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Biomarkers of Migraine and Cluster
Headache: Differences and Similarities
Roberta Messina ,1,2,3 Carole H. Sudre,4 Diana Y. Wei,3 Massimo Filippi ,1,2,5

Sebastien Ourselin,4 and Peter J. Goadsby3

Objective: This study was undertaken to identify magnetic resonance imaging (MRI) biomarkers that differentiate
migraine from cluster headache patients and imaging features that are shared.
Methods: Clinical, functional, and structural MRI data were obtained from 20 migraineurs, 20 cluster headache
patients, and 15 healthy controls. Support vector machine algorithms and a stepwise removal process were used to dis-
criminate headache patients from controls, and subgroups of patients. Regional between-group differences and associ-
ation between imaging features and patients’ clinical characteristics were also investigated.
Results: The accuracy for classifying headache patients from controls was 80%. The classification accuracy for dis-
crimination between migraine and controls was 89%, and for cluster headache and controls it was 98%. For dis-
tinguishing cluster headache from migraine patients, the MRI classifier yielded an accuracy of 78%, whereas
MRI–clinical combined classification model achieved an accuracy of 99%. Bilateral hypothalamic and per-
iaqueductal gray (PAG) functional networks were the most important MRI features in classifying migraine and
cluster headache patients from controls. The left thalamic network was the most discriminative MRI feature in
classifying migraine from cluster headache patients. Compared to migraine, cluster headache patients showed
decreased functional interaction between the left thalamus and cortical areas mediating interoception and sen-
sory integration. The presence of restlessness was the most important clinical feature in discriminating the two
groups of patients.
Interpretation: Functional biomarkers, including the hypothalamic and PAG networks, are shared by migraine and clus-
ter headache patients. The thalamocortical pathway may be the neural substrate that differentiates migraine from clus-
ter headache attacks with their distinct clinical features.
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Primary headaches, like migraine and cluster headache,
are among the most common and disabling neurologi-

cal diseases worldwide.1 Diagnosis of migraine and cluster
headache is mainly based on taking a careful clinical his-
tory. Migraine patients usually experience a unilateral or
bilateral throbbing pain that might last from 4 to 72 hours,
and might be associated with nausea, vomiting, and
increased sensitivity to light, sound, and head movement.2

Core features of cluster headache attacks are the excruciat-
ing unilateral pain, lasting from 15 to 180 minutes, cra-
nial autonomic symptoms (CAS), and a sense of

restlessness and agitation. Typically, there are periods
when cluster headache patients experience a series of daily
headache attacks, known as the “in bout” phase, that may
last from 7 days to 1 year. Between one bout and another,
patients are completely free from their headache attacks;
this period is called the “out of bout” phase.3

Although the clinical phenotype of these two pri-
mary headaches can be different, they share some patho-
physiological mechanisms. Both migraine and cluster
headache are widely recognized as brain disorders involv-
ing the activation of different cortical, diencephalic, and
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brainstem regions and the subsequent release of key neu-
ropeptides, such as the calcitonin gene-related peptide
(CGRP).2 Recent work suggests that the brainstem and
hypothalamus might be putative drivers of migraine and
cluster headache attacks.4 Advanced magnetic resonance
imaging (MRI) techniques have been applied to the
study of migraine and cluster headache patients, both in
the course of an acute attack and during the interictal
phase, revealing widespread structural and functional
abnormalities in brain areas involved in multisensory
processing, including pain.5 Only a few MRI studies6–8

have directly compared migraine and cluster headache
patients, showing bilateral enlargement of the hypothal-
amus, reduced gray matter (GM) volume of frontal and
occipital areas, and increased functional activity of brain
cognitive networks in cluster headache patients com-
pared to migraine.

Machine learning techniques provide biomarkers for
diagnosis, prognosis, and personalized treatments and shed
light on disease pathophysiology. One of the main advan-
tages of using machine learning approaches is that they
allow inference at the single-subject level, and they are
sensitive to subtle and spatially distributed brain differ-
ences that might be undetectable in group-level compari-
sons.9 Supervised and unsupervised algorithms of machine
learning have been applied to clinical and MRI data to
identify distinct phenotypes of migraine, to predict
migraine attack onset, disease progression, and treatment
response, and to discriminate migraine patients from con-
trols, as well as from other chronic pain disorders.10–12 A
recent study provided insight into predictors of treatment
response in cluster headache patients using a supervised
machine learning model combining clinical and volumet-
ric imaging data.13 The potential of machine learning
techniques in discriminating migraine from cluster head-
ache patients has not been investigated so far.

In this study, we applied a supervised machine learn-
ing approach and multimodal MRI modalities to identify
interictal MRI biomarkers that differentiate migraine from
cluster headache patients and disclose imaging features
shared by these two types of primary headaches. Our
working hypothesis was that migraine and cluster head-
ache patients might share some structural and functional
abnormalities in cortical and subcortical regions involved
in the onset of both types of headache attacks and in pain
processing. However, different MRI alterations might
explain those clinical features that differ between these
conditions. A secondary analysis identified the best clinical
predictors of migraine and cluster headache diagnosis and
investigated whether a more accurate classification of
patients could be achieved combining MRI and
clinical data.

