-shell 

acquisition and multi-model reconstruction allowed us to better quantify the extent of 

WM architecture deterioration with aging, in terms of density and orientation dispersion. 

Considering multiple diffusion metrics may lead to a reliable profiling of the healthy brain 

aging. 
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6. GENERAL DISCUSSION 
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6.1 Discussion 
I have applied graph theory-based approaches and connectomics to explore brain 

structural and functional changes across the ALS-FTD spectrum, as a model of 

neurodegeneration, with the goal of mapping spatiotemporal patterns of degeneration in 

these conditions. Moreover, I applied novel advanced MRI techniques on healthy aging 

to identify specific structural and functional brain changes in order to answer the question 

of whether neurodegeneration-related patterns of damage represent accelerated aging or 

a distinct process. 

In chapter 4, we firstly investigated structural and functional brain network 

architecture in MND clinical phenotypes (chapter 4.1). Subsequently, I focused on the 

specific and more common phenotype of MND (i.e., ALS), exploring structural and 

functional network correlates of cognitive/behavioral impairment in patients within the 

ALS-FTD continuum. In particular, in chapter 4.1, we explored brain network structural 

and functional properties in the clinical variants of MND spectrum, using graph analysis 

and connectomics. Although graph theory-based approaches have been already used in 

patients with ALS, this was the first study to apply them in patients with PLS and PMA. 

Moreover, this methodology provides the potential to bridge the gap of the anatomo-

functional link thanks to (1) the application of the same parcellation system, (2) the 

connectome reconstruction framework and (3) the applied statistical approach. 

With such framework, different patterns of brain network changes per each clinical 

phenotype were revealed. Characterization of ALS. ALS patients were characterized by 

altered structural global and lobar network properties and regional connectivity, with a 

great involvement of sensorimotor network, basal ganglia, frontal and temporal lobes. 

Furthermore, structural connectivity damage correlated with clinical measures of motor 

impairment. Such findings are consistent with previous DT MRI studies that reported as 

structural ‘signatures’ in ALS the involvement of primary motor regions, supplementary 

motor areas and basal ganglia (Buchanan et al, 2015). Moreover, functional connectivity 

alterations were found in sensorimotor, basal ganglia and frontal areas, consistent with 

the existing literature (Geevasinga et al, 2017; Zhou et al, 2016) and suggesting, possibly, 

a maladaptive role. Such functional disruptions were mostly related to executive 

dysfunctions and behavioral disturbances. Finally, patients with ALS showed more 

widespread structural than functional damage relative to healthy controls, in support of 
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the hypothesis that structural alterations may be earlier in the course of the disease 

compared with functional network abnormalities (Jucker & Walker, 2013). These 

findings were independent of the presence of full-blown dementia, since the analysis was 

re-run excluding the eight ALS-FTD patients. Characterization of PLS. Patients with 

PLS were characterized by widespread structural and functional alterations encompassing 

both motor and extra-motor areas with a pattern resembling classic ALS patients (Agosta 

et al, 2014b; Muller et al, 2018; Agosta et al, 2014a). Characterization of PMA. PMA 

patients showed preserved structural and functional connectomes. Such findings are 

consistent with previous studies (Rosenbohm et al, 2016; Spinelli et al, 2016) that could 

not demonstrate central nervous system damage in PMA patients, even using highly 

sensitive technique to local disruptions in the brain networks.  

Based on the abovementioned findings that highlighted structurally and functionally 

extra-motor impairment in ALS, in chapter 4.2 I applied multiparametric MRI 

techniques in order to provide a comprehensive characterization of the neural correlates 

of the cognitive impairment across the spectrum of ALS-FTD clinical presentations. A 

connectome-based approach was adopted, first, to identify the structural and functional 

connectivity signatures of ALS-cn and bvFTD (i.e., the two ends of this spectrum) and 

then, to characterize the alterations underlying mild cognitive/behavioral deficits and full-

blown dementia in ALS patients, with the aid of mathematical models and single-subject 

analysis. An ALS-cn-like pattern was defined by a focused structural damage within the 

motor areas, confirming a “signature” pattern of frank decline in FA of the motor 

subnetworks (Illan-Gala et al, 2020; Muller et al, 2021). Such “signature” pattern 

supports the current view of this network as the epicenter of degenerative process of the 

disease (Brettschneider et al, 2013; Meier et al, 2020). By contrast, a bvFTD-like pattern 

was delineated by a widespread structural damage and decreased functional connectivity, 

specifically in frontal, temporal and parietal areas, in line with the current literature 

