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Summary
Background Pulmonary complications are the most common cause of death after surgery. This study aimed to derive 
and externally validate a novel prognostic model that can be used before elective surgery to estimate the risk of 
postoperative pulmonary complications and to support resource allocation and prioritisation during pandemic 
recovery.

Methods Data from an international, prospective cohort study were used to develop a novel prognostic risk model for 
pulmonary complications after elective surgery in adult patients (aged ≥18 years) across all operation and disease 
types. The primary outcome measure was postoperative pulmonary complications at 30 days after surgery, which was 
a composite of pneumonia, acute respiratory distress syndrome, and unexpected mechanical ventilation. Model 
development with candidate predictor variables was done in the GlobalSurg-CovidSurg Week dataset (global; 
October, 2020). Two structured machine learning techniques were explored (XGBoost and the least absolute shrinkage 
and selection operator [LASSO]), and the model with the best performance (GSU-Pulmonary Score) underwent 
internal validation using bootstrap resampling. The discrimination and calibration of the score were externally 
validated in two further prospective cohorts: CovidSurg-Cancer (worldwide; February to August, 2020, during the 
COVID-19 pandemic) and RECON (UK and Australasia; January to October, 2019, before the COVID-19 pandemic). 
The model was deployed as an online web application. The GlobalSurg-CovidSurg Week and CovidSurg-Cancer 
studies were registered with ClinicalTrials.gov, NCT04509986 and NCT04384926. 

Findings Prognostic models were developed from 13 candidate predictor variables in data from 86 231 patients 
(1158 hospitals in 114 countries). External validation included 30 492 patients from CovidSurg-Cancer (726 hospitals 
in 75 countries) and 6789 from RECON (150 hospitals in three countries). The overall rates of pulmonary complications 
were 2·0% in derivation data, and 3·9% (CovidSurg-Cancer) and 4·7% (RECON) in the validation datasets. Penalised 
regression using LASSO had similar discrimination to XGBoost (area under the receiver operating curve [AUROC] 
0·786, 95% CI 0·774–0·798 vs 0·785, 0·772–0·797), was more explainable, and required fewer covariables. The final 
GSU-Pulmonary Score included ten predictor variables and showed good discrimination and calibration upon 
internal validation (AUROC 0·773, 95% CI 0·751–0·795; Brier score 0·020, calibration in the large [CITL] 0·034, 
slope 0·954). The model performance was acceptable on external validation in CovidSurg-Cancer (AUROC 0·746, 
95% CI 0·733–0·760; Brier score 0·036, CITL 0·109, slope 1·056), but with some miscalibration in RECON data 
(AUROC 0·716, 95% CI 0·689–0·744; Brier score 0·045, CITL 1·040, slope 1·009).

Interpretation This novel prognostic risk score uses simple predictor variables available at the time of a decision for 
elective surgery that can accurately stratify patients’ risk of postoperative pulmonary complications, including during 
SARS-CoV-2 outbreaks. It could inform surgical consent, resource allocation, and hospital-level prioritisation as 
elective surgery is upscaled to address global backlogs.
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Introduction
Pulmonary complications are a common and lethal 
sequela of elective surgery, affecting 2–62% of patients 
depending on the operative approach and casemix.1 As 
elective surgery is upscaled to address a growing global 
backlog from the COVID-19 pandemic, pulmonary 

events pose a major threat to patient safety.2,3 Such events 
were implicated in 37% of postoperative deaths before 
the pandemic, and as many as 66% of deaths during the 
pandemic due to additional risks of perioperative SARS-
CoV-2 infection.4 Pulmonary complications of surgery 
have a major effect on hospital resource use and demand 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(24)00065-7&domain=pdf
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on critical care services, which remain under pressure 
during COVID-19 pandemic recovery in many parts of 
the world.5

Several prognostic risk models for postoperative 
pulmonary complications have been reported in the 
literature. However, in a 2022 systematic review and 
external validation study,6 few existing models had been 
externally validated and none showed acceptable 
performance (lower 95% CI estimate of the area 
under the receiver operating curve [AUROC] test 
characteristic ≥0·7). All risk scores that reported external 
validation used at least one complex variable that might 
not be available in the outpatient clinic at the time of 
decision for surgery or in resource-limited environments, 
and were at a high or unclear risk of bias. Methods for 
exploring interactions between candidate risk variables 
using structured machine learning have not been used 
previously in the development of risk scores for 
estimating risk of pulmonary complications. No existing 
scores reflect additional risk to patients during local 
outbreaks of SARS-CoV-2 for patients undergoing 
surgery.7

Identification of patients at high risk of pulmonary 
complications after elective surgery is likely to have 

several benefits during ongoing pandemic recovery 
efforts. First, it could be used to inform patient consent 
for surgery. Second, it could be used to inform a decision 
to delay elective surgery until a time when community 
SARS-CoV-2 infection rates are lower or vaccination (or 
booster doses) are provided.8 Third, it would help to 
stratify the use of resource-intensive interventions to 
modify risk and improve capacity to rescue patients from 
complications.9 Finally, it could inform case prioritisation 
to address the growing backlog of cancelled elective 
surgeries worldwide.10

This study aimed to derive and validate a novel 
prognostic model to estimate risk of pulmonary 
complications of elective surgery using data from three 
large, international, prospective cohort studies. The 
secondary aim was to compare a model developed using 
an advanced structured machine learning approach with 
a simpler penalised regression-based approach.

Methods
Study design
This prognostic model derivation and validation study 
used data from three international, prospective, 
multicentre cohort studies to develop a tool to estimate 

Research in context

Evidence before this study
The global backlog of elective surgery is now a major public 
health priority, but patients remain at risk of postoperative 
pulmonary complications, which are the most common cause of 
death after surgery. As elective capacity is upscaled to address 
waiting lists, individual risk scoring is needed to inform patient 
consent, case prioritisation, and resource allocation during the 
COVID-19 recovery period. We previously completed a 
systematic review of articles reporting risk prediction models for 
postoperative pulmonary complications. We searched MEDLINE 
and Embase from database inception to March 1, 2020 using the 
search terms “surgery”, “pulmonary complication”, and 
“postoperative pulmonary complication”; of the 29 models 
identified, we validated six in an external cohort. The findings 
were published in 2022 in The Lancet Digital Health. We then 
updated this search to include studies up to Nov 8, 2023. We 
identified 33 unique prognostic models. None of the six models 
that underwent external validation showed good discrimination 
(defined as the area under the receiver operating curve [AUROC] 
lower confidence interval estimate of ≥0·70) in identifying 
postoperative pulmonary complications. All six were at high or 
unclear risk of bias on PROBAST assessment. Existing risk scores 
did not evaluate structured machine learning methods, and 
often included intraoperative variables that were either not 
available at the time of the decision to operate, or were 
inaccessible in resource-constrained health systems.

