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ABSTRACT 

Multiple Sclerosis (MS) is very heterogenous in its clinical course. Over the years, 

some patients develop no or mild disability, while in others the disease is extremely active 

and leads to a rapid deterioration of neurological functions that severely affects their 

quality of life. Despite great advancements in understanding some of the mechanisms 

related to the disease and the availability of many drugs that can hamper its 

manifestations, the biological basis underlying such heterogeneity is still largely 

unknown. 

In this PhD project, we aimed to study some of the aspects that characterize the clinical 

diversity of MS, adopting measures of disease activity, severity, and progression. The 

ultimate goal is to pave the way to treatment tailoring and potentially to future drug 

development. To achieve our aims, we took advantage of a broad set of information on 

the clinical, molecular (genetic, epigenetic, transcriptomic, neurofilaments), and 

epidemiological (environmental factors) level, to gain a comprehensive insight on some 

of the explored mechanisms. 

In the genetic study of disease activity, we were able to prioritize some loci that are 

fundamental in the modulation of the immune system, as for the Semaphorins and the 

NAMPT, and that represent promising candidates for future targeted validation. In this 

regard, we also provide evidence that vitamin D levels causally affect disease activity.  

As a key point, in this project multiple independent evidence coming from the genetic, 

the epigenetic and the environmental studies pointed out a role of genes related to the 

activity of sex hormones, strongly suggesting that their known effect on the immune 

system is responsible for disease manifestations, and that puberty is the fundamental 

scenario in which the MS pathobiology takes place.  

Finally, we discovered a novel locus in the HIF1A gene that affects the susceptibility 

to develop secondary progressive MS, likely driving chronic silent inflammation through 

the response to oxidative stress, as demonstrated by multiple levels of evidence involving 

gene expression, methylation, pharmacogenomics, neurofilament levels and the 

paramagnetic rim lesions. 

In conclusions, our findings provide a meaningful insight on different processes that 

are important in driving clinical heterogeneity in MS, prompting the effectiveness of an 

integrated approach when studying complex multifactorial diseases. 
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1. Introduction: Multiple sclerosis 

1.1 Epidemiology and clinical presentation 

Multiple sclerosis (MS) is a chronic immune-mediated disorder of the central nervous 

system (CNS), characterized by demyelination and neurodegeneration. 

Globally, MS is a major cause of disability, especially among young people, with a 

peak incidence between the age of 20 and 40 years. Its prevalence is approximately 50-

300 patients per 100,000 people and varies across different countries, affecting 2-3 

million individuals worldwide (Figure 1.1). MS is nearly three times more common in 

women than in men (Walton et al, 2020).  

The clinical manifestations of the disease are diverse, as they depend on the area of 

the CNS that is affected by the demyelinating lesions, typically considered the hallmark 

of the disease. Demyelinating lesions can occur in the brain, the spinal cord, and the optic 

nerves, resulting in a variety of symptoms. The most common are sensory and motor 

impairment, myelitis, optic neuritis, and bladder dysfunction. At onset, the majority of 

patients present with a relapsing-remitting (RR) clinical course, which is typically 

characterized by relapses, monophasic episodes of neurological dysfunction followed by 

a different degree of recovery, from complete to poor. 

 

 

Figure 1.1. Prevalence of MS in the world. From: Atlas of MS (https://www.atlasofms.org/)   
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About 10% of MS patients has a primary progressive (PP) course (Koch et al, 2009), 

which is characterized at onset by a slow and progressive development of disability over 

time, despite few or no relapses. Patients presenting with a relapsing-remitting course 

may experience a secondary progression (SP), characterized by a continuous clinical 

worsening after the initial relapsing phase.  

The most widely used tool to quantify disability in MS patients is the Expanded 

Disability Status Scale (EDSS) score (Kurtzke JF, 1983). It is an ordinal score based on 

the clinical evaluation of eight functional systems (pyramidal, sensory, visual, bladder 

and bowel, cerebral, brainstem, cerebellar and other), and it ranges from 0 (no signs of 

neurological dysfunction) to 10 (death) (Table 1.1). Despite many criticisms, the EDSS 

score is still the main tool to assess disability progression and severity, both in clinical 

routine and pharmacological trials (Meyer-Moock et al, 2014).  

 

EDSS  Disability 
 0.0 Normal neurological exam  
 1.0 No disability, minimal signs in one FS 
 2.0 Minimal disability in one FS  
 3.0 Moderate disability in one FS or mild disability in three or four FS though fully 

ambulatory.  
 4.0 Fully ambulatory without aid, self-sufficient, up and about some 12 hours a day 

despite relatively severe disability; able to walk without aid or rest greater than 500 
meters.  

 5.0 Ambulatory without aid or rest for about 200 meters; disability severe enough to 
impair full daily activities 

6.0 Intermittent or unilateral constant assistance (cane, crutch, brace) required to walk 
about 100 meters with or without resting 

7.0 Unable to walk beyond approximately 5 meters even with aid, essentially restricted 
to wheelchair; wheels self in standard wheelchair and transfers alone; up and about 
in wheelchair some 12 hours a day 

8.0 Essentially restricted to bed or chair or perambulated in wheelchair, but may be out 
of bed itself much of the day; retains many self-care functions; generally has effective 
use of arms 

9.0 Helpless bed patient; can communicate and eat 
10.0     Death due to MS 

Table 1.1. Description of the main EDSS steps. 
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  1.2 Diagnosis 

The current diagnostic criteria for MS rely upon the satisfaction of demonstration of 

both spatial and temporal dissemination of the disease, as a core feature. The last revision 

of the diagnostic criteria was published in 2018 and allows an accurate diagnosis, based 

on the combination of clinical, Magnetic Resonance Imaging (MRI) and cerebrospinal 

fluid (CSF) analysis data (Thompson AJ et al, 2018).  

Brain and spinal cord MRI are fundamental for the diagnosis of MS. First, MRI is 

needed to fulfill the spatial dissemination criterion, which is based on the evidence of 

demyelinating lesions in at least two out of four areas of the CNS (cortical/juxtacortical, 

periventricular, infratentorial and spinal cord) (Thompson AJ et al, 2018). Second, the 

evidence of the simultaneous presence of gadolinium-enhancing and non-enhancing 

lesions can also demonstrate the dissemination in time, provided that the patient has had 

at least one clinical attack with symptoms identified by the clinician (Thompson AJ et al, 

2018). The dissemination in time can also be demonstrated by the presence of oligoclonal 

bands in the CSF or the history of at least 2 relapses (Thompson AJ et al, 2018). MRI is 

also crucial in identifying other conditions that may mimic MS and that must be carefully 

ruled out before making diagnosis of MS (Filippi et al, 2019).  

Research is now focusing on improving the performance of the diagnostic criteria for 

MS, for example including symptomatic optic nerve involvement or the presence of 

lesions showing a central vein sign in the determination of dissemination in space 

(Brownlee et al, 2018; Sinnecker et al, 2019). 

 

1.3 Pathogenesis 

MS has a complex multi-factorial pathogenesis, which is still largely unknown, despite 

many recent advancements. Genetic and environmental factors play a central role in 

determining both the susceptibility to the disease and its manifestations, which involve 

inflammatory and neurodegenerative mechanisms (Filippi et al, 2018). 

Briefly, the migration of autoreactive immune cells from the periphery to the CNS and 

the initiation of an inflammatory process against the molecular components of myelin has 

been considered for a long time the core feature of the pathobiology of the disease (Bar-

Or et al, 2021) (Figure 1.2). In a more modern view, such mechanisms integrate with an 

underlying neurodegenerative process, which seems to arise early in MS and to proceed 
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in parallel and in combination with the inflammatory counterpart (Bar-Or et al, 2021). 

Crucial is the role of microglial cells that react to inflammation, become overly activated 

contribute to maintain a pro-inflammatory and neurodegenerative status (Absinta et al, 

2021).   

 

 
Figure 1.2. Mechanisms of myelin damage in multiple sclerosis. From Liu et al, 2022. 
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1.3.1 Genetic factors 

In the past years, different studies have given an important contribution in assessing 

the role of genetic factors in the susceptibility to MS (Goris et al, 2022). On this purpose, 

the latest and largest study was published in 2019 by the International Multiple Sclerosis 

Genetics Consortium (IMSGC) (International Multiple Sclerosis Genetics Consortium, 

2019). The study investigated the effect of millions of Single Nucleotide Polymorphisms 

(SNPs) on the susceptibility to develop the disease in 47,351 patients with MS and 68,248 

controls of European ancestry. Thanks to this effort, 233 independent genetic loci have 

been found to impact the risk of developing MS, including 32 risk variants in the Human-

Leukocyte Antigen (HLA) system and 1 risk variant in chromosome X. This study 

included SNPs which were defined as common in the general population, having a Minor 

Allele Frequency (MAF) ≥ 5%. Cumulatively, such variants explain about 40% the 

heritability of MS. Variants in the HLA system are the strongest genetic factor that has 

merged so far, since the first studies that have been published (Goris et al, 2022). HLA 

class I and II alleles code for molecules that are involved in the presentation of antigens 

to CD8 and CD4 lymphocytes, the activation of which seems to be an important step in 

the cascade of MS pathogenesis. In particular, HLA-DRB1*1501, tagged by the SNP 

rs3135388 (De Bakker, McVean et al., 2006), seems to exert the biggest risk, with an 

Odds Ratio (OR) of approximately 3 (Brynedal et al, 2007; Sawcer et al, 2011). 

Conversely, the HLA-A*02 allele has shown a protective effect (Sawcer et al, 2011). In 

a previous study from the IMSGC the role of variants with a low frequency (1-5%) were 

investigated, and significant associations emerged (International Multiple Sclerosis 

Genetics Consortium, 2018), even though the relative contribution of these variants seems 

more modest, also considering that larger cohorts are needed to successfully identify more 

loci. Many reports on small cohorts tried to determine the role of rare SNPs (MAF < 1%), 

but in lack of proper validation studies the contribution of these variants still remains 

unclear (Harding et al, 2019).  

 

1.3.2 Environmental factors 

The impact of some environmental factors on the risk of developing MS has been 

explored by many studies. Overall, the environment is fundamental in the pathobiology 
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of the disease, considering that only part of the risk of MS has been attributed to genetic 

predisposition (Olsson et al, 2017). 

 

1.3.2.1 Epstein-Barr Virus 

Among the environmental factors, particular attention has been gathered by the 

Epstein-Barr Virus (EBV) infection. A consistent body evidence has shown an 

association between EBV seropositivity and MS, as nearly all the patients have detectable 

IgG antibodies against EBV (Houen et al, 2020). A recent study has assessed that the risk 

of developing MS in 955 people diagnosed with MS after EBV infection was increased 

by 32-fold after EBV infection, while the risk was not affected when infection from other 

viruses occurred (Bjornevik et al, 2022). In the same work, the levels of serum 

neurofilament light chain (NFL), a recognized marker of ongoing inflammation and 

neuroaxonal degeneration, started to increase only after EBV infection. These data 

provide strong evidence that EBV is a very important factor in determining MS, even 

though the biological mechanisms underlying this association are still not known. EBV 

resides in a latent state in B cells, and it has been suggested that this factor could 

contribute to activate B lymphocytes through mechanisms of molecular mimicry (Houen 

et al, 2020). Conversely, studies showing invasion of the CNS of EBV-infected cells and 

the presence of EBV positive cells in MS lesions have yielded controversial results 

(Sargsyan et al, 2010; Hassani et al, 2018). Therefore, despite the epidemiologic 

correlation, the causal mechanism underlying EBV infection and the increased risk of MS 

is still unclear. 

 

1.3.2.2 Cigarette smoking 

Smoking, both active and passive, is an important factor for MS, in a dose-dependent 

manner (Ghadirian et al, 2001; Hedström et al, 2011). The main hypothesis is that 

peripheral activation of lymphocytes occurs in lungs in patients who smoke as a 

consequence of chronic pulmonary irritation. Autoreactive lymphocytes then migrate into 

the CNS and initiate the inflammatory process that leads to demyelination and formation 

of MS lesions. This mechanism is also supported by the finding that the use of oral 

tobacco, very popular in Scandinavian countries, was not associated with increased risk 

of MS (Hedström et al, 1999). Conversely, its content in nicotine, which showed 
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neuroprotective effect in preclinical models, may reduce the risk of MS, but larger studies 

are needed to validate this result (Nizri et al, 2009).  

Interestingly, smoking dramatically increases the risk of MS in carriers of the HLA 

risk variants in a synergistic way. People who smoke, who are carriers of the risk allele 

HLA-DRB1*15:01 and who lack the protective HLA-A*02 allele have an OR of 

developing MS of ~14 (Hedström et al, 2011).  