(Agosta et al, 2015; Filippi et al, 2017; Whitwell et al, 2011). Once delineated the ALS-

cn-like and the bvFTD-like patterns of damage, the focus of the current study was on 

elucidating MRI connectomic underpinnings of mild or full-blown cognitive deficits in 

ALS, possibly addressing the long-standing debate on the nature of cognitive deficits in 

the course of the disease, as an early or, rather, a late-stage feature. 
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Regarding the structural brain network, the presence of mild cognitive and/or 

behavioral impairment in ALS patients did not contribute significantly to an additional 

microstructural damage relative to ALS-cn with otherwise comparable clinical 

characteristics – including measures of motor impairment and disease duration. Indeed, 

the study highlighted shared structural damage between ALS-ci/bi and ALS-cn patients, 

involving mainly the motor networks. By contrast, the analysis of functional connectivity 

alterations played an important role for the differentiation of ALS-ci/bi from ALS-cn. 

ALS-ci/bi patients showed a rearrangement of the functional networks, revealing 

enhanced functional connectivity within motor areas and decreased connectivity in the 

frontotemporal networks. Such findings support the maladaptive role of such functional 

rearrangements in ALS-ci/bi, as previously hypothesized (Menke et al, 2018). Therefore, 

ALS-ci/bi might be considered as a phenotypic variant of ALS, rather than a consequence 

of disease worsening (Chio et al, 2019; Lule et al, 2018), in agreement with one of the 

few longitudinal studies (Elamin et al, 2013). In contrast with ALS-ci/bi cases, when ALS 

patients had co-occurrent dementia (ALS-FTD), our study has outlined not only a pattern 

of microstructural damage involving the motor networks (i.e., the characteristic ALS-cn-

like pattern), but also a disruption of frontal, temporal, parietal and striatal circuits, both 

from a structural and a functional point of view – therefore, resembling the bvFTD-like 

pattern (Saxon et al, 2020). In this study, multiparametric connectome-based approaches 

provided novel pathophysiological insights and biomarkers of cognitive dysfunction in 

the context of ALS-FTD. Although connectivity data alone cannot fully address the 

homogeneity or heterogeneity of this spectrum, our findings suggest a maladaptive role 

of functional rearrangements in ALS-ci/bi concomitantly with similar structural 

alterations compared to ALS-cn, supporting the hypothesis that ALS-ci/bi might be 

considered as a phenotypic variant of ALS, rather than a consequence of disease 

worsening. 

In Chapter 5, advanced and novel MRI techniques have been applied to understand 

the role played by healthy aging, studying the age-related vulnerability of the human brain 

connectome. The aim was to evaluate as aging affects functional connectivity of hubs, 

pivotal regions in the human connectome, and how such effects influence the 

vulnerability and structural changes of the whole brain. I found decreased functional 

connectivity alterations in older adults among hubs themselves and regions, which are 
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mainly distributed within the DMN. These findings find wide acceptance with previous 

studies, suggesting that hubs DMN regions are more vulnerable to aging effect and easily 

affected by neurodegenerative disorders (Crossley et al, 2014; Damoiseaux, 2017; 

Siman-Tov et al, 2016; Song et al, 2014). Moving to structural changes, decreased 

cortical thickness across the majority of the cortex was found, in agree with the current 

literature (Fjell & Walhovd, 2010; Salat et al, 2004; Shaw et al, 2016). I also observed 

that DMN hubs were among the brain regions that changed the most (Fjell et al, 2014), 

whereas OCC hubs showed a quite spared cortical thickness across lifespan, in line with 

previous study(Shaw et al., 2016). The combination of multimodal information of hubs 

atrophy and their functional connectivity pattern allowed us to delineate the vulnerability 

of the remaining brain regions. I observed that regions highly functionally connected to 

DMN hubs were characterized by greater cortical thinning relative to those brain regions 

highly functionally connected to OCC hubs, that, even though they showed mild cortical 

thinning, resulted more spared. Present findings are consistent with the “last in, first out” 

hypothesis, according to which the prefrontal-inferior parietal-temporal brain areas, that 

are late-maturing regions, are preferentially the first to be vulnerable to aging (Douaud et 

al, 2014; Raz et al, 2005).  

