
Citation: Chen, J.W.; Heidsma, C.M.;

Engelsman, A.F.; Kabaktepe, E.; van

Dieren, S.; Falconi, M.; Besselink,

M.G.; Nieveen van Dijkum, E.J.M.

Clinical Prediction Models for

Recurrence in Patients with

Resectable Grade 1 and 2 Sporadic

Non-Functional Pancreatic

Neuroendocrine Tumors: A

Systematic Review. Cancers 2023, 15,

1525. https://doi.org/10.3390/

cancers15051525

Academic Editor: Adam E. Frampton

Received: 5 January 2023

Revised: 20 February 2023

Accepted: 22 February 2023

Published: 28 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Systematic Review

Clinical Prediction Models for Recurrence in Patients with
Resectable Grade 1 and 2 Sporadic Non-Functional Pancreatic
Neuroendocrine Tumors: A Systematic Review
Jeffrey W. Chen 1,2,3,*, Charlotte M. Heidsma 1,2,3, Anton F. Engelsman 1,2,3, Ertunç Kabaktepe 1,3,
Susan van Dieren 1,3, Massimo Falconi 4 , Marc G. Besselink 1,3 and Els J. M. Nieveen van Dijkum 1,2,3

1 Department of Surgery, Amsterdam UMC, Location University of Amsterdam,
1081 HV Amsterdam, The Netherlands

2 Amsterdam Center for Endocrine and Neuroendocrine Tumors (ACcENT),
1081 HV Amsterdam, The Netherlands

3 Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
4 Pancreatic Surgery, IRCCS Ospedale San Raffaele, Università Vita-Salute, 20132 Milan, Italy
* Correspondence: j.w.chen@amsterdamumc.nl

Simple Summary: The risk prediction for tumor recurrence after surgery for non-functional pan-
creatic neuroendocrine tumors is a major unmet clinical need. Accurate recurrence risk prediction
could pave the way for tailor-made follow-up protocols in the future, as well as help select suitable
patients for cancer treatment trials. Multiple prediction models have been developed; however, none
are currently incorporated into international guidelines. This systematic review found 13 original
models, of which 3 were validated outside the patient group in which they were developed. The
effectiveness of a prediction model is not proven in the wider population without this validation;
thus, the lack of it hinders the progress toward clinical use. We propose to test the included models in
a large, multinational database to compare their performance. We recommend all authors developing
a prediction model to perform the minimally required tests of model development and to implement
it by creating an online calculator.

Abstract: Recurrence after resection in patients with non-functional pancreatic neuroendocrine
tumors (NF-pNET) has a considerable impact on overall survival. Accurate risk stratification will
tailor optimal follow-up strategies. This systematic review assessed available prediction models,
including their quality. This systematic review followed PRISMA and CHARMS guidelines. PubMed,
Embase, and the Cochrane Library were searched up to December 2022 for studies that developed,
updated, or validated prediction models for recurrence in resectable grade 1 or 2 NF-pNET. Studies
were critically appraised. After screening 1883 studies, 14 studies with 3583 patients were included:
13 original prediction models and 1 prediction model validation. Four models were developed for
preoperative and nine for postoperative use. Six models were presented as scoring systems, five as
nomograms, and two as staging systems. The c statistic ranged from 0.67 to 0.94. The most frequently
included predictors were tumor grade, tumor size, and lymph node positivity. Critical appraisal
deemed all development studies as having a high risk of bias and the validation study as having a
low risk of bias. This systematic review identified 13 prediction models for recurrence in resectable
NF-pNET with external validations for 3 of them. External validation of prediction models improves
their reliability and stimulates use in daily practice.

Keywords: pancreatic neuroendocrine tumor; non-functional; resectable; recurrence; prediction
model; grade 1; grade 2
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1. Introduction

Survival of patients with pancreatic neuroendocrine tumors (pNET) after resection
is largely dependent on the development of tumor recurrence [1]. In contrast to other
pancreatic neoplasms, pNET displays heterogeneous behavior with survival depending on
tumor size, tumor grade, and treatment outcome. Patients with small (<2 cm) nonmetastatic
grade 1 pNET have 5-year survival outcomes approaching 100%. Meanwhile, patients with
larger metastasized grade 2 pNET had a 5-year survival rate of less than 40% [2,3]. Most
patients are diagnosed incidentally with a non-functional pNET (NF-pNET), and only a
subset of these patients eventually develops recurrence after tumor resection [4]. Surgical
resection is the only curative intent treatment for localized pNET [5,6]. Improvements in
the therapeutic armamentarium for advanced-stage disease in pNET have broadened the
treatment options for patients with recurrence after surgery. Systemic therapies such as
somatostatin analogs and chemotherapy appear to provide favorable outcomes in patients
with metastases, while PRRT can be offered to a select group of patients [6–9].