 

1.3.2.3 Vitamin D 

Higher vitamin D levels, favored by greater sun exposure, reduce the risk of MS 

(Munger et al, 2006; Salzer et al, 2012), partly explaining why MS is more common in 

Northern European countries (together with a higher prevalence of HLA-DRB1 risk allele 

in these populations). Higher vitamin D levels were also found to be associated to a better 

outcome in terms of disease activity and disability progression in patients treated with 

interferon beta-1b (Fitzgerald et al, 2015). 

Through a major regulatory role on gene expression, vitamin D exerts 

immunomodulatory effects in both adaptive and innate immunity (Gombash et al, 2022). 

Some studies have suggested a neuroprotective effect of vitamin D, given its role in the 

regulation of calcium intake in neurons (Hausler et al, 2019) and in the reduction of 

oxidative stress through the Nrf2 transcription factor (Nachliely et al, 2019). 

 

1.3.2.4 Gut microbiota, obesity, and other factors 

The term ‘gut microbiota’ is referred to commensal and pathogenic bacteria that 

colonize the intestine. Quite recently, an increasing body of evidence is promoting its role 

in MS. In the preclinical setting, mice raised in a germ-free environment were resistant to 

the induction of the Experimental Autoimmune Encephalomyelitis (EAE), the most 

widely used animal model for MS. EAE was then triggered when microorganisms were 

later introduced with feeding (Berer et al, 2011). Subsequent studies were successful in 

showing that the gut microbiota is significantly different in MS compared to controls (Lee 

et al, 2010; Miraza et al, 2017; Berer et al, 2017), and in RR-MS versus progressive MS 

(Cox et al, 2021). 

The driving hypothesis is that the microbiota is able to regulate the activity and the 

maturation of both T and B lymphocytes, in addition to a stimulatory effect on the 
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production of serotonin, which in turns regulates the immune system itself (Cosorich et 

al, 2017; Correale et al, 2022). The gut microbiota is influenced by genetic and dietary 

factors, and therefore an effort in assessing the role of specific dietary interventions as 

potential therapeutic options for MS is ongoing (Correale et al, 2022).  

Obesity also seems to have a role in MS. Multiple studies have pointed out that obesity 

early during adolescence is associated with a greater risk of developing MS (Munger et 

al, 2013; Langer-Gould et al, 203), also supported by Mendelian randomization studies 

(Mokry et al, 2016; Gianfrancesco et al, 2017). Biologically, obesity can act on multiple 

pathways that either sustain a pro-inflammatory environment or lead to decreased vitamin 

D levels, which than alters immunomodulatory functions.  

Data showing the effect of other environmental factors, like alcohol or caffeine 

consumption, are to date more controversial, as in small-medium studies opposite effects 

have been found (Olsson et al, 2017).  

 

1.4 Treatment 

Over the years, patients and clinicians have seen a great expansion in the number of 

pharmacological options to treat MS. The use of Disease-Modifying Treatments (DMT), 

which have been proven effective in dramatically reducing the occurrence of new 

relapses, has led to an improvement in patients’ quality of life (Jongen, 2017). The 

therapeutic approach is modelled on various individual characteristics, considering 

clinical and radiological disease activity, prognostic factors, comorbidities, and patient’s 

compliance.  

Different lines of treatment are available for MS, with increasing level of efficacy but, 

alongside, side effects and risks. Therefore, two strategies to treat MS at onset have been 

largely debated: the escalating and the induction approach (Prosperini et al, 2020). In the 

escalating approach, patients may be exposed to the risk of assuming drugs with under-

target efficacy, despite less frequently developing complications and side effects from the 

treatment. In the induction approach, the clinicians identify patients at a higher risk of 

short and long-term disability and start early with a high-efficacy treatment, controlling 

for the potential risk. The rationale for this approach is that disease activity in early 

relapsing phases predicts long-term disability and represents a strong negative prognostic 

factor (Scalfari et al, 2014; Fisniku et al, 2008). 
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DRUG MECHANISM OF ACTION LINE TARGET 
Interferons Regulation of adaptive immunity, blood-brain barrier permeability I RR-MS 
GA Anti-inflammatory shift from Th1 to Th2 lymphocytes I RR-MS 
Teriflunomide Inhibition of dihydroorotate dehydrogenase and reduced immune cell growth I RR-MS 
DMF Inhibition of Nrf-2 and NF-kB pathways, reduction of oxidative and inflammatory stress I RR-MS 
Natalizumab Blocking of alfa-4 integrin; impaired lymphocytes and monocytes migration into the CNS II RR-MS 
S1P modulators Reduction of lymphocytes migration from the lymph nodes to the CNS II RR-MS1 

SP-MS2 
Cladribine Purine analogue, depletion of lymphocytes II RR-MS 
Anti-CD20 Depletion of CD20+ B lymphocytes II RR-MS 

PP-MS3 
Mitoxantrone Type II topoisomerase inhibitor II RR-MS 
Off-Label: 
Azathioprine 
Rituximab 
Cyclophosphamide 

 
Inhibition of purine synthesis 
Depletion of CD20+ B lymphocytes 
Alkylating agent 

- - 

 
Table 1.2. IFN=Interferon. Drugs in the Interferons group are: IFN-beta-1a (Avonex, Rebif-22, Rebif-44, Plegridy), IFN-beta-1b (Betaferon, 
Extavia). GA=Glatiramer acetate (Copaxone). Drugs in the S1P group are: fingolimod (Gylenia), Siponimod (Mayzent), Ozanimod (Zeposia). 1. 
Fingolimod and Ozanimod are approved for RR-MS. 2. Siponimod is approved for SP-MS. Drugs of the anti-CD20 group are: Ocrelizumab 
(Ocrevus) and Ofatumumab (Kesimpta). 3. Ocrelizumab is approved for PP-MS. 
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Even though recent evidence has suggested a better long-term outcome in patients treated 

with early intensive therapy versus first-line moderate-efficacy DMTs (Harding et al, 

2019), the debate on the topic is still open. 

A schematic overview on the currently approved DMT and the off-label drugs used in 

MS, their mechanism of action and their target is reported in Table 1.2. 

 

1.5 Disease activity in MS: key elements 

As mentioned, MS has a very heterogenous clinical course in terms of disease activity. 

Some patients present with a very low burden of relapses and lesions over the years and 

accumulate no or mild disability, while in others the disease has a much more pronounced 

activity that leads to a rapid deterioration of patients’ quality of life (Díaz et al, 2019). 

Hence, markers that can reliably give indications on the probability of future 

accumulation of disability and that can be used early, after the diagnosis of MS is 

formulated, are strongly needed. Finding molecular markers may also give an important 

insight on the biological mechanisms underlying the manifestations of the disease, which 

can prompt new therapeutic options. 

Demographic and clinical prognostic factors (as age at onset, gender, disability level 

at onset, etc.) have been in use for a long time, and their role in the clinical practice is still 

valid (Tintore et al, 2015). However, they are not able to detect all the aspects involved 

in the disease. The ideal markers could aid the clinicians when deciding on treatment, 

with the goal of minimizing the risk of under or overestimation of the potential 

consequences of the disease or of the treatments.  

The first step in order to accomplish this goal is to have reliable and powerful outcomes 

that capture the manifestations of the disease, and its related disability. The availability 

of effective and reliable outcomes of disease activity is key to achieve meaningful results 

in a clinical or translational study. 

Over the past few years, the definition of disease activity has evolved, along with new 

acquisitions coming from basic, clinical, and translational research. In a more classical 

view, the term ‘disease activity’ referred to the more easily measurable manifestations of 

the disease, as the clinically defined relapses. The first outcomes used in clinical trials 

were often unidimensional, as for example the annualized relapse rate (ARR) (Nicholas 

et al, 2012). Although the ARR gives precious information, this kind of outcome is limited 
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in terms of sensitivity. With the advent of MRI and its routine use in the diagnosis and 

follow-up of MS, more sensitive measures of disease activity were introduced in clinical 

trials, targeting, for example, the number of new or gadolinium-enhancing lesions. Most 

importantly, composite outcomes of disease activity were then introduced, integrating 

different levels of information from the clinical evaluation and the MRI examinations. In 

this regard, the No Evidence of Disease Activity (NEDA) status has emerged as a widely 

accepted measure of disease activity, and it has been implied in many clinical trials 

(Banwell et al, 2013). In its more modern version, the NEDA status is often translated 

into the NEDA-3 status, as its definition is composed by three dimensions: relapses, 

EDSS progression and MRI activity (Banwell et al, 2013). Many researchers have also 

recently suggested to expand the NEDA-3 status into a NEDA-4, adding measures of 

brain atrophy at MRI (Kappos et al, 2016; Kappos et al, 2021).  

Indeed, nowadays, the assumption that disease progression, clearly evident from the 

clinical point of view, is silent at the imaging level as well, has radically changed. Despite 

the absence of new lesions at conventional MRI examinations, consistent brain and spinal 

cord changes are actually detected, if investigated with high sensitivity methods, and 

provide a robust measure of underlying degeneration (Rocca et al, 2017). Moreover, a 

consistent body of evidence has shown that, in some patients, neurodegeneration and 

brain volume loss start early, even in the RR course (Eshaghi et al, 2018; Cagol et al, 

2022).  

After establishing that measuring brain atrophy was fundamental in MS, the scenario 

radically evolved again over the past few years, thanks to the identification of the 

paramagnetic rim lesions (PRL) by the means of advanced susceptibility imaging 

techniques (Absinta et al, 2016; Absinta et al, 2018) (Figure 1.3). The PRL represent the 

in vivo correlate of the chronic active lesions, that are known from pathological studies 

to be more frequent in patients with progressive MS (Kuhlmann et al, 2017). The burden 

of PRL is associated with disability measures in patients with MS (Absinta et al, 2019), 

mirroring a process characterized by silent inflammation which is not detected by 

conventional MRI. The silent inflammation is nevertheless a manifestation of the disease 

and can be seen as part of the definition of disease activity, even though it is not 

characterized by discrete relapses that are easily recognized. 
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Figure 1.3. Paramagnetic Rim Lesions, adapted from Martire et al, 2022. Example of a 
paramagnetic rim lesion (PRL) at 3-Tesla MRI in a patient with MS. Information on the different 
MRI sequences and image resolution is reported by the authors. FLAIR = Fluid Attenuated 
Inversion Recovery; SWI = Susceptibility Weighted Imaging; EPI = Echo Planar Imaging. 

 

Nowadays, many drugs that hamper inflammation in the RR course of MS are 

available, and they are effective in limiting the number of relapses or measures of disease 

activity at conventional MRI. Conversely, very little is known whether already available 

treatments have an effect also on the silent inflammation which is captured by the PRL. 

Therefore, it has been suggested that the PRL will rapidly become a fundamental outcome 

of disease activity in future trials, and some effort in this regard is already ongoing 
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(Martire et al, 2022). Interesting measures will be, as an example, the proportion of PRL 

in which the paramagnetic rim fades over time after the beginning of a pharmacological 

treatment, or the mean volume of the PRL, as some of these lesions tend to expand over 

the time due to the underlying inflammatory process and are referred to a slowly 

expanding lesions (Elliott et al, 2019). 

Another important concept, that is strictly related with disease activity and disability 

progression, is disease severity. Disease severity ranks the disability that affects patients 

and therefore is a comprehensive measure that reflects, at a more functionally oriented 

level, the damage due to underlying disease activity (Kister et al, 2020). As mentioned, 

the most widely accepted tool to rate disability in MS is the EDSS score. This score faces 

many pitfalls, mainly due to non-linearity of its measurement (Kister et al, 2020). To 

overcome this limit, the use of other severity scores with a linear distribution has been 

suggested. Among the most important severity scores in MS, it is worth mentioning the 

Multiple Sclerosis Severity Score (MSSS), which ranks patients’ disability based on 

EDSS score adjusted for disease duration (Roxburgh et al, 2005), and the Age-Related 

Multiple Sclerosis Severity (ARMSS) score, which relies on EDSS and age 

(Manouchehrinia et al, 2017). The use of ARMSS instead of MSSS allows to prevent a 

potential bias due to the uncertainty on when exactly the disease started in many patients, 

also considering that most likely the biological cascade of MS is activated earlier than 

evident clinical manifestations occur (Manouchehrinia et al, 2017).  

In conclusion, our view is that the clinical diversity of the disease is sustained by 

different shades of the same integrated biological process. It is clear that one single 

comprehensive outcome measure does not exist; therefore, in the present work, we will 

imply different kinds of outcomes to study the same entity from different angles. 
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2. Aims of the work 

Understanding the biological basis of a disease is crucial for a better management of 

patients, the successful development of new therapeutic options (Dugger et al, 2018) or 

for the repurposing of already available drugs (Pushpakom et al, 2019).  