Finally, in chapter 5.2 I assessed white matter integrity using novel and advanced 

diffusion metrics, able to identify the tracts affected during aging. The identification of 

such changes might help to understand the substrate and the regional variability of age-

related degeneration. The NODDI model was applied on multi-shell diffusion-weighted 

data of young and older healthy subjects. Such model provided a direct quantification of 

neurite morphology and its integrity. The information provided by multi-shell acquisition 

and multi-model reconstruction allowed us to better quantify the extent of WM 

architecture deterioration with aging, in terms of density and orientation dispersion. Such 

preliminary results suggest that the fibers of frontal regions are characterized by greater 

damage and are the most vulnerable to aging, followed by the parietal and temporal fibers, 

once again, in support of the theory of “last in, first out” (Raz et al., 2005). 
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6.2 Conclusions 
In summary, the studies included in this thesis provide novel information about 

neurodegenerative diseases, including MND and FTD, and healthy aging.  

We have shown that graph analysis and connectomics may help in mapping structural 

and functional brain network organization in healthy conditions and in detecting 

alterations in different pathological conditions. Such tools helped also in characterizing 

differences between clinical variants of the MND spectrum and in elucidating the neural 

correlates of the cognitive impairment in the ALS-FTD clinical spectrum. Furthermore, 

by applying up-to-date MRI techniques, I proposed a model that integrated the 

information of the functional connectome vulnerability with gray matter cortical thinning 

and explored white matter integrity in healthy aging. 

 We have observed disease-specific patterns of functional and structural network 

topology and connectivity alterations in ALS, PLS and PMA, through a multimodal 

neuroimaging approach. Moreover, combining mathematical models and multimodal 

connectomic techniques, I showed disease-specific functional and structural patterns in 

ALS with the only motor impairment and in the bvFTD, which are considered the two 

opposite ends of a clinical continuum. I might have even contributed significantly to the 

long-standing debate on the nature of cognitive deficits in the course of the ALS disease, 

as an early or, rather, a late-stage feature. Finally, I assessed the role of healthy aging, 

reveling potential patterns of vulnerability and pointing out how functional network 

rearrangements of brain hubs and their grey matter change trajectories across lifespan 

influence the functional and structural trend of changes of the remaining brain regions. In 

conclusion, thanks to NODDI model, it was possible to identify a reduction of intra-

neuritic volume (i.e., a loss of axon integrity) with aging, as preliminary data. This may 

hold the promises to better elucidating the additive risk effect of the aging in 

neurodegeneration. 

Albeit promising, the present findings need to be expanded by future studies 

aimed at clarifying even further the relationship between healthy aging and 

neurodegenerative diseases. Indeed, the study of the brain mechanisms underpinning 