Identifying patients at high risk for recurrence after resection with curative intent is
a challenge faced by clinicians treating patients with a pNET. Currently, no tool is used
to provide patients with standardized postoperative follow-up regimens [10]. Follow-up
programs could be tailored according to the risk of recurrence, reducing the follow-up
intensity of low-risk patients while those at high risk could undergo intensive surveillance.
Furthermore, adjuvant therapy could also be tested in high-risk patients to prevent disease
spread, but no such therapy is offered yet. Various studies have explored the risk factors
associated with recurrence in patients with pNET [11–13]. Combining them into a predic-
tion model is needed to make these tailor-made treatments possible. Multiple prediction
models have been developed, but none of these models have been incorporated either
into European Neuroendocrine Tumor Society (ENETS) guidelines or into clinical practice
yet [7,14,15].

Accurate patient selection for the intensity of follow-up and (neo)adjuvant treatment
is both an unmet need according to the ENETS guidelines, therefore warranting the need
for a clinical prediction model [16]. The aim of this systematic review was to identify and
evaluate currently available prediction models for recurrence in resected grade 1 and 2
NF-pNET and to select models for future use in clinical practice and clinical trials.

2. Materials and Methods

The systematic review followed the Critical Appraisal and Data Extraction for Systematic
Reviews of Prediction Modelling Studies (CHARMS) guideline [17]. The study was re-
ported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [18]. The study was registered at PROSPERO (CRD42022380671).

2.1. Search Strategy

A systematic search was performed in MEDLINE via PubMed, Embase, and the
Cochrane Library for studies published from inception until December 2022. The search
included synonyms for [pancreatic neuroendocrine tumors] combined with [prognos-
tic/predictive/prediction models] and [recurrence] (Appendix A). After the removal of
duplicates, titles/abstracts and full-text articles were screened independently by two au-
thors (J.W.C. and C.M.H.). Differences in opinion were resolved through discussion; if
necessary, a third author (E.J.M.N.v.D.) was consulted. References of included articles were
checked for other potentially eligible studies.

2.2. Eligibility

Studies developing, updating, or validating a clinical prediction model for recurrence
in patients with grade 1 or 2 NF-pNET undergoing resection were included. Models
designed for use in either the preoperative or postoperative setting were included. Studies
providing an absolute probability estimate and those stratifying patients into risk categories
were included, as both strategies might serve the clinical aim of providing more tailored
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treatment. To allow evaluation and comparison of model performance, at least one of
the following performance outcomes had to be reported: c statistic, area under the curve
(AUC), R2, Brier score, sensitivity, specificity, calibration plots, or calibration statistics.

Review papers, abstracts, case studies, studies with patients aged less than 18 years,
and non-human studies were excluded. Articles including patients with diseases other
than pancreatic neuroendocrine tumors (such as pancreatic ductal adenocarcinoma or
intraductal papillary mucinous neoplasm) or other neuroendocrine tumor localizations
were excluded. Studies were excluded if more than 20% of its population were patients
with WHO grade 3, genetic background, metastatic or functional pNET. If not reported,
the studies were included but marked as a risk of bias. Studies validating a staging system
(i.e., TNM, WHO, AJCC) without any modification were not included, because the limited
discriminative strength of these systems was one of the reasons for developing better
models [19–21].

2.3. Data Extraction and Analysis

Data extraction and critical appraisal were performed independently by two authors
(J.W.C. and C.M.H.). Articles were categorized into development/model update studies
and validation studies. A data extraction sheet was used to extract data for all studies and
included: the first author, year of publication, pre- or postoperative setting, sample size,
study interval, source of data, countries of inclusion, number of centers, predicted outcome,
included predictors, model performance, information on validation and number of citations.
For development/update studies, model development method, number of prognostic
factors screened, and final model presentation were additionally extracted. Predictors
included in regression analyses were collected and scored for statistical significance. If
multiple models were developed or tested, the prediction model with the highest c statistic
or the model proposed by the authors was included. Meta-analysis was not possible
due to heterogeneity in prediction model variables and outcomes. Critical appraisal was
performed following the CHARMS guidelines [22]. The PROBAST critical appraisal tool
was used for the assessment of methodological quality [23]. A clinical epidemiologist was
consulted for this review [S.v.D.].

2.4. Definitions and Terminology

A prediction model was defined as “a formal combination of multiple predictive
factors from which risks of a specific endpoint can be calculated for individual patients” [24].
Clinical prediction models should “discriminate between individual patients who do and
do not experience a specific event (discrimination), should make accurate predictions
(calibration), perform well across different patient populations (generalizability) and be
readily interpretable” [25,26].

Model performance can be assessed by its ability to discriminate and calibrate. Dis-
crimination (i.e., do patients who have the outcome also have a higher predicted risk than
those who do not have the outcome) can be quantified through measures such as sensitiv-
ity, specificity, area under the receiver operating curve, or by the concordance statistic (c
statistic) [27,28]. A c statistic of 1.0 represents a perfect model, while a score of 0.5 indicates
that the model is not better at prediction than random selection [29]. In binary outcomes,
the AUC is equal to the c statistic. In turn, calibration is important for model performance
since it compares the predicted probability of the outcome (i.e., recurrence) with the actual
outcome. It is most often visualized using calibration plots or assessed as goodness of
fit, which can be quantified using the Hosmer–Lemeshow test (p < 0.050 indicates poor
calibration).