Subjects and Methods
Subjects
Between April 2017 and March 2018, 60 migraineurs, 45 cluster
headache patients, and 30 healthy controls were prospectively
screened for eligibility. Patients were recruited consecutively from
the population attending the headache clinics at King’s College
Hospital. The recruitment of patients and controls was also
extended to King’s College London staff and students through
advertising. To measuring imaging changes related to migraine
and cluster headache interictal phase, all brain MRI was per-
formed in a headache-free phase. Moreover, cluster headache
patients had to be in the “out of bout” phase to be included,
which is when their brain is less prone to have headache attacks.
Eligible patients had to meet the following inclusion criteria:
(1) diagnosis of an episodic headache disorder; (2) no headache
at the time of the MRI; and (3) not using pharmacological pre-
ventive treatments for migraine or cluster headache, or drugs
affecting the central nervous system for at least 1 month before
the MRI. Exclusion criteria for headache patients and controls
were any other chronic pain syndrome, neurological, psychiatric,
or other major systemic conditions, use of painkillers for >8 days
per month, use of illicit drugs, and MRI showing any brain
pathology. For migraine, only patients with migraine with aura
having attacks with and without aura were enrolled in the study.
Only controls who had infrequent tension-type headache were
included in the study. Based on inclusion and exclusion criteria,
40 migraineurs, 25 cluster headache patients, and 15 controls
were excluded due to chronic headache, the presence of headache
the day of the MRI, MRI artifacts, concurrent psychiatric condi-
tions, use of illicit drugs, or use of antidepressants or headache
preventive treatments (Fig 1).

Clinical Assessment
Before the MRI examination, the clinical history and neurologi-
cal examination of all participants were obtained. All patients
met the criteria of the International Classification of Headache
Disorders for the diagnosis of episodic migraine and episodic
cluster headache.14 Both patients and controls were asked to fill
in a headache diary to control whether they had any kind of
headache on the days preceding and following the MRI visit.
The average headache pain intensity was assessed using a numeri-
cal rating scale.15

Ethical Approval
The local ethical committee on human studies approved the
study, and all subjects provided written informed consent prior
to study participation, according to the Declaration of Helsinki.

MRI Acquisition
Using a 3.0T scanner (GE Discovery MR750; GE Medical Sys-
tems, Milwaukee, WI), the following brain sequences were
acquired: (1) fluid-attenuated inversion recovery (FLAIR; repeti-
tion time [TR]/echo time [TE] = 8,000/125 milliseconds, inver-
sion time [TI] = 2,000 milliseconds, flip angle [FlA] = 111�,
matrix size = 256 � 128, field of view
[FOV] = 240 � 240mm2, 4mm thick, 36 axial slices),
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(2) 3-dimensional (3D) T1-weighted gradient echo
(TR/TE = 7.3/3.0 milliseconds, TI = 400 milliseconds,
FlA = 11�, matrix size = 256 � 256 � 196,
FOV = 270 � 270mm2, 1.2mm thick, 196 sagittal slices),
(3) diffusion-weighted (DW) spin-echo (TE/TR = 74/11,250-
milliseconds, FlA = 90�, matrix size = 128 � 128,
FOV = 256 � 256mm2, 2mm thick, 72 axial slices,
b value = 1,500mm2/s, DW directions = 60), (4) resting state
(RS) functional MRI (fMRI) (TR/TE = 2,500/44 milliseconds,
FlA = 80�, matrix size = 64 � 64, FOV = 240 � 240mm2,
3mm thick, 32 axial slices), and (5) 3D pseudocontinuous arte-
rial spin labeling (pCASL; TE/TR = 11/5,180 milliseconds,
FOV = 240 � 240mm2, 56 slice partitions of 3mm thick-
ness).16 During fMRI, participants were instructed to keep eyes
open. Participants were asked to abstain from taking nonsteroidal
anti-inflammatory drugs or paracetamol, having alcohol or
caffeine-containing products, and using tobacco- or nicotine-
containing products the day before the MRI.

MRI Data Analysis
The presence of white matter (WM) hyperintensities was
assessed on FLAIR, and the volume was measured using a local
thresholding segmentation technique (Jim 8; Xinapse Systems,
West Bergholt, UK).

All images were preprocessed and analyzed to obtain brain
volumetric, WM fractional anisotropy (FA), WM mean diffusiv-
ity (MD), cerebral blood flow (CBF), and RS functional connec-
tivity (FC) maps (Fig 2A). T1-weighted images were corrected
for the presence of WM hyperintensities, then tissue segmenta-
tion was performed using the Geodesic Information Flows, gen-
erating 3D maps of GM and WM.17 Afterward, T1 images were
nonlinearly registered to the MNI template and the obtained
Jacobian volumetric maps of deformation were further masked
and used for independent component analysis (ICA).

Diffusion tensor imaging (DTI) data were visually inspected to
exclude those having corrupted images. DTI data were preprocessed
using ExploreDTI18 software and corrected for eddy current, motion
artifacts and echo-planar imaging geometric distortion. FA and MD
maps were then calculated from the diffusion tensor.