healthy aging will help in delineating comprehensively mathematical models for 

predicting clinical evolution and allowing prompt intervention for patients. 
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ABSTRACT 
The goal of this study was to compare brain structure between individuals with 
generalized anxiety disorder (GAD) and healthy controls. Previous studies have 
generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic 
heterogeneity. To address these concerns, we combined data from 28 research sites 
worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered 
mega-analysis. Structural magnetic resonance imaging data from children and adults (5-
90 years) were processed using FreeSurfer. The main analysis included the regional and 
vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent 
variables, and GAD, age, age-squared, sex, and their interactions as independent 
variables. Nuisance variables included IQ, years of education, medication use, 
comorbidities, and global brain measures. The main analysis (1020 individuals with GAD 
and 2999 healthy controls) included random slopes per site and random intercepts per 
scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) 
included fixed slopes and random intercepts per scanner with the same variables. The 
main analysis showed no effect of GAD on brain structure, nor interactions involving 
GAD, age, or sex. The secondary analysis showed increased volume in the right ventral 
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diencephalon in male individuals with GAD compared to male healthy controls, whereas 
female individuals with GAD did not differ from female healthy controls. This mega-
analysis combining worldwide data showed that differences in brain structure related to 
GAD are small, possibly reflecting heterogeneity or those structural alterations are not a 
major component of its pathophysiology. 
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ABSTRACT 
Background and objectives: To assess cortical, subcortical, and cerebellar gray matter 
(GM) atrophy using MRI in patients with disorders of the frontotemporal lobar 
degeneration (FTLD) spectrum with known genetic mutations. 
Methods: Sixty-six patients carrying FTLD-related mutations were enrolled, including 
44 with pure motor neuron disease (MND) and 22 with frontotemporal dementia (FTD). 
Sixty-one patients with sporadic FTLD (sFTLD) matched for age, sex, and disease 
severity with genetic FTLD (gFTLD) were also included, as well as 52 healthy controls. 
A whole-brain voxel-based morphometry (VBM) analysis was performed. GM volumes 
of subcortical and cerebellar structures were obtained. 
Results: Compared with controls, GM atrophy on VBM was greater and more diffuse in 
genetic FTD, followed by sporadic FTD and genetic MND cases, whereas patients with 
sporadic MND (sMND) showed focal motor cortical atrophy. Patients carrying C9orf72 
and GRN mutations showed the most widespread cortical volume loss, in contrast with 
GM sparing in SOD1 and TARDBP. Globally, patients with gFTLD showed greater 
atrophy of parietal cortices and thalami compared with sFTLD. In volumetric analysis, 
patients with gFTLD showed volume loss compared with sFTLD in the caudate nuclei 
and thalami, in particular comparing C9-MND with sMND cases. In the cerebellum, 
patients with gFTLD showed greater atrophy of the right lobule VIIb than sFTLD. 
Thalamic volumes of patients with gFTLD with a C9orf72 mutation showed an inverse 
correlation with Frontal Behavioral Inventory scores. 
Discussion: Measures of deep GM and cerebellar structural involvement may be useful 
markers of gFTLD, particularly C9orf72-related disorders, regardless of the clinical 
presentation within the FTLD spectrum. 
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10.1016/j.nicl.2021.102711. Epub 2021 May 29. PMID: 34098525; PMCID: 
PMC8185302. 
 

 
 
ABSTRACT 
Objective: We evaluated the value of resting-state EEG source biomarkers to 
characterize mild cognitive impairment (MCI) subjects with an Alzheimer's disease 
(AD)-like cerebrospinal fluid (CSF) profile and to track neurodegeneration throughout 
the AD continuum. We further applied a resting-state functional MRI (fMRI)-driven 
model of source reconstruction and tested its advantage in terms of AD diagnostic 
accuracy. 
Methods: Thirty-nine consecutive patients with AD dementia (ADD), 86 amnestic MCI, 
and 33 healthy subjects enter the EEG study. All ADD subjects, 37 out of 86 MCI patients 
and a distinct group of 53 healthy controls further entered the fMRI study. MCI subjects 
were divided according to the CSF phosphorylated tau/β amyloid-42 ratio (MCIpos: ≥ 
0.13, MCIneg: < 0.13). Using Exact low-resolution brain electromagnetic tomography 
(eLORETA), EEG lobar current densities were estimated at fixed frequencies and 
analyzed. To combine the two imaging techniques, networks mostly affected by AD 
pathology were identified using Independent Component Analysis applied to fMRI data 
of ADD subjects. Current density EEG analysis within ICA-based networks at selected 
frequency bands was performed. Afterwards, graph analysis was applied to EEG and 
fMRI data at ICA-based network level. 
Results: ADD patients showed a widespread slowing of spectral density. At a lobar level, 
MCIpos subjects showed a widespread higher theta density than MCIneg and healthy 
subjects; a lower beta2 density than healthy subjects was also found in parietal and 
occipital lobes. Evaluating EEG sources within the ICA-based networks, alpha2 band 
distinguished MCIpos from MCIneg, ADD and healthy subjects with good accuracy. 
Graph analysis on EEG data showed an alteration of connectome configuration at theta 
frequency in ADD and MCIpos patients and a progressive disruption of connectivity at 
alpha2 frequency throughout the AD continuum. 
Conclusions: Theta frequency is the earliest and most sensitive EEG marker of AD 
pathology. Furthermore, EEG/fMRI integration highlighted the role of alpha2 band as 
potential neurodegeneration biomarker. 
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10.1002/mds.28541. Epub 2021 Feb 27. PMID: 33639029. 
 