Model validation is imperative and can be performed using several different tech-
niques. It is possible to internally validate (reproducibility) followed by external validation
(generalizability). Internal validation can be performed through split-sample validation
(training and test set), cross-validation (development in random segments of the population,
tested in the remaining segment and repeating this process), and bootstrapping (random
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samples of the same size are drawn with replacement) [24,29]. Ideally, all prediction models
should undergo not only internal but also external validation. Geographical (using a new
cohort from a different center), temporal (same center, but patients at a different time
interval), and fully independent (new research group at a different center) are the three
most important external validation options [25,29].

The term tumor grade was used for both the World Health Organization (WHO)
definition of tumor grade as well as the Ki-67 index, unless specified otherwise. Tumor
grade was defined according to the WHO 2017 classification: grade 1 (Ki-67 index of
<3%), grade 2 (Ki-67 index of 3–20%), and grade 3 (Ki-67 index of >20%), unless otherwise
specified [20]. Histological grade was defined as the grading of tumor cell differentiation
into well, intermediate, or poorly differentiated.

3. Results
3.1. Baseline Characteristics

The search yielded 1883 studies (Figure 1), of which 14 could be included in this
review containing 3583 patients, of which 1668 (46.6%) were female. The median age
was 58 years (IQR 53–60). The median follow-up duration was 48 months (IQR 40–56).
Model development data from 3241 patients were available for this systematic review.
Models were developed with a median number of 140 patients (IQR 87–235) consisting
of 83.0% non-functioning pNET cases, 6.7% metastatic, and 7.9% genetic. The population
consisted of 1527 patients (62.7%) with a WHO grade 1 tumor, 836 patients (34.3%) with a
grade 2 tumor, and a small percentage of patients had grade 3 (n = 73, 3.0%). No patients
received (neo)adjuvant therapy. The most commonly performed procedure was distal
pancreatectomy (n = 1179, 46.7%), followed by pancreatoduodenectomy (n = 696, 27.6%),
enucleation (n = 233, 9.2%), central pancreatectomy (n = 95, 3.8%), and total pancreatectomy
(n = 53, 2.1%). The 5-year RFS was reported by seven studies, reporting a median survival
of 74% (IQR 72.0–84.6) [30,31]. The 5-year overall survival was reported by six studies with
a median survival of 90.6% (IQR 80.1–91.0) [32–37]. Full details of other characteristics can
be found in Table 1.

Table 1. Prediction model characteristics.

Author
(Year) n Setting Country Single or

Multicenter
Study

Interval
Model

Development
Method

Study
Type

Follow-Up
(IQR)

Outcome
Predicted

Definition of
Outcome

Ballian
et al.

(2009)
43 Postop USA Single

center 1991–2007
Univariable Cox

regression
analysis

DEV 68 months RFS (5-year)
DSS (5-year)

Radiographic
evidence of new

tumors

Dong
et al.

(2021)
416 Postop China 8 centers 1997–2016

Uni- and
multivariable

logistic
regression
analysis

DEV 31 months
(11.3–56.6)

RFS (5-,
10-year)

Time from surgery
to the time of

identification of
suspicious imaging

findings or
biopsy-proven

tumor

Fisher
et al.

(2019)
224 Preop USA 8 centers 2000–2016

Univariable Cox
regression
analysis

DEV 37 months
(15–62) RFS

Time of resection
until the time of
radiographic or

pathological
evidence of tumor

recurrence

Genç
et al.

(2018)
211 Postop Netherlands,

Italy 3 centers 1992–2015

Uni- and
multivariable

Cox regression
analysis

DEV 51 months
(29–72)

RFS (5-year)
DSS (5-year)

RFS: Percentage of
patients without
recurrence in the

pancreas, new
positive lymph

nodes, or distant
metastasis after

resection
DSS: Percentage of
patients who have

not died due to
pNET
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Table 1. Cont.

Author
(Year) n Setting Country Single or

Multicenter
Study

Interval
Model

Development
Method

Study
Type

Follow-Up
(IQR)

Outcome
Predicted

Definition of
Outcome

Heidsma
et al.

(2021)
342 Postop

Australia,
Austria,
France,

Germany,
Netherlands,
Sweden, USA

7 centers 1991–2018

Uni- and
multivariable

Cox regression
analysis

VAL 50.5 months
(22.3–103) RFS (5-year)

Date of the first
cross-sectional

imaging on which a
new local or

metastatic lesion
was detected

Liu et al.
(2013) 75 Postop USA Single

center 1993–2009

Uni- and
multivariable

Cox regression
analysis

DEV
69 months

(range
1–212)

RFS

Time from surgery
to death due to

disease or to
disease recurrence

at local, regional, or
distant sites,

whichever occurred
first

Primavesi
et al.