Added value of this study
The GSU-Pulmonary Score is a novel prognostic risk score that 
aims to estimate the risk of postoperative pulmonary 

complications in adults undergoing elective surgery, based on 
ten preoperative variables routinely accessible in preoperative 
settings. To our knowledge, this is the first score to consider 
background community SARS-CoV-2 infection rate, allowing 
dynamic risk prediction in areas with ongoing SARS-CoV-2 
transmission. The model was derived from a prospective 
international dataset of 86 231 patients from a diverse range of 
hospitals and countries, and discrimination and calibration 
were explored in two external prospective datasets of 
37 281 patients in total. The discrimination of the model was 
superior to that of the best-performing score (ARISCAT) in our 
2022 systematic review (AUROC 0·716 vs 0·700), with the 
caveat that ARISCAT included abdominal, abdominothoracic, 
and pelvic operations only.

Implications of all the available evidence
The GSU-Pulmonary Score includes simple, preoperative 
variables that can be deployed by a patient’s bedside or in an 
outpatient clinic in any country and setting, and considers 
baseline community SARS-CoV-2 infection rates. It can be 
implemented in individual risk assessment for patient 
prioritisation and resource management during the ongoing 
COVID-19 recovery period. It will support front-line clinicians 
and policy makers to safely scale capacity for elective surgery to 
address growing waiting lists around the world. In case of a 
future emerging threat from a high-risk respiratory virus, we 
anticipate that the model could be recalibrated to address 
changing risks of pulmonary complications, acting as a sleeping 
study to improve pandemic preparedness.
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the risk of postoperative pulmonary complications for 
adult patients undergoing planned (elective) surgery. 
The derivation dataset was from the GlobalSurg-
CovidSurg Week study, which aimed to determine the 
optimal timing for surgery following SARS-CoV-2 
infection. A full description of methods and findings of 
this study has been published.8 This study dataset was 
selected for model derivation as it was the largest and 
most data-rich for model fitting, with the broadest 
inclusion criteria (ie, most generalisable). The protocol 
of GlobalSurg-CovidSurg Week was prospectively 
registered at ClinicalTrials.gov (NCT04509986). The 
model developed in this cohort was then externally 
validated in two independent datasets. The first was 
from CovidSurg-Cancer, a study of adult patients with a 
surgically curable cancer who underwent surgery during 
the COVID-19 pandemic.2 The study was done in 
accordance with a preregistered protocol (NCT04384926). 
The second validation dataset was from RECON, a study 
of pulmonary complications after major abdominal 
surgery.4

All three studies collected routine, anonymised data 
with no change to clinical care pathways, and secured 
approvals for participating hospitals in line with local 
and national regulations before entering data into the 
study. Informed patient consent was obtained if this was 
necessary to comply with local or national regulations. 
Country-specific ethics or relevant clinical governance 
approvals are available upon request. Collaborators were 
required to confirm evidence of relevant approvals before 
entering patient data in all three included studies. This 
approvals process was delegated to the site principal 
investigators at each participating centre, and one or 
more national leads in each participating country 
(appendix pp 33–213).

The study authors collaborated across the leadership 
teams for all three cohort studies and had direct access to 
the original datasets. This study is reported with 
reference to the transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis 
(TRIPOD) guidelines.11 Two independent statisticians 
assessed risk of bias in the study using the prediction 
model risk of bias assessment tool (PROBAST).12

Participants
GlobalSurg-CovidSurg Week8 included all consecutive 
patients undergoing surgery between Oct 5 and 
Nov 1, 2020. Any centre worldwide performing inpatient 
surgery was eligible for inclusion. Participating centres 
could include children and adults from one or more 
specialty groups, so long as consecutive sampling was 
done. This included both elective and emergency surgery, 
and patients undergoing all operation types for any 
condition.

CovidSurg-Cancer2 included consecutive adult 
patients with a surgically curable cancer who underwent 
surgery from the emergence of COVID-19 up to 

Aug 31, 2020. Any hospital worldwide that performed 
elective cancer surgery in an area affected by the 
COVID-19 pandemic was eligible. Data from the 15 most 
common operated, solid tumour types were collected 
with colleagues collaborating across ten surgical 
oncology disciplines. Patients who had clinical 
symptoms consistent with COVID-19 or who were 
confirmed to have SARS-CoV-2 infection (by quantitative 
RT-PCR or thoracic CT imaging, or both) at the time of 
surgery were excluded.

RECON4 included consecutive adult patients under
going a broad range of elective major abdominal 
surgeries, including abdominal visceral resection, 
reversal of stoma, open vascular surgery, anterior abdom
inal wall hernia repair, or transplant surgery, using any 
operative approach. Planned day-case procedures and 
abdominal surgeries without visceral resection were 
excluded. Eligible patients were identified at each 
participating hospital during two data collection periods: 
Jan 1 to April 30, 2019 (in the UK and Ireland), and Sept 1 
to Oct 31, 2019 (in Australia).

This derivation and validation study included only 
adult patients (aged ≥18 years) undergoing planned 
(elective) surgery. Elective surgery was defined as any 
operation for which the decision for surgery was made 
before the hospital admission during which the operation 
took place. No restrictions on operation type, approach, 
or indication for surgery were imposed. Patients with 
suspected or confirmed SARS-CoV-2 infection at the 
time of surgery (ie, a positive nasopharyngeal swab with 
RT-PCR test confirming the presence of SARS-CoV-2, or 
strongly indicative signs or symptoms when testing 
facilities were not available) were excluded. Patients 
undergoing local excision or endoluminal surgery were 
excluded.

Data governance and data quality
Data were collected online and stored on a secure server 
running the Research Electronic Data Capture (REDCap, 
Vanderbilt University, Nashville, TN, USA) web appli
cation,13 based in the University of Birmingham, UK. 
Data quality rules were built into the dataset, and study 
definitions were provided inline with data entry to 
improve reproducibility. Patients were pseudonymised at 
the point of entry using a unique REDCap identifier, with 
linked patient identifiers stored securely by the 
participating site. Data quality was checked continuously, 
with data clarification requests sent to sites at twice 
monthly intervals during the study period, and during 
data cleaning, in which inconsistencies or missing data 
were identified. Previous international outcomes studies 
from our groups have shown that this collaborative 
methodology has greater than 95% case ascertainment 
and greater than 98% data accuracy.14 In these three 
studies, if a specialty within a hospital was unable to 
confirm consecutive enrolment, their specialty’s data 
were excluded from analysis. 
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Outcomes
The primary outcome was postoperative pulmonary 
complications (PPC) within 30 days of surgery (with 
day 0 as the day of surgery). PPC was defined as a 
composite of pneumonia, acute respiratory distress 
syndrome, and unplanned use of invasive or non-invasive 
mechanical ventilation. This was adopted for two 
reasons: to mirror this outcome definition in several 
major randomised trials and cohort studies,15 and to 
include outcomes plausibly linked to SARS-CoV-2 
infection with relevance to practice during pandemic 
recovery.5 The 30-day PPC rate was the predefined 
primary outcome in the GlobalSurg-CovidSurg Week and 
CovidSurg-Cancer cohort study protocols and the key 
clinical outcome in the RECON study. Outcome 
assessment was done on or as close as possible after the 
30th postoperative day by a trained member of the local 
clinical team. As front-line clinical investigators were 
aware of patients’ relevant medical history, masking of 
outcome assessment to some predictor variables was not 
feasible. Diagnosis was, however, supported using radio
logical assessments, reported locally by a radiologist 
masked to several of the predictor variables. Full 
definitions are included in the appendix (pp 16–21). The 
secondary outcome measure was the 30-day postoperative 
mortality rate (all-cause).