 
 
ABSTRACT 
Background: Functional brain connectivity alterations may be detectable even before the 
occurrence of brain atrophy, indicating their potential as early markers of pathological 
processes. 
Objective: We aimed to determine the whole-brain network topologic organization of the 
functional connectome in a large cohort of drug-naïve Parkinson's disease (PD) patients 
using resting-state functional magnetic resonance imaging and to explore whether 
baseline connectivity changes may predict clinical progression. 
Methods: One hundred and forty-seven drug-naïve, cognitively unimpaired PD patients 
were enrolled in the study at baseline and compared to 38 age- and gender-matched 
controls. Non-hierarchical cluster analysis using motor and non-motor data was applied 
to stratify PD patients into two subtypes: 77 early/mild and 70 early/severe. Graph theory 
analysis and connectomics were used to assess global and local topological network 
properties and regional functional connectivity at baseline. Stepwise multivariate 
regression analysis investigated whether baseline functional imaging data were predictors 
of clinical progression over 2 years. 
Results: At baseline, widespread functional connectivity abnormalities were detected in 
the basal ganglia, sensorimotor, frontal, and occipital networks in PD patients compared 
to controls. Decreased regional functional connectivity involving mostly striato-frontal, 
temporal, occipital, and limbic connections differentiated early/mild from early/severe 
PD patients. Connectivity changes were found to be independent predictors of cognitive 
progression at 2-year follow-up. 
Conclusions: Our findings revealed that functional reorganization of the brain 
connectome occurs early in PD and underlies crucial involvement of striatal projections. 
Connectomic measures may be helpful to identify a specific PD patient subtype, 
characterized by severe motor and non-motor clinical burden as well as widespread 
functional connectivity abnormalities. 
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ABSTRACT 
Objective: Detecting and monitoring cognitive and behavioral deficits in motor neuron 
diseases (MND) is critical due to their considerable clinical impact. In this scenario, 
computer-based batteries may play an important role. In this study, we investigated the 
progression of cognitive and behavioral deficits in MND patients using both standard and 
computer-based neuropsychological batteries. 
Methods: This is a retrospective study on 74 MND patients (52 amyotrophic lateral 
sclerosis [ALS], 12 primary lateral sclerosis [PLS], and 10 progressive muscular atrophy 
[PMA]) who were followed up for 12 months and underwent up to three 
cognitive/behavioral assessments, 6 months apart, including standard and/or 
computerized based (the Test of Attentional Performance [TAP]) batteries. 
Behavioral/cognitive changes were investigated over time using generalized linear model 
for longitudinal data accounting for time and revised-ALS Functional Rating Scale. 
Results: Over 12 months, ALS patients showed a global cognitive decline (Mini Mental 
State Examination) at the standard battery and reduced performance in the alertness, 
sustained and divided attention, go/nogo, cross-modal and incompatibility TAP tasks. 
Most of these findings remained significant when ALSFRS-R changes over time were 
included as covariate in the analyses. ALS patients did not show significant behavioral 
abnormalities over time. No cognitive and behavioral changes were found in PLS and 
PMA cases. 
Conclusions: Computer-based neuropsychological evaluations are able to identify subtle 
cognitive changes in ALS, unique to this condition. This study highlights the need of 
specific, accurate and well-tolerated tools for the monitoring of cognitive deficits in 
MND. 
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ABSTRACT 
Objective: To assess longitudinal patterns of brain functional MRI (fMRI) activity in a 
case of prodromal semantic variant of a primary progressive aphasia (svPPA). 
Methods: Clinical, cognitive and neuroimaging data (T1-weighted and task-based fMRI 
during silent naming [SN] and object knowledge [OK]) were obtained at baseline, month 
8 and month 16 from a 49-year-old lady presenting with anomias and evolving to overt 
svPPA in 8 months. 
Results: At baseline, the patient showed isolated anomias and mild left anterior temporal 
pole atrophy. During SN-fMRI, she showed bilateral temporal and left inferior frontal 
gyri (iFG) activations. During OK-fMRI, we observed normal performance and the 
recruitment of bilateral posterior hippocampi, iFG and left middle orbitofrontal gyrus 
(mOFG). At month 8, the patient received a diagnosis of svPPA and showed isolated right 
iFG activity during SN-fMRI, and a borderline performance during OK-fMRI together 
with a disappearance of mOFG recruitment. At the last visit (after 7-month language 