As we discussed above, MS is heterogenous in terms of clinical manifestations, and 

very little is known about the biological mechanisms that underlie this heterogeneity. 

Gaining such knowledge would be extremely important for different reasons: 1) to have 

meaningful markers that could help a tailored treatment; 2) to drive future drug 

development, especially for progressive MS, for which the treatment is still largely an 

unmet need. 

Therefore, the overall aim of this work is to provide an insight on the mechanisms that 

contribute to the clinical heterogeneity that characterizes MS, focusing on measures of 

disease activity, severity, and progression. Our approach will include different kinds of 

molecular and environmental information, and it will be modelled on the basis of an 

underlying clinical reasoning. An overview of the design of the present work is shown in 

Figure S2.1. 

 

Specifically, our aims are: 

1. To assess the molecular determinants (genetic, epigenetic and vitamin D levels) of 

disease activity assessed by the NEDA-3 status; 

2. To investigate whether the exposure to specific environmental factors early during 

lifetime affects future disease severity; 

3. To study potential genetic factors driving chronic silent inflammation in progressive 

MS. 
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RESULTS 

3. Study 1: Genetic factors underlying disease activity 

In this first study, we aim to explore the genetic factors that could potentially influence 

the risk of disease activity in MS. Despite many works that have assessed the genetic 

determinants of the susceptibility to MS (IMSGC, 2011; IMSGC, 2019), very few papers 

investigated measures of disease activity, and they were mainly focused on relapse hazard 

only (Hilven et al, 2018; Vandebergh et al, 2021). 

Herein, we adopt the No Evidence of Disease Activity (NEDA-3) status, a well-

established composite outcome to identify disease activity in MS (Banwell et al, 2013). 

Specifically, we will imply the NEDA-3 status to assess whether there are genetic factors 

that affect the risk of having signs of disease activity at 2-years follow-up from the 

beginning of a new first-line DMT, meta-analyzing an Italian cohort of 1,183 patients and 

a French cohort of 299 patients. The clinical features of the two cohorts are reported in 

Table 3.1. Inclusion of the patients is discussed in the Methods section (Chapter 9.1.1) 

 

 OSR CHUT p-value 

No. 1,183 299 - 

F/M ratio 2.25 (819/364) 3.27 (229/70) <0.001 

Age (mean, SD) 34.56 (9.67) 36.20 (10.32) 0.014 

Disease duration 5.42 (6.06) 5.90 (6.56) 0.84 

Median EDSS at BL (IQR) 1.5 (1.0-2.0) 1.5 (1.0-2.5) 0.34 

Relapses before BL (mean, SD) 1.38 (0.98) 1.45 (1.13) 0.71 

DMT started at BL IFN 774 (65%) 

GA 327 (28%) 

DMF 69 (6%) 

TERI 12 (1%) 

IFN 156 (53%) 

GA 46 (15%) 

DMF 54 (18%) 

TERI 39 (14%) 

- 

NEDA-3 at 2 years EDA 782 (66%) 

NEDA 401 (34%) 

EDA 223 (75%) 

NEDA 76 (25%) 

0.0062 

Table 3.1. Clinical and demographic features of the cohorts included in the genetic study. 
Differences between the two cohorts were tested by the Mann-Whitney or chi-square test, as 
appropriate, and the p-value is reported in the rightmost column. F/M: Female/Male. 
SD=standard deviation. EDSS = Expanded Disability Status Scale score. IQR = interquartile 
range. BL = baseline. DMT = Disease-Modifying Treatment. IFN = interferon. GA = Glatiramer 
acetate. DMF = Dimethyl Fumarate. TERI = Teriflunomide. EDA = Evidence of Disease Activity.  
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3.1 Results 

3.1.1 Meta-analysis results  

After Quality Controls (QC), first we performed the two preliminary single-cohort 

GWAS for OSR and for CHUT, finding no genome-wide significant association. 

Different Single Nucleotide Polymorphisms (SNPs) showed a suggestive association with 

the NEDA-3 status (Appendix: Supplementary Results, Table S3.1 and Table S3.2). 

We then proceeded with a fixed-effect meta-analysis to increase statistical power, taking 

advantage of the combination of the two cohorts. We meta-analyzed 3,948,158 SNPs that 

were common to the two cohorts, in a total of 1,408 patients. A quantile-quantile (QQ) 

plot showing the genomic inflation factor is shown in Figure 3.1, suggesting no 

significant population stratification (λ= 1.012).  

 

 
Figure 3.1. QQ-plot showing the genomic inflation factor (λ) for the meta-analysis. 

 

In the meta-analysis, we did not find any genome-wide significant association using a 

Bonferroni correction to account for multiple testing (p < 5e-08), but many variants 

showed a p-value which was suggestive for association with the NEDA-3 status (p < 1e-

05). The results of the meta-analysis are reported in Table 3.2 and a Manhattan plot is 

shown in Figure 3.2. The heterogeneity level explored by Cochran’s Q and I2 was overall 

acceptable, considered the difference in sample size between the two cohorts (Table 3.2).  
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Figure 3.2. Manhattan plot of the genome-wide meta-analysis between OSR and CHUT. Red line 
= genome-wide significant threshold (p-value < 5e-08); blue line = threshold for a suggestive 
association (p-value < 1e-05) 

 
We then used the OpenTarget VariantToGene pipeline to assign genes to variants, in 

a way which is both position- and function-informed. The top-associated gene for each 

of the top-associated variant is reported in the rightmost column in Table 3.2. 

All the technical details regarding genotype imputation, single-cohort QC, genome-

wide association studies, meta-analysis and the OpenTarget pipeline are described in the 

Methods section (Chapter 9.1). 

The top-associated signal, tagged by rs2158725 (p=2.15e-06; OREDA=0.57), maps to 

the Semaphorin-3E (SEMA3E) gene. The Minor Allele Frequency (MAF) of rs2158725 

is 0.14 in the European population (Karczewski et al, 2020), and the variant is known to 

exert a functional effect on the SEMA3E gene, through the modulation of DNA 

methylation (GoDMC, 2021). The role of the semaphorins, fundamental regulators of the 

immune system and myelin repair, and the functional impact of the variant are discussed 

more extensively in Chapter 3.2. 
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CHR BP SNP A1 P OREDA Q I Gene 

7 83297241 rs2158725 C 2.15E-06 0.57 0.24 27.96 SEMA3E 

15 23779479 rs11633419 T 2.84E-06 0.68 0.11 61.4 MKRN3 

3 167897639 rs17785714 T 4.20E-06 0.45 0.24 27.16 GOLIM4 

12 31825120 rs11551368 C 5.23E-06 1.80 0.77 0 RESF1 

9 4641755 rs10815046 T 5.51E-06 0.59 0.46 0 PLPP6 

7 105954740 rs2704966 T 8.35E-06 0.67 0.31 3.26 NAMPT 

16 10424872 rs11647413 G 8.95E-06 1.50 0.66 0 ATF7IP2 

2 153953265 rs62179575 T 9.13E-06 0.65 0.25 24.44 PRPF40A 

Table 3.2. Results of the genome-wide meta-analysis on the NEDA-3 status. The summary 
statistics for lead variant of the top associated genetic loci (p < 1e-05) are reported, together 
with the mapped gene using the OpenTarget pipeline (see text for further detail). BP = base-pair 
positions (reference GRCh37/hg19). A1 = effect allele; P = p-valuee; OREDA = Odds Ratio for 
EDA status. Q = Cochran’s Q; I = I2 statistics for heterogeneity; GENE = UCSC RefSeq gene 
symbol of the top-associated gene at the OpenTarget VariantsToGene analysis. 

 

The second top-associated signal (lead SNP: rs11633419; p=2-84e-06; 

OREDA=0.68) involved the MKRN3 (Makorin Ring Finger Protein 3) gene, which has 

been shown to regulate the onset of puberty in mammalians, as it is expressed in brain 

and acts on the Gonadotropin-Releasing hormone during childhood (Abreu et al 2020; Li 

et al, 2020). 

Among the variants showing a suggestive association, also the signal in 

chromosome 7 mapping to the NAMPT (Nicotinamide Phosphoribosyltransferase) gene 

may be very promising, since NAMPT inhibition was suggested as a target to enhance 

neurological recovery in MS (Li et al, 2016). The lead variant (rs2704966; p=8.35e-06; 

OREDA=0.67) is located in an enhancer region of NAMPT and has a reported frequency 

of 0.33 in the European population (Karczewski et al, 2020). The variant is known to 

exert an expression-QTL (eQTL) and mQTL effect on blood, as discussed in Chapter 3.2.  

 

3.1.2 Gene Ontology enrichment and pathway analysis 

To have an overview on the potential biological mechanisms underlying different 

disease activity levels, we run an enrichment and pathway analysis, as described in the 

Methods. We found a significant enrichment ratio for the GO:0034341 term (‘Response 

to interferon gamma’), despite adjustment for multiple testing. Notably, some other 

interesting terms, that did not pass the False Discovery Rate (FDR) < 0.05 threshold for 
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multiple testing, were also nominally enriched, as ‘Cell chemotaxis’, ‘Homotypic cell-cell 

adhesion’, ‘Integrin-mediated signaling pathway’ and ‘Neuroinflammatory response’ 

(Table 3.3 and Figure 3.3).  

Interestingly, most of the same genes that belong to the ‘Response to interferon 

gamma’ term (JAK2, CX3CL1, CCL22, CCL17), were also part of the ‘Chemokine 

signaling’ pathway, that resulted significant when the same top 100 genes were used as 

input in an analysis involving pathways from the Kyoto Encyclopedia of Genes and 

Genome (KEGG) (FDR-adjusted p-value=0.0187; enrichment ratio = 8.47). The results 

of the pathway analysis are reported in Table 3.4. 

 

 
Figure 3.3. Volcano plot showing the results of the Gene Ontology enrichment analysis. Each dot 
represents a Gene Ontology (GO) term, and the color scale reflects the significance of the p-value 
after FDR adjustment (reported on a -log10 scale on the Y axis). On the X axis the log2 of the 
enrichment ratio for the GO term is reported.  
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GO term description OL exp ER p-val p.fdr genes 

GO:0034341 response to interferon-gamma 7/192 0.92 7.60 3.64E-05 0.031 JAK2;NLRC5;CX3CL1;CCL22; 

CCL17;CD47;CAMK2D 

GO:0060326 cell chemotaxis 7/289 1.39 5.05 4.59E-04 0.150 PIK3CG;CX3CL1;CCL22;CCL17; 

PRKD1;PRKCQ;SBDS 

GO:0034109 homotypic cell-cell adhesion 4/78 0.37 10.70 5.30E-04 0.150 PIK3CG;SERPINE2;SLC7A11; 

PRKCQ 

GO:0007229 integrin-mediated signaling pathway 4/101 0.48 8.26 1.40E-03 0.253 EMP2;CUL3;PRKD1;CD47 

GO:0150076 neuroinflammatory response 3/48 0.23 13.04 1.56E-03 0.253 NAMPT;CX3CL1;ADCY8 

GO:0050878 regulation of body fluid levels 8/483 2.32 3.45 2.12E-03 0.253 JAK2;AK3;PIK3CG;EMP2;ADCY8 

SERPINE2;SLC7A11;PRKCQ; 

GO:0009895 negative regulation of catabolic process 6/282 1.35 4.44 2.30E-03 0.253 ETFBKMT;PIK3CG;NAMPT; 

GRIN2A;SERPINE2;SCFD1 

GO:0007015 actin filament organization 7/388 1.86 3.76 2.53E-03 0.253 MAGEL2;PDCD10;JAK2;EMP2; 

CX3CL1;CUL3;CD47 

GO:0045785 positive regulation of cell adhesion 7/392 1.88 3.72 2.68E-03 0.253 JAK2;EMP2;ADGRG1;CX3CL1; 

PRKCQ;HHLA2;CD47 

Table 3.3. Gene Ontology (GO) enrichment analysis for the top 100 associated SNPs. OL = number of genes overlapping/size of the GO term; exp = 
expected overlap; ER = Enrichment Ratio; p-val = nominal p-value; p.fdr = FDR-adjusted p-value; genes = genes overlapping. 
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geneSet description OL Exp ER p-val p.fdr genes 

hsa04062 Chemokine signaling pathway 6/189 0.71 8.47 5.74E-05 0.019 JAK2;PIK3CG;CX3CL1;CCL22;CCL17;ADCY8 
hsa04725 Cholinergic synapse 4/112 0.42 9.53 7.43E-04 0.121 JAK2;PIK3CG;ADCY8;CAMK2D 
hsa04720 Long-term potentiation 3/67 0.25 11.94 1.93E-03 0.209 GRIN2A;ADCY8;CAMK2D 
hsa04713 Circadian entrainment 3/96 0.36 8.34 5.34E-03 0.282 GRIN2A;ADCY8;CAMK2D 
hsa04925 Aldosterone synthesis and secretion 3/96 0.36 8.34 5.34E-03 0.282 PRKD1;ADCY8;CAMK2D 
hsa04750 Inflammatory mediator regulation of 

TRP channels 
3/99 0.37 8.08 5.82E-03 0.282 PRKCQ;ADCY8;CAMK2D 

hsa04024 cAMP signaling pathway 4/199 0.75 5.36 6.06E-03 0.282 GRIN2A;CNGB1;ADCY8;CAMK2D 
hsa04724 Glutamatergic synapse 3/114 0.43 7.02 8.59E-03 0.350 SLC1A1;GRIN2A;ADCY8 
hsa04261 Adrenergic signaling in cardiomyocytes 3/144 0.54 5.56 1.62E-02 0.585 PIK3CG;ADCY8;CAMK2D 
hsa04921 Oxytocin signaling pathway 3/152 0.57 5.26 1.87E-02 0.608 PIK3CG;ADCY8;CAMK2D 

Table 3.4. KEGG pathway analysis for the top 100 associated SNPs. OL = number of genes overlapping/size of the pathway; exp = expected overlap; 
ER = Enrichment Ratio; p-val = nominal p-value; p.fdr = FDR-adjusted p-value; genes = genes overlapping
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3.2 Considerations 

The genetic drivers of the heterogeneity that characterizes disease activity in MS have 

been little explored by previous studies. The main reason lies behind the significant 

sample size that is needed to yield confident results when testing genome-wide 

associations. International consortia have reached extraordinary advancements in 

studying the genetic risk of developing MS, taking advantage of meta-analysis of several 

cohorts from different centers across the world (IMSGC, 2019). Performing the same 

kind of studies in the context of a multicentric consortium is much more problematic. 