Predictor variables
Candidate predictor variables (n=53) were identified in a 
systematic review of existing risk scores and then refined 
with multidisciplinary clinical input, gaining consensus 
from surgery, anaesthesia, and critical care experts. To 
improve the adoption of the risk stratification tool, we 
planned to include only predictor variables that were 
universally available without the need for additional 
tests, and that were relevant to low-resource countries 
and hospitals.6 We selected variables that are routinely 
available to clinicians at the point of a decision for elective 
surgery (eg, preoperatively in an outpatient clinic or 
inpatient ward) to inform preoperative decision making 
and consent; we did not include intraoperative variables 
as they cannot influence clinical pathways determined 
preoperatively, or physiological parameters as they are 
challenging to collect reliably in diverse, multicountry 
settings. Therefore, 13 candidate patient-level predictors 
were selected a priori to be included in model 
development (appendix pp 16–21): (1) patient factors: age 
in years (collected in primary data as a categorical 
variable: 18–29, 30–39, 40–49, 50–59, 60–69, 70–79, 
80–89, and ≥90), sex (female or male), American Society 
of Anesthesiologists (ASA) grade (1, 2, 3, or ≥4), Revised 
Cardiac Risk Index score (0, 1, 2, or ≥3), pre-existing 
respiratory disease (yes or no), and smoking status (non-
smoker, stopped smoking >6 weeks before surgery, or 
current smoker); (2) disease factors: compartment 
(thoracic, abdominopelvic, head and neck, limb, or 
other), indication (benign or cancer), and preoperative 

SARS-CoV-2 test (not-performed or negative); (3) 
operation factors: anaesthetic type (general, regional, or 
local) and operation grade (minor or major, defined 
according to the BUPA operation severity classification 
system listed in the schedule of procedures); (4) location 
factors: hospital type (COVID-19-free surgical pathway or 
no defined pathway), country income (high-income 
country or HIC, upper-middle-income country or UMIC, 
or low-middle-income country or LMIC [including both 
lower-middle and low-income countries], according to 
the World Bank classification), and community SARS-
CoV-2 risk (low or high, based on the 14-day cumulative 
case notification rate in the area of the hospital around 
the date of surgery).16

Country income has a known association with risk of 
perioperative complications, such as surgical site 
infection, anastomotic leak, and mortality;14 the reasons 
for this are multifactorial but are considered to reflect a 
hospital’s or health system’s capacity to rescue. This 
describes the ability of hospitals to identify, intervene, 
and rescue patients from complications, requiring 
infrastructure, consumables, facilities, training, staffing, 
and contextually relevant protocols.17 Patients with recent 
or active preoperative SARS-CoV-2 infection were 
excluded. As we could not predict potential risk of 
postoperative SARS-CoV-2 infection at an individual 
patient level using only information available preoper
atively, we used community SARS-CoV-2 rates as a proxy 
for a patient’s risk of nosocomial (ie, in-hospital from 
patients being treated for COVID-19) or community 
(ie, after discharge while recovering at home) 
transmission. Due to differences in detection of 
SARS-CoV-2 with the availability of facilities for testing 
and notification across income settings, we preplanned 
to handle the interaction between these two location 
factors by creating a stratified factor of community 
SARS-CoV-2 risk by income.18,19

Predictor variables were recorded at the time of patient 
entry (ie, day of surgery or day 0). Where one of the 
candidate variables was not collected in a dataset, and its 
value was implicit from the study protocol, it was 
imputed (ie, preoperative SARS-CoV-2 test imputed as 
not-performed, and community SARS-CoV-2 risk 
imputed as low in the pre-pandemic RECON dataset).

A complete-case analysis was preplanned if missing 
data were both missing at random and in a low number 
of samples (<5%).20 If both assumptions were not met, 
we planned to impute missing predictor variable data 
using multiple imputation by chained equations. The 
number of patients with missing data was reported for 
each predictor variable across each of the three studies.21

Model derivation 
First, we assessed the adequacy of our sample size for 
use in new model development,22 using an estimate of 
the predicted AUROC (0·700) and prevalence (3·0%) 
from a contemporary systematic review.6 We estimated a 

For the BUPA schedule of 
procedures see https://codes.

bupa.co.uk/home

https://codes.bupa.co.uk/home
https://codes.bupa.co.uk/home
https://codes.bupa.co.uk/home


Articles

www.thelancet.com/digital-health   Vol 6   July 2024	 e511

minimum sample size requirement of 21 299 patients, 
and 639 events with RStudio using finalfit, tidyverse, 
cvAUC, tidymodels, workflowsets, finetune, pROC, rms, 
glmnet, dcurves, and shiny packages. 

Two models were trained using the derivation data 
during model comparison. The first model consisted of a 
penalised logistic regression model, the least absolute 
shrinkage and selection operator (LASSO), in which 

logistic regression with an extra penalty term shrinks 
covariate coefficients towards zero, allowing the 
generation of sparse models and concurrently per
forming feature selection.23 The second model to be 
applied was gradient boosting decision trees (ie, 
XGBoost), which is commonly recognised as a best-in-
class machine learning algorithm for datasets of 
moderate size, particularly where significant class 

Figure 1: Study flowchart
LASSO=least absolute shrinkage and selection operator.

Derivation
n=87 663 

1632 patients with missing data for one or 
more predictor variables

86 231 in complete-case analysis

Testing: training split

Validation 1: CovidSurg-Cancer 
(n=31 201)

713 patients with missing data 
        for one or more predictor 
         variable

30 488 in complete-case analysis

Validation 2: RECON 
(n=7342)

553 patients with missing data 
        for one or more predictor 
        variable

6789 in complete-case analysis

Training (75%)Testing (25%)

Candidate predictor variables
• Candidate predictor variables identified from 

systematic review of the literature
• Review of prospective cohort study protocols 

to determine final variable set (n=17)
• Refined with multidisciplinary steering group

Model selection

Model building
• LASSO model selected 2000 bootstraps
• Coefficients averaged ten predictor variables
• Coefficients scaled

Model deployment
• Shiny (RStudio) web app

Structured machine
learning with
XGBoost

10-fold cross-validation for hyperparameter tuning

Model validation

External validation
• Calibration
• Discrimination
• Subgroup analyses
• Cut-point scores
• Clinical risk 

thresholds
• Transportability
• Assessment

Penalised
regression with
LASSO

Internal validation
• Calibration
• Discrimination
• Subgroup analyses
• Cut-point scores
• Clinical risk 

thresholds
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imbalance exists.24 XGBoost can acknowledge more 
complex interactions and so is hypothesised to obtain 
better predictive capabilities.25 However, because of its 
complexity, the ability to explain and understand 
predictive reasoning is hindered (black box machine 
learning).26 The derivation set was split into a random 
75% (training) and 25% (testing), and both models were 
fit in the training set through 10-times cross-validation 
and hyperparameter tuning using tune race analysis of 
variance with grid search. The hyperparameters tuned 
were lambda for LASSO and learning rate, maximum 
tree depth, loss reduction, and minimum number, with 
trees set to 1000 for XGBoost.

