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Abstract: Age-related macular degeneration (AMD) is a common
retinal disease characterized by complex pathogenesis and extremely
heterogeneous characteristics. Both in “dry” and “wet” AMD
forms, the inflammation has a central role to promote the degen-
erative process and to stimulate the onset of complications. AMD is
characterized by several proinflammatory stimuli, cells and media-
tors involved, and metabolic pathways. Nowadays, inflammatory
biomarkers may be unveiled and analyzed by means of several
techniques, including laboratory approaches, histology, im-
munohistochemistry, and noninvasive multimodal retinal imaging.
These methodologies allowed to perform remarkable steps forward
for understanding the role of inflammation in AMD pathogenesis,
also offering new opportunities to optimize the diagnostic workup of
the patients and to develop new treatments. The main goal of the
present paper is to provide an updated scenario of the current
knowledge regarding the role of inflammation in “dry” and “wet”
AMD and to discuss new possible therapeutic strategies.
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A ge-related macular degeneration (AMD) is a leading
cause of visual impairment in developed countries. Its

prevalence is expected to remarkably increase in the next fu-
ture, reaching up to 288 million by the year 2040.1 AMD is
characterized by different stages and possible neovascular or
atrophic complications. Dry AMD accounts approximatively
for 85%–90% of cases, whereas wet AMD for 10%–15% of
cases.2 The term “dry AMD” includes all the stages of the
diseases characterized by the absence of the neovascular
complication, from the early form up to the onset to the more

severe geographic atrophy (GA). Dry AMD shows pro-
gressive retinal pigmented epithelium (RPE) dysfunction,
photoreceptor loss, and retinal degeneration.2 On the other
side, wet AMD is characterized by the onset of macular ne-
ovascularization and exudation.2 Looking at the overall
AMD pathogenesis, inflammation covers a primary role for
the onset and progression both of wet and dry forms. This
would mean that, other than considering vascular endothelial
growth factor (VEGF) the primary therapeutic target, many
other factors should be considered, both in terms of patho-
genic mechanisms and therapeutic implications. Indeed,
inflammation is rapid and powerful response to an imminent
danger, which can be stimulated by a variety of factors,
including increased toxicity, proinflammatory mediators, and
intracellular components released in the extracellular space
secondary to cellular degeneration.

The main goal of the present paper is to provide
an updated overview of the pathogenic contribution of
inflammation in AMD and the possible therapeutic perspectives.

METHODS
We used key words to explore all English language

human subject articles in the MEDLINE library, considering
an interval between January 1980 and April 2022. The key
words included the following: AMD, inflammation, exuda-
tion, atrophy, VEGF, intravitreal injections, emerging treat-
ment. All the references were carefully examined by 2 expert
researchers (F.B., A.A.), who collated and arranged all the
relevant information for the present study.

The Role of Inflammation in Dry AMD
Although inflammation has been more investigated in the

wet form of AMD, it undoubtedly takes a major role also in dry
AMD. The first step of dry AMD is the accelerated progression
of aging signs, such as the accumulation of lipofuscin and toxic
debris below the RPE, known as drusen.2 The progressive dys-
function of RPE cells is responsible for a toxic microenvironment
leading to increased oxidative stress, altered lipid metabolism,
and accumulation of toxic products of the visual cycle.3,4 The
chronicity of these phenomena is responsible for the onset and
progression of a proinflammatory microenvironment, acting as a
further source of RPE and photoreceptors cells damage. RPE
cells act against the increased oxidative stress towards the upre-
gulation of antioxidative mechanisms and the promotion of au-
tophagy for removing cellular components.5,6 Unfortunately, the
oxidative burden associated with progressive RPE impairment
make these compensatory mechanisms insufficient to
compensate prooxidative and proinflammatory cascades. The
occurrence of a wide proinflammatory activity is supported byDOI: 10.1097/APO.0000000000000570
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the evidence of increased levels of several cytokines and proin-
flammatory mediators found both in humans and in animal
models of AMD. Interleukin (IL)-1 has been found to contribute
to the progressive loss of photoreceptors.7 Similarly, IL-17 has
been found highly concentrated in AMD patients,8,9 promoting
the recruitment and activity of macrophages.10 In AMD eyes
complicated by GA, the levels of IL-6, tumor necrosis factor
(TNF) receptor 2, and C-reactive protein have been found sig-
nificantly higher than healthy controls; their levels also correlated
with the progression rate of GA.11 In 2018, dosed the level of
proinflammatory cytokines in the aqueous sample of dry
AMD patients, reporting significantly higher levels of C-X-C
motif chemokine ligand 5 (CXCL5), C-C motif chemokine
ligand 11 (CCL11), CCL24, granulocyte-macrophage colony-
stimulating factor (GM-CSF), IL-4, CCL2, CCL13, macrophage
migration inhibitory factor (MIF), CCL19, CCL17, trans-
forming growth factor beta 2 (TGF-β2), and TGF-β3, although
the statistical correction highlighted only CXCL5, CXCL6, and
MIG/CXCL9 as effectively relevant.12 The increased level of
these cytokines allowed to advance the hypothesis also of T-cell
lymphocytes-mediated phenomena in the pathogenesis of AMD.

If ILs and cytokines are important proinflammatory
factors in dry AMD, culminating in the activation of the in-
flammasome complex,13 even growing evidence highlighted a
major role of the complement system activation. Complement
system physiologically promotes the clearance of apoptotic
cells by opsonizing the cells for removal via phagocytosis,
being activated by 3 different pathways.14 Proteomic, histo-
logical, and biochemical analyses reported complement fac-
tors and related proteins as major components of drusen.15,16

Furthermore, immunohistochemical analysis of enucleated
donor eyes highlighted a massive complement factors accu-
mulation in the outer retina.17,18 Many studies showed many
signs of abnormal complement system activation in AMD.
C3d, C3a, Ba, Bb, and C5a complement factors have been
found elevated in plasma of patients with AMD.19,20

Complement system dysfunction in dry AMD and GA
has been further supported by the evidence of genetic variants
characterizing AMD patients, associated with its abnormal
upregulation. In particular, previous studies identified com-
plement factor H (CFH), complement factor I (CFI), com-
plement component 3 (C3), and complement component 9
(C9) variants promoting the alternative complement pathway
activation.21–23 The high importance of complement system
activation in the pathogenesis of AMD and GA stimulated
companies in developing therapies targeting complement
factors. Although an approved treatment for GA is still
missing, many clinical trials are ongoing attempting to inter-
fere with the abnormal complement system activation and
other proinflammatory mediators.

The imaging counterpart of proinflammatory activity in
AMD is represented by the optical coherence tomography
(OCT)-detected hyperreflective foci (HF). HF are defined as
small, discrete, well-circumscribed, hyperreflective dots, de-
tected both within retinal layers and choroid. The current
hypotheses regarding the interpretation of HF include
aggregates of inflammatory cells and activated microglia,
lipid extravasation, and RPE migration phenomena.24–26

Although representing a poorly specific OCT sign, described
almost in all retinal diseases, increased HF number is a very

sensitive sign of disease activity and progression. Their
number significantly correlated with disease severity and
progression rate, both considering dry AMD stages and GA
(Fig. 1).27,28 Indeed, HF evaluation is overall considered a
valuable assessment in the diagnostic workup of AMD
patients.

The Role of Inflammation in Wet AMD
Most of the current literature assessed the role of

inflammation in the pathogenesis of wet AMD.
Like dry AMD and GA, local inflammation is responsible

of the degeneration of RPE and photoreceptors outer seg-
ment. In this context, several proinflammatory mediators have
been associated with the pathogenesis of wet AMD, including
IL-1β, IL-2, IL-6, IL-8, IL-12, IL-17, TNF-α, and interferon-
γ.29 Some of these molecules act as proangiogenic factors. IL-
1β is promoted by progressively increasing retinal damage,
and it was associated both with proinflammatory and angio-
genetic activities.30,31 Other than being a potent proin-
flammatory cytokine, IL-6 stimulates the signal transducer
and activator of transcription-3 (STAT3), which has been
associated with the development and growth of murine nor-
ovirus (MNV).32 Furthermore, IL-17 has been found to pro-
mote angiogenesis via CXCL8 and CCL2 mediators.33 TNF-α
is a potent proangiogenic factor, causing the upregulation of
VEGF production through the reactive oxygen species-de-
pendent β-catenin activation pathway.34 Another mediator
showing a big proangiogenic activity is the TGF-β, although
the current literature shows contradictory results. Indeed,
from one side high-levels of TGF-β have been associated with
the promotion of MNV development through the Smad2/
3-VEGF/TNF-α signaling pathway.35,36 On the other side,
other studies associated the depletion of TGF-β with the onset
of the neovascular complication. The absence of this mediator
was associated with gliotic degeneration of retinal glia driving
the neuroinflammatory contribution to the onset and pro-
gression of MNV.37,38 Other proinflammatory and proangio-
genic mediators including monocyte chemoattractant protein
1 (MCP-1), macrophage inflammatory protein (MIP)-1α, and
MIP-1β, obtained from aqueous and vitreous samples, sig-
nificantly associated with wet AMD.39,40 A recent meta-
analysis analyzed the main studies focused on this topic,
highlighting MCP-1, MIG, TGF-β, and VEGF as the only
mediators whose higher levels reached enough statistical
relevance.41 Interestingly, the aqueous levels of MCP-1, MIP-
1β, and VEGF measured before intravitreal treatments, and
the levels of IL-6, MCP-1, and MIP-1β obtained after anti-
VEGF injections resulted significantly associated with the risk
of macular atrophy.42

In addition, several inflammatory cytotypes may contribute
to the neovascular complication. Many cytokines including IL-
1β, IL-12, IL-23, interferon-γ, and TNF-α can induce the pro-
motion and activation of classically activated macrophages (M1)
disclosing a major proinflammatory activity.43 On the other
hand, alternatively activated macrophages (M2) are anti-in-
flammatory cells, facilitating tissue repairing and angiogenesis.43

However, the conversion from M1 to M2, and vice versa, can be
driven by changes of the microenvironment.44 Hence, it was
hypothesized that the degeneration-induced inflammation might
act as a stimulus for M1 migration within the retina; then, the
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Rho-associated kinase signaling profile characterizing AMD
might promote the conversion from M1 to M2, thus creating the
proangiogenic condition for developing the neovascular
complication.45 In this context, the invasion of the Bruch mem-
brane by macrophages is essential for activating the neovascular
processes. M2 macrophages polarization is also stimulated by
chitinase-3-like-1, which can also promote the release of VEGF.46

If this hypothesis somehow described a linear process passing
through the M1-M2 conversion and driving MNV development,
other investigations suggested an opposing activity of M1 and
M2 cytotypes. Indeed, Zhou et al47 advanced the hypothesis that
M1 macrophages have a major role in suppressing MNV de-
velopment, working against the proangiogenic promotion of M2
macrophages. Animal models also revealed a proangiogenic role
of other cytotypes, including dendritic cells and neutrophils.48,49

On the other side, the reduction of Th1 cells and CXCR3+CD4
+T lymphocytes has been associated with dysregulation of
VEGF metabolism and increased angiogenic activity.50

In addition, the activation of the membrane attack complex
(MAC) has been found involved in the angiogenetic process. In-
deed, MAC activation may induce the downregulation of VEGF
modulators, together with the release of mediators and cytokines
stimulating the neovascular process.51,52

Also in wet AMD, the OCT-based evaluation of HF has
been found clinically relevant for monitoring MNV activity
and for evaluating treatment outcome (Fig. 2).53–56

Furthermore, it has been shown that HF may precede the
onset of MNV, thus further supporting the role of a
proinflammatory microenvironment favoring the beginning
of angiogenetic processes and then representing a potential
predictive biomarker of wet AMD complication.57

The Other Side of the Medal: The Proinflammatory
Role of Intravitreal Injections

Although sterile inflammation and endophthalmitis rep-
resent rare complications,58 intravitreal procedures may act as
a potential proinflammatory stimulus for many reasons.
First, the surgical procedure itself is a source of transient in-
flammation. Moreover, patients may be predisposed to
proinflammatory activity because of the presence of
autoantibodies against drugs, the previous history of ocular or
systemic inflammation, and other factors.59

A potentially relevant proinflammatory role is carried out
by anti-VEGF molecules. The immunogenicity profile of anti-
VEGF drugs depends on many factors, including the size of
the molecule, the concentration, and the biochemical profile.

FIGURE 1. Hyperreflective foci (HF) in dry age-related macular degeneration. The presence of these hyperreflective discrete dots, detected on structural
optical coherence tomography (A), characterizes both the outer retina and the choroid, and are better highlighted by inverted white-black color optical
coherence tomography. The number of HF is associated with the severity of geographic atrophy expansion. HF are mainly localized at the borders of the
atrophy, where the degenerative and proinflammatory mechanisms go on (B, C).
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The most used anti-VEGF molecules are bevacizumab
(Avastin, Hoffmann-La Roche), ranibizumab (Lucentis, No-
vartis Pharmaceuticals Canada Inc), aflibercept (Eylea,
BAYER Pharma AG, Germany), and brolucizumab (Beovu,
Novartis Pharmaceuticals Canada Inc). The pharmacologic
features of these molecules are shown in Table 1. Based on
previous reports, the overall incidence of intraocular
inflammation (IOI) for older anti-VEGF molecules is
between 0% and 5% of cases, with severe complications
representing extremely rare eventualities.60–62 For this reason,
bevacizumab, ranibizumab, and aflibercept are universally
considered safe drugs. The situation is quite different for the
newly introduced brolucizumab, whose reported incidence of
IOI resulted much higher that older molecules (4.4% vs 0.3%
of aflibercept in HAWK/HARRIER studies;63 11% in SHIFT
study;64 other reports between 4% and 12%),65,66 with
remarkably high risk of retinal occlusive vasculitis
complication.67 The emerged disconnect between clinical
trials and real-world reports of IOI (overall 2% vs 10% of
cases) made necessary an alert from the American Society of
Retina Specialists, which advanced the hypothesis of
autoimmune pathogenesis.68 Indeed, the lack of the
fragment crystallizable (Fc) region makes brolucizumab not

able to activate the complement system or participate in
antibody-dependent cell-mediated cytotoxicity processes.69

Post-hoc analyses of HAWK/HARRIER studies provided
the following IOI incidences: 4.6% observed incidence of
definite/probable drug-related events within the spectrum
of IOI, retinal vasculitis, and/or vascular occlusion; 3.3%
observed incidence of definite/probable IOI+retinal vasculitis;
2.1% observed incidence of definite/probable IOI+retinal
vasculitis+retinal vascular occlusion.70 The more recent
Intelligent Research in Sight (IRIS) Registry and Komodo
Healthcare Map provided an overall incidence of
brolucizumab-related IOI of 2.4%, identifying previous
history of IOI or retinal occlusive events, and female gender
as statistically significant risk factors of inflammatory
complications following brolucizumab injections.71 Other
studies tried to ascertain the reason of the higher incidence
of IOI related with brolucizumab, reporting the presence of
pretreatment antidrug antibody, found to be 35%–52% in
naive patients treated with brolucizumab versus to
pretreatment antidrug antibody below 5% found for
ranibizumab and aflibercept drugs.59,72 These findings
allowed to advance Type III or IV hypersensitivity reaction
as likely pathogenic mechanisms occurring in brolucizumab-

FIGURE 2. Hyperreflective foci (HF) in wet age-related macular degeneration. HF can be detected already in intermediate age-related macular
degeneration stage (A), better highlighted by inverted white-black color optical coherence tomography. HF number increases as the neovascularization
appears, with clear phenomena of pigment migration within outer retinal layers (B). Their number correlates with murine norovirus activity, resulting in
reduction as the lesion is managed by intravitreal antivascular endothelial growth factor injections and the exudation results reabsorbed (C).
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treated patients, although other still-unknown causes might be
also possible.59,72 An international committee of experts
developed the Avoiding Brolucizumab Related Adverse
Event by Scrutinizing Available Evidence (A BRAVE-
SAVE) recommendation to optimize patients’ selection and
management in brolucizumab setting, focusing the attention
on the careful evaluation of proinflammatory risk and the
deep monitoring of the patients.72 From this point of view, the
development of new diagnostic procedures dedicated on
tracing the proinflammatory profile of AMD patients will be
useful to reduce the risk of IOI and to improve treatment
customization.

Therapeutic Considerations
Overall considering all the aspects discussed in the

present survey, AMD pathogenetic mechanisms are more
complex than a mere proangiogenic activity. VEGF un-
doubtedly represents a major pathogenic factor in AMD,
although inflammation might represent a new relevant
therapeutic target. In this section, we discuss only new
therapeutic approaches showing a role against proin-
flammatory phenomena. The rationale of anti-inflammatory
agents in AMD has been explored starting from the
administration of topical treatments, nonsteroidal anti-
inflammatory drugs, whose usage in combination with anti-
VEGF injections has been slightly associated with adjunctive
benefits, although the level of evidence was not high enough
to draw definite conclusions.73 The same low level of evi-
dence concerned the usage of corticosteroids.74,75

After the conduction of Age-Related Eye Disease Study
(AREDS) and AREDS2 clinical trials, the nutraceutical ap-
proach for reducing oxidative stress and proinflammatory ac-
tivity in AMD has been established as a useful approach to
reduce the degenerative burden.76,77 The current AREDS2
formulation based on vitamin C, vitamin E, cupric acid, zinc
oxide, lutein+zeaxanthin, and omega-3 long chain poly-
unsaturated fatty acids represents the only therapeutic option
for dry AMD and a valid support for wet AMD, although the
level of evidence regarding the impact on disease progression is
still low.78 It is worth of notice that the role of long-chain pol-
yunsaturated fatty acids in AMD pathogenesis is quite con-
troversial. Indeed, from one side many studies, including
AREDS and AREDS2 reports, suggested a protective role of
these molecules, being considered important modulators of
inflammation.79 On the other side, the unsaturated structure of
long chain polyunsaturated fatty acids is susceptible to oxidative
degradation by lipid peroxidation, which is an important pro-
moter of oxidative stress, cellular damage, and inflammation.79

For all these reasons, further studies should be focused on the
deep assessment of the involvement of each long chain poly-
unsaturated fatty acid in the pathogenesis of AMD, either
considering the potential protective or negative role.

For wet AMD, promising perspectives came from combined
VEGF and angiopoietin system blockage, thus reducing vascular
permeability, inflammation, and angiogenesis.80 Angiopoietin
system consists in angiopoietin-1 (Ang-1) factor, binding Tie-2
receptor and acting to decrease vascular leakage, and in angio-
poietin-2 (Ang-2), representing an Ang-1 antagonist increasing
leakage, inflammation, and angiogenesis.80 Faricimab (Roche/
Genentech, San Francisco, CA) is a bispecific monoclonal anti-

TA
B
LE

1.
M
ai
n
A
n
ti
-V
EG

F
In
tr
av
it
re
al

M
o
le
cu
le
s
fo
r
th
e
Tr
ea
tm

en
t
o
f
N
eo

va
sc
u
la
r
A
M
D

M
ol
ec
ul
e

N
am

e
C
om

pa
ny

Fo
rm

at
M
ec
ha
ni
sm

of
A
ct
io
n

M
ol
ec
ul
ar

W
ei
gh

t
(k
D
a)

C
lin

ic
al

D
os
e
(m

g)
P
ha

se
3
C
lin

ic
al

T
ri
al
s
A
M
D

B
ev
ac
iz
um

ab
A
va

st
in

H
of
fm

an
n-
L
a
R
oc
he

Ig
G
1
an

ti
bo

dy
A
nt
i-
V
E
G
F
-A

14
7

0.
5

N
A
;
of
f-
la
be
l

R
an

ib
iz
um

ab
L
uc
en
ti
s

N
ov

ar
ti
s
P
ha

rm
ac
eu
ti
ca
ls
C
an

ad
a

In
c

F
ab

fr
ag

m
en
t

A
nt
i-
V
E
G
F
-A

48
0.
4

M
A
R
IN

A
,
A
N
C
H
O
R

A
fl
ib
er
ce
pt

E
yl
ea

B
A
Y
E
R

P
ha

rm
a
A
G
,
G
er
m
an

y
V
E
G
F
R
1/
2-
F
c
fu
si
on

pr
ot
ei
n

A
nt
i-
V
E
G
F
-A

/P
IG

F
/

V
E
G
F
-B

97
-1
15

1.
0

V
IE

W
1,

V
IE

W
2

B
ro
lu
ci
zu
m
ab

B
eo
vu

N
ov

ar
ti
s
P
ha

rm
ac
eu
ti
ca
ls
C
an

ad
a

In
c

sc
F
v

A
nt
i-
V
E
G
F
-A

26
6.
0

H
A
W
K
,
H
A
R
R
IE

R

F
ar
ic
im

ab
V
ab

ys
m
o

R
oc
he
/G

en
en
te
ch

B
is
pe
ci
fi
c
m
on

oc
lo
na

l
an

ti
bo

dy
A
nt
i-
V
E
G
F
-A

/A
ng

-2
14

9
6.
0

T
E
N
A
Y
A
,
L
U
C
E
R
N
E

A
M
D

in
di
ca
te
s
ag
e-
re
la
te
d
m
ac
ul
ar

de
ge
ne
ra
ti
on

;
A
ng

-2
,
an

gi
op

oi
et
in
-2
;
F
ab

,
fr
ag
m
en
t
an

ti
ge
n-
bi
nd

in
g;

F
c,

fr
ag
m
en
t
cr
ys
ta
lli
za
bl
e;

Ig
G
,
im

m
un

og
lo
bu

lin
G
;
P
IG

F
,
pl
ac
en
ta
l
gr
ow

th
fa
ct
or
;
sc
F
v,

si
ng

le
-

ch
ai
n
va

ri
ab

le
fr
ag

m
en
t;
V
E
G
F
,
va

sc
ul
ar

en
do

th
el
ia
l
gr
ow

th
fa
ct
or
;
V
E
G
F
R
,
va

sc
ul
ar

en
do

th
el
ia
l
gr
ow

th
fa
ct
or

re
ce
pt
or
.

Arrigo et al Asia-Pacific Journal of Ophthalmology � Volume 12, Number 2, March/April 2023

162 | https://journals.lww.com/apjoo r 2022 Asia-Pacific Academy of Ophthalmology.

D
ow

nloaded from
 http://journals.lw

w
.com

/apjoo by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 09/20/2023



body targeting both VEGF-A and Ang-2 factor,81 recently ap-
proved for the treatment of neovascular AMD. Endoglin is a
transmembrane glycoprotein working as a coreceptor for several
ligands of the TGF-β family, showing both proangiogenic and
proinflammatory activities.82 A therapeutic approach has been
tested by using DE-122 anti-endoglin antibody (Carotuximab;
Santen, Kita-Ku, Osaka, and TRACON Pharmaceuticals, San
Diego, CA); however, the trial has been discontinued for the lack
of consistent results. The enhancement of Tie-2 activity might
represent another therapeutic target, which is now under inves-
tigation by using AXT-107 (AsclepiX Therapeutics, Jersey City,
NJ), a VEGF receptor-2 inhibitor and a potential stimulator of
Tie-2 activity (NCT04746963).

Since many papers have already been dedicated to the deep
description of complement system inhibitors, we would only
mention the central role of this class of molecules as a promising
new therapeutic option for AMD, especially looking at
GA.83–87 The current molecules designed as complement system
inhibitors include: eculizumab (immunoglobulin G antibody
blocking complement factor C5; NCT00935883), lamp-
alizumab (antigen-binding fragment of humanized monoclonal
antibody blocking complement factor D; NCT02247479,
NCT02247531), avacincaptad pegol (Zimura; anti-C5 aptamer;
NCT02686658, NCT04435366), sirolimus (mammalian target
of rapamycin inhibitor; NCT00766649), pegcetacoplan (com-
plement factor C3 inhibitor; NCT02503332, NCT03525600,
NCT0355613), and Tedisolumab (complement factor C5 in-
hibitor; NCT01527500). The complement system targets of
each drug are shown in Figure 3. It is worth of notice that
eculizumab and lampalizumab failed to reach the primary
targets of the clinical trials.

The integrin system represents an important promoter of
proinflammatory and proangiogenic activities, involved in sev-
eral retinal diseases including AMD and representing a potential
therapeutic target.88 The current anti-integrin molecules tested
in clinical trials include: risuteganib (Luminate, Allegro Oph-
thalmics, CA; NCT03626636), THR-687 (Oxurion, Leuven,
Belgium; NCT05063734), SF-0166 (SciFluor Life Science, MA;
NCT02914639), volociximab (Ophthotech Corporation, NY,
now Iveric Bio; NCT00782093), JSM-6427 (Takeda Pharma-
ceutical Company, Tokyo, Japan; NCT00536016). It is worth of
notice that, although showing promising results, most of in-
tegrin inhibitors are still in early stages of investigations, thus
requiring further studies to draw definite conclusions regarding
their role as a new treatment for AMD. Furthermore, many
other integrin inhibitor molecules are still in preclinical stages of
investigation, including SB-267268 (GlaxoSmithKline),89 AXT-
107 (AsclepiX Therapeutics, NJ),90 JNJ-26076713 (Johnson &
Johnson Pharmaceutical, PA),91 cilengitide (Merck-Serono,
Germany),92 and lebecetin.93

Apurinic/apyrimidinic endonuclease/redox effector fac-
tor-1 (APE/REF-1) is a ubiquitously expressed predominant
apurinic/apyrimidinic endonuclease, involved in cellular ho-
meostasis, oxidative stress regulation and repairing
functions.94 It was demonstrated a role of APE/REF-1 redox
activity in promoting retinal damage and neovascularization
in AMD, thus offering the basis for novel antiangiogenic
therapies.95,96 MRZ-99030 is a novel molecule able to not
disturb with protein–protein interactions between amyloid-β
monomers but interfering with the formation of toxic amy-

loidogenic fibrillar aggregates.97 Amyloid-β is a primary
constituent of drusen, whose accumulations can trigger
proinflammatory and proangiogenic activities.98 Also in this
case, MRZ-99030 might offer a new way to interfere with the
degenerative microenvironment characterizing both dry and
wet AMD. Celecoxib inhibits cyclooxygenase-2, an enzyme
promoting the biosynthesis of proinflammatory prosta-
glandins. The celecoxib-induced reduction of prostaglandin
levels has been associated with significant reduction of pro-
degenerative and proangiogenic mechanisms,99 and could be
the object of a clinical trial focused on AMD.

Adeno-associated viral (AAV) vectors represent another
technology to carry therapeutic molecules for inhibiting in-
flammation. AAVCAGsCD59 has been developed to reduce
the formation of MAC, which represents an important step
for the subsequent activities of the complement system
(NCT03144999, NCT03585556). GT005 is an AAV encoding
complement factor I, designed to downregulate the alternative
complement system pathway (NCT03846193). Furthermore,
AAV might be used to enhance the expression of complement
factor H, thus promoting the inhibition of complement
factor C3.100

Another interesting therapeutic frontier is represented
by systemic hydroxyl-terminated polyamidoamine dendrimer-
triamcinolone acetonide conjugate (D-TA) nanotherapy
targeting the suppression of choroidal inflammation and
neovascularization process in AMD.101

AMD and Inflammation: Unmet Needs
Although the current scientific evidence agrees in con-

sidering inflammation as a major pathogenic component

FIGURE 3. Complement system pathways and targets of the new
experimental drugs. The complement system consists of 3 different
pathways, all converging on the production of the active forms of C3
and C5 (C3a and C5a, respectively) acting as proinflammatory
mediators. The residual parts are fundamental for inducing further
proinflammatory mechanisms. C3b stimulates the splicing of C5 by
C5-convertase enzyme, whereas C5b takes part of the membrane attack
complex, together with C6, C7, C8, and C9. The experimental drugs
under investigations may target different factors involved in the
complement system network.
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both of dry and wet AMD, several aspects remain unsolved.
First of all, a good part of the current knowledge came from
animal models of AMD and neovascularization. Although
providing useful insights, it should be considered that the
mechanisms and mediators involved in AMD pathogenesis
and progression might be different. In induced murine
models of neovascularization, the technique adopted, either
laser, surgery, or genetic approaches, follows different met-
abolic pathways with respect to what happens in the human
AMD retina, thus making assumable that none of these
models can fully reproduce the pathogenic scenario of
AMD-related MNV.102 In addition, murine models are
characterized by the absence of the macula, which is known
to be characterized by retinal cytotypes with higher level of
specialization, with respect to the rest of the retina. Further
immunohistochemical findings coming from human donors
are then warranted to better trace the proinflammatory
mechanisms underlying AMD pathogenesis. With respect to
aqueous and vitreous sampling, it should be considered the
lack of standardized procedures and the potentially high
variability of the samples. Furthermore, the biochemical
profiles of AMD-related mediators might vary among dif-
ferent stages of the disease, thus making possible to hy-
pothesize that many other molecules are involved in AMD
pathogenesis, over than those described in the present sur-
vey. Moreover, the relationship between intravitreal treat-
ments and IOI should be better addressed, deeply
investigating the causes of this complication and considering
new diagnostic paradigms to improve the safety of the
treatments. In addition, several potential new therapies are
currently under investigation, considering multitarget ap-
proaches also focused on proinflammatory pathways.
However, considering the importance of inflammation in
AMD, further diagnostic modalities are dedicated to ob-
taining a precise proinflammatory profile of the patient, and
further powerful anti-inflammatory approaches are war-
ranted to improve the clinical management of AMD patients
and to improve the outcome of the disease.

CONCLUSIONS
In conclusion, AMD shows a very intricate pathogenesis

involving inflammation as a major cause of retinal damage
and disease progression. Proinflammatory pathways involve
several mediators, which might be potential targets of future
treatments. The future development of deep patients’ in-
flammation profile assessments and new multitarget ther-
apeutic approaches will help customize the treatment strategy,
improve the safety, and optimize the morphofunctional
outcome.
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