Exploring phenotypes that go beyond the susceptibility to the disease needs a much more 

consistent effort, with the harmonization between clinical data across centers representing 

the biggest pitfall. In this context, the present work, taking advantage of two independent 

European cohorts, tries to explore possible genetic determinants of disease activity in MS, 

using the NEDA-3 status as a measure, a composite outcome used in many clinical trials 

(Banwell et al, 2013).  

The top associated signal in the meta-analysis involves the SEMA3E gene, with the 

minor allele C for the lead variant rs2158725 exerting a protective effect towards disease 

activity. Literature data support a functional impact of the lead variant. In a multicentric 

effort involving about 36,000 controls (GoDMC, 2021), rs2158725 exerted a mQTL on 

a CpG (cytosine-phosphate-guanine) dinucleotide (cg18464137) located in the promoter 

of the SEMA3E gene (p-value = 9.73e-206; beta coefficient for C allele: 0.45), likely 

suggesting a silencing effect on the expression of the gene, which could be more prevalent 

in patients who did not show signs of disease activity according to our findings (OREDA 

for the C allele = 0.57; p-value = 2.15E-06). The Semaphorin-3E protein is part of the 

semaphorin superfamily, which is largely involved in the regulation of the immune 

system. The role of semaphorins has been the target for investigation in the past years. 

The semaphorins are mediators of the migration of oligodendrocyte precursors, 

potentially leading to recovery in demyelinating lesions of the CNS (Williams et al, 

2007). In a recent work, the Semaphorin-4D was found to be the fundamental molecule 

mediating the microglia-astrocyte interaction underlying EAE, through its binding to the 

Plexin B1 and PlexinB2 (Clark et al, 2021). Semaphorin 3A and 4A expression is 

decreased in MS patients versus healthy controls and seem to have an opposite role in the 

activation of T regulatory cells (Eiza et al, 2022). Proteins of the semaphorin superfamily 
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have been found also in the whiter matter of MS lesions, supporting a role of Semaphorin 

3A and 7A as mediator proteins in astrocytes and microglia/microphages, that prevent 

remyelination in MS lesions (Costa et al, 2015).  

The role of the Semaphorin 3E specifically, that we found potentially associated with 

disease activity in MS, has been less characterized by previous studies. Dendritic cells 

express SEMA3E, and its transcript binds to a specific receptor on the surface of NK cells 

and serves as a limiting factor for the migration of NK cells (Alamri et al, 2018). The 

Semaphorin 3E/Plexin D1 axis is an important therapeutic target in allergic asthma as 

well (Movassagh et al, 2019).  SEMA3E is important in the proliferation and migration of 

Schwann cells, glial cells of the peripheral nervous system, and has been suggested as a 

potential target to enhance nerve regeneration (Shen et al, 2022). Given this body of 

evidence, SEMA3E represents a good candidate for future functional studies to assess the 

exact mechanism through which it could contribute to determine manifestations of 

disease activity in MS. 

As mentioned, also the signal targeting the NAMPT gene looks promising in the 

context of MS. The lead variant in this locus is known to exert an eQTL effect in whole 

blood, and specifically on circulating monocytes (Fairfax et al, 2014). Moreover, it was 

found to have a mQTL effect in whole blood, with the minor allele T increasing the 

methylation level of cg05004518 in the gene body (p=1.88e-89; beta: -0.20; GoDMC, 

2021), therefore likely leading to silencing of gene expression in immune cells (Weber et 

al, 2007). This finding could be of particular interest in the MS field, as inhibition of 

NAMPT has been shown to ameliorate Experimental Autoimmune Encephalitis (EAE) in 

mice (Meyer et al, 2022) and it has been proposed as a target to enhance neurological 

recovery in MS (Li et al, 2016).  

NAMPT is the limiting enzyme in the conversion of nicotinamide to nicotinamide 

mononucleotide, which then results in the production of nicotinamide dinucleotide 

(NAD+), a metabolic process that is core in cellular redox reactions. Imbalance of NAD+ 

is reported in many diseases, including neurodegenerative diseases, aging, and immune 

diseases (Verdin E, 2015). Inhibition of the nicotinamide phosphoribosyltransferase, 

coded by the NAMPT gene, has been recently proposed as a therapeutic target in MS. 

NAMPT inhibition has been shown to limit the inflammatory properties of the astrocytes, 

through the means of CD38 and monocytes, resulting in an amelioration of the EAE in 
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mice (Meyer et al, 2022). We found that the rs2704966 T allele is associated to a lower 

probability of EDA and literature data support its role in down-regulating NAMPT in 

monocytes. This finding points towards the same direction of the work, showing that the 

anti-inflammatory activity of NAMPT inhibition goes through modulation of monocytes 

activity, that resulted in improved EAE outcome (Meyer et al, 2022). NAMPT inhibition 

has been also shown to mediate the neurological recovery in EAE mice treated with neural 

stem cells transfected with LINGO-1-Fc (Li et al, 2016).  

Overall, it is interesting to note that both the above-mentioned mechanisms are in a 

close relationship with the function of oligodendrocytes and microglial cells, suggesting 

that they may contribute to an intrinsic regulatory balance of CNS inflammation. 

Perturbations to this fine mechanism, given by external triggers and influenced by 

underlying genetic variation, may therefore lead to clinical manifestations of disease 

activity, as explored by the NEDA-3 status. 

These findings are additionally supported by our results on GO enrichment and 

pathway analysis, in which we found a significant enrichment for ‘Response to interferon 

gamma’ and ‘Chemokine signaling’ pathways, which survived adjustment for multiple 

testing. It is worth mentioning that most of the patients included in the study (~60%) 

started a treatment with interferon-beta at the baseline timepoint. With this in mind, such 

results appear to be even more biologically plausible. For example, the JAK2 gene, which 

was part of the two above-mentioned pathways, is a key player in the activation of Th17 

cells, the final effectors in the inflammatory cascade in MS (Conti et al, 2012).  

As a limitation of our study, we recognize that the sample size is likely to be 

underpowered, as pointed out by the downward deflection of the curve in the QQ-plot 

(Figure 3.2). Limited statistical power does not allow to draw any final conclusions when 

exploring which are the genetic drivers of disease activity in MS. However, it is extremely 

difficult to find additional cohorts of patients that are very well characterized at the 

genetic level but also at the clinical and neuroradiological level, in order to be able to 

define the NEDA status for the enrolled patients. Nevertheless, our results can still at least 

partially address the question and hopefully prompt future investigations, paving the way 

to larger multicentric efforts.
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4. Study 2: Epigenetic factors underlying disease activity 

DNA methylation, the addition of a methyl group (-CH3) at CpG dinucleotide sites, is 

one of the most stable epigenetic hallmarks across species (Mattei et al, 2022). Generally, 

methylation of CpG dinucleotides in enhancers and promoters leads to silencing of the 

genes, while methylation occurring in the gene body is usually linked to increased 

expression (Weber et al, 2007). The study of DNA methylation has been proven very 

effective in many areas of human biology and medicine, as it is a key element in the 

crosstalk between genetics, environment, and gene expression (Mattei et al, 2022). In 

medicine, as an example, the study of Differentially Methylated Positions (DMP) and 

Differentially Methylated Regions (DMR) has led to consistent advancements in 

understanding mechanisms of tumorigenesis and cancer transformation (Klutstein et al, 

2016). A schematic representation of the difference between DMP and DMR is shown in 

Figure 4.1. 

 

 

Figure 4.1. Schematic representation of Differentially Methylated Positions (DMP) and 
Differentially Methylated Regions (DMR). Each yellow pin represents a CpG dinucleotide site.  

 
In the past few years, the study of epigenetics in general and of DNA methylation has 

greatly expanded in MS as well (Zheleznyakova et al, 2017). Many works have shown 

that changes in DNA methylation occur in MS patients compared to healthy controls, 

both in bulk tissue (Kulakova et al, 2016; Marabita et al, 2017) and isolated cell types 

(Baranzini et al, 2010; Maltby et al, 2015; Bos et al, 2016). DNA methylation is a 

recognized mediator of the risk of MS associated with the HLA-DRB1*15:01 allele 

(Kular et al, 2018). Conversely, very few studies have been published regarding the 

association of DNA methylation and measures of disease activity or severity in MS 

(Campagna et al, 2022). 
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In this work, we will explore the association between the methylation profile before 

the start of a first line DMT and disease activity assessed by NEDA-3 status after 2-years 

of follow-up. The study was performed in previously untreated MS patients from IRCCS 

San Raffaele Hospital (OSR) and at the Centre Hospitalier Universitaire de Toulouse 

(CHUT). Detailed inclusion criteria are reported in the Methods section (Chapter 9.2.1) 

Clinical features of the cohort at baseline are shown in Table 4.1. 

 

 OSR CHUT Total p-value 

N subjects 75 174 249 - 

Age sampling 37.1 (9.8) 40.1(10.8) 39.2 (10.3) 0.04 

AAO 32.7 (8.9) 33.4 (10.2) 33.2 (10.1) 0.68 

F/M ratio 1.59 3.97 2.89 0.0021 

Disease duration 4.3 (6.5) 6.6 (7.7) 5.9 (7.2) 0.046 

EDSS at BL 1.5 (1.0-2.0) 1.5 (1.0-2.5) 1.5 (1.0-2.0) 0.13 

EDA/NEDA 2 yr 29/46 106/68 135/114 0.002 

DMT started at BL 
DMF 

Teriflunomide 

Copaxone 

Interferon 

 

68% 

16% 

13% 

3% 

 

42% 

34% 

8% 

16% 

 

50% 

29% 

9% 

12% 

- 

 

Table 4.1. Baseline characteristics of the cohort. N = number; AAO = age at onset; F/M ratio = 
Female/Male ratio; BL = baseline. DMT = Disease-Modifying Treatment. In the rightmost 
column, the p-values from chi-square test or Mann-Whitney-Wilcox test are reported, to explore 
baseline differences between the two centers (OSR vs CHUT).  

 

4.1 Results 

4.1.1 Identification of Differentially Methylated Positions (DMP) 

After performing rigorous QC as described in Chapter 9.2, we carried out a differential 

methylation analysis to unravel sites of the genome that are differentially methylated at 

baseline in patients who will have Evidence of Disease Activity (EDA) versus patients 

with NEDA. As a result, we found 7 DMP passing the multiple-testing correction. A list 

of the top 20 DMP and the mapped genes is reported in Table 4.2. 