During the model selection phase, model performance 
and feature importance were compared between the two 
models. Performance was estimated using the model 
discrimination, which describes models’ ability to rank 
patients based on risk. Discrimination was evaluated 
using the AUROC. Confidence intervals were assessed 
from the cross-validated models using the cvAUC package 
of R version 1.1.4. Variable importance was assessed for 
both modelling approaches to better understand the 
model’s decision making.27 Final model selection was 
balanced between (in order of priority): (1) performance; 
(2) interpretation and explainability; (3) the number of 
predictor variables (ie, fewer predictor variables assumed 
to be easier to adopt in clinical practice). If the LASSO 
model was selected, we preplanned to refit this model 
using resampling (2000 bootstraps) and average the 
coefficients across all resamples.28 To generate a pragmatic 
prognostic index that could be used at a patient’s bedside, 
we planned to scale and round the averaged penalised 
regression coefficients (eg, mean coefficients multiplied 
by 3 and rounded).25 If the XGBoost model was selected, 
we planned to conduct further bootstrapping and feature 
importance analysis (eg, DALEX).29

The performance of the final model (hereafter the GSU-
Pulmonary Score) was assessed using the testing split 
previously derived (internal validation) and both dis
crimination and calibration were measured. Discri
mination was assessed with 95% CIs calculated by 
bootstrap resampling (2000 samples). Calibration, 
measuring the agreement between predicted and 
observed risk, was examined through the Brier score, 
calibration in the large (CITL), and calibration slope, and 
visualised through reliability diagrams across risk deciles.

Model validation
After internal validation, the GSU-Pulmonary Score was 
externally validated using two large, international, 
prospective datasets described above (CovidSurg-Cancer 
and RECON). We assessed the GSU-Pulmonary Score’s 
performance (discrimination and calibration) in the 
external datasets, overall and in three preplanned 
subgroups deemed to be of high clinical importance: (1) 
major versus minor operation grade; (2) low (ASA 
grade 1–2) versus high (ASA grade ≥3) risk; and (3) 

Derivation: 
GlobalSurg-
CovidSurg Week 
(n=86 231)

Validation: 
CovidSurg-
Cancer 
(n=30 492)

Validation: 
RECON 
(n=6789)

Patient factors

Age, years

18–29 9106 (10·6%) 636 (2·1%) 276 (4·1%)

30–39 12 176 (14·1%) 1708 (5·6%) 555 (8·2%)

40–49 13 272 (15·4%) 3745 (12·3%) 983 (14·5%)

50–59 15 703 (18·2%) 6697 (22·0%) 1466 (21·6%)

60–69 16 665 (19·3%) 8347 (27·4%) 1623 (23·9%)

70–79 13 742 (15·9%) 6954 (22·8%) 1390 (20·5%)

80–89 5110 (5·9%) 2265 (7·4%) 484 (7·1%)

>90 457 (0·5%) 140 (0·5%) 12 (0·2%)

Sex

Female 47 219 (54·8%) 18 329 (60·1%) 3905 (57·5%)

Male 39 012 (45·2%) 12 163 (39·9%) 2884 (42·5%)

ASA grade

Grade 1 21 667 (25·1%) 6431 (21·1%) 1048 (15·4%)

Grade 2 43 099 (50·0%) 15 752 (51·7%) 3903 (57·5%)

Grade 3 19 057 (22·1%) 7912 (26·0%) 1733 (25·5%)

Grade 4 and 5 2408 (2·8%) 397 (1·3%) 105 (1·5%)

Revised Cardiac Risk Index

0 38 541 (44·7%) 9245 (30·3%) 4112 (60·6%)

1 37 688 (43·7%) 15 896 (52·1%) 2210 (32·6%)

2 7595 (8·8%) 4284 (14·1%) 448 (6·6%)

≥3 2407 (2·8%) 1067 (3·5%) 19 (0·3%)

Pre-existing respiratory disease

No 77 747 (90·2%) 27 282 (89·5%) 5611 (82·6%)

Yes 8484 (9·8%) 3210 (10·5%) 1178 (17·4%)

Current smoker

No 72 830 (84·5%) 27 311 (89·6%) 5852 (86·2%)

Yes 13 401 (15·5%) 3181 (10·4%) 937 (13·8%)

Disease factors

Compartment

Abdominopelvic 43 761 (50·7%) 16 817 (55·2%) 6789 (100·0%)

Head and neck 8228 (9·5%) 3823 (12·5%) NA

Limb 12 514 (14·5%) 196 (0·6%) NA

Other 17 516 (20·3%) 7226 (23·7%) NA

Thoracic 4212 (4·9%) 2430 (8·0%) NA

Indication

Benign 64 822 (75·2%) NA 3884 (57·2%)

Cancer 21 409 (24·8%) 30 492 (100·0%)* 2905 (42·8%)

Preoperative SARS-CoV-2 test

Negative 61 339 (71·1%) 14 128 (46·3%) 6789 (100·0%)†

Not performed 24 892 (28·9%) 16 364 (53·7%) NA

Operation factors

Anaesthesia type

General 63 235 (73·3%) 28 771 (94·4%) 6789 (100·0%)

Regional or local 22 996 (26·7%) 1721 (5·6%) NA

Operation grade

Major 53 061 (61·5%) 24 439 (80·1%) 6789 (100·0%)

Minor 33 170 (38·5%) 6053 (19·9%) NA

(Table 1 continues on next page)
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high-income versus low-income and middle-income 
countries (including upper-middle-income, lower-
middle-income, and low-income countries). We also did 
sensitivity analyses to address death as a competing risk, 
excluding patients who did not have a PPC diagnosis and 
died before their 30-day primary outcome assessment. To 
aid in the interpretation of the external validation, we 
explored whether reproducibility or transportability was 
being evaluated.30 In brief, this analysis has three phases. 
First, assessing the relatedness of datasets. Second, 
comparing model discrimination and calibration in the 
derivation and validation set. Third, interpretation of 
external validation results. Finally, we performed decision 
curve analysis.31 This allowed us to make a clinical 
judgement about the relative value of benefits (treating a 
true positive) and harms (treating a false positive) 
associated with application of the score. The standardised 
net benefit was plotted against the threshold probability 
in both validation datasets.

All analysis was done in R Foundation for Statistical 
Computing V4.02 (Vienna, Austria) and RStudio using 
finalfit, tidyverse, cvAUC, tidymodels, workflowsets, 
finetune, pROC, rms, glmnet, dcurves, and Shiny 
packages. To ensure transparency in research, all scripts 
and code used have been uploaded to GitHub.