The pCASL image was acquired twice to increase statistical
power. The two pCASL scans were coregistered and realigned to
the T1 space. T1-weighted and proton density images were
realigned. CBF maps were skull-stripped and spatially normalized
to the MNI standard space. A mean CBF map was obtained
from the two preprocessed CBF maps. Finally, CBF maps were
spatially smoothed using an 8mm Gaussian kernel.

RS fMRI preprocessing included volume realignment,
time series despiking, and slice time correction. After the
preprocessing, functional data were optimally combined and
denoised with the Multi-Echo ICA approach.19,20 Then, data
were spatially smoothed with an 8mm Gaussian kernel, WM
and cerebrospinal fluid signals were regressed out using the maps
from the T1 segmentation processing step, a high-pass temporal
filter with a cutoff frequency of 0.005Hz was applied, and
images were registered to standard MNI152 space.

RS fMRI analysis was focused on subcortical brain areas
playing a pivotal role in migraine and cluster headache pathophysiol-
ogy, including the hypothalamus, dorsal pons, spinal trigeminal
nucleus (STN), thalamus, and periaqueductal gray (PAG).5 A dual
regression analysis21 was used to study voxelwise FC within different
regions of interested (ROIs). Based on previous studies, we used a
6mm sphere around the peak MNI coordinates of the hypothalamus
(x = �6, y = �6, z = �10 from Maniyar et al22 and Schulte
et al23), and a 3mm sphere around the peak MNI coordinates of the
dorsal pons (x = �6, y = �36, z = �27 from Maniyar et al22),
STN (x = �3, y = �36, z = �45 from Stankewitz et ak24), and
PAG (x=�6, y=�30, z=�9 from Schwedt et al25 and Maniyar
et al26). A thalamic ROI was also defined using the Harvard–Oxford
probabilistic anatomical atlas within FSL (thresholded at >20%).

FIGURE 1: A schematic of subjects disposition. MRI = magnetic resonance imaging.
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Brain volumetric, WM FA, WM MD, CBF, and RS FC
maps of each subject were temporally concatenated using FSL
and analyzed using MELODIC group temporal concatenation

ICA27 (see Fig 2B, C). The ICA outputs are spatial component
maps, showing patterns of MRI metric changes across subjects.
Each independent component (IC) spatial map was transformed

(Figure legend continues on next page.)
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to a thresholded voxelwise Z statistics map to infer voxels that
were significantly modulated by each subject’s contribution.28

This approach allowed us to transform the original MRI data
into a set of features that could be included in the following clas-
sification analysis. Five ICs were obtained for each MRI modal-
ity. Only those components showing patterns of temporally
coherent signal confined to the brain parenchyma were used as
features to classify the different groups of participants (see
Fig 2C).29

Classification Analysis
A linear kernel support vector machine (SVM) model,
implemented in the LIBSVM library, was used to assess the most
accurate classification of patients and controls. The relative
importance of each feature in classifying patients and controls, as
well as subgroups of patients, was ranked based on the weight
vector provided by the model. After each round of SVM train-
ing, the least informative metric was removed and a new SVM
trained with the remaining metrics. This process was repeated
until only a single feature remained. The accuracy of the classifier
was recorded at each stepwise removal. The classifier with the
highest accuracy was considered the best performing.30 Sensitiv-
ity and specificity were estimated based on true positives, true
negatives, false positives, and false negatives provided by the clas-
sification model. Features whose weight vector lay >1 standard
deviation (SD) above that of the next highest metric were con-
sidered to have the highest importance in the classification.30 In
addition, a 10-fold cross-validation model was performed to
assess the generalizability of the results to new subjects. During
the cross-validation, the dataset is divided into n folds (n = 10
in this case). Then, the model is trained on n � 1 folds and its
performance is validated on the remaining fold.31

First, to investigate which MRI metrics produce the best
discrimination of patients and controls and subgroups of
patients, we performed a classification analysis including the
MRI features obtained from the ICA, which encoded the pat-
terns of brain activation (RS FC and CBF maps) and morphom-
etry (brain volumetric, WM FA, and MD maps; see Fig 2D).
Estimation of the classification accuracy was adjusted for age and
gender effects. Second, to test the accuracy of clinical features
currently used in the diagnosis of migraine and cluster headache,
we ran a secondary classification analysis including those clinical
characteristics that are considered relatively specific for migraine

(photophobia, phonophobia, nausea/vomiting, movement sensi-
tivity, severity and laterality of pain) and cluster headache (CAS,
a sense of restlessness, severity and laterality of pain).14 Age, gen-
der, disease duration, and headache attack frequency were also
included in the clinical classification analysis. At last, to investi-
gate whether combined MRI and clinical data would be more
accurate in classifying migraine and cluster headache patients, we
performed a classification analysis including the MRI and clinical
features of the best classification models.

Statistical Analysis
Demographic and clinical characteristics were compared between
groups using the Mann–Whitney test for continuous variables
and the chi-squared or Fisher exact test for categorical variables
(SPSS software, version 22.0; IBM, Armonk, NY).