The top-associated CpG, cg27267436 (p=6.4e-08), maps to an intronic region of 

APBA3 (Amyloid Beta Precursor Protein Binding Family A member 3) and it was found  
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cpg logFC p-value adj.Pval CHR BP gene genomic.loc CpG island loc 

cg27267436 0.20 6.42E-08 0.046 19 3754012 APBA3 Body island 

cg20025086 -0.11 1.65E-07 0.046 12 109569130  IGR opensea 

cg20308351 -0.21 1.77E-07 0.046 7 3067980 CARD11 5'UTR opensea 

cg22193657 -0.09 2.61E-07 0.046 3 194948010 XXYLT1 Body opensea 

cg19915997 0.16 3.61E-07 0.046 3 15492725 COLQ 3'UTR opensea 

cg25829490 -0.18 4.00E-07 0.046 2 176988792 HOXD9 Body shore 

cg12362502 0.22 4.16E-07 0.046 6 43603544 MAD2L1BP TSS200 island 

cg07146435 -0.12 6.45E-07 0.061 10 100028499 LOXL4 TSS1500 island 

cg00352218 -0.18 7.05E-07 0.061 6 19691654  IGR shore 

cg07973246 -0.17 1.20E-06 0.094 12 64238719 SRGAP1 Body shore 

cg24764861 0.17 1.34E-06 0.095 16 1495122 CCDC154 TSS1500 island 

cg11923320 -0.13 1.47E-06 0.095 1 63783977  IGR island 

cg14345857 -0.16 1.62E-06 0.096 5 72742869 FOXD1 1stExon shelf 

cg25911023 0.14 1.73E-06 0.096 1 202776454 KDM5B Body island 

cg01144764 0.26 2.34E-06 0.121 10 121633063 C10orf119 TSS1500 island 

cg24424115 0.13 2.64E-06 0.129 3 58476822 KCTD6 TSS1500 shore 

cg18190847 -0.17 4.60E-06 0.200 3 11195751 HRH1 5'UTR shore 

cg06138439 -0.09 4.62E-06 0.200 16 54973128  IGR shore 

cg17886959 0.16 5.58E-06 0.214 16 56642024 MT2A TSS1500 shore 

cg02919861 -0.20 5.80E-06 0.214 8 70090456  IGR opensea 

Table 4.2. Top 20 Differentially Methylated Positions (DMP) according to the NEDA/EDA status. LogFC= log fold-change in EDA vs NEDA; adj.Pval 
= 5% FDR adjusted p-value; CHR = chromosome; BP=base-pair position; gene=mapped gene according to University of California Santa Cruz (UCSC) 
RefSeq annotation; genomic.loc= location in the genome. IGR = intergenic region; TSS=transcriptional start site. CpG island loc = location related to 
UCSC CpG island.
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to be hypermethylated in patients with EDA. Of note, APBA3 is an activator of the 

Hypoxia-Inducible Factor 1-alfa (HIF1A) gene in monocytes and macrophages at the 

sites of inflammation (Hara et al, 2017). HIF1A is a fundamental player in the 

inflammatory cascade in MS and it is extensively discussed in Chapter 7. 

The cg20308351 (p=1.77e-07) maps to the CARD11 (Caspase Recruitment Domain 

Family Member 11), that regulates NF-kB through BCL10 in B cells (Sommer et al, 2005) 

and a previous study has identified a DMR in CARD11 in B lymphocytes of patients with 

MS (Maltby et al, 2018). 

Among the top DMP, we identified the cg25829490, hypomethylated in EDA versus 

NEDA patients and mapping to the body of HOXD9 (Homeobox D9), an element in the 

pathway of Transforming Growth Factor-Beta (TGF-β). In a previous study a region in 

the HOXD9 gene was also found hypomethylated in the white matter of MS patients 

versus controls (Huynh et al, 2014). 

 

4.1.2 Identification of Differentially Methylated Regions (DMR) 

Starting from DMP, we also built DMR, continuous genomic regions that differ in 

methylation based on the phenotype (NEDA/EDA status, in our case)  

In our analysis, conducted as described in the Methods (Chapter 9.2.4), we detected 4 

DMR when comparing patients fulfilling the criteria for the NEDA-3 status at 2-years 

follow-up with patients who conversely showed signs of disease activity within 2-years 

from baseline (Table 4.3).   

 

rank chr start end cpgs maxdiff meandiff min.fdr gene 

1 19 2250901 2251067 4 -0.032 -0.028 6.12E-08 AMH 
2 17 76037035 76037364 5 0.031 0.020 3.26E-08 TNRC6C 
3 7 56515666 56516129 5 0.042 0.029 1.61E-08 LOC650226 
4 19 22234980 22235850 8 0.067 0.022 6.76E-09 ZNF257 

Table 4.3. Differentially Methylated Regions (DMR) in NEDA vs EDA patients. Rank = DMR 
rank using Fisher’s combined probability method. Chr, start, end = genomic coordinates of the 
region (reference: GRCh37/hg19). Width = width of the region in base-pairs. Cpgs=number of 
CpGs composing the region. Maxdiff, meandiff= maximum and minimum difference in 
methylation beta-value found in the region. Min.fdr = minimum smoothed FDR p-value. UCSC 
RefSeq annotated gene. 
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Figure 4.2. The identified Differentially Methylated Region in the AMH gene. On the top of the figure, the UCSC RefSeq track (GRCh37/hg19) for the 
AMH gene, with RoadMap chromatin states for PBMC, CD3+ and CD14+ cells. On the bottom, location of the DMR in the AMH gene (red bracket) and 
the visualization of the DNA methylation beta values according to the NEDA/EDA status.
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In particular, after visual inspection and annotation of the DMR, the top-ranked region in 

chromosome 19 looked very interesting as it maps to the Anti-Mullerian Hormone 

(AMH) gene (Figure 4.2). The DMR is located in a 167 base-pairs wide region inside the 

bivalent promoter of AMH in the immune cells, as shown in Figure 4.2, therefore 

prompting a complex regulatory role in gene expression, as described in Chapter 4.2. 

 

4.1.3 Methylation and expression Quantitative-Trait-Loci effect in AMH 

To explore whether the difference in DNA methylation was driven by genetic factors, 

we extracted the SNPs mapping to a +/- 500 kilobase (kb) window from the DMR from 

our genome-wide meta-analysis on the NEDA-3 status in 1,408 patients described in 

Chapter 3. The top associated SNP mapping to the targeted region was rs2240656, located 

at ~135 kb from the DMR. In our analysis the rs2240656 C allele was associated with 

increased odds of reaching the NEDA-3 status at 2 years follow-up (p=1.37e-03, 

ORNEDA=1.73, I2=0). 

In the attempt to explore whether the same variant could drive both the risk of disease 

activity and the difference in methylation in the AMH region, we assessed whether 

rs2240656 exerts a methylation Quantitative-Trait-Loci (mQTL) effect on the CpGs 

composing the DMR. Starting from the results of a mQTL study on whole blood in about 

36,000 healthy subjects (GoDMC, 2021), we observed that the rs2240656 variant strongly 

increased the levels of methylation on all the 4 CpGs composing the DMR in the AMH 

gene. Then, we replicated this effect exploring the impact of rs2240656 on PBMC 

methylation in our cohort of RR-MS patients (n=243), finding strong evidence for a 

mQTL on the DMR (mininum p-value = 4.29e-10) (Figure 4.3A). Results from mQTL 

effect calculation in PBMC of MS patients and comparison with data coming from 

literature are reported in Table 4.4. 
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CpG b.HC p.HC b.MS SE.MS P.MS 

cg26000619 0.71 0 0.081 0.012 4.29E-10 

cg04052466 0.03 4.8E-03 0.066 0.066  1.75E-08 

cg05345154 0.67 8.4E-290 0.073 0.073 3.00E-08 

cg23218559 0.65 3.2E-269 0.079 0.013 1.67E-09 

 
Table 4.4. Methylation Quantitative-Trait-Loci (mQTL) effect exerted by rs2240656 (C allele) 
on the 4 CpGs composing the identified DMR in AMH. To the left, the regression coefficient of 
the linear model (b.HC) and p-value in healthy controls (p.HC) from the GoDMC mQTL study 
in whole blood. To the right, the results of the mQTL effect analysis in PBMC from MS patients 
performed in this study, with the regression coefficient (b.MS), its standard error (SE.MS) and 
the p-value (P.MS). 

 

In literature the rs2240656 C allele was also associated to a decreased expression 

of AMH in whole blood in data from a consortium (eQTLGen Consortium, 2018) 

studying the eQTL effect in ~31,000 subjects (p=2.99e-20). We were able to replicate 

this effect in PBMC from MS patients (n=227), as we found that the rs2240656 C allele 

was associated to decreased AMH expression (p=7.41e-05; b for C allele=-10.8) (Figure 

4.3B).  

 

 

Figure 4.3. Effect of the rs2240656 variant on methylation and gene expression in MS. A: MQTL 
effect in PBMC from MS patients. y axis: methylation beta-values, x axis= number of rs2240656 
C allele copies. B: EQTL effect in PBMC from MS patients; y axis: RNA-seq normalized counts, 
= number of rs2240656 C allele copies.  
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4.1.4 Sensitivity analysis 

Interestingly, we rebuilt the DMR using the rs2240656 C allele status as a covariate 

and we found that the inclusion of the genetic factor prevented the detection of the DMR 

in AMH, additionally supporting that the effect on methylation is mainly driven by the 

genetic factor.  

We also performed an additional sensitivity analysis to explore any bias related to the 

sex of the patients, even though in our initial analysis we had already used sex as a 

covariate for the identification of the DMP. First, AMH expression in PBMC was not 

different between male and female in our cohort of patients with MS, adjusting for age 

and center (p=0.89). Second, DMP and subsequent DMR analysis performed separately 

in males and females did not yield to the identification of the DMR in the AMH gene 

using the same cut-off when building the DMR (minimum smoothed FDR p-value < 1e-

07), probably as a consequence of the reduced power, considering the smaller sample size 

of the studied cohorts. The DMR was identified in a secondary analysis in female patients 

only when considerably relaxing the threshold for statistical significance (minimum 

smoothed FDR-p = 1.48E-05), but not in male patients. This observation supports the 

hypothesis that statistical power prevents the identification when reducing the number of 

subjects, rather than a sex-specific effect.  

 

4.1.5 Gene Ontology enrichment analysis 

When running a GO enrichment analysis on the top 100 DMP, we found terms as 

‘Fertilization’ and ‘Reproductive system development’, together with ‘Leukocyte 

differentiation’, although the results were not significant at 5% FDR (Table 4.5).   

 

4.2 Considerations 

In this study, we analyzed whether CpG methylation in PBMC from MS patients 

before beginning a first line DMT was associated to the NEDA-3 status at 2-years. As 

mentioned, the studies investigating the role of methylation and disease activity in MS 

are very few. Our work led us to promising results, which can be divided in two different 

orders. 

First, when investigating single CpGs, we found 7 DMP that were significant after 

FDR correction for multiple  testing. Given their  known functions, the  most  interesting 
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GO term Description overlap exp ER p-value FDR genes 

GO:0001701 in utero embryonic development 8/345 1.63 4.91 2.15E-04 0.18 APBA3;FOXD3;VEGFA;JAG2;ANKRD11;HES1; 

FZD5;HSD17B2 

GO:1903008 organelle disassembly 4/96 0.45 8.81 1.10E-03 0.47 RNF41;MRRF;FZD5;STX5 

GO:0062012 regulation of small molecule metabolic process 6/344 1.63 3.69 5.66E-03 1.00 HRH1;GUCA1B;ERLIN2;GCK;SQLE;SIRT5 

GO:0009791 post-embryonic development 3/89 0.42 7.13 8.59E-03 1.00 KDM5B;VEGFA;FZD5 

GO:0002521 leukocyte differentiation 7/496 2.34 2.99 8.81E-03 1.00 CARD11;STAT6;RNF41;VEGFA;JAG2;FZD5; 

DTX1 

GO:1902742 apoptotic process involved in development 2/31 0.15 13.65 9.37E-03 1.00 JAG2;FZD5 

GO:0009566 fertilization 4/176 0.83 4.81 9.62E-03 1.00 HOXD9;KDM5B;ATP8B3;TDRD12 

GO:0007219 Notch signaling pathway 4/185 0.87 4.57 1.14E-02 1.00 JAG2;HES1;ANGPT4;DTX1 

GO:0001763 morphogenesis of a branching structure 4/196 0.93 4.32 1.38E-02 1.00 FOXD1;KDM5B;VEGFA;FZD5 

GO:0061458 reproductive system development 6/428 2.02 2.97 1.56E-02 1.00 KDM5B;VEGFA;ING2;HES1;FZD5;HSD17B2 

 
Table 4.4. Results of Gene Ontology enrichment analysis. Size = size (number of genes) of the GO term. Overlap = number of genes in the GO term 
overlapping with the input genes. Exp  = Expected enrichment. ER = enrichment ratio. P-value = nominal p-value for GO term. FDR: 5% FDR p-value. 
Genes = input genes overlapping with the GO term. 
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genes that emerged from this analysis are APBA3, CARD11 and HOXD9. As already 

discussed, these genes have great importance in the context of MS, as they are known to 

be functionally linked to immune functions, and represent interesting targets to further 

explore their role in MS. The role of APBA3 will be further discussed in Chapter 8. Of 

note, previous studies had already identified DMR in CARD11 and HOXD9 when 

comparing MS versus controls, therefore supporting the biological meaning of our 

findings, and prompting future functional studies as well as a replication in an 

independent cohort.  