Patient and public involvement
A patient advisory group was formed with Patients and 
Research Together at Bowel Research UK (registration 
number 1120460) to provide active input into both the 
GlobalSurg-CovidSurg Week and CovidSurg-Cancer 
studies. This group helped to prioritise this research 
question, provide important input on the protocol, and 
coproduce patient-facing materials to disseminate research 
findings. Our methodology for rapid, responsive patient 
involvement during COVID-19 has been published,32 and 
our updated patient-facing resources are open access and 
available online. All patient partners are included as equal 
coauthors in our collaborative author group.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
Data from 126 410 patients undergoing surgery in 
119 countries were eligible (figure 1). This included 
87 863 patients in 1158 hospitals from 114 countries in the 
derivation dataset, 31 205 patients in 726 hospitals from 
75 countries in the CovidSurg-Cancer validation dataset, 
and 7342 patients in 150 hospitals from three countries in 
the RECON validation dataset. The overall rate of missing 
data was very low (<0·1% overall and <2% for all 
candidate predictor variables; appendix p 2) and appeared 
to be missing at random (appendix p 11), so the 
preplanned complete-case analysis was done. The 

complete-case analysis included 86 231 patients in model 
development, and 30 492 from CovidSurg-Cancer and 
6789 from RECON in external validation.

Table 1 presents differences in casemix and outcomes 
across the three cohorts. In the derivation data, 2·1% 
(95% CI 2·0–2·2; 1781/86 231) of patients had a pul
monary complication. The 30-day PPC rate was higher in 
both the CovidSurg-Cancer (3·9%, 95% CI 3·7–4·1; 
1185/30 492) and RECON (4·7%, 95% CI 4·2–5·2; 
318/6789) validation studies. The postoperative mortality 
rate was 0·7% (0·6–0·8; 601/86231, three missing) in the 
derivation data, 1·1% (95% CI 0·9–1·2; 320/30492, 
24 missing) in CovidSurg-Cancer, and 0·4% (95% CI 
0·3–0·6; 27/6789, 223 missing) in RECON.

86 231 entered the structured machine learning 
process, in which patients were split into test and training 
sets, and the performance of XGBoost and LASSO 
models was assessed (figure 1). Similar discrimination 
(appendix p 3) was observed between LASSO (AUROC 
0·786, 95% CI 0·774–0·798) and XGBoost (AUROC 0·785, 

For more on the scripts and 
code used see https://github.
com/gkoutos-group/globalsurg-
pulmonary-score

For CovidSurg see https://www.
globalsurgeryunit.org/clinical-
trials-holding-page/covid-surg-
covidsurg/

Derivation: 
GlobalSurg-
CovidSurg Week 
(n=86 231)

Validation: 
CovidSurg-
Cancer 
(n=30 492)

Validation: 
RECON 
(n=6789)

(Continued from previous page)

Location factors

Hospital type

COVID-19-free surgical pathway 71 809 (83·3%) 8097 (26·6%) 6789 (100·0%)

Hospital with no defined pathway 14 422 (16·7%) 22 395 (73·4%) NA

Country income

High income 59 284 (68·8%) 24 365 (79·9%) 6789 (100·0%)

Upper-middle income 14 614 (16·9%) 3385 (11·1%) NA

Low-middle income 12 333 (14·3%) 2742 (9·0%) NA

Community SARS-CoV-2 risk

High 57 229 (66·4%) 16 770 (55·0%) NA

Low 29 002 (33·6%) 13 722 (45·0%) 6789 (100·0%)†

Country income × SARS-CoV-2 risk

High income, high SARS-CoV-2 risk 48 375 (56·1%) 14 814 (48·6%) NA

High income, low SARS-CoV-2 risk 10 909 (12·7%) 9551 (31·3%) 6789 (100·0%)†

Upper-middle income, high SARS-CoV-2 risk 8339 (9·7%) 1309 (4·3%) NA

Upper-middle income, low SARS-CoV-2 risk 6275 (7·3%) 2076 (6·8%) NA

Low-middle income, high SARS-CoV-2 risk 515 (0·6%) 647 (2·1%) NA

Low-middle income, low SARS-CoV-2 risk 11 818 (13·7%) 2095 (6·9%) NA

Outcome measures

Postoperative pulmonary complication

Negative 84 450 (97·9%) 29 307 (96·1%) 6471 (95·3%)

Positive 1781 (2·1%) 1185 (3·9%) 318 (4·7%)

Death

Yes 601 (0·7%) 320 (1·05%) 27 (0·4%)

No 85 630 (99·3%) 30 172 (99·0%) 6566 (99·6%)

Missing 3 24 223

ASA=America Society of Anesthesiologists. NA=not applicable. *Includes cancer indication only. †Imputed as the null 
value as data were collected before the COVID-19 pandemic.

Table 1: Comparison of derivation and validation datasets

https://github.com/gkoutos-group/globalsurg-pulmonary-score
https://github.com/gkoutos-group/globalsurg-pulmonary-score
https://www.globalsurgeryunit.org/clinical-trials-holding-page/covid-surg-covidsurg/
https://github.com/gkoutos-group/globalsurg-pulmonary-score
https://github.com/gkoutos-group/globalsurg-pulmonary-score
https://github.com/gkoutos-group/globalsurg-pulmonary-score
https://www.globalsurgeryunit.org/clinical-trials-holding-page/covid-surg-covidsurg/
https://www.globalsurgeryunit.org/clinical-trials-holding-page/covid-surg-covidsurg/
https://www.globalsurgeryunit.org/clinical-trials-holding-page/covid-surg-covidsurg/
https://www.globalsurgeryunit.org/clinical-trials-holding-page/covid-surg-covidsurg/
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No postoperative 
pulmonary 
complications

Postoperative 
pulmonary 
complications

Odds ratio 
(univariable)

Mean coefficients 
(LASSO)

Odds 
ratio 
(LASSO)

Point 
score

Age, years

18–29 6751 (10·7) 66 (5·0) 1·01 (0·73 to 1·40) 0·019 (0·012 to 0·025) 1·019 0

30–39 9030 (14·3) 87 (6·6) ·· ·· ·· 0

40–49 9822 (15·5) 154 (11·6) 1·63 (1·25 to 2·13) 0·176 (0·17 to 0·182) 1·192 1

50–59 11 571 (18·3) 227 (17·1) 2·04 (1·59 to 2·62) 0·158 (0·153 to 0·163) 1·171 0

60–69 12 122 (19·1) 335 (25·3) 2·87 (2·27 to 3·66) 0·299 (0·293 to 0·304) 1·348 1

70–79 10 035 (15·8) 309 (23·3) 3·20 (2·53 to 4·08) 0·382 (0·376 to 0·388) 1·465 1