therapy), the patient showed a stabilization of naming disturbances, and, compared to 
previous visits, an increased left iFG recruitment during SN-fMRI. During OK-fMRI, she 
performed abnormally and did not show the activity of mOFG and iFG. Across all visits, 
brain atrophy remained stable. 
Conclusions: This case report showed longitudinal fMRI patterns during semantic-
related tasks from prodromal to overt svPPA. Frontal brain recruitment may represent a 
compensatory mechanism in patients with early svPPA, which is likely to be reinforced 
by language-therapy. Brain fMRI is more sensitive compared with structural MRI to 
detect progressive brain changes associated with disease and treatment. 
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ABSTRACT 
The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part 
of a broader effort to investigate anxiety disorders using imaging and genetic data across 
multiple sites worldwide. The group is actively conducting a mega-analysis of a large 
number of brain structural scans. In this process, the group was confronted with many 
methodological challenges related to study planning and implementation, between-
country transfer of subject-level data, quality control of a considerable amount of imaging 
data, and choices related to statistical methods and efficient use of resources. This report 
summarizes the background information and rationale for the various methodological 
decisions, as well as the approach taken to implement them. The goal is to document the 
approach and help guide other research groups working with large brain imaging data sets 
as they develop their own analytic pipelines for mega-analyses. 
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ABSTRACT 
This study investigated the functional brain connectome architecture in patients with 
Posterior Cortical Atrophy (PCA). Eighteen PCA patients and 29 age- and sex- matched 
healthy controls were consecutively recruited in a specialized referral center. Participants 
underwent neurologic examination, cerebrospinal fluid (CSF) examination for 
Alzheimer's disease (AD) biomarkers, cognitive assessment, and brain MRI. For a 
smaller subset of participants, FDG-PET examination was available. We assessed 
topological brain network properties and regional functional connectivity as well as intra- 
and inter-hemispheric connectivity, using graph analysis and connectomics. 
Supplementary analyses were performed to explore the association between the CSF AD 
profile and the connectome status, and taking into account hypometabolic, atrophic, and 
spared regions (nodes). PCA patients showed diffuse functional connectome alterations 
at both global and regional level, as well as a connectivity breakdown between the 
posterior brain nodes. They had a widespread loss of both intra- and inter-hemispheric 
connections, exceeding the structural damage, and including the frontal connections. In 
PCA, connectome alterations were identified in all the brain nodes irrespectively of their 
structural and metabolic classification and were associated with a connectivity 
breakdown between damaged and spared areas. Taken together, these findings suggest 
the potentially high sensitivity of graph-analysis and connectomic in capturing the 
progression and maybe early signs of neurodegeneration in PCA patients. 
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ABSTRACT 
In the last few decades, brain functional connectivity (FC) has been extensively assessed 
using resting-state functional magnetic resonance imaging (RS-fMRI), which is able to 
identify temporally correlated brain regions known as RS functional networks. 
Fundamental insights into the pathophysiology of several neurodegenerative conditions 
have been provided by studies in this field. However, most of these studies are based on 
the assumption of temporal stationarity of RS functional networks, despite recent 
evidence suggests that the spatial patterns of RS networks may change periodically over 
the time of an fMRI scan acquisition. For this reason, dynamic functional connectivity 
(dFC) analysis has been recently implemented and proposed in order to consider the 
temporal fluctuations of FC. These approaches hold promise to provide fundamental 
information for the identification of pathophysiological and diagnostic markers in the vast 
field of neurodegenerative diseases. This review summarizes the main currently available 
approaches for dFC analysis and reports their recent applications for the assessment of 
the most common neurodegenerative conditions, including Alzheimer's disease, 
Parkinson's disease, dementia with Lewy bodies, and frontotemporal dementia. Critical 
state-of-the-art findings, limitations, and future perspectives regarding the analysis of 
dFC in these diseases are provided from both a clinical and a technical point of view. 
 
 
 