Second, when studying continuous regions of the epigenome, we detected 4 DMR. We 

specifically focused on the DMR on chromosome 19, mapping to the bivalent promoter 

of AMH.Bivalent promoters are typically found in genes involved in embryonic and fetal 

development. They present two kinds of histone modifications (H3K4me3 and 

H3K27me3) that allow a fast switch between silenced and activated state in specific cell 

types during development (Blanco et al, 2020). Indeed, during fetal life, AMH prevents 

the development of a female reproductive tract. Interestingly, AMH is part of the 

Transforming Growth Factor Beta (TGF-b) superfamily, a key player in the immune 

response (Johnston et al, 2016). In literature, despite many studies assessing the role of 

sex hormones in disease pathobiology, very little is known about AMH and MS (Ysrraelit 

MC and Correale J, 2018). In a first study, female patients with RR-MS were found to 

have lower AMH levels compared to healthy controls (Thöne et al, 2015). This finding 

was not confirmed by another study, in which AMH plasma levels were not different 

between RR-MS and controls, but patients with greater annualized relapse rate had 

significantly lower AMH levels, even though the sample size of the study was limited 

(Sepúlveda et al, 2016). In a larger longitudinal study, there was no difference in AMH 

levels between MS and healthy controls, but a decrease in AMH in plasma over time was 

associated with increased EDSS, worse MS Functional Composite (MSFC) score and 

greater grey matter atrophy in females with MS (Graves et al, 2018). 

In the present study, we found that the rs2240656 C allele is associated with increased 

methylation in the identified DMR, decreased AMH expression in PBMC and whole 

blood, and reduced odds of having signs of disease activity. It is known that AMH levels 

reflect the aging of the reproductive system (Dewailly et al, 2014; Xu et al, 2019). In 

women, AMH decreases together with the number of follicles over the time and serves 
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also as a marker in conditions like the polycystic ovarian syndrome (Moolhuijsen et al, 

2020). As the levels of AMH reflect aging, our observation, according to which patients 

who develop greater disease activity are genetically predisposed to a higher expression 

of AMH, looks reasonable. Indeed, younger patients typically have greater inflammatory 

disease activity, while with aging such risk decreases and the risk for progression 

increases (Confavreux et al, 2006). The above-mentioned study (Graves et al, 2018) 

found that AMH reduction was associated with measures of disease progression, as 

increased EDSS and grey matter atrophy, therefore supporting this hypothesis. It is also 

important to mention that while previous studies measured the concentration of the 

protein in blood, in our study involving the eQTL we measured the transcript (mRNA).  

Of note, our work is the only one investigating the role of AMH in both men and 

women with MS. The AMH indeed has an important role in the reproductive function of 

male healthy subjects as well. The AMH is produced by the Sertoli cells in the testis 

during sex differentiation and it is suppressed by androgens when the primary 

differentiation is completed (Xu et al, 2019). At puberty, AMH levels rise again in the 

male and regulate fertility. As in women, AMH levels decrease over time in men (Xu et 

al, 2019). So, it is possible to hypothesize that an effect of aging on the reproductive 

system in general could be shared in women and men with MS.  Interestingly, when we 

run a GO enrichment analysis on the DMP, we found an enrichment for many terms 

related with in utero development, fertilization, and embryogenic development, involving 

other genes (Table 4.4) and additionally supporting the hypothesis that sex hormones 

could be important in disease activity.  

Further studies are needed to confidently establish the causal association between 

AMH and disease activity. 
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5. Study 3: Vitamin D and disease activity 

Vitamin D is an important modulator of the immune system (Gombash et al, 2022). A 

neuroprotective effect of vitamin D has been also hypothesized, even though the exact 

mechanisms are still unclear. In the context of MS, higher vitamin D levels, through 

dietary intake or ultraviolet B radiation exposure, reduce the risk of developing the 

disease (Munger et al 2006; Munger et al, 2016). 

When considering the relationship between vitamin D levels and measures of disease 

activity in MS, many questions are still open. Most of the published literature was focused 

on evaluating the adjunct benefit of vitamin D supplementation on disease-modifying 

treatment (DMT) (Ascherio et al, 2014; Stewart et al, 2012; Rotstein et al, 2015), with 

the results that were often contradictory, as regards for example treatment with interferon 

(Løken-Amsrud et al, 2012).  

In this study, we aim to evaluate whether there is a causal association between vitamin 

D levels at baseline and disease activity levels measured by the NEDA-3 status at 2 years 

follow-up in a double-centric cohort of RR-MS patients sampled before the start of a first 

line DMT. The clinical features of this cohort are shown in Table 5.1 and the inclusion 

criteria are reported in Chapter 9.3.1.  

 

 OSR CHUT Total p-value 

N subjects 65 165 230 - 

Age sampling 36.6 (9.8) 39.7 (10.9) 38.8 (10.7) 0.051 

AAO 32.7 (9.05) 33.5 (10.3) 33.3 (10.0) 0.58 

F/M ratio 1.95 3.7 3.03 0.0021 

Disease duration 3.9 (6.1) 6.2 (7.4) 5.5 (7.1) 0.035 

EDSS at BL 1.5 (1.0-2.0) 1.5 (1.0-2.5) 1.0 (1.0-2.0) 0.29 

EDA/NEDA 2 yr 28/37 95/70 123/107 0.046 

 

Table 5.1. Baseline characteristics of the cohort. N = number; AAO = age at onset; F/M ratio = 
Female/Male ratio; BL = baseline. In the rightmost column, the p-values from chi-square test or 
Mann-Whitney-Wilcox test are reported, to explore baseline differences between the two centers 
(OSR vs CHUT)  
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5.1 Results 

5.1.1 Vitamin D levels are associated with disease activity 

After adjustment for vitamin D seasonal variation as described in Chapter 9.3 (see also 

Figure 9.3.1), we found that in our cohort of 230 RR-MS patients higher baseline levels 

of vitamin D were associated with higher probability of fulfilling the criteria for the 

NEDA-3 status after 2 years of follow-up (p=0.019) (Figure 5.2A). 

Also, higher vitamin D levels at baseline were significantly associated with fewer 

relapses, as patients having 2 or more relapses during the follow-up had significantly 

lower vitamin D at baseline, if compared with patients having no relapses (p<0.001) and 

patients who experienced one relapse (p=0.037) (Figure 5.2B).  

 

 

Figure 5.1. Disease activity at 2 years is affected by baseline vitamin D levels. A: Vitamin D 
levels at baseline and NEDA-3 status at 2-years. B: Vitamin D at baseline at number of relapses 
during the 2-years follow up (0, 1 and 2 or more). Vitamin D levels on the y axis are reported in 
ng/ml. 

 

5.1.2 Genetic variation in vitamin D affects disease activity 

We then investigated whether genetic variation in vitamin D levels was associated with 

disease activity, taking advantage of a previously published GWAS on 417,580 subjects 

that identified more than 140 genetic loci associated with vitamin D levels in the general 

population (Revez et al, 2020). First, we extracted from this study all the SNPs (n=16,646; 

no clumping for linkage disequilibrium) with genome-wide significant p-value (<5e-08). 
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Then, we assessed the association between these SNPs and the NEDA-3 status in our 

cohort, starting from the results of the meta-analysis that we conducted in Chapter 3, that 

involved a total of 1,408 subjects. In our meta-analysis 10,073 out of 16,664 SNPs were 

present. For some of these SNPs, we found nominal evidence for association with both 

NEDA-3 status and vitamin D levels (SNPs with meta-analysis p-value < 0.01 = 143) 

(Figure 5.2). A list of the top 10 associated loci with the lead SNP, the mapped genes, 

and the summary statistics of the GWAS on vitamin D levels (Revez et al, 2020) is 

reported in Table 5.2. 

 

 

Figure 5.2. Circular Manhattan plot showing the association with NEDA-3 status for the SNPs 
with known role on vitamin D level variation in controls (Revez et al, 2020). The name of the gene 
is reported on top of the top 10 associated loci. Red dashed line = p-value < 0.05. P-values are 
reported on -log10 scale. 
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SNP CHR BP A1 PNEDA ORNEDA BetaVitD PVitD Gene 

rs62298881 4 70008252 C 4.32E-03 1.44 0.024 1.13E-14 UGT2B4 

rs10468017 15 58678512 C 7.10E-03 1.28 0.024 7.78E-30 LIPC 

rs9811546 3 85391672 G 8.37E-03 0.79 -0.012 1.91E-08 CADM2 

rs3806256 1 155035611 C 0.010 1.24 0.012 1.36E-09 EFNA3 

rs1790349 11 71142350 T 0.011 1.35 0.30 6.97E-264 NADSYN1 

rs4812443 20 39198836 T 0.012 0.80 -0.012 1.74E-08 MAFB 

rs78633929 12 96278208 T 0.018 1.29 0.014 4.19e-08 HAL 

rs1608906 12 33894986 T 0.017 0.82 -0.011 2.38E-08 ALG10B 

rs34130414 1 17560262 G 0.024 1.21 0.020 2.27E-22 PADI1 

rs12351386 9 125855711 C 0.038 0.75 -0.018 1.75E-08 RABGAP1 

Table 5.2. Genetic loci that are associated with serum vitamin D levels variation in controls and with NEDA-
3 status. BetaVitD and PVitD refer to the regression coefficient and the p-value from the linear model 
investigating the influence of the SNP on vitamin D levels from Revez et al, 2020. PNEDA and ORNEDA refer to 
the GWAS meta-analysis on NEDA-3 status described in Chapter 3. Gene = nearest gene according 
(GRCh37 coordinates). 
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5.1.3 Mendelian Randomization analysis 

Then, to assess whether the observed association between vitamin D levels is causal 

and it is not confounded by other factors, we performed a Mendelian Randomization 

(MR) analysis taking advantage of the above-mentioned GWAS (Revez et al, 2020). The 

results of our Inverse Variance Weighted (IVW) analysis supported the presence of a 

causal effect (p=7.79e-06), as the probability of having no disease activity over a 2-year 

follow-up increases with genetically predicted increase of vitamin D levels. Additional 

methods also supported this finding, as shown in Table 5.3 and Figure 5.4. Detailed 

methodological information regarding the MR analysis is reported in the Methods section 

(Chapter 9.3.3) 

 

 

Method N IVs Beta SE p-value 

Inverse variance weighted 15 0.085 0.019 7.79e-06 

Weighted median 15 0.057 0.012 8.524e-07 

MR Egger 15 0.16 0.087 0.087 

Weighted mode 15 0.056 0.013 8.08e-04 

Weighted mode (NOME) 15 0.057 0.0046 6.36e-09 

Simple mode (NOME) 15 0.059 0.0046 4.26e-09 

Table 5.3. Results of the Inverse variance weighted Mendelian Randomization analysis and 
comparison with different methods. N IVs = number of instrumental variables. Beta = regression 
coefficient and its standard error (SE). NOME = No Measurement Error in the SNP Effect. 

 

5.2 Considerations 

Vitamin D is a known risk factor for MS (Olsson et al, 2017). Since vitamin D has an 

effect on the primary events that lead to MS, it is reasonable to hypothesize that it may 

also play a role in determining disease manifestations once the biological cascade of MS 

has already been triggered, and therefore impacting on disease activity.  

From this hypothesis, in this study we investigated the association of vitamin D with 

the NEDA-3 status, assessed at 2-years from the beginning of a first line DMT. We found 

that higher vitamin D levels are associated with lower probability of having disease 

manifestations assessed by the NEDA-3 status and lower number of relapses. 
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Figure 5.3. Mendelian Randomization analysis of vitamin D and NEDA-3 status. Figure A: forest 
plot showing the effect of the single IVs and the cumulative effect for the MR Egger and the 
Inverse-variance weighted MR analysis. The plot shows the regression coefficient (beta) and 95% 
confidence interval of the odds of fulfilling the criteria for the NEDA-3 status per a 1-standard 
deviation increase in genetically predicted vitamin D levels. Figure B: Comparison of different 
MR methods, in which the direction of the effect is the same. Figure C: leave-one-out sensitivity 
analysis, confirming positive correlation between genetically predicted vitamin D levels and 
NEDA-3 status, despite removing the IV with the biggest effect. Figure D: funnel plot showing 
causal estimation (beta coefficient for the IVs on x-axis) and the strength of the instrument 
variables (1/SE = 1/standard error) on the y-axis. 

