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Abstract: In decision making, the subjective value of a reward declines with the delay to its receipt,
describing a hyperbolic function. Although this phenomenon, referred to as delay discounting (DD),
has been extensively characterized and reported in many animal species, still, little is known about
the neuronal processes that support it. Here, after drawing a comprehensive portrait, we consider the
latest neuroimaging and lesion studies, the outcomes of which often appear contradictory among
comparable experimental settings. In the second part of the manuscript, we focus on a more recent and
effective route of investigation: non-invasive brain stimulation (NIBS). We provide a comprehensive
review of the available studies that applied transcranial magnetic stimulation (TMS) and transcranial
direct current stimulation (tDCS) to affect subjects’ performance in DD tasks. The aim of our survey
is not only to highlight the superiority of NIBS in investigating DD, but also to suggest targets for
future experimental studies, since the regions considered in these studies represent only a fraction of
the possible ones. In particular, we argue that, based on the available neurophysiological evidence
from lesion and brain imaging studies, a very promising and underrepresented region for future
neuromodulation studies investigating DD is the orbitofrontal cortex.

Keywords: delay discounting; neuromodulation; transcranial magnetic stimulation; transcranial
direct current stimulation; orbitofrontal cortex; TMS; tDCS

1. Introduction

In the last several decades, cognitive neuroscience has assisted the development of
powerful tools that allow the measurement and modulation of brain activity with good
spatial resolution. Such advances have made it possible to answer specific questions about
the relevance of individual brain areas in behavior and cognition, although, in a holistic
perspective, complex networks throughout the brain are thought to drive higher-order
cognitive processes, such as decision making. Nevertheless, even at this higher order of
functioning, our brain can still follow very basic rules, and these might be more rigidly
dependent on the activity of less extended circuits.

For instance, in the context of decision making, delay discounting (DD) is a phe-
nomenon observed when subjects have to evaluate rewards of different magnitudes with
delays to receipt. According to DD, the subjective value of a reward, normally measured
trough intertemporal choice tasks (Figure 1a), declines with the delay to its receipt [1].
Although different models have been applied to fit the devaluation function of DD, the
most established is the hyperbolic (Figure 1b, adapted from [2]). Both DD and hyperbolic
devaluation have been reliably found across different species, indicating that such processes
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are developmentally conserved and thus of great importance for the survival of animals [3].
Even at a biopsychosocial level of analysis, DD plays a crucial role in economic decision
and policy making [4]. The quantitative nature of the process also suggests that it can be
treated as a psychophysical rule, even if in the domain of cognitive functioning.
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Figure 1. Intertemporal choice tasks for characterizing delay discounting in decision making. (a) An
exemplary question from an intertemporal choice task. (b) The hyperbolic discounting function fitted
from the indifference points obtained from the intertemporal choice task.

As a further proof of its importance for physiological functioning, DD has been shown
to be systematically compromised in several psychiatric conditions [5–7], and, thanks to
its trans-species validity, it appears as a very promising avenue for translational research
based on animal models [8].

Depending on the available neuroscientific evidence, several interpretative models
for such phenomena have been proposed which are often mutually exclusive. Based on
functional magnetic resonance imaging (fMRI) experiments, McClure et al. hypothesized
the existence of two interacting systems that support decision making, named β and δ,
the former relating to the “immediacy” nature of the decision outcome and the latter
to “all decisions” [9]; Kable and Glimcher proposed the existence of a unique system
widespread in the brain that computes the subjective value of rewards [10], while Ballard
et al. speculate that the magnitude and the delay of a reward are evaluated by different
neuronal networks [11]. On the other hand, based on non-invasive brain stimulation
(NIBS) experiments, Figner et al. suggested the existence of a dedicated brain area which
actively suppresses the impulsive choice, the one providing an immediate reward [12], and
Nejati et al. postulated the involvement of “hot”, i.e., high-order psychological processes
related to motivation and emotion, and “cold”, purely cognitive, networks in the DD
task [13]. Scherbaum et al. instead argued that performance in an intertemporal choice
task can be described by an attractor model, where the delayed reward choice has to
overcome the “attraction energy/potential landscape” of the immediate reward in order to
be selected [14].

In addition to the quantity and type of neural systems required for the production
of delay discounting, the localization of these systems within the brain remains a topic of
ongoing debate. It is important to acknowledge that, despite the apparent simplicity of the
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underlying logic behind temporal discounting, it is probable that multiple neural systems
interact during the decision-making process; for example, in these tasks, the subject must
perceive and interpret the stimuli that are predictive of the future rewards [15], and sensory
systems have already been implicated in decision processes [16]. Hence, these involved
systems might contribute themselves to the encoding, at least in part, of devaluation.
Although an extreme reductionist/localist approach would not then be appropriate in
this context, the available studies do not reject a priori the hypothesis that DD could be
mostly dependent on the activity of a specific brain area. Nevertheless, based on the above
premises, different methodological approaches might lead to the identification of very
different targets. For these reasons, in this review we will discuss correlative studies, i.e.,
studies based on measuring brain activity during DD tasks, separately from causal studies,
i.e., studies based on brain lesions and neuromodulation, which we consider more valuable
in this context.

2. Neural Correlates of Delay Discounting Assessed by Neuroimaging Studies

Numerous experimental approaches have been employed to investigate the neural
mechanisms underlying DD. In the following, we conduct a qualitative examination of
neuroimaging studies to examine the presence of any potential convergence among the
brain regions identified. Voxel-based morphometry reveals that reduced white matter
(WM) volume in the right prefrontal subgyral area and a higher WM volume in the right
parahippocampus extending to the right hippocampus are associated with steeper DD
performances [17]. Other authors found increased thickness of the bilateral medial pre-
frontal cortex (mPFC) and the anterior/midcingulate cortices to be related to individuals’
tendencies for less discounting during DD tasks [18].

Neuroimaging experiments could potentially unveil the neuronal regions mostly in-
volved in DD, yet the outcomes appear to be contradictory among comparable experimental
settings: in many instances, not only are different brain regions identified as significantly
active during the task, but also, when the active areas are the same, their activities are
related to different features of the DD task. In a session of fMRI experiments, for instance,
Ballard et al. pointed out that increasing future reward delay negatively correlated with
the activation of the left dorsolateral prefrontal cortex (dlPFC), the right posterior parietal
cortex (PPC) and the left temporal-parietal junction (TPJ). The interaction of delay and
magnitude negatively correlated with activation in the right inferior frontal gyrus (IFG).
Interestingly, increasing future reward magnitude correlated with the activity of the mesial
prefrontal cortex (MPFC), the posterior cingulate cortex and the right nucleus accumbens
(NAc) [11]. The NAc is also widely studied in DD experiments using rodents: indeed,
dopamine (DA) release dynamics in the NAcs of rats account for the encoding of both
reward magnitude and delay [19], and modulating the activity of serotoninergic neurons
of the dorsal raphe nucleus (DRN) projecting into the NAc seems to alter intertemporal
choices [20].

On the contrary, McClure et al. observed the activation of the midbrain dopamine
system, including part of the paralimbic cortex, for immediate rewards (the β system) [9].
In rodents, also, the activity of DA neurons in the VTA increases constantly while the
mouse is waiting for the reward, and optogenetically manipulating the DA activity in
this region alters the duration of delay gratification [21]. On the other hand, the lateral
prefrontal and associated parietal areas were activated by all types of intertemporal choices
(the δ system). In another study, McClure et al. showed that the interval of time sensible
to the activation of the β system depends on the type of reward, i.e., money or food [22].
Other authors ascertained that the ventral striatum, mPFC and posterior cingulate cortex
are involved in computing the subjective value of rewards and that their activities correlate
proportionally with subjective value. Curiously, all three regions seem to increase their
activity after subjects receive a reward or immediately before an expected reward [10].

In the comparison with risky decision-making processes, Peters and Büchel [23] found
similar activity patterns to Kable and Glimcher [10]. Furthermore, the OFC and ventral
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striatum were active during both tasks, which supports their role in encoding the value for
the subjective stimulus. Experiments involving Go/NoGo tasks in a group divided into
lower and higher levels of delay of gratification showed lower recruitment of the inferior
frontal gyrus and greater recruitment of the ventral striatum [24], albeit DD tasks were
not directly administered in this experiment. Hare et al. found that a subregion of the left
dlPFC was more active when subjects chose the delayed choice and that, before the choice
was made, the functional connectivity between the dlPFC and mPFC increased, especially
for most delayed rewards [25]. Functional and morphological connectivity unveils the
importance of striatal connections, in particular those with the dlPFC and the amygdala:
the first is associated with less discounting, while the second is associated with a steeper
value [26].

In conclusion, from brain imaging studies, the areas most involved appear to be the
dlPFC, mPFC, OFC, PPC and ventral striatum. Nevertheless, from these experiments we
cannot infer the effective involvement of these regions due to the non-specificity of BOLD
signals or kindred indirect measures. Additionally, given the wide-ranging significance of
these areas in decision making and cognate processes, the observed concurrent activation
may simply be a byproduct of delay discounting (DD). Working memory, for instance,
is implicated in intertemporal choices task [27]. However, the relationship between this
cognitive domain and DD is still elusive: aging-dependent working memory decline
cannot explain the enhanced ability of delay gratification in older people [4]. Moreover,
the hippocampus and basolateral amygdala are able to modulate the discounting process
as well, suggesting that episodic memory circuits of the medial temporal lobe are also
engaged [28].

The results of these studies indicate that the neuronal circuits utilized for delay dis-
counting tasks are highly diverse and likely intertwined with several psychological factors,
sometimes leading to conflicting findings, which prevent the development of a comprehen-
sive model of DD functioning. To address this issue, an active intervention to differentiate
specific brain regions might be very effective. In the following paragraphs, we will present
and discuss causal investigations based on the manipulation of brain activity.

3. Investigating the Causal Role of Neural Circuits in Delay Discounting

The conventional method for investigating the causal relationships, i.e., the precise
role and function, of a specific brain region in a psychological process is through the study
of the consequences of brain lesions, damage or injury to that neural circuit. Unfortu-
nately, these studies provide a highly contentious picture. Indeed, several combinations of
frontal lobe injuries in humans seem not to dramatically alter performance in DD tasks [29],
while lesions of the orbitofrontal cortex (OFC) increase preferences for small, immediate
rewards [30]. It is worth mentioning that lesioned areas are not precisely defined for the
different types of accidents that cause the lesions. Furthermore, plastic processes that follow
brain injury could lead to important and heterogeneous changes in lesioned and proximal
brain structures, likely causing great inter-subject variability. Several neuromodulation
methods have flourished in recent years, including photobiomodulation [31] and optoge-
netic [32,33] and ultrasound [34] stimulation. However, at present, only a few experimental
studies make use of the abovementioned techniques in humans. On the other hand, tran-
scranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS)
represent the most-exploited and -widespread techniques in the current neuroscientific
literature and have already been applied in evaluating the role of several cortical regions
in DD.

Effects of Transcranial Magnetic Stimulation (TMS) Neuromodulation on Delay Discounting

TMS, one of the main NIBS techniques, has proven successful in the treatment of many
severe clinical conditions, including both psychiatric and neurological diseases [35]. For
most clinical applications, the efficacy of TMS is thought to rely on the induction of synaptic
plasticity and neuronal excitability in the targeted areas and circuits, which likely produces
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enduring changes in their activity levels [36–38]. In detail, low-frequency stimulation,
of 1 Hz or less, causes a lasting decrease in cortical excitability, while high-frequency
TMS stimulation, of 5 Hz or more, including either continuous or intermittent theta burst
stimulation (TBS), has the opposite effect [39]. As for basic research, TMS represents a very
valuable tool for investigating the functional roles of specific brain areas in the behavioral
and cognitive functioning of human subjects. In the context of DD, the online manipulation
of neuronal regions could more effectively reveal the functional role of a specific area,
providing not only the opportunity to localize the phenomenon, but also the potential
to decompose it into basic functional domains. This represents a crucial step towards a
complete understanding of DD.

However, even using the very general search string “((delay discounting) OR (in-
tertemporal choice) OR (impulsive choice) OR (temporal discounting)) AND (TMS)” in
PubMed, only nine results were obtained at the time of writing this review. Most of the
experiments described in these studies (summarized in Table 1) investigated the role of
the dlPFC [12,15,40–48], but the results remain controversial. Based on the literature de-
scribed above, one might assume that low-frequency stimulation of the dlPFC would in
turn augment the discounting rate in intertemporal choice tasks, while high-frequency
stimulations, on the contrary, would diminish it. Indeed, high-frequency TMS, when
applied to the dlPFC, reduces DD in smokers, but not the daily amount of cigarettes they
smoke [42], while reducing the activity of the dlPFC with low-frequency stimulation in-
creased discounting [46]. Nevertheless, 20 Hz TMS applied to the dlPFCs of subjects with
depression did not affect DD performance [40]. In a comparison of neuromodulation of
the left and right hemispheres, we also found some conflictual outcomes in the available
literature: only low-frequency stimulation of the left dlPFC causes delay discounting rates
to decrease [12,46].

Two studies investigated the role of the mPFC using high-frequency stimulation,
leading to divergent findings: Zack et al. found that the stimulation had no effect [41],
while Cho et al. obtained a decrease in DD [49]. In another study, continuous theta burst
stimulation was applied to the posterior temporal-parietal junction (pTPJ), leading to an
increase in delay discounting [50].

In the previous section, the OFC and ventral striatum were indicated as potentially
involved regions, but, unfortunately, targeting these brain areas with TMS is rather chal-
lenging due to their locations: while the ventral striatum is too deep to be efficiently reached
by the magnetic field, OFC stimulation, albeit practicable, is painful for the subject due to
the unwanted contraction of facial muscles [51]. Therefore, we can argue that extensive
investigation of the dlPFC compared to the OFC might be related to physical constraints
rather than evidence-based hypotheses.

The absence of information regarding the impacts of stimulation on other relevant
brain regions during delay discounting tasks constrains our ability to comprehend whether
such regions play a direct or indirect role in the process. In addition, the inclusion of
patients suffering from psychiatric disorders in some experiments [40–42,44] could intro-
duce artifacts.
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Table 1. Studies investigating delay discounting performance modulation by TMS. MDD = major depression disorder; PG = pathological gambling; AUD = alcohol
use disorder; MT = motor threshold.

Study Brain Area Protocol Stimulation
Intensity n Disease Discounting

Assessment Effect

Cho et al., 2015 [51] mPFC 10 Hz-rTMS 80% MT 24 - ln (k) Decreased delay
discounting

Zack et al., 2016 [40] mPFC rTMS 80% MT 9 PG k -
Zack et al., 2016 [40] Right dlPFC TBS 80% MT 9 PG k -

Cho et al., 2010 [42] Right dlPFC cTBS 80% MT 7 - k Decreased delay
discounting

Figner et al., 2010 [12] Right dlPFC 1 Hz low-frequency rTMS 54% MT 19 - Immediate choices (%) -

Cho et al., 2012 [46] Right dlPFC cTBS 80% MT 8 - ln (k) Decreased delay
discounting

Schluter et al., 2019 [43] Right dlPFC HF-rTMS 110% MT 40 AUD AUC -

Ballard et al., 2018 [45] Right dlPFC 1 Hz low-frequency rTMS 120% MT 12 - log (k) Increased delay
discounting

Essex et al., 2012 [44] Right dlPFC + right PPC 1 Hz low-frequency rTMS 54% MT 16 - Immediate choices (%) Decreased delay
discounting

Teti Mayer et al., 2019 [39] Left dlPFC 10 Hz 110% MT 20 MDD k -

Sheffer et al., 2013 [41] Left dlPFC HF rTMS 110% MT 47 Smokers k Decreased delay
discounting

Figner et al., 2010 [12] Left dlPFC 1 Hz low-frequency rTMS 54% MT 18 - Immediate choices (%) Increased delay
discounting

Ballard et al., 2018 [45] Left dlPFC 1 Hz low-frequency rTMS 120% MT 15 - log (k) Increased delay
discounting

Yang et al., 2018 [52] Left dlPFC iTBS 80% MT 23 - ln (k) -

Essex et al., 2012 [44] Left dlPFC + left PPC 1 Hz low-frequency rTMS 54% MT 16 - Immediate choices (%) Increased delay
discounting

Soutschek et al., 2016 [49] Right pTPJ cTBS 80% MT 22 - log (k) Increased delay
discounting

Soutschek et al., 2016 [49] Right pTPJ cTBS 80% MT 20 - log (k) Increased delay
discounting

Soutschek et al., 2016 [49] Left S1 cTBS 80% MT 21 - log (k) -
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4. Effects of Transcranial Direct Current Stimulation (tDCS) Neuromodulation on
Delay Discounting

Among non-invasive brain stimulation techniques, tDCS could be a cheaper and
portable alternative to TMS. When one applies a positive current flow through one electrode,
i.e., anodal stimulation, the excitability of the cortical neurons under that area of the scalp is
increased, while a negative current (cathodal) decreases their excitability. Therefore, tDCS
is thought to facilitate or inhibit the electrical activation of targeted brain regions [52].

Brunyé reviewed the latest research on the effects of non-invasive brain stimulation on
decision-making processes and found that some protocols of tDCS can effectively modulate
performance in several domains, such as economic, risky and perceptual decision making,
as well as moral tasks [53].

Searching for tDCS applications in the field of DD, we entered the string “((delay
discounting) OR (intertemporal choice) OR (impulsive choice) OR (temporal discounting))
AND (tDCS)” and were able to find a greater number of studies compared to the TMS case,
although the figure was still as low as 20 (summarized in Table 2).

Most of the experiments investigated the role of dlPFC. Specifically, the anodal stim-
ulation of the left dlPFC appears to reduce discounting rates in most trials [13,54–58];
nevertheless, some authors have found no significant effect of stimulation [59–61]. It is
worth mentioning that the cathodal stimulation of this brain area strongly correlates with
an increase in discounting rates [55,59]. The vmPFC also appears as a promising area,
since its anodal stimulation leads to a reduction in the steepness of the DD curve [60,62].
The role of the OFC has been the focus of a study using tDCS: both anodal and cathodal
stimulation at frontal sites caused a decrease in the discounting of delayed rewards [13].
Nevertheless, after performing a simulation based on SimNIBS (simnibs.github.io) of the
electrical field produced by the electrodes’ configuration used in this study, we observed
the current flowing in most of the PFC subregions, with only marginal, if any, involvement
of the OFC (data not shown).

Finally, the stimulation of the cerebellum [63], the inferior frontal gyrus (IFG; [64]) and
the motor cortex (M1; [61]) has been found to cause no alteration in intertemporal choice
task performance.

One issue with tDCS relates to the fact that stimulation is not well-confined to specific
brain regions, as compared to TMS, not only due to the dimensions of the electrodes but
also depending on the placement of the reference electrode [65]. Even though high-density
tDCS can be an effective choice for increasing spatial confinement, the use of computational
modeling of current flows can also support the better design of experiments targeting
specific regions, including subcortical ones [66]. As for TMS, the plethora of studies
investigating DD with tDCS cannot provide us with enough information for understanding
the neuronal circuits that are involved in this phenomenon. As a matter of fact, even with
tDCS, there is a disproportionate number of studies investigating the dlPFC, although the
OFC and ventromedial prefrontal cortex (vmPFC) clearly appear as promising targets.
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Table 2. Studies investigating delay discounting performance modulation by tDCS. PD = Parkinson’s disease; ADHD = attention deficit hyperactivity disorder;
BN = bulimia nervosa; CUD = cocaine use disorder.

Study Anode Position Cathode Position Current Intensity n Disease Discounting Assessment Effect

Manuel at al., 2019 [63] vmPFC Vertex 2.0 mA 20 - log (k) Decreased delay discounting
Nejati et al., 2021 [61] Right vmPFC Left dlPFC 1.0 mA 20 ADHD children k Decreased delay discounting
Wang et al., 2021 [67] FPC Vertex 1.5 mA 90 - k -

Soutschek et al., 2017 [68] Left FPC Vertex 1.0 mA 27 - Immediate choices (%) -
To et al., 2018 [69] Right IFG Left IFG 2.0 mA 23 Chocolate cravers k -

Nejati et al., 2018 [13] Right OFC Left dlPFC 1.5 mA 24 - k Decreased delay discounting
He at al., 2016 [55] Right dlPFC - 1.5 mA 23 - k -

Shen et al., 2016 [56] Right dlPFC Left dlPFC 2.0 mA 39 - k -
Shen et al., 2016 [56] Right dlPFC - 2.0 mA 39 - k -
Xiong et al., 2019 [58] Right dlPFC Left dlPFC 1.5 mA 20 - k -

Kekic et al., 2017 [57] Right
dlPFC

Left
dlPFC 2.0 mA 39 BN δ Decreased delay discounting

Kekic et al., 2014 [70] Right
dlPFC

Left
dlPFC 2.0 mA 17 Food cravers k -

Hecht et al., 2013 [71] Right
dlPFC

Left
dlPFC 1.6 mA 14 - Immediate choices (%) Decreased delay discounting

Brunelin and Fecteau, 2021 [59] Left
dlPFC

Right
dlPFC 2.0 mA 15 Acutely stressed Immediate choices (%) Decreased delay discounting

He at al., 2016 [55] Left dlPFC - 1.5 mA 22 - k Decreased delay discounting

Shen et al., 2016 [56] Left dlPFC Right
dlPFC 2.0 mA 39 - k -

Shen et al., 2016 [56] Left dlPFC - 2.0 mA 39 - k Decreased delay discounting
Nejati et al., 2018 [13] Left dlPFC Right OFC 1.5 mA 24 - k Decreased delay discounting

Terenzi et al., 2021 [62] Left dlPFC Right shoulder 1.5 mA 28 PD log (k) -
Nejati et al., 2021 [61] Left dlPFC Right vmPFC 1.0 mA 20 ADHD children k -

Xiong et al., 2019 [58] Left dlPFC Right
dlPFC 2.0 mA 20 - k Decreased delay discounting

Kekic et al., 2017 [57] Left dlPFC Right
dlPFC 2.0 mA 39 BN δ Decreased delay discounting

Gaudreault et al., 2021 [72] Left dlPFC Right
dlPFC 2.0 mA 17 CUD k Decreased delay discounting

Colombo et al., 2020 [60] Left dlPFC Right triceps 1.5 mA 13 - RT -

Hecht et al., 2013 [71] Left dlPFC Right
dlPFC 1.6 mA 14 - Immediate choices (%) Decreased delay discounting

Manuel at al., 2019 [63] Vertex vmPFC 2.0 mA 20 - log (k) -
Wang et al., 2021 [67] Vertex FPC 1.5 mA 90 - k -

Soutschek et al., 2017 [68] Vertex Left FPC 1.0 mA 26 - Immediate choices (%) -
Terenzi et al., 2021 [62] Left M1 Right shoulder 1.5 mA 28 PD log (k) -
Wynn et al., 2019 [64] Medial cerebellum Right deltoid muscle 2.0 mA 26 - AUC -

Colombo et al., 2020 [60] Right triceps Left dlPFC 1.5 mA 13 - RT Increased delay discounting
Shen et al., 2016 [56] - Right dlPFC 2.0 mA 39 - k -
Shen et al., 2016 [56] - Left dlPFC 2.0 mA 39 - k Increased delay discounting
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5. Conclusions, Limitations and Future Developments

Although the results of neuroimaging studies do not provide a definitive under-
standing of the specific contributions of brain regions to delay discounting tasks, they
are valuable in identifying potential targets for investigation using non-invasive brain
stimulation techniques. To synthesize the current state of research in this field, we present a
schematic brain map (Figure 2) highlighting the brain regions implicated in delay discount-
ing based on both neuroimaging studies (green areas) and neuromodulation studies (red
areas), with yellow areas indicating the overlap between the two. If we consider the main
hypothesis that DD is processed in a unique area, the left dlPFC appears to be the best can-
didate: excitatory stimulation of this area produces a decrease in discounting [13,42,54–58],
while, on the contrary, its inhibition produces a steeper DD characteristic [12,46,55,59].

Brain Sci. 2023, 13, x FOR PEER REVIEW 11 of 16 
 

5. Conclusions, Limitations and Future Developments 

Although the results of neuroimaging studies do not provide a definitive under-

standing of the specific contributions of brain regions to delay discounting tasks, they are 

valuable in identifying potential targets for investigation using non-invasive brain stimu-

lation techniques. To synthesize the current state of research in this field, we present a 

schematic brain map (Figure 2) highlighting the brain regions implicated in delay dis-

counting based on both neuroimaging studies (green areas) and neuromodulation studies 

(red areas), with yellow areas indicating the overlap between the two. If we consider the 

main hypothesis that DD is processed in a unique area, the left dlPFC appears to be the 

best candidate: excitatory stimulation of this area produces a decrease in discounting 

[13,42,54–58], while, on the contrary, its inhibition produces a steeper DD characteristic 

[12,46,55,59]. 

 

Figure 2. Cortical areas involved in delay discounting. A qualitative reconstruction was obtained 

using the Desikan–Killiany cortical atlas and BrainPainter [67] to summarize the areas involved in 

delay discounting determined by neuroimaging studies (green areas) and non-invasive brain imag-

ing (NIBS; red areas); yellow areas indicate the overlap between the two. 

Nevertheless, there exist several caveats that might limit the significance of the re-

sults. In most of the studies evaluated here, for instance, the rewards were monetary (e.g., 

[13,55,57]), but, even if the general hyperbolic function applies, one cannot exclude that 

primary rewards (i.e., food [64,68] and sexually-related images [69]) are processed by dis-

tinct neural circuits [22]. The timing of rewards, moreover, is very heterogeneous among 

the experimental settings, and this could potentially result in the recruitment of com-

pletely different neuronal circuits [15]. Indeed, the left caudate nucleus, the ventral stria-

tum and the putamen show significantly greater activation during trials in which the hy-

pothetical rewards are associated with delays shorter than one year compared to those 

with delays longer than one year [70]. Finally, other confounds are introduced by the 

Neuroimaging

NIBS

Merge
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using the Desikan–Killiany cortical atlas and BrainPainter [73] to summarize the areas involved in
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(NIBS; red areas); yellow areas indicate the overlap between the two.

Nevertheless, there exist several caveats that might limit the significance of the results. In
most of the studies evaluated here, for instance, the rewards were monetary (e.g., [13,55,57]),
but, even if the general hyperbolic function applies, one cannot exclude that primary re-
wards (i.e., food [64,67] and sexually-related images [68]) are processed by distinct neural
circuits [22]. The timing of rewards, moreover, is very heterogeneous among the experi-
mental settings, and this could potentially result in the recruitment of completely different
neuronal circuits [15]. Indeed, the left caudate nucleus, the ventral striatum and the puta-
men show significantly greater activation during trials in which the hypothetical rewards
are associated with delays shorter than one year compared to those with delays longer than
one year [69]. Finally, other confounds are introduced by the compositions of experimental
groups, some of which include patients with psychiatric and/or neurological conditions.

Furthermore, investigating the roles of areas other than the dlPFC seems very promis-
ing, these areas being underrepresented. OFC activity, above all, seems to be engaged in
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DD, both in humans [9,10,22,23,30,70] and animals. Indeed, the optogenetical stimulation
of serotoninergic terminals of the OFC, rather than the NAc and mPFC, promotes waiting
for behavior in intertemporal choice tasks [71]. Being highly interconnected with the VTA
through the NAc, dlPFC, DRN, amygdala and hippocampus [72], the OFC can easily access
all the information required for the expression of functional DD and at the same time it can
exert top-down control on areas involved in the encoding of reward values. Specifically, the
medial orbitofrontal cortex (OFC) is a component of the corticostriatal circuit implicated in
the assessment of the subjective value of rewards and is thus likely to be involved in delay
discounting [72].

Furthermore, the OFC is particularly vulnerable to age-related reduction in gray
matter volume [74], possibly explaining why older people prefer delayed rather than
immediate rewards. Finally, the WM of the OFC is altered in patients with anorexia
nervosa, who, contrary to most of the psychiatric population, show a preference for most
delayed rewards [75]. Unfortunately, only a few studies have investigated the effects of
non-invasive neuromodulation of this region on DD (Figure 2).

Nevertheless, based on the available evidence, one could hardly formulate a theoretical
model that describes the functioning of DD, since intertemporal choice tasks are likely
to involve the interaction of complex systems comprising several brain regions. Hence,
we believe that future studies should not only better elucidate the role of the OFC in this
context, but also address the potential routes of its interaction with other brain areas known
to be pivotal in decision making.

A potential caveat could arise from the poor comprehension of the effect of TMS and
tDCS protocols on targeted neuronal circuits. For instance, there is a lack of consensus
among authors regarding the extent to which certain TMS protocols can simulate a “virtual
lesion” [76]. Additionally, in the reviewed experiments, delay discounting is evaluated
either in real time, i.e., during the administration of the stimulation protocol, or after
prolonged exposure to treatment.

The active manipulation of brain regions offers a more comprehensive means of
dissecting and comprehending delay discounting than a solely descriptive approach, such
as neuroimaging. Furthermore, given that delay discounting is compromised in a number
of treatment-resistant psychiatric conditions, such as addiction [7], the utilization of non-
invasive brain stimulation techniques may hold potential for clinical applications, as the
rehabilitation of this psychological function may result in improved patient outcomes.
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