A total of 500 random permutations were calculated to
create the null distribution for assessing the test statistics of the
dual regression analyses21 during the RS fMRI preprocessing.
For the ICA, results were thresholded at a p > 0.5 level under an
alternative hypothesis test based on a Gaussian/gamma mixture
model fitted to the intensity histogram of the component.32

To establish whether the observed classification accuracy
was statistically significant, a repeated random subsampling vali-
dation, with a random selection of n subjects removed from both
the patient and control group, repeated 1,000 times for each
n from 1 to 10, was performed. The association between MRI
features with the highest contribution in the classification model
and patients’ clinical characteristics (side of pain, pain severity,
headache attack frequency, disease duration, presence of a sense
of restlessness, photophobia, phonophobia, nausea/vomiting,
movement sensitivity) was assessed using partial correlation anal-
ysis (SPSS software, version 22.0).

Voxelwise t tests were performed to investigate regional
between-group differences within the most discriminative MRI
features, using SPM12 and a statistical threshold of p < 0.05,
familywise error-corrected (see Fig 2E). The correlations between
such regional differences and patients’ clinical features (side of
pain, pain severity, headache attack frequency, disease duration,
presence of a sense of restlessness, photophobia, phonophobia,
nausea/vomiting, movement sensitivity) were assessed using mul-
tiple linear regression models as implemented in SPM12. Age
and sex were included as covariates in all regional analyses.

FIGURE 2: Overview of magnetic resonance imaging (MRI) data analysis. (A) Images were preprocessed and analyzed to obtain
brain volumetric, white matter (WM) fractional anisotropy (FA), WM mean diffusivity (MD), cerebral blood flow (CBF), and resting
state (RS) functional connectivity (FC) maps of each subject. (B) Brain volumetric, WM FA, WM MD, CBF, and RS FC maps of each
subject were temporally concatenated. (C) An independent component analysis was performed to obtain spatial component
maps, showing patterns of covariant MRI metric changes across subjects. Five independent components were obtained for each
MRI modality and included in the following classification analysis as MRI features. (D) A support vector machine (SVM) model was
used to identify the best performing classifier and most informative MRI features in discrimination of patients and controls, as
well as subgroups of patients. The accuracy, sensitivity, and specificity of the model were estimated, and the relative importance
of each feature in classifying patients and controls was ranked based on the weight vector provided by the classification model.
After each round of SVM training, the least informative metric was removed and a new SVM trained with the remaining metrics.
The accuracy of the classifier was recorded at each step of removal. (E) Voxelwise t tests were performed to investigate regional
between-group differences within the most discriminative MRI features. 3D = 3-dimensional; A = anterior; DTI = diffusion tensor
imaging; fMRI = functional MRI; P = posterior; pCASL = pseudocontinuous arterial spin labeling.
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Results
Demographic, Clinical, and Conventional
MRI Data
A total of 20 migraineurs (10 without and 10 with aura),
20 cluster headache patients, and 15 controls were
included in the final analysis. A migraine patient reported
a migraine attack the day before the MRI, whereas all
other patients were headache-free for at least 2 days before
the examination. Most of the migraine patients also
denied having headaches in the days following the MRI
(data not available for 5 patients). All cluster headache
patients were scanned when they were out of bout and
none of them had any headache attacks for at least
48 hours before and after the MRI. Beyond cluster head-
ache, 3 patients had also migraine without aura attacks
(Patient 1: 2 attacks in 6 years; Patient 2: 4 attacks per
year; Patient 3: 4 attacks per month), 2 patients used to
suffer from migraine without aura during their adoles-
cence, and 4 patients also had a diagnosis of probable
migraine. Eight controls suffered from infrequent tension
type headache. None of the controls reported any head-
aches before or after the MRI.

Headache patients were older than controls, whereas
gender did not differ between headache patients and con-
trols (Table 1). Compared to controls and migraine
patients, cluster headache patients were the oldest, whereas
age did not differ between migraineurs and controls. As
expected, considering the gender prevalence of the two
diseases, migraine patients were predominantly females,
whereas most of the cluster headache patients were males.
The median number of headache attacks per month in
migraineurs was 4 (interquartile range [IQR] = 2–56).
Cluster headache patients had a median of 0.8 bouts per
year (IQR = 0.5–1), lasting a median of 45 days
(IQR = 30–71), and 3 attacks per day (IQR = 1–3).
Photophobia, phonophobia, movement sensitivity, and
nausea/vomiting were more prevalent in migraine patients,
whereas a sense of restlessness and unilateral pain were
more frequent in cluster headache patients. Compared to
migraine patients, patients with cluster headache experi-
enced more severe headache attacks.

Two migraine, 4 cluster headache, and 2 control
subjects had small, nonspecific, punctate WM hyper-
intensities, with no significant between-group differences
in the mean lesion volume (see Table 1).

Feature Selection
Different structural and fMRI patterns, including the
brainstem, cerebellum, thalamus, basal ganglia, and fron-
tal, parietal, temporal, and occipital areas, were selected
from the ICA and included as features in the MRI classifi-
cation analyses. Clinical and demographic features

included in the clinical classification analysis were age, sex,
disease duration, headache attack frequency, presence of
photophobia, phonophobia, nausea/vomiting, movement
sensitivity, CAS, and restlessness, and severity and
laterality of pain.