 

Few works have explored the association between vitamin D and disease activity. The 

results of observational studies on disease activity have been less clear if compared to 

what has been published regarding vitamin D as a risk factor for the disease, and likely 

suffered from small sample size and confounding factors (Smolders et al, 2019). In a 
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prospective observational study involving 1,482 RR-MS patients treated with interferon, 

lower vitamin D levels were associated with measures of disease activity at MRI, but not 

with change in the EDSS score, brain volume loss or relapse risk (Fitzgerald et a, 2015). 

In an observational study investigating both RR-MS and primary progressive MS, lower 

vitamin D levels at baseline were associated with greater probability of gadolinium 

enhancing lesions at MRI during a 2-year follow up, only in the relapsing-remitting group 

(Cree BA et al, 2016). Along with these and other observational studies (Smolders et al, 

2019), the first randomized trials on vitamin D supplementation in association with DMT 

in RR-MS were published, assessing different outcomes, including conversion to RR-MS 

in patients with optic neuritis, MRI activity in RR-MS, EDSS change or risk of relapses. 

The results were often controversial, given the small sample size and the presence of 

many potential confounding factors (Smolders et al, 2019).  

To date, to the best of our knowledge, only one study has involved the NEDA-3 status 

as an outcome for a randomized trial on vitamin D in MS (Hupperts et al, 2019). In this 

randomized trial involving 229 patients with RR-MS treated with interferon beta-1a and 

vitamin D supplementation or interferon beta-1a and placebo, there was no difference in 

the probability of reaching a NEDA-3 status at 48 weeks, but patients with higher vitamin 

D had better outcome when examining MRI measures of disease activity (Hupperts et al, 

2019). In this study, the short follow-up time (48 weeks) may have limited the number of 

events needed to observe a significant effect in a small cohort.  

Interestingly, in a genetic study assessing the relapse hazard in untreated MS patients, 

the authors found a significant enrichment for genes belonging to the vitamin D pathway 

(Vandebergh et al, 2021), and a subsequent MR analysis was successful in determining 

the causal role of vitamin D on relapse hazard (Vandebergh et al, 2022).  

Indeed, MR is a very powerful tool to assess causal inference when high-quality 

randomized controlled trials are missing or in presence of many potential confounding 

factors. By the use of genetic markers (which are therefore named as instrumental 

variables, IVs), which by definition are distributed in a random way in the population and 

serve as a randomization strategy, MR allows to establish whether an exposure (e.g. 

vitamin D) is causally associated with an outcome (= disease activity). Therefore, in our 

study, after finding that vitamin D levels at baseline predict the NEDA-3 status at 2-years, 
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we tried to gain a deeper insight into this association, investigating whether there is a 

causal relationship, implementing a MR analysis.  

Our results overall provide evidence that not only vitamin D levels are associated with 

the NEDA-3 status at 2-years, a powerful outcome of disease activity which was poorly 

explored by previous studies on vitamin D, but also that there is a causal relationship in 

this effect which does not seem affected by other potential confounding factors and that 

is likely due to the many known effects of vitamin D in the immune system (Gombash et 

al, 2022).  

We reckon that the evidence provided by our work can promote the need for future 

further randomized trials assessing the effect of vitamin D supplementation on outcomes 

of disease activity, as the NEDA-3 status, in a real-world setting. 
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6. Study 4: Environmental factors and disease severity 

The pathogenesis of MS is complex and multi-factorial. The study of environmental 

factors (EF) is one of the main candidates to successfully examine the mechanisms 

involved in the disease and to fill the gap left by the genetic studies. As more extensively 

discussed in Chapter 1, many EF have been showed to impact the susceptibility to develop 

the disease (Olsson et al, 2017), but much less is known on their effect on measures of 

disease severity in MS (Healy et al, 2009; Manouchehrinia et al, 2013; Ramanujam et al, 

2015). Previous evidence also has suggested that the role of the EF could be stronger 

during an early timeframe in the disease course, representing the scenario in which, on 

the basis of the underlying genetic background, the pathogenic mechanisms of MS are 

triggered (Kular and Jagodic, 2020). 

Starting from this hypothesis, in this study we will investigate how the exposure to 

specific EF occurred early in the disease history of MS patients, that is during adolescence 

and before the diagnosis of MS, can potentially affect future MS severity, assessed by the 

Age-Related Multiple Sclerosis Severity (ARMSS) score.  

Taking advantage of an extensive environmental questionnaire (EQ) that was 

administered to a large cohort of consecutive MS patients at the MS Centre of IRCCS 

San Raffaele Hospital (n=1,892), we will focus on: a) factors provoking changes in sex 

hormones in women with MS; b) body weight; c) alcohol consumption. 

The clinical characteristics of the final study cohort, that included 1,688 patients, are 

reported in Table 6.1. Further details on patient selection, EQ and statistical analysis are 

described in the Methods section (Chapter 9.4). 

 

Number of patients 1,688 

F/M ratio 1.96 (F: 1,117; M: 571) 

Age at EQ (mean, sd) 51.1 (8.6) 

Age at onset (mean, sd) 31.1 (9.5) 

Age at ARMSS (mean, sd) 52.4 (6.1) 

EDSS at ARMSS (mean, sd) 2.3 (1.8) 

Disease duration at ARMSS (mean, sd) 15.1 (9.4) 

Table 6.1. Clinical features of the cohort included in the study on environmental factors. F/M = 
female/male. EQ = environmental questionnaire; sd = standard deviation. EDSS = Expanded 
Disability Status Scale score. 
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6.1 Results 

6.1.1 Factors provoking changes in sex hormones 

In the subset of female patients (n=1,117), we explored the role of hormonal factors 

on disease severity in MS. In this regard, the EQ assessed the following topics: the age at 

menarche, the use of oral contraceptives, history of pregnancy before the diagnosis and 

occurrence of menopause before the diagnosis. 

We found a trend for association between the age at menarche and the ARMSS score, 

with patients who reported an age at menarche ³ 14 years (n=264) having a less severe 

disease (p=0.076). Interestingly, when assessing the use of oral contraceptive before the 

diagnosis, we found that patients who reported to have used oral contraceptives prior to 

the diagnosis had a better outcome in terms of future MS severity (p=0.0048). Of note, 

also patients who reported a pregnancy before the diagnosis had a lower ARMSS score 

(p=0.0015), as well as patients in whom menopause (n=60) had occurred before the 

diagnosis (p<0.001). Assessing whether the use of oral contraceptive or pregnancy could 

have influenced the age at onset in MS (which is known to be associated with disease 

activity and severity), only the history of pregnancy resulted to be associated (p<0.001) 

and not the use of oral contraceptive (p=0.56) or the age at menarche (p=0.11).  

Conversely, the use of oral contraceptive at diagnosis was not associated with disease 

severity (p=0.182). 

The results of these analysis are shown in Table 6.2 and Figure 6.1. 

 

 

Factor Beta [SE] p-value Response rate 

Age at menarche ³ 14 years -0.13 [0.071] 0.076 99% 

Oral contraceptive before diagnosis -0.17 [0.061] 0.0048 98% 

Pregnancy before diagnosis -0.20 [0.064] 0.0015 98% 

Menopause before diagnosis -0.50 [0.13] < 0.001 98% 

Contraceptive use at diagnosis 0.095 [0.071] 0.182 98% 

Table 6.2. The impact of age at menarche, oral contraceptive use, menopause, and pregnancy on 
disease severity. P-value, regression coefficient (beta) and its standard error (SE) of linear 
models using normalized ARMSS score as outcome are reported. Response rate = percentage of 
patients answering the question in the EQ. 
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Figure 6.1. Box-dot plot showing the association of oral contraceptive use, menopause and 
pregnancy with the ARMSS score. Significance threshold: ** = p<0.01; *** = p<0.001; ns = not 
significant. N = No; Y = Yes 

 

6.1.2 Body weight 

When we evaluated the body weight during adolescence and disease severity, we did 

not find any significant correlation. In particular, patients who self-reported that they were 

obese (n=19; p=0.10), overweight (305; p=0.16), or underweight (184; p=0.28) during 

the adolescence did not have a different disease course in terms of ARMSS score if 

compared to patients who reported normal body weight during adolescence (n=1,180). 

Even after grouping together patients who were obese or overweight (given the small 
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number of patients who reported adolescence obesity), there was no significant effect on 

disease severity (p=0.11). 

When we evaluated how the Body Mass Index (BMI) at the time of diagnosis impacted 

future disease severity, we found that patients with higher BMI had a smaller risk of a 

more severe course assessed by the ARMSS score (p=0.018; Figure 6.2). Grouping the 

BMI into different categories (underweight, normal, overweight, obese), we found only 

a trend for association for underweight patients, when comparing each category to the 

normal weight category as reference (p=0.062). In a sensitivity analysis, we found that 

patients who were overweight or obese at the time of diagnosis, had a higher age at disease 

onset (p<0.001). When adjusting the analysis of BMI at diagnosis and future severity at 

ARMSS score for the age at onset, the previously reported association did not hold 

(p=0.58). The results of the above ported analysis are shown in Table 6.3. 

 

Factor Beta [SE] p-value Response rate 

Weight adolescence:  

    underweight vs normal 

    overweight vs normal 

    obese vs normal 

 

0.084 [0.08] 

0.091 [0.064] 

0.38 [0.23] 

 

0.28 

0.16 

0.10 

100% 

 

obese/overweight vs normal 0.38 [0.23] 0.11  

Weight at diagnosis 

     BMI    

    underweight vs normal 

    overweight vs normal 

    obese vs normal 

 

-0.058 [0.025] 

0.18 [0.95] 

-0.074 [0.058] 

0.020 [0.11] 

 

0.018 
0.062 

0.20 

0.85 

96% 

Table 6.3. Body weight and disease severity assessed by the ARMSS score. P-value, regression 
coefficient (beta) and its standard error (SE) of linear models using normalized ARMSS score as 
outcome are reported. Response rate = percentage of patients answering the question in the EQ. 
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Figure 6.2. Impact of BMI at the time of diagnosis on future disease severity. BMI score is shown 
in a form of a z-score to fit a normal distribution, as well as for the ARMSS score. The blue line 
represents the smooth line of the linear model and its 95% confidence interval (grey area).  
Categories for weight at diagnosis (dx) are defined as: normal (BMI 18-24), under (BMI < 18), 
overweight (BMI 24-30), obese (BMI > 30). 

 

6.1.3 Alcohol consumption 

Alcohol consumption was studied separately in women and men, due to the known 

gender differences in the metabolization of alcohol (Baraona et al, 2001). All the analyses 

regarding alcohol consumption are adjusted for smoking status and body weight, as 

suggested considering that both affect alcohol intake and metabolism (Hedström et al, 

2014b; Olsson et al, 2017). Details on the classification of patients into categories of 

alcohol consumption (no/moderate/high) are discussed in the Methods (Chapter 9.4.4). 

 

6.1.3.4 Alcohol consumption in women 

We found that women who reported alcohol consumption during adolescence had 

lower disease severity explored by the ARMSS score (p=0.0030). When dividing patients 

based on the level of consumption, this finding was confirmed comparing women who 

reported a moderate consumption (n=360) versus women who reported no alcohol 
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consumption (n=748) during adolescence (p=0.0038) (Figure 6.3A). No association was 

found in women who reported a high consumption versus no consumption during 

adolescence, probably due to a more limited number of patients reporting a high 

consumption during adolescence (n=9).  

 

 
Figure 6.3. Alcohol consumption and MS severity in women.  

 

The same effect was found also when investigating alcohol consumption at the time 

of MS diagnosis. In particular, women who reported alcohol consumption at diagnosis 

had significantly less severe MS during disease course (p=7.69e-07), and the same effect 

was found for all the levels of alcohol consumption when dividing into categories (No 

versus Moderate: 4.53e-06; No versus High: 0.00064) as show in Figure 6.3B.  

In the subset of patients who reported drinking alcohol, we also investigated whether 

the kind of alcoholic beverage was associated with severity measure. Interestingly, 

patients who reported consumption of beer or wine seemed to benefit from a protective 

effect towards disease severity (p=0.019), while consumption of spirits showed a trend 

for association with worse disease severity (p=0.067). We did not find the same protective 

effect for beer and wine when analyzing reported alcohol consumption during 

adolescence. The above-mentioned results are reported in Table 6.5. 
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Female patients with MS (n=1,117) 

Factor Beta [SE] p-value Response rate 

Weekly alcohol at diagnosis 
   No vs Yes   

   No vs Moderate 

   No vs High 

 

-0.32 [0.06] 

-0.30 [0.065] 

-0.65 [0.19] 

 

7.69e-07 
4.53e-06 
0.00064 

100% 

Spirits at diagnosis 0.22 [0.12] 0.067 100% 

Beer/wine at diagnosis -0.35 [0.15] 0.019 100% 

Weekly alcohol adolescence 
   Yes vs No  

   No vs Moderate 

   No vs High 

 

-0.19 [0.064] 

-0.19 [0.065] 

-0.31 [0.34] 

 

0.0030 
0.0038 
0.36 

100% 

Spirits during adolescence -0.036 [0.11] 0.73 100% 
Beer/wine during adolescence 0.0040 [0.12] 0.97 100% 

Table 6.5. Alcohol consumption in women and disease severity. The results of linear models 
using the ARMSS as outcome are shown, with p-value, regression coefficient (beta) and its 
standard error (SE).  