80–89 3686 (5·8) 133 (10·0) 3·75 (2·86 to 4·93) 0·594 (0·587 to 0·601) 1·811 2

≥90 331 (0·5) 14 (1·1) 4·39 (2·37 to 7·55) 0·882 (0·867 to 0·897) 2·416 3

Sex

Female 34 908 (55·1) 535 (40·4) ·· ·· ·· 0

Male 28 440 (44·9) 790 (59·6) 1·81 (1·62 to 2·03) 0·393 (0·39 to 0·395) 1·481 1

ASA grade

1 16 031 (25·3) 143 (10·8) ·· ·· ·· 0

2 31 963 (50·5) 443 (33·4) 1·55 (1·29 to 1·88) 0·086 (0·082 to 0·09) 1·09 0

3 13 712 (21·6) 570 (43·0) 4·66 (3·89 to 5·62) 0·715 (0·71 to 0·719) 2·044 2

4 or 5 1642 (2·6) 169 (12·8) 11·54 (9·19 to 14·51) 1·138 (1·131 to 1·144) 3·12 3

Revised Cardiac Risk Index

0 28 632 (45·2) 263 (19·8) ·· ·· ·· 0

1 27 661 (43·7) 610 (46·0) 2·40 (2·08 to 2·78) 0·311 (0·307 to 0·315) 1·365 1

2 5415 (8·5) 303 (22·9) 6·09 (5·15 to 7·21) 0·566 (0·561 to 0·571) 1·761 2

≥3 1640 (2·6) 149 (11·2) 9·89 (8·03 to 12·15) 0·769 (0·763 to 0·775) 2·158 2

Pre-existing respiratory disease

No 57 217 (90·3) 1052 (79·4) ·· ·· ·· 0

Yes 6131 (9·7) 273 (20·6) 2·42 (2·11 to 2·77) 0·483 (0·48 to 0·486) 1·621 1

Current smoker*

No 53 592 (84·6) 1071 (80·8) ·· ·· ·· 0

Yes 9756 (15·4) 254 (19·2) 1·30 (1·13 to 1·49) 0·125 (0·122 to 0·129) 1·134 0

Compartment

Abdominopelvic 32 281 (51·0) 649 (49·0) ·· ·· ·· 0

Head and neck 6043 (9·5) 110 (8·3) 0·91 (0·73 to 1·11) 0·073 (0·068 to 0·078) 1·076 0

Limb 9208 (14·5) 111 (8·4) 0·60 (0·49 to 0·73) 0·054 (0·049 to 0·059) 1·056 0

Other 13 010 (20·5) 141 (10·6) 0·54 (0·45 to 0·65) –0·173 (–0·178 to –0·168) 0·841 –1

Thoracic 2806 (4·4) 314 (23·7) 5·57 (4·83 to 6·40) 0·904 (0·901 to 0·908) 2·471 3

Indication

Benign 47 878 (75·6) 755 (57·0) ·· ·· ·· 0

Cancer 15 470 (24·4) 570 (43·0) 2·34 (2·09 to 2·61) 0·523 (0·521 to 0·526) 1·688 2

Preoperative SARS-CoV-2 test*

Negative 45 047 (71·1) 960 (72·5) ·· ·· ·· 0

Not performed 18 301 (28·9) 365 (27·5) 0·94 (0·83 to 1·06) 0·164 (0·161 to 0·167) 1·179 0

Anaesthesia type

Regional or local 17067 (26·9) 138 (10·4) ·· ·· ·· 0

General 46281 (73·1) 1187 (89·6) 3·17 (2·67 to 3·80) 0·576 (0·572 to 0·58) 1·779 2

Operation grade

Minor 24 750 (39·1) 197 (14·9) ·· ·· ·· 0

Major 38 598 (60·9) 1128 (85·1) 3·67 (3·16 to 4·29) 0·744 (0·74 to 0·747) 2·104 2

Hospital type*

COVID-19-free surgical pathway 52 788 (83·3) 1077 (81·3) ·· ·· ·· 0

Hospital with no defined pathway 10 560 (16·7) 248 (18·7) 1·15 (1·00 to 1·32) –0·03 (–0·034 to –0·027) 0·97 0

(Table 2 continues on next page)
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95% CI 0·772–0·797) models. Variable importance 
observed in both modelling approaches is summarised 
in the appendix (p 4). Based on our predefined model 
selection criteria, given the similar performance, more 
explainable nature, and increased simplicity of LASSO, 
we proceeded to develop this model as the GSU-
Pulmonary Score. After resampling with 2000 bootstraps 
in the training set, beta coefficients were averaged and 
three variables with zero coefficients were dropped. The 
penalised regression coefficients were then scaled, 
generating the final pragmatic clinical scoring system, 
which included ten predictor variables. Results are 
summarised in table 2. For clinical application, individual 
point scores for each risk factor level are summed to give 
an overall point score out of a maximum of 23. The GSU-
Pulmonary model was assessed in the derivation (testing) 
set with AUROC of 0·773 (95% CI 0·751–0·795; figure 2) 
and good calibration (Brier score 0·020, CITL 0·034, 
slope 0·954; figure 3). 

We estimated a minimum sample size of 193 events 
and 6403 non-events for external validation based on the 
incidence of pulmonary complications in the derivation 
data. In assessment of the adequacy of sample size, both 
CovidSurg-Cancer (1185 events, 29 303 non-events) and 
RECON (318 events, 6471 non-events) were sufficient for 
external validation. Upon external validation, the 
discrimination of the GSU-Pulmonary Score was 
moderate in the CovidSurg-Cancer (AUROC 0·746, 
95% CI 0·733–0·760) and RECON (AUROC 0·716, 
95% CI 0·689–0·744) datasets (figure 2). Calibration 
again was acceptable in CovidSurg-Cancer (Brier 
score 0·036, CITL 0·109, slope 1·056), but with some 
miscalibration in RECON data (Brier score 0·045, 
CITL 1·040, slope 1·009) showing systematic under
estimation of risk (figure 3). Upon subgroup analysis, 
discrimination remained acceptable across all predefined 
groups (appendix p 5). In sensitivity analyses to address 

death as a competing risk, there was little change in 
performance in CovidSurg-Cancer (AUROC 0·753, 95% 
CI 0·740–0·767; Brier score 0·036, CITL –0·016, slope 
1·041) or RECON (AUROC 0·717, 95% CI 0·688–0·745; 
Brier score 0·046, CITL 1·059, slope 1·004) validation 
sets (appendix p 6).

We applied the interpretation framework for external 
validation studies. In step one (assessing the relatedness 
of datasets) we identified the following: CovidSurg-
Cancer had a similar mix of patient and operations to the 
development set but included only patients with a 
malignant indication for surgery; and RECON included 
patients undergoing major abdominopelvic or thoracic 
surgery under general anaesthesia in high-income 
countries, with no (imputed as low) community 
SARS-CoV-2 risk. Given this restricted population, the 
spread of the linear predictor (log-odds predictor) was 
narrower in RECON (appendix pp 7, 9) than in CovidSurg-
Cancer (appendix pp 8–9). In step two, we compared the 
calibration and discrimination of the model across the 
three datasets (figures 2, 3). In step three, we concluded 
that CovidSurg-Cancer appeared to evaluate (statistical) 
reproducibility of the GSU-Pulmonary Score whereas 
RECON appeared to favour (clinical) transportability.

Prognostic test accuracy metrics across a range of cutoff 
point scores to rule in or rule out PPC in the whole 
derivation set (appendix p 12) and cutoffs in validation 
sets (appendix pp 13–14) are provided. A cut-point score of 
5 or less (30 689 [35·6%] of 23 029 patients, PPC rate 
0·4%) ruled out PPC with a sensitivity of 93·05%, 
specificity of 35·82%, positive predictive value of 2·96, 
and negative predictive value of 99·95. The distribution 
of point scores and risk estimates is shown in the 
appendix (p 9). Four risk strata were defined clinically as 
low risk (0–5 score, PPC rate in whole derivation set 
0·45%, n=30 689), intermediate risk (6–10 score, PPC rate 
1·68%, n=43 888), high risk (11–15 score, PPC rate 7·37%, 

No postoperative 
pulmonary 
complications

Postoperative 
pulmonary 
complications

Odds ratio 
(univariable)

Mean coefficients 
(LASSO)

Odds 
ratio 
(LASSO)

Point 
score

(Continued from previous page)

Country income × SARS-CoV-2 risk

High income, high SARS-CoV-2 risk 35 563 (56·1) 705 (53·2) 1·30 (1·07 to 1·58) 0·289 (0·284 to 0·293) 1·334 1

High income, low SARS-CoV-2 risk 8055 (12·7) 123 (9·3) ·· ·· ·· 0

Upper-middle income, high SARS-CoV-2 risk 6121 (9·7) 142 (10·7) 1·52 (1·19 to 1·94) 0·758 (0·753 to 0·764) 2·134 2

Upper-middle income, low SARS-CoV-2 risk 4555 (7·2) 154 (11·6) 2·21 (1·74 to 2·82) 1·039 (1·033 to 1·044) 2·825 3

Low-middle income, high SARS-CoV-2 risk 379 (0·6) 18 (1·4) 3·11 (1·82 to 5·02) 1·22 (1·208 to 1·232) 3·387 4

Low-middle income, low SARS-CoV-2 risk 8675 (13·7) 183 (13·8) 1·38 (1·10 to 1·74) 0·851 (0·846 to 0·857) 2·343 3

Intercept ·· ·· ·· –6·836 (–6·844 to –6·827) –21  ..

Model description after 2000 bootstraps and averaged coefficients. To generate the final scaled calculator score, mean coefficients were multiplied by 3 and rounded. All 
categorical variables were dummified (ie, each different category acts as an independent variable). Where multiple factor levels (eg, age group) score 0 points, this reflects 
non-linear patterns of risk over different groups. During penalised regression using LASSO, the coefficients for all factor levels have shrunk towards 0 for some covariables. 
This indicates that they had provided little discriminative ability and therefore were not selected for inclusion in the final model (eg, current smoker). ASA=America Society of 
Anesthesiologists. LASSO=least absolute shrinkage and selection operator. *Covariables that were removed from the final model after penalised regression.

Table 2: Final GSU-Pulmonary Score model description (derivation dataset)
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n=11 027), and very high risk (≥16 score, PPC rate 14·67%, 
n=627). Risk groupings across the three datasets are 
shown in the appendix (p 6). Finally, the GSU-Pulmonary 
Score calculator was deployed online. The independent 
PROBAST assessment indicated that the study was at low 
risk of bias and there were low concerns about applicability 
(appendix pp 22–30). 

Decision curve analysis showed clinical use of the 
COVIDSurg Pulmonary Score over a range of threshold 
risks in CovidSurg-Cancer data (appendix p 10); however, 
our model had limited clinical use at low-risk thresholds 
in RECON data due to miscalibration and subsequent 
underestimation of risk. Therefore, we suggest caution 

when using the model to guide clinical management in 
patients with a low risk of pulmonary complications in 
non-COVID-19 data.

Discussion
This study has defined a novel risk stratification tool 
(GSU-Pulmonary Score) to estimate the risk of 
pulmonary complications in adults undergoing elective 
surgery. It requires simple predictor variables, which are 
readily available to clinicians across all resource settings 
and at the point of a decision for surgery. The study was 
designed and reported according to best-practice 
guidelines and was at a low risk of bias.7 It is the first 
scoring tool to consider background community SARS-
CoV-2 infection rate, allowing dynamic risk prediction in 
areas with ongoing SARS-CoV-2 transmission and until 
universal vaccination coverage is achieved.6 The score 
was shown to have acceptable discrimination in two 
large, well powered, multicountry validation sets, with 
good calibration in CovidSurg-Cancer and miscalibration 
in RECON data. Pulmonary events are the major driver 
of death after elective surgery, and increased in frequency 
and severity during the COVID-19 pandemic.4

We recommend that the GSU-Pulmonary Score be 
used to inform patient selection, consent, and resource 
allocation as elective surgery is upscaled during 
pandemic recovery efforts and beyond.2,10 Delays in 
elective health care represent a major threat to global 
public health and care for non-communicable disease, 
particularly for time-critical conditions such as cancer.33 
As global health-care systems continue to upscale elective 
surgery to mitigate against further harm for these 
patients, accurate and accessible risk stratification tools 
will be essential to inform shared decision making about 
the timing of surgery. For patients classified at higher 
risk (including those who remain unvaccinated), 
vaccination (or a booster dose) can be offered, and 

Figure 2: Discrimination of GSU-Pulmonary Score in derivation
(A) Testing dataset (GlobalSurg-CovidSurg Week). (B) CovidSurg-Cancer 
validation dataset. (C) RECON validation dataset. 95% CIs were derived from 
2000 bootstrap resamplings. AUROC=area under the receiver operating curve.
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surgery might be done under regional or local 
anaesthetic, or delayed while the patient is preoptimised 
(eg, preoperative chest physiotherapy, prophylactic 
mucolytics, or goal-directed haemodynamic therapy) or 
until community SARS-CoV-2 rates decline.34 Critical 
care providers could use this score to plan bed availability. 
For patients judged to be at lower risk, it is likely to be 
safe to continue surgery even when community SARS-
CoV-2 rates are high. Decisions to postpone, continue, or 
cancel surgery are complex, multifactorial, and require 
deep shared decision making between the patient and 
the perioperative multidisciplinary team; the likelihood 
of clinical benefit of surgery would have significant 
influence on this process. It would therefore be 
inappropriate to specify exactly how the GSU-Pulmonary 
Score should be used in decision making. Instead, we 
present a range of cutoff point scores to rule in or rule 
out PPC that clinicians can explore during imple
mentation. The incidence of PPC in all three studies was 
greater than 1·68% (intermediate-risk group cutoff), 
reflecting the fact that patients undergoing abdominal 
surgery are at intermediate-to-high risk at baseline. Of 
note, we did not include patients with recent preoperative 
SARS-CoV-2 infection in this study and the model is not 
directly applicable to this group; other data are available 
to inform clinical decision making here.8 Although some 
of the variability in PPC rates might have been due to 
inclusion of a small number of patients with undetected 
SARS-CoV-2, much of this variation would be captured 
by community SARS-CoV-2 transmission rates; 
preoperative SARS-CoV-2 testing had little effect on 
model discrimination and was dropped in penalised 
regression.

A systematic review and validation study in 2022 
identified several other published prognostic models to 
estimate the risk of pulmonary complications after major 
abdominal surgery.6 In the same RECON cohort study 
data used in this study, no model showed good 
discrimination (an AUROC greater than 0·7). Here, in 
RECON study data, the GSU-Pulmonary Score displayed 
better discrimination than the best-performing score 
(Assess Respiratory Risk in Surgical Patients in Catalonia 
[ARISCAT])35 identified in the systematic review (AUROC 
0·716, 95% CI 0·689–0·744 vs 0·700, 0·683–0·717) and 
the Score for the Prediction of Postoperative Respiratory 
Complications ([SPORC-1]; AUROC 0·574, 95% CI 
0·556–0·593), although with some miscalibration (CITL 
close to 1, and predicted risks systemically too low). 
RECON included major resectional abdominopelvic 
surgery in high-income countries only. Miscalibration 
might be due to unmeasured differences in casemix (eg, 
balance of major and complex-major surgery within the 
single major surgery predictor variable), differences in 
practice during the pandemic (eg, proactive risk 
modification), or system-level factors such as access to 
care and health behaviours in lower-resource settings 
(eg, barriers to travel to hospital after discharge, so PPC 

is less likely to be observed). The RECON dataset was 
included to improve relevance to countries and regions, 
which might in the future have very low or no ongoing 
SARS-CoV-2 transmission.

The GSU-Pulmonary Score has several notable 
advantages over previous prognostic tools for surgical 
patients. First, it considers variation in patients’ risk 
related to community SARS-CoV-2 case notification 
rates.8 Existing COVID-19 risk scores in general medical 
populations can only stratify risk for patients with active 
SARS-CoV-2 infection, so are applicable to only a small 
subset of elective surgery patients and are not designed 
to reflect the physiological insult of surgery.7 Second, it 
includes only resource-light predictor variables that do 
not require any additional tests or equipment (in contrast 
to preoperative oxygen saturation and serum haemo
globin in the ARISCAT score).35 It is applicable across 
resource settings and can be calculated remotely (eg, 
from electronic health records or during telemedicine 
consultation). Third, it includes only predictor variables 
available before the day of surgery, so can support 
preoperative decision making (in contrast to duration of 
surgery and emergency procedure in ARISCAT). Fourth, 
it has been developed and validated in large, international 
datasets with broad inclusion criteria, making it highly 
generalisable. Fifth, we did a model comparison study 
and selected a modelling technique that is readily 
interpretable by the front-line clinician, improving 
clinical utility. The finding that advanced structured 
machine learning approaches are not superior to simple 
regression, even in very large clinical datasets, has been 
replicated elsewhere.33 We also highlighted that different 
variables were most important across the two modelling 
approaches. This has important ethical implications for 
clinical risk prediction models in the future, whereby 
high-level decisions (eg, whether a patient should be 
offered surgery) might be made based on different 
factors depending on the modelling approach. The inter
pretation framework for external validation studies 
suggests that the score is transferable across different 
perioperative patient groups, including beyond the 
COVID-19 pandemic.

There are also several limitations to this analysis. First, 
some clinically relevant predictor variables were not 
included in score development (eg, cardiac history, 
preoperative physiology, and cardiopulmonary exercise 
testing). This was a pragmatic decision to facilitate high 
data quality across large, prospective studies, and to 
ensure that the resulting model was applicable to low-
resource settings. The output estimates should be 
implemented alongside holistic assessment of the 
patient’s status and with shared decision making. Data 
on ethnicity were also not collected due to lack of a 
global, culturally sensitive classification system. 
Improving reporting of ethnicity in model development 
is an important emerging area of research. Second, all 
clinical predictor variables were collected categorically. 
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This simplification might have reduced statistical 
power,36 and might explain a degree of miscalibration in 
RECON data. Third, data from the derivation and 
validation (CovidSurg-Cancer) sets came from the 
COVID-19 pandemic period. Although there continue to 
be areas of the world with high rates of SARS-CoV-2 
infection, the individual risk of pulmonary compli
cations in infected surgical patients is likely to be lower 
in the omicron-variant era and in vaccinated patients. 
Despite this, preliminary reports from the CovidSurg-3 
study (NCT05161299; prospective data collection 
between December, 2021, and February, 2022) indicate 
that high-risk patients (eg, those aged >70 years, ASA 
grade 3–5) remain at very high risk of pulmonary 
complications and death with perioperative SARS-CoV-2 
infection.37 To explore the implications of this on model 
performance, we also undertook model validation in a 
non-COVID dataset (RECON). Model re-calibration 
might be required in the future as the community gains 
a deeper understanding of the contemporary phenotype 
of COVID-19 in a surgical population. The directionality 
of effect for high versus low SARS-CoV-2 risk in upper-
middle-income countries was reversed in comparison 
with other income groups; this might reflect within-
group variation in access to testing and reporting rather 
than a true biological effect. Fourth, we dealt with 
missing data (<0·1% overall) using complete-case 
analysis. However, several clinical and simulation 
studies have shown little effect of multiple imputation 
methods where there are very low rates of missing data.20 
Fifth, it was not possible to mask front-line clinical staff 
who recorded outcome assessment to several predictor 
variables, as these were readily apparent. However, the 
primary outcome measure required clinical imaging 
studies (chest x-ray or CT) for diagnosis that were 
reported by independent radiologists, minimising risk 
of bias. We adopted a composite outcome measure, and 
the model might not discriminate equally for each 
included endpoint. Sixth, the score cannot be applied to 
patients undergoing procedures under deep sedation, 
who are at risk of pulmonary complications. Seventh, 
death presented a competing risk for pulmonary compli
cations and shared a common casual pathway for some 
patients. We showed robust performance of the score in 
a sensitivity analysis, but were unable to account for this 
during model derivation. Eighth, more models and 
preprocessing could have been implemented, including 
using methods for managing class imbalance (ie, over-
sampling or under-sampling, or Synthetic Minority 
Over-Sampling Technique). However, these are criticised 
in clinical datasets due to risk of miscalibration (strong 
overestimation of probability to belong to the minority 
class), and we opted not to adopt these here.38 Ninth, we 
adopted two techniques for model comparison but did 
not include other interpretable model types that can 
account for non-linear covariables, such as generalised 
additive modelling. This could be an important 

consideration in future work. Tenth, only one of three 
cohort studies (RECON) explicitly preplanned the 
development and validation of a prognostic model in its 
study protocol. Finally, we have not been able to compare 
performance of the GSU-Pulmonary Score with other 
models in a dataset, which includes all operation types 
and indications; our inferences about superior 
performance of the model relate to abdominal surgery 
only, and we have not compared it with SPORC-2, which 
was published after study completion. This highlights 
an area for future comparisons.
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