Classification Analysis
Headache Patients and Controls. The MRI model yielding
the highest classification accuracy in discriminating con-
trols from headache patients achieved an accuracy of 80%
(p = 0.006; Fig 3 and Table 2). Although there were no
MRI features whose weight vector exceeded 1 SD of the
next highest metric, the right hypothalamic RS FC IC3,
left hypothalamic RS FC IC5, and left RS FC IC4 of the
PAG had the highest feature importance in the prediction.
In the RS FC IC3, the right hypothalamus had an
increased FC with the insular, parietal, occipital, and tem-
poral areas. In contrast, the left hypothalamus showed
decreased FC with the insular, parietal, occipital, and tem-
poral areas in the RS FC IC5. In the RS FC IC4, the left
PAG had a decreased RS FC with the pons, and medial
and superior frontal gyrus, as well as an increased RS FC
with the precuneus, occipital areas, and middle temporal
and orbitofrontal gyrus. We found a positive correlation
between the RS FC IC4 of the left PAG and the presence
of movement sensitivity (r = 0.4, p = 0.009),
phonophobia (r = 0.3, p = 0.05), and nausea/vomiting
(r = 0.3, p = 0.03). The RS FC IC4 of the left PAG was
negatively correlated with the presence of CAS (r = �0.3,
p = 0.04) and pain severity (r = �0.3, p = 0.04).

Migraine Patients and Controls. The best MRI classifier in
discriminating migraineurs and controls yielded an accu-
racy of 89% (p = 0.008; Fig 4A and Table 2). The RS
FC IC4 of the right PAG had the highest feature impor-
tance in the classification. In this RS network, the right
PAG had an increased RS FC with frontal areas and the
insula, and a decreased RS FC with the cerebellum, and
inferior occipital and orbitofrontal gyrus (see Fig 4C). In
migraine patients, a positive correlation was observed
between the RS FC IC4 of the right PAG and the pres-
ence of CAS (r = 0.5, p = 0.02).

Cluster Headache Patients and Controls. The MRI model
with the best performance in distinguishing cluster head-
ache patients from controls had an accuracy of 98%
(p < 0.001; see Fig 4B and Table 2). The right RS FC
IC4 of the PAG was the MRI feature with the highest
importance in the prediction. No significant correlations
were found between the RS FC IC4 of the right PAG and
cluster headache patients’ clinical characteristics.
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Migraine and Cluster Headache Patients. The MRI model
yielding the highest classification accuracy in discriminat-
ing cluster headache from migraine patients achieved an
accuracy of 78% (p = 0.01; Fig 5A and Table 2). The left
thalamic RS FC IC4 had the highest feature importance
in the classification. In this network, the left thalamus
showed a decreased RS FC with parietal regions, middle
temporal and medial frontal gyrus, and an increased RS
FC with the cerebellum, cingulum, middle frontal gyrus,
and occipital areas (see Fig 5B). We did not find any sig-
nificant association between the left thalamic RS FC IC4
and patients’ clinical features.

The best classification accuracy for correctly classify-
ing individual patients as having migraine or cluster head-
ache based on all demographic and clinical features was
99% (p < 0.001; see Fig 5C and Table 2). Although there
were no clinical features whose weight vector exceeded
1 SD of the next highest metric, the presence of restless-
ness and the severity of pain had the highest feature
importance in the prediction.

The best MRI–clinical combined classification
model achieved an accuracy of 99% (p < 0.001; see Fig
5D and Table 2). The presence of restlessness was the fea-
ture with the highest importance in the prediction.

TABLE 1. Demographic, Clinical, and Conventional Magnetic Resonance Imaging Characteristics of Controls and
Patients

Characteristic Controls
Headache
Patients Migraine

Cluster
Headache

Headache vs
Controls, p

Migraine
vs Controls, p

Cluster
Headache vs
Controls, p

Migraine vs
Cluster

Headache, p

Women/men 8/7 22/18 18/2 4/16 0.6 0.02 0.07 <0.001

Age, yr 24 (23–28) 34 (27–45) 29 (24–31) 41 (26–56) <0.001 0.07 <0.001 <0.001

Disease
duration, yr

— 15 (9–21) 14 (8–17) 16 (10–25) — — — 0.2

Headache attack
frequency
per year

— 51 (20–89) 45 (18–68) 68 (32–127) — — — 0.06

Presence of

Movement
sensitivity

— 23 20 3 — — — <0.001

Photophobia — 28 19 9 — — — 0.001

Phonophobia — 23 17 6 — — — 0.001

Nausea/vomiting — 31 19 12 — — — 0.02

Cranial
autonomic
symptoms

— 37 17 20 — — — 0.2

Restlessness — 23 3 20 — — — <0.001

Unilateral pain — 29 9 20 — — — <0.001

Right 14 1 13

Left 7 2 5

Right or left 8 6 2

NRS score — 8.5 (7.1–10) 7.2 (6.6–8.4) 10 (8.6–10) — — — <0.001

Mean WMH
lesion volume
� standard
deviation, ml

0.027 � 0.08 0.088 � 0.32 0.054 � 0.23 0.122 � 0.39 0.9 0.8 0.6 0.4

Note: Measures are reported as median and interquartile range (25th–75th percentiles). Gender and patients’ clinical features are reported as
frequencies.
Abbreviation: NRS = numerical rating scale; WMH = white matter hyperintensity.
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FIGURE 3: Classification model discriminating headache patients from controls. (A) The bar graph represents normalized weights
of magnetic resonance imaging (MRI) features included in the model yielding the highest classification accuracy in discriminating
controls from the entire group of headache patients. (B) Spatial maps of the MRI features with the highest importance in the
prediction. Maps were thresholded at a p > 0.5 level under an alternative hypothesis. High z scores are represented in red-
yellow and low z scores are represented in blue. A = anterior; CBF = cerebral blood flow; FA = fractional anisotropy; FC =
functional connectivity; IC = independent component; L = left; MD = mean diffusivity; P = posterior; PAG = periaqueductal
gray; R = right; RS = resting state; STN = spinal trigeminal nucleus; WM = white matter.