 

6.1.3.5 Alcohol consumption in men 

Investigating alcohol consumption at the time of diagnosis, our study yielded similar 

results, despite being more limited by statistical power considered the lower incidence of 

MS in men (n=571). Higher alcohol consumption at diagnosis was associated with a 

protective effect towards disease severity (p=0.031), but we did not find any significant 

association exploring adolescence (Figure 6.4). 

As regards the kind of alcoholic beverage, we did not find any significant association. 

The results of the analysis in males are reported in Table 6.6 

 



 

 57 

 

Figure 6.4. Alcohol consumption and disease severity in men.  

 

 

Male patients with MS (n=571) 

Factor Beta [SE] p-value Response rate 

Weekly alcohol dx 
   No vs Yes   

   No vs Moderate 

   No vs High 

 

-0.23 [0.11] 

-0.24 [0.11] 

-0.039 [0.23] 

 

0.031 
0.025 

0.86 

100% 

Spirits at dx 0.16 [0.11] 0.16 100% 

Beer/wine at dx 0.031 [0.19] 0.87 100% 

Weekly alcohol adolescence 
   Yes vs No  

   No vs Moderate 

   No vs High 

 

0.060 [0.084] 

0.051 [0.085] 

0.36 [0.30] 

 

0.48 

0.55 

0.23 

100% 

Spirits during adolescence -0.026 [0.10] 0.80 100% 
Beer/wine during adolescence 0.024 [0.082] 0.77 100% 

Table 6.6. Alcohol consumption in men and disease severity. The results of linear models using 
the ARMSS as outcome are shown, with p-value, regression coefficient (beta) and its standard 
error (SE). Dx = diagnosis. 
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6.2 Considerations 

6.2.1 Sex hormones and disease severity 

Gender difference significantly impacts MS, which is more common in women but, 

once established, the disease course seems to be less favorable in men. The biological 

mechanisms through which sex hormones can affect the immune system are still not 

completely understood. Estrogens are able to increase the T regulatory lymphocytes 

component, down-regulating the effector Th17 lymphocytes in preclinical models 

(Polanczyk et al, 2004; Wang et al, 2009). Studies investigating a possible role of sex 

steroids on MS severity are few (Bove and Chitnis, 2014). In a small study on 132 

patients, the use of oral contraceptive was associated with more favorable MS course, 

assessed by EDSS change and Multiple Sclerosis Severity Score (MSSS) (Sena et al, 

2012). These results were replicated in another independent study on 174 women with 

MS, in which the use of oral contraceptive was associated with less severe disease course 

and resulted to be protective towards disease progression (Gava et al, 2014). In another 

study, RR-MS patients with at least two pregnancies had reduced risk of reaching an 

EDSS 6.0, while in PP-MS patients in the same study oral contraceptive use significantly 

correlated with a worse EDSS (D'hooghe et al, 2012).  

Our study implied a large cohort of 1,117 women with MS, who showed a more 

favorable disease outcome if they reported use of oral contraceptive before the diagnosis. 

When we studied oral contraceptive at the time of the diagnosis and future MS severity, 

we did not find any signification association, additionally supporting that the role of such 

factors could be important in an early stage of the disease, before the pathogenic cascade 

of MS is fully established.   

Overall, our findings replicate the above-mentioned evidence coming from smaller 

studies and prompts future prospective investigations. 

 

6.2.2 Body weight and disease severity 

As regards the effect of body weight, our results do not provide such a level of 

confidence. In literature, solid evidence demonstrated that obesity during adolescence 

leads to a higher risk of developing MS (Munger et al, 2012; Wesnes et al, 2015), 

interacting with the HLA risk genes (Hedström et al, 2014a). Adolescence is thought to 

be the critical period in which an increased body weight can affect the risk of the disease, 
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as in patients with a high BMI during adulthood or childhood there was no effect on the 

risk of MS (Hedström et al, 2016). Studies investigating the effect of body weight on MS 

severity are few. In a cohort of 351 people with MS, obese and overweight patients had a 

worse MSSS (Van Hijfte et al, 2022). In our study, we did not find any impact of obesity 

during adolescence on future MS severity. This result could be affected by the recall bias, 

as patients were asked to independently report their body size during adolescence. 

Prospective studies systematically assessing the BMI in children, adolescents, and young 

adults, despite having the disadvantage of observing a much more limited number of cases 

(limited by the incidence of MS), are needed to assess this effect more precisely. The 

recall bias may also have limited our findings in terms of power, as only 19 patients 

reported that they were affected by obesity in their adolescence. When assessing the BMI 

at diagnosis, instead, we found that an increase in BMI was linearly associated with a 

reduced ARMSS score, suggesting that patients with increased body weight at the time 

of the diagnosis were less prone to develop severe MS. When adjusting this analysis for 

the age at disease onset, we were not able to observe this correlation anymore, probably 

reflecting a bias due to patients’ age, as older patients tend to have a higher BMI and less 

severe MS. 

 

6.2.3 Alcohol consumption and disease severity 

In the analysis on alcohol, we found that alcohol consumption was associated with less 

severe disease in women in a dose dependent manner, both when investigating alcohol 

consumption during adolescence or at the time of diagnosis. In the subset of men, we 

found the same effect only when assessing alcohol consumption at the time of diagnosis, 

while no association was found for adolescence, probably due to a much more limited 

sample size if compared to women. Overall, alcohol exerts an inhibitor effect on the 

immune system, targeting both innate and adaptive immunity (Fahim et al, 2020). 

Alcohol is able to down-regulate the activity of T lymphocytes, limiting the function of 

the antigen-presenting cells as monocytes and dendritic cells (Heinz and Waltenbaugh, 

2007; Ness et al, 2008; Sureshchandra et al, 2019). It is known to induce wide changes in 

the cytokine asset, for example repressing IL-6 and TNF-alfa (pro-inflammatory factors) 

and increasing the levels of IL-10 (that has anti-inflammatory activity) (Sureshchandra et 

al, 2019). Together with the underlying biological explanation, the positive effect of 
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alcohol consumption on MS has been reported by some other studies, both on the 

susceptibility to the disease and its severity (Hedström et al, 2014b; Diaz-Cruz et al, 

2017). Similar evidence has been found on other autoimmune diseases like rheumatoid 

arthritis (Källberg et al, 2009). Overall, the epidemiological evidence is controversial, as 

others found no effect by alcohol consumption on disease severity, but its role on 

attenuating the risk given by smoking, which is largely known to worse the outcome of 

MS, was postulated (Ivashynka et al, 2019). Since many people who drink alcohol are 

also smokers, in our analysis we tried to minimize the bias of smoking as a confounding 

factor adjusting for smoking history, as also done by others (Hedström et al, 2014b), 

probably picking up a true effect of alcohol on severity. In this regard, our study provides 

a validation of previous studies in a large cohort of MS patients, both women and men.  

Interestingly, in the analysis on women, we also found that the kind of alcohol 

beverage that patients reported to drink had an opposite effect on severity, as wine and 

beer were associated with better outcome, while patients reporting consumption of spirits 

had higher ARMSS score. This finding, even though a validation in independent and 

prospective cohorts is strongly needed, is potentially of great interest, as a neuroprotective 

effect of additional compounds that are present in some kind of alcohol beverages is well 

known. For example, a consistent body of evidence has shown that resveratrol and other 

polyphenols, which are especially found in red wine, have known antioxidant properties, 

exerting a neuroprotective effect which is associated with a decrease in the aging process 

(Zhou et al, 2021).  

 

6.2.4 General considerations 

Overall, in this study we provide evidence supporting that exposure to some kind of 

EF has a role in determining disease severity in MS, explored by the ARMSS score. As 

postulated, exposure to such factors specially seems to play a key role when occurring 

early in the disease history, during adolescence and early adulthood. 
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7. Study 5: Genetic factors driving chronic silent inflammation  

Disability worsening over the years -–which is independent of new relapses or new 

lesions at conventional MRI– is the main clinical feature in patients with progressive MS 

(Lassmann et al, 2012). 

Despite several drugs available for RR-MS, the treatment of the disease in its 

progressive course is still an unmet need (Feinstein et al, 2015). For this reason, the study 

of the mechanisms underlying disease progression gathered much attention in the past 

years.  

From a pathological point of view, the chronic lesions represent the most common 

lesion type in progressive MS (Kuhlmann et al, 2016). In the chronic and active subtype, 

an ongoing inflammation is observed at the lesion border, despite complete demyelination 

at the lesion core, and sustains persistent demyelination and axonal injury (Kuhlmann et 

al, 2016). 

In the past few years, the first in vivo putative correlates of the chronic active lesions 

have been discovered. Lesions showing at their borders a paramagnetic rim that is 

enriched in iron content have been identified by susceptibility imaging techniques at MRI 

and therefore named as Paramagnetic Rim Lesions (PRL) (Absinta et al, 2016; Absinta 

et al, 2018). Even though the precise relationship between the PRL and the chronic active 

lesions is still not completely clear, the PRL are gathering increasing attention from 

researchers and clinicians, as they are also correlated with disability, progression, and 

neurodegeneration in MS (Absinta et al, 2019; Maggi et al, 2021). In this perspective, 

they could represent an ideal candidate outcome in pharmacological clinical trials in the 

context of progressive MS.   

For this reason, a consistent effort was devoted to dissecting the cellular and molecular 

profile of such lesions. Important findings from single-nuclei RNA sequencing studies 

led to the identification of a microglia phenotype (the so-called “microglia inflamed in 

MS”) at the edges of the chronic active lesions, which sustains a silent chronic 

inflammation, responsible for an outward propagation of the lesion over the years 

(Schirmer et al, 2019; Jäkel et al, 2019; Absinta et al, 2021). The cells composing the 

microglia inflamed in MS show consistent differential expression of a variety of genes 

related to iron metabolism and oxidative stress (Absinta et al, 2021), mirroring from a 

microscopic point of view the iron enrichment clearly visible at MRI. 
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Herein, we aim to investigate whether genetic variants in iron metabolism genes 

impact the risk of disease progression. We discovered that a genetic locus in the Hypoxia-

Inducible Factor 1-alfa (HIF1A) gene significantly impacts the risk of developing SP-MS 

versus RR-MS, affecting the expression of the gene in the immune cells of MS patients, 

and being associated to an impact in neurofilament light chain (NFL) levels and the 

burden of PRL.  

 

7.1 Results 

7.1.1 Genetic study on iron metabolism prioritizes a locus HIF1A 

Definition of the study cohort, genetic QC and selection of the SNPs belonging to 

genes related to iron metabolism (n=23,019) are described in the Methods section 

(Chapter 9.5). Then, we conducted a genetic analysis in the discovery cohort (n=755) 

from IRCCS San Raffaele Hospital (OSR), comparing RR-MS versus SP-MS patients 

(Table 7.1). 

We found a statistically significant association, that survived correction for multiple 

testing, involving SNPs in chromosome 14 and the risk of developing a RR versus SP 

course (Figure 7.1). Specifically, the minor allele A of the lead variant (rs11621525) was 

significantly associated with a lower risk of having a SP course, while it was more 

common in patients with RR-MS (p=3.30E-06; ORSP=0.57). The minor allele A of the 

lead variant rs11621525 has an allele frequency in the European population of 0.17 

(Karczewski et al, 2020). 

This association was successfully replicated in an independent nationwide cohort of 

2,062 patients from Sweden (lead SNP p-value=7.88E-03, ORSP=0.79) as shown in Table 

7.2. The lead variant in the Swedish cohort (SWE) is in almost perfect linkage 

disequilibrium (R2=0.98) with the lead variant of the OSR cohort, representing a proxy 

of the same signal and supporting the same biological effect. 
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 OSR SWE 

N 755 

(RR: 393; SP: 362) 

2062 

(RR: 863; SP: 1199) 

F/M ratio 2.01 2.83 

Age at onset All: 29.7 

RR: 26.51; SP: 32.57 

All: 32.58 

RR: 28.4; SP: 35.6 

Median EDSS at FU RR: 1.5 (range 0-3.5) 

SP: 6.5 (range 4-9.5) 

RR: 2 (range 0-3.5) 

SP: 6.5 (range: 4-9.5) 

Table 