(2020)

D:
160
V:

204
Preop

Austria,
Germany, Italy,

Netherlands

D: 6 centers
V: 4 centers

D:
1998–2017

V:
1990–2018

Uni- and
multivariable

Cox regression
analysis

DEV 57.5 months
(28.3–83.3)

RFS (5-,
10-year)
DSS (5-,
10-year)
OS (5-,

10-year)

RFS: Time from
initial curative

intent to
recurrence/last

follow-up
DSS: Time to pNET
related-death/last

follow-up
OS: Time from first

surgery to
death/last
follow-up

Pulvirenti
et al.

(2021)

D:
632
V:

328
Postop Australia, UK,

USA 2000–2016
Univariable Cox

regression
analysis

DEV 51 months RFS (5-year)

Date of curative
surgery until date
of first recurrence
identified through

routine
postoperative

CT-scans

Sho et al.
(2019) 140 Postop USA Single

center 1989–2015

Uni- and
multivariable

Cox regression
analysis

DEV 56 months RFS (5-year)

Time to the last
known date the

patient was disease
free

Sun et al.
(2019) 81 Preop China Single

center 2009–2017

Uni- and
multivariable

Cox regression
analysis

DEV
16 months

(range
6–108)

RFS (1-, 2-,
3-year)

Day of surgery to
the time of local

recurrence or
distant metastatic

disease on
radiological images,

last clinical
follow-up, or death

Viúdez
et al.

(2016)
92 Postop USA Single

center 1998–2010

Uni- and
multivariable

Cox regression
analysis

DEV n.r. RFS
OS

Time of surgery to
date of relapse,
death, or last

follow-up

Wei et al.
(2021)

D:
125

V: 77
Postop China Single

center 2012–2018

Uni- and
multivariable

Cox regression
analysis

DEV 41 months
(27–59.8)

RFS (3-,
5-year) n.r.

Zhou
et al.

(2017)
125 Preop China Single

center 2003–2016

Uni- and
multivariable

Cox regression
analysis

DEV 45.8 months
(SD 37.01)

RFS
OS

RFS: Time from
date of surgery to
date of recurrence

OS: Time from date
of initial diagnosis
until date of death
from any cause or
date of last known

contact

Zou et al.
(2020) 245 Postop China Single

center 2002–2018

Uni- and
multivariable

Cox regression
analysis

DEV 40 months RFS (3-,
5-year)

RFS: Date of
recurrence in any

forms

IQR, interquartile range; Postop, postoperative; Preop, preoperative; USA, United States of America; UK, United
Kingdom; D, development cohort; V, validation cohort; DEV, development study; VAL, validation study; OS,
overall survival; DSS, disease-specific survival; RFS, recurrence-free survival; SD, standard deviation; n.r., not
reported.

3.2. Preoperative Prediction Models

Four out of thirteen prediction models were designed for preoperative use [31,33,36,37],
with c statistics ranging from 0.78 to 0.94. Sun et al. used preoperative MRI-imaging
variables to calculate the recurrence risk [31]. Tumors exhibiting hypoenhancement and
low apparent diffusion coefficient values were associated with worse RFS after curative
resection. Fisher et al. included serum chromogranin A > 5 times the upper limit and
the presence of a recurrent tumor as recurrence predictors [33]. Their sensitivity analysis
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suggested that chromogranin A might have a low predictive value in low-grade tumors.
Primavesi et al. included C-reactive protein ≥ 0.2 mg/dL and the presence of distant
metastasis as predictors [36]. However, in their study, C-reactive protein was not associated
with inferior 5-year RFS (72.2% vs. 70.4%, p = 0.89) or increased recurrence rate (25.6% vs.
21.2%, p = 0.34). The model by Zhou et al. was designed for preoperative prediction of
both recurrence and survival, but only the AUC of overall survival was reported (0.83) [37].
Their study analyzed the predictive strength of “gamma-glutamyl transferase/lymph-node-
ratio” as a preoperative predictor, but the predictive strength of adding this predictor to the
AJCC staging system (AUC 0.81 [95% CI 0.73–0.90]) or WHO classification system (AUC
0.81 [0.73–0.88]) was inferior to the combination of the AJCC staging system and WHO
classification (AUC 0.83 [0.75–0.91]). Full details on prediction model performance can be
found in Table 2.
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Table 2. Prediction model performance.

Author
(Year) Model Type No. of Variables

Screened Predictors in Final Model
Discrimination,

c Statistic
(95% CI)

Calibration Internal
Validation

External
Validation

Ballian
et al.

(2009)
Scoring system 9

Tumor size ≥ 5 cm,
Hochwald grading system

(mitotic index + necrosis),
positive lymph node, R1

resection

RFS: 0.80
(0.68–0.91)
DSS: 0.81

(0.73–0.90)
n.r. n.r. n.r.

Dong
et al.

(2021)
Nomogram 10

Tumor grade (2010),
tumor burden score ((max.
tumor diameter)2 + (number

of tumors)2), positive
lymph node

0.75
(0.66–0.79)

Good
performance

Bootstrapping:
5000 iterations
0.71 (0.65–0.75)

n.r.

Fisher
et al.

(2019)
Scoring system 6

Tumor grade 2 or 3,
chromogranin A > 5×

upper limit, surgery for
tumor recurrence, tumor

size ≥ 4 cm

See internal
validation n.r.

Split-sample
validation
AUC: 0.78

n.r.

Genç et al.
(2018) Nomogram 11

Tumor grade (2010),
positive lymph node,
perineural invasion

0.81
(0.75–0.87)

GOF; Hosmer
Lemeshow

Chi-square 11.25,
p = 0.258

Performed n.r.

Heidsma
et al.

(2021)
Nomogram N/A

Tumor grade (2017),
positive lymph node,
perineural invasion

0.77
(0.71–0.83)

Calibration slope
0.74 N/A N/A

Liu et al.
(2013) Staging system 9

Ki-67 index, Hochwald
grading system (mitotic

index + necrosis)
0.79 n.r. n.r. n.r.

Primavesi
et al.

(2020)
Scoring system 7 CRP > 0.2 mg/dL, tumor

size > 3 cm, metastasis

RFS: AUC 66.5
(58.9–74.2)

DSS: AUC 77.3
(67.2–87.5)

OS: AUC 68.9
(61.5–76.4)

n.r. n.r. n.r.

Pulvirenti
et al.

(2021)
Nomogram 11

Number of positive lymph
nodes, Ki-67 index, tumor

size, vascular and/or
perineural invasion

0.85 Performed Bootstrapping:
100 iterations

0.84
(0.79–0.88)

Sho et al.
(2019) Scoring system 13

Tumor size ≥ 5 cm,
positive lymph node,
tumor grade (2010)

0.82
(0.72–0.92) n.r. Bootstrapping:

1000 iterations n.r.

Sun et al.
(2019) Nomogram 22

Tumor size > 2 cm,
hypoenhancement,
apparent diffusion

coefficient

0.91
(0.84–0.98) Performed n.r. n.r.

Viúdez
et al.

(2016)
Scoring system 14

RFS: AJCC, tumor size,
tumor grade,

Immunohistochemistry
Prognostic Score (MGMT,

PHLDA-3, NDRG-1
expressions)

OS: AJCC, age > 60,
Immunohistochemistry

Prognostic Score (MGMT,
PHLDA-3, NDRG-1

expressions)

RFS: 0.80
OS: 0.79 n.r. n.r. n.r.

Wei et al.
(2021) Nomogram 20

Metastasis, tumor grade,
Immunoscore (0.261 × the
status of CCL19) + (0.490 ×
the status of IL-16) + (0.123
× the status of CD163) +

(0.044 × the status of
CD8PT)–(0.011× the status

of CD8IT)–(0.493× the
status of IRF4)

0.92
(0.88–0.95) Good agreement Bootstrapping 0.86

(0.80–0.93)

Zhou et al.
(2017) Staging system 27 AJCC, tumor grade (2010) OS: AUC 0.83

(0.75–0.91) n.r. n.r. Not
performed

Zou et al.
(2020) Scoring system 11

Positive lymph node,
tumor size, tumor grade

(2017)

3 year: 0.91
5 year: 0.94
8 year: 0.93

Good
performance n.r. n.r.

GOF, Goodness-of-Fit; N/A, not applicable; CRP, C-reactive protein; DSS, disease-specific survival; RFS,
recurrence-free survival; OS, overall survival; n.r., not reported; AJCC, American Joint Committee on Cancer.
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3.3. Postoperative Prediction Models

Nine prediction models were developed for postoperative use [11,30,32,34,35,38–41].
The c statistics ranged from 0.75 to 0.94. Four studies created a model based on a com-
bination of tumor grade, tumor size, and lymph node positivity (Table 2) [11,30,35,40].
The most frequently included predictor was tumor grade (n = 11) [11,30,34,35,38–41]. All
but two studies followed the WHO 2017 cut-off values for tumor grade [20]. Pulvirenti
et al. incorporated the Ki-67 index as a continuous variable in their nomogram [11]. Sho
et al. used a Ki-67 index <8% as a low tumor grade cut-off value for its scoring system [35].
Tumor size was the second most included predictor (n = 11) [11,30,32,35,40,41]. Two models
incorporated tumor size as a continuous variable [11,40], two models used a cut-off value
of ≥5 cm [32,35], one used a cut-off value of ≥2.5 cm [41], and one model incorporated
tumor size into a tumor burden score [30]. Viúdez et al. developed the Immunohisto-
chemistry Prognostic Score as a predictor (high Immunohistochemistry score; HR 2.68
[95% CI 1.60–4.49], p = 0.03), where they quantified the immunohistochemistry patterns of
DNA-methylation [42]. Wei et al. also developed their own predictor, i.e., the Immunoscore
(low Immunoscore; HR 0.13 [0.06–0.39], p < 0.001), where the immune response in the
tumor microenvironment was quantified [39]. Furthermore, Ballian et al. and Liu et al.
incorporated the Hochwald grading system as a predictor, where a mitotic rate of >2 per
50 high-power field and signs of histopathological necrosis were associated with a higher
recurrence rate [32,38,42]. However, association through multivariable analyses was not
reported in both studies.

3.4. Predictor Selection

Predictor selection based on uni- and multivariable Cox regression analysis was per-
formed in nine studies (Table 1) [31,34,35,37–41,43]. Three studies selected predictors
through univariable Cox regression analysis [11,32,33] and Dong et al. through logistic re-
gression analysis [30]. Although stating that the model was built on the beta coefficients of
multivariable analysis, only the results of their univariable analysis were reported by Dong
et al. [30,44]. The included studies screened a median of 11 variables (range 9–17) and in-
cluded a median of 3 variables (range 2–7) in their final prediction model. Tumor grade was
most frequently associated with RFS in 10 out of 11 included analyses after regression analy-
sis (91%) [11,30,33–35,37–41] (Table 3), followed by tumor size (73%) [11,31–33,35,38,40,41].
The patients’ sex was analyzed by seven studies, but only one study showed an association
with RFS (Male; HR 2.22 [95% CI 1.14–4.31], p = 0.018) [37].

Table 3. Predictor association with recurrence-free survival.
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Pulvirenti (2021) b � � � X � � � � � X 10

Dong (2021) b � � X X X X � X � 9

Liu (2013) a � � � X X X � X 8

Ballian (2009) b � � X X � � X 7

Zhou (2017) a � X � X X X � 7

Primavesi (2020) a X X � X � 5

Zou (2020) a � � X X X 5
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Table 3. Cont.
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Fisher (2019) b � � X X 4

Sho (2019) a � � � � 4

Sun (2019) a X � X X 4

Genç (2018) a � � � 3

Viúdez (2016) a � � X 3

Wei (2021) a � X X 3

Predictor analyzed by
study (out of 13), n (%)

11
(85)

11
(85)

8
(62)

7
(54)

6
(46)

6
(46)

4
(31)

4
(31)

3
(23)

3
(23)

3
(23)

2
(15)

2
(15)

2
(15)

Predictor significance, n
(%)

10/11
(91)

8/11
(72)

6/8
(75)

1/7
(14)

2/6
(33)

3/6
(50)

2/4
(50)

2/4
(50)

2/3
(67)

1/3
(33)

0/3
(0)

1/2
(50)

1/2
(50)

1/2
(50)

a Studies that performed both uni- and multivariable analysis; b Studies that performed only univariable analysis;
� = statistically significant association; X = no statistically significant association; AJCC American Joint Committee
on Cancer.

3.5. Grading

Heidsma et al., Pulvirenti et al., and Zou et al. all reported grading following the
2017 WHO guidelines [11,40,43]. Two studies failed to report which grading guideline
was used [33,39]. Two used the Hochwald criteria for histologic grading [32,38]. The other
studies followed the 2010 WHO tumor grading system.

3.6. Discrimination

Discrimination of the prediction models, expressed in c statistic or AUC, was described
in all studies (Table 2). However, Zhou et al. only provided the c statistic for OS, despite
presenting their model as a predictor for recurrence also [37]. The c statistic for predicting
RFS ranged between 0.67 and 0.94. The c statistic for predicting OS ranged from 0.69
to 0.83 [36,37,41]. Primavesi et al. tested their model development for three different
outcomes (RFS, DSS, OS), of which it worked best for the prediction of DSS (77.3 [67.2–87.5]).
However, it had the lowest discrimination score of the included models, with an AUC of
66.5 [36]. The highest discrimination was reported by the prediction model of Zou et al.,
with a c statistic of 0.94 for 5-year RFS [40].

3.7. Calibration

Calibration was reported by seven studies [11,30,31,34,39,40,43]. Although all studies
concluded that their model had good agreement of calibration, differences were present.
The calibration curves presented by Pulvirenti et al. and Wei et al. showed a relatively high
tendency to underpredict the risk of recurrence compared to the other models [11,39]. Genç
et al. did not present their calibration curves but did provide a Hosmer–Lemeshow test
with a Chi-square of 11.25, p = 0.258, indicating good calibration [34].

Four studies performed an internal validation using bootstrapping [11,30,35,39]. One
performed a split-sample validation and had a median c statistic of 0.78 (range 0.74–
0.84) [33]. Two studies reported the c statistic both before and after internal validation [30,41].
Dong et al. performed a bootstrapping method with 5000 iterations and went from a c
statistic for RFS of 0.75 (95% CI 0.66–0.79) to 0.71 (0.65–0.75). Viúdez et al. reported a c
statistic of 0.80 before and 0.78 after internal validation. The c statistic for OS was 0.79
before and 0.76 after internal validation.
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Three out of thirteen original prediction models were externally validated [11,34,39].
The prediction model by Genç et al. was externally validated by Heidsma et al. [34,43]. The
c statistic of the development model was 0.81 (95% CI 0.75–0.87) and 0.77 (0.71–0.83) in the
validation model. Heidsma et al. performed a sub-analysis in patients with a tumor > 2 cm,
in which the model performed better with a c statistic of 0.79 (0.73–0.85). Pulvirenti
et al. developed a model with a c statistic of 0.85, which remained comparable after
externally validating it in a separate international cohort (c statistic 0.84 [0.79–0.88]) [11].
The development model by Wei et al. had a c statistic of 0.92 (0.88–0.95) and a c statistic of
0.86 (0.80–0.93) in the external validation [39].

3.8. Critical Appraisal

Methodological assessment of the included studies showed poor overall quality, pri-
marily in the Analysis domain (Table S1). All developed models were scored positive for
risk of bias. Most studies did not have the minimally required number of patients with an
event (recurrence) in the development cohorts for the prevention of overfitting. Dong et al.
and Fisher et al. were the only two models with enough events per variable, 66 events and
60 events, respectively [30,33]. However, Fisher et al. developed their preoperative predic-
tion model using postoperatively determined tumor grade [33]. Only the models reported
by Genç et al., Pulvirenti et al., and Wei et al. were externally validated [11,34,39]. The
models developed by Wei et al. and Viúdez et al. were flagged for concerns of applicability
due to the need for highly specific predictors (Immunoscore and Immunohistochemistry
Prognostic Score, respectively) in order to use these models in daily clinical practice [39,41].

4. Discussion

This first systematic review to evaluate existing prediction models for recurrence in
patients with resectable grade 1 and 2 NF-pNET found 13 model development studies
and one validation study. Most models were presented as scoring systems, followed by
nomograms and modified staging systems. The most frequently incorporated risk factor
was tumor grade, which had the highest rate of significant association with recurrence after
regression analyses (91%). However, 10/13 (76.9%) models were not externally validated,
thereby hindering the progress towards clinical implementation. The studies that did
perform an external validation also performed the minimally required performance tests of
prediction model development, i.e., discrimination, calibration, internal validation, and
external validation.

Taking the outcomes of the critical appraisal into account, the results of the develop-
ment models by Genç et al. (c statistic 0.77), Wei et al. (0.86), and Pulvirenti et al. (0.84)
appear to be the most reliable since these are the only studies that performed the min-
imally required tests [11,34,39]. The predictors used by these three models were tumor
grade/Ki-67 index, positive lymph nodes, tumor size, vascular and/or perineural inva-
sion, metastasis, and ‘Immunoscore’. Tumor grade was incorporated in all three models.
The incorporated predictors are in line with the significant predictors described in the
literature [45].

Genç et al. and Wei et al. both dichotomized their continuous variables, including
the Ki-67 index [34,39]. Dichotomizing a continuous variable leads to a loss of predictive
ability due to an assumption of a constant level of risk above and below the threshold [46].
A separate study by Genç et al. showed that variations within the margins of WHO grade
2 (Ki-67 index 3–20%) led to significant differences in recurrence rate [12]. Lopez-Aguiar
et al. reported that these significant changes in prognosis even occur within the margins of
grade 1 (0–2.99%) [47]. In turn, dichotomized variables are user-friendlier than continuous
variables and will likely result in the more frequent use of the prediction model. For
instance, frequent internationally used models, such as the CHA2DS2VASc-model for
calculating stroke risk for patients with atrial fibrillation [48] and the Wells’ criteria model
for predicting the risk of a pulmonary embolism [49], also use dichotomized variables.
As such, the loss of the predictive ability of the variable does not outweigh the benefit of
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dichotomizing it since one of the major pitfalls of prediction models is that they are seldom
used in clinical practice.

Wei et al. developed a unique predictor where they quantified the immune response
in the tumor microenvironment into the Immunoscore [39]. A low Immunoscore, i.e., a
pattern of low peritumoral inflammatory activity and high intratumoral CD8+ activity, was
associated with a better RFS. Several studies have reported significant associations between
immune response patterns in the tumor microenvironment and NET prognosis [50–52].
Takahashi et al. found that certain immune patterns were complementary to the WHO 2017
grading system, providing an argument for a possible augmenting effect if combined [53].
Immunoscores could be a powerful addition in the future; however, the scarcity of literary
evidence speaks against suggesting this model for immediate implementation. Moreover,
the highly specific tests required to determine the immune response patterns and the risk
of interobserver variations make it less likely that the model would be internationally used
in daily clinical practice.

Contrary to the other models, Pulvirenti et al. preserved the continuous function of its
numeric predictors in their nomogram, i.e., Ki-67 index, tumor size, and positive lymph
nodes [11]. A possible confounding factor is that they combined vascular invasion and
perineural invasion into a single predictor, while the variables were associated with different
hazard ratios (8.55 [95% CI 5.14–14.21] and 5.91 [3.72–9.40], respectively). Thereby risking
underprediction of RFS when only vascular invasion is present, overprediction when only
perineural invasion is present, and losing predictive strength when both predictors are
present. Additionally, calibration of the nomogram by Pulvirenti et al. showed a tendency
to underpredict if the 5-year RFS was between 55 and 80%. However, in clinical practice,
their model could be used to identify patients with low-risk tumors (>80% chance of 5-year
RFS) that would benefit from a low-frequency postoperative follow-up.

Selecting the correct population is particularly important in models predicting out-
comes in pNET. They exhibit heterogeneous behavior, which challenges accurate risk
stratification [54]. Current guidelines now recommend watchful waiting for asymptomatic
NF-pNET ≤2 cm due to its favorable prognosis [7,14,55]. Yet, a total of 39.8% of patients
from 8 of the development cohorts in this review had a tumor of ≤2 cm [31,34,35,37–41].
The model by Genç et al. was additionally externally validated by Heidsma et al. for pNET
>2 cm and resulted in better discrimination [34,43]. The risk of recurrence is likely to be
underestimated by a prediction model if a large proportion of indolent tumors are included.
Future studies should exclude these small, low-grade tumors to increase the relevance of
its population when studying resectable cases or perform a separate analysis for this group.

The main practical advantage of using a prediction model is its ability to discrimi-
nate patients with a low risk for recurrence from high-risk patients. The recurrence risk
threshold up to which pNET can be considered low-risk tumors differed among the studies
included in this review from 3.1% to 19.9% [11,31,33,35,37–40,43]. Prospective studies using
recurrence prediction models are needed to determine the optimal cut-off value, as well as
the optimal timing for postoperative imaging.

The results of this review should be interpreted considering several limitations. First,
the studies included in this systematic review are prone to publication bias since poorly
performing prediction models are rarely publicized. Second, a frequent risk of bias was
the low number of events per variable due to small sample sizes. For the screening of a
single predictor, the rule of thumb states that at least 10 events are required to eliminate
bias and preferably more [56–58]. However, the studies developing a prediction model
for recurrence screened a median of 11 predictors, while the median number allowed was
less than 2. This means that the predictors that were selected are susceptible to overfitting.
Third, predictor selection based on univariable analysis could result in omitting potentially
relevant predictors or inclusion on the basis of accidental association. For example, as
seen in Table 3, tumor grade shows a strong association with RFS. The omission of this
predictor by Sun et al., due to it not reaching statistical significance after univariable
analysis, probably resulted in a less effective prediction model [31]. Preferably, predictors
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should be chosen based on their relationship to the predicted outcome and not solely on the
basis of their statistical significance [59]. However, the use of univariable analysis to choose
predictors for the multivariable analysis is common practice and, if handled correctly,
should not pose a problem for the reliability of a model. Fourth, the most important bias-
introducing factor was the lack of external validation. The stated accuracy of a prediction
model cannot be made certain without it, thus limiting the applicability of the results of
this systematic review. It provides a strong argument for multicenter collaboration when
developing and validating prediction models for patients with an NF-pNET. It is otherwise
nearly impossible to obtain sufficient events (i.e., recurrence) to create a reliable prediction
model.

The main strength of the current systematic review is the strict list of eligibility criteria
that was used to create a homogeneous study population, thereby limiting confounding
factors that influence the risk of recurrence. This study also provides an overview of the
current landscape of developed prediction models as well as an overview of the predictive
strength of the analyzed and included predictors. This information could be used for the
selection of predictors for multivariable regression analysis when developing a prediction
model.

5. Conclusions and Future Directions

Despite the development of several prediction models for the recurrence of NF-pNET
after surgery, they are rarely evaluated on their performance in other participant data.
To judge the true performance of a prediction model, it must be externally validated to
evaluate model overfitting or deficiencies in the statistical modeling [29,60]. None of the
models have undergone impact analysis in prospective studies. This might be a reason
why none of the models are incorporated into (international) guidelines. Preferably, a
model should be investigated in multiple external validation studies and later, ideally,
also in a (randomized) controlled trial [61]. We propose to test the included prediction
models in a large, multinational cohort to compare their performance. The best-performing
prediction model could thereafter be applied in both clinical and trial settings to determine
risk outcomes in pNET. In turn, models presented as an online calculator may be the
most suitable for regular use since they are easier to access for clinicians and insightful for
patients. The only model currently available online is the model by Genç et al. [34]. We
highly recommend all authors developing a prediction model to calibrate, discriminate,
and validate their results and to implement the model by creating an online calculator.
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//www.mdpi.com/article/10.3390/cancers15051525/s1, Table S1: Critical appraisal table.
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Appendix A. Search Term (1883 Hits)

(pancreas neuroendocrine[tiab] OR pancreatic neuroendocrine[tiab] OR pancreas neuro-
endocrine[tiab] OR pancreatic neuro-endocrine[tiab] OR (“Pancreatic Neoplasms”[Mesh] AND
(neuroendocrine[tiab] OR neuro-endocrine[tiab)) OR pnet[tiab] OR pnen[tiab] OR pancreatic
NET[tiab] OR panNEN[tiab] OR panNENs[tiab]) AND (“Predictive Value of Tests”[Mesh] OR
“Nomograms”[Mesh] OR predict*[tiab] OR score[tiab] OR scores[tiab] OR scoring system[tiab]
OR scoring systems[tiab] OR nomogram*[tiab] OR prognostic[tiab]).
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