TABLE 2. Classification Performance of the Most Discriminative Models Differentiating Headache Patients from
Controls, as Well as Migraine from Cluster Headache Patients

MRI Classifier Performance

Headache vs Controls Migraine vs Controls Cluster Headache vs Controls

Accuracy, % Sensitivity, % Specificity, % Accuracy, % Sensitivity, % Specificity, % Accuracy, % Sensitivity, % Specificity, %

80 87 66 89 95 80 98 80 100

Headache Controls Migraine Controls Cluster

headache

Controls

Headache 35 5 Migraine 19 1 Cluster headache 16 4

Controls 5 10 Controls 3 12 Controls 0 15

Migraine vs Cluster Headache

MRI Classifier Performance Clinical Classifier Performance MRI–Clinical Combined Classifier Performance

Accuracy, % Sensitivity, % Specificity, % Accuracy, % Sensitivity, % Specificity, % Accuracy, % Sensitivity, % Specificity, %

78 65 70 99 95 100 99 95 100

Migraine Cluster
headache

Migraine Cluster
headache

Migraine Cluster
headache

Migraine 13 7 Migraine 19 1 Migraine 19 1

Cluster
headache

6 14 Cluster
headache

0 20 Cluster
headache

0 20

Abbreviation: MRI = magnetic resonance imaging.
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Voxelwise Analyses
There were no significant brain regional differences between
headache patients and controls in the left hypothalamic RS
FC IC5, right hypothalamic RS FC IC3, and the RS FC
IC4 of the left PAG, as well as between cluster headache
patients and controls in the RS FC IC4 of the right PAG.

Within the RS FC IC4 of the right PAG, an
increased RS FC between the right PAG and ipsilateral
cerebellum was found in migraine patients compared to
controls (see Fig 4C and Table 3).

Within the left thalamic RS FC IC4, compared to
migraine patients, cluster headache patients showed decreased
RS FC between the left thalamus and left precuneus, and
angular and middle temporal gyrus (see Fig 4B and Table 3).

No significant correlations were found between such
functional alterations and migraine patients’ clinical
characteristics.

Discussion
In this study, using a supervised machine learning
approach and multimodal imaging data, we identified the

most discriminative MRI patterns that distinguish
migraine from cluster headache patients, as well as imag-
ing features shared by these two primary headaches.

Our results showed a robust and accurate classifica-
tion of patients with primary headaches and controls,
achieving an accuracy of 80%. When we trained the
model to discriminate migraine and cluster headache
patients from controls separately, an overall accuracy of
89% and 98%, respectively, was obtained.

The first interesting result of our study is that the
combination of different patterns of brain activation and
morphometry yielded the best classification performance
in distinguishing migraine and cluster headache patients
from controls. Previously, a lower accuracy rate ranging
from 67% to 86% was obtained for distinguishing
migraine patients from controls.33,34 These results were
obtained by supervised classification algorithms including
only brain cortical morphometric measures or RS FC data.
Previous MRI studies using classification or univariate
standard approaches have separately investigated structural
and functional imaging features, showing abnormalities in

FIGURE 4: Classification model discriminating migraine patients and cluster headache patients from controls. (A) The bar graph
represents normalized weights of magnetic resonance imaging (MRI) features included in the model yielding the highest
classification accuracy in discriminating migraine patients from controls. (B) The bar graph represents normalized weights of MRI
features included in the model yielding the highest classification accuracy in discriminating cluster headache patients from
controls. (C) Spatial map of the resting state (RS) functional connectivity (FC) independent component 4 (IC4) of the right
periaqueductal gray (PAG) thresholded at a p > 0.5 level under an alternative hypothesis. High z scores are represented in red–
yellow and low z scores are represented in blue. Brain regions showing increased RS FC with the right PAG in migraine patients
compared to controls are shown in green (color-coded for their t values; p < 0.05, clusterwise familywise error-corrected for
multiple comparisons). A = anterior; CBF = cerebral blood flow; FA = fractional anisotropy; L = left; MD = mean diffusivity; P =

posterior; R = right; STN = spinal trigeminal nucleus; WM = white matter.

April 2023 737

Messina et al: Migraine and Cluster Headache

 15318249, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ana.26583 by C

ochraneItalia, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 5: Classification models discriminating migraine from cluster headache patients. (A) The bar graph represents normalized
weights of magnetic resonance imaging (MRI) features included in the model yielding the highest classification accuracy in
discriminating migraine from cluster headache patients. (B) Spatial map of the resting state (RS) functional connectivity
(FC) independent component 4 (IC4) of the left thalamus thresholded at a p > 0.5 level under an alternative hypothesis. High
z scores are represented in red–yellow and low z scores are represented in blue. Brain regions showing decreased RS FC with
the left thalamus in cluster headache patients compared to migraine patients are shown in violet (color-coded for their t values;
p < 0.05, clusterwise familywise error-corrected for multiple comparisons). (C) The bar graph represents normalized weights of
clinical and demographic features included in the clinical model yielding the highest classification accuracy in discriminating migraine
from cluster headache patients. (D) The bar graph represents normalized weights of clinical, demographic, and MRI features included
in the MRI–clinical combined model yielding the highest classification accuracy in discriminating migraine from cluster headache
patients. A = anterior; CBF = cerebral blood flow; L = left; P = posterior; PAG = periaqueductal gray; R = right.

TABLE 3. Regional Resting State Functional Connectivity Differences between Migraine Patients and Controls,
as Well as between Cluster Headache and Migraine Patients

Migraine vs Controls

Cerebral Regions Showing Increased
RS FC with the Right PAG in Migraine Patients

Brodmann
Area t Valuesa

Cluster Extent
(no. of voxels)

MNI Coordinates,
x, y, z

Right cerebellum (crus I) — 6.04 655 �9, �85, �19

Migraine vs Cluster Headache

Cerebral Regions Showing Decreased RS FC with
the Left Thalamus in Cluster Headache Patients

Brodmann
Area

t
Valuesa

Cluster
Extent

(no. of voxels)
MNI Coordinates,

x, y, z

Left angular gyrus 39 4.90 662 �46, �72, 32

Left middle temple gyrus 39 4.24 �48, �63, 20

Left precuneus 7 4.08 457 �10, �55, 44

ap < 0.05, clusterwise familywise error-corrected for multiple comparisons.
Abbreviation: FC = functional connectivity; MNI = Montreal Neurological Institute; PAG = periaqueductal gray; RS = resting state.
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brain areas involved in multisensory processing, including
pain, in both migraine and cluster headache patients.5

Only one previous classification study demonstrated the
advantage of combining GM volume and RS fMRI data
over the single imaging feature in the discrimination
between migraineurs and controls (83% vs 71% of accu-
racy).35 Moreover, only a few studies using standard uni-
variate analysis have explored the presence of concurrent
GM volume and functional brain changes in migraine
patients.36,37 In this study, volumetric and RS fMRI mea-
sures have been integrated with DTI and pCASL data,
providing comprehensive information regarding hemody-
namic, functional, macrostructural, and microstructural
changes of the brain. The integration of multiple func-
tional and structural imaging metrics discloses comple-
mentary information regarding the underlying biological
processes. This approach might help us to achieve a better
understanding of headache pathophysiology.

Supervised classification algorithms have never been
used, so far, to distinguish cluster headache patients from
controls. Interestingly, we found a classification accuracy
for discrimination between cluster headache and controls
of 98%, with a specificity of 100%. These results suggest
that being sure a control does not harbor cluster headache
biology is not as challenging as for migraine.2

The most discriminative MRI patterns in classifying
migraine and cluster headache patients from controls
included brain RS FC networks of the PAG and hypothala-
mus. The prominent role of the hypothalamus in migraine
and cluster headache pathophysiology is well established.
There is ample evidence supporting a key role of the hypo-
thalamus in the acute phase of migraine and cluster headache
attacks.22,38,39 Recent fMRI studies during trigeminal noci-
ceptive stimulation highlighted dynamic functional changes
of hypothalamic activity during the migraine and cluster
headache cycle, supporting its pivotal involvement in driving
the onset of headache attacks.40,41 Similar to previous inter-
ictal studies,7,42,43 here we showed a significant functional
interaction between the hypothalamus and brain areas impli-
cated in pain control and visual processing in both migraine
and cluster headache patients studied outside their headache
attacks. Our findings are also in line with a previous classifi-
cation study reporting that the RS FC between the amygdala
and hypothalamus contributed to the classification accuracy
of distinguishing migraine patients from controls.31

The PAG is a key area of the endogenous pain inhibi-
tory system.44 There is evidence revealing an altered func-
tional interaction between nociceptive brain areas and the
PAG that might contribute to the development of allodynia
in migraine patients.25 It has also been shown that PAG
stimulation could provoke the onset of headache pain.45,46

Here, we have found a specific involvement of the networks

connecting the left and right PAG to the cerebellum, insula,
and frontal, temporal, and occipital areas in the whole group
of headache patients, as well as in migraine and cluster head-
ache patients separately. Although the role of the RS FC of
the PAG in headache classification has not been investigated
so far, previous studies confirmed the involvement of pain-
processing brain areas, comprising the insular, cerebellar,
temporal, and frontal regions, in discriminating migraine
patients from controls.33–35 It is worth noting that although
the left and right PAG were connected with similar brain
areas, they showed an opposite direction of their functional
coupling. The significant association we have found in head-
ache patients between the left RS FC network of the PAG
and pain severity reinforce its crucial role in modulating pain
perception. Interestingly, in our sample of patients the global
functional activity of the PAG networks was also significantly
associated with the presence of CAS and migraine-specific
symptomatology, like movement sensitivity, phonophobia,
and nausea/vomiting. These findings are in line with a previ-
ous positron emission tomography study26 suggesting a pos-
sible contribution of the PAG to the presence of nausea in
migraine patients and preclinical studies showing an involve-
ment of the PAG in the control of sensory, autonomic, and
motor processes.47 PAG activity can be modulated by various
neuropeptides and neurotransmitters involved in migraine
and cluster headache pathophysiology, such as serotonin,
orexin, and CGRP, suggesting the PAG as a possible site of
action of acute and preventive headache treatments, like
triptans and anti-CGRP monoclonal antibodies.47,48 Our
findings highlighted the PAG as one of the mediators of
symptoms accompanying migraine and cluster headache
pain, supporting its containing potential therapeutic targets.

The MRI model discriminating cluster headache and
migraine patients achieved the lowest accuracy rate (78%).
Interestingly, beyond cluster headache attacks, 9 patients
had also a history of definite or probable migraine without
aura. These data are in line with previous findings demon-
strating a higher prevalence of migraine and family history
of migraine in cluster headache patients.49 The coexistence
of the two types of headaches in 45% of cluster headache
patients might explain the lower accuracy rate we obtained
and support common genetic predisposition and patho-
physiological mechanisms between migraine and cluster
headache. We cannot exclude that the inclusion of cluster
headache patients studied during the “in bout” phase may
increase the accuracy rate. There is evidence showing
dynamic functional and structural brain changes in cluster
headache patients between the “in bout” and “out of
bout” phases of the disease, suggesting that these changes
may facilitate the onset of cluster headache attacks.3 The
study of cluster headache patients during the most active
phase of their disease may unveil more imaging differences
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in comparison to migraine patients. Adding patients’ clini-
cal features to the MRI measures improved the classifica-
tion accuracy of the model distinguishing migraine from
cluster headache patients, reaching an overall accuracy of
99%. Clinical characteristics of patients provided the
highest accuracy in identifying individuals as having
migraine or cluster headache, thus reinforcing the impor-
tance of clinical criteria for the differential diagnosis of
these two forms of primary headaches. Interestingly, both
clinical and MRI–clinical combined models revealed that
the most important feature in discriminating migraine and
cluster headache patients was the presence of restlessness.
Behavioral disturbances, such as restlessness and agitation,
are relatively cluster headache-specific symptoms often
described by patients.3 In our sample, all patients with
cluster headache reported the experience of restlessness
during their attacks.

The identification of the most discriminative MRI fea-
tures revealed a central role of the thalamus in classifying
migraine from cluster headache patients. We found a lower
functional interaction between the left thalamus and parietal
brain regions, including the precuneus and angular gyrus, in
cluster headache compared to migraine patients. The thala-
mus is a key area for the processing and integration of noci-
ceptive stimuli. Thalamocortical projections to
somatosensory, motor, visual, and limbic regions can explain
part of the complexity of headache features.50 The
precuneus and angular gyrus are components of the default
mode network, a brain network known to be involved in
cognition, self-monitoring, sensory integration, and inter-
oception.51 Based on our results, we could speculate that an
abnormal processing of the inner-generated sensory stimuli
may lead to the sense of agitation and the compulsion to
move described by patients with cluster headache. This
hypothesis is in line with previous evidence showing an asso-
ciation between abnormal thalamocortical activity and the
presence of agitation in patients with restless leg syndrome
or psychiatric disorders.52,53

The main strengths of this study are the integration
of multimodal functional and structural MRI data and
combination of imaging and clinical data. Moreover, for
the first time, we have used supervised classification algo-
rithms to distinguish cluster headache patients from con-
trols, as well as migraine from cluster headache patients.

Moving to limitations, the study has a relatively
small sample size. For this reason, we have decided to use
a supervised machine learning approach, which performs
biomarkers extraction at the level of each patient indepen-
dently of sample size.9 In addition, the sample size of
patients and controls is in line with previous MRI studies
in headache disorders.54 Both migraine patients with and
without aura were included in the study, and many cluster

headache patients had migrainous biology. Participants
with both migraine and cluster headache biologies may
blur important distinctions. Our results should be vali-
dated in an independent sample. Moreover, further studies
to classify migraine and cluster headache patients in the
ictal and interictal phases are warranted.

Although a detailed clinical history remains the
mainstay for migraine and cluster headache diagnosis, our
data highlight the potential value of machine learning
techniques and multimodal MRI data in understanding
the neurobiological basis of migraine and cluster headache.
MRI classifiers including brain functional and structural
MRI measures accurately classified individuals as having
migraine or cluster headache, supporting the view of these
primary headaches as complex brain disorders. We identi-
fied brain functional biomarkers, including the hypotha-
lamic and PAG networks, shared by migraine and cluster
headache, that could mediate the pain and associated
symptoms experienced by patients. We also proposed the
thalamocortical pathway as the neural substrate that could
differentiate migraine from cluster headache attacks with
their distinct clinical features. As newer acute and preven-
tive therapies are licensed, the application of machine
learning techniques and multimodal MRI data may cast
further light on primary headache physiopathology, reveal
new therapeutic targets, and guide the development of
new drugs tailored to each form of primary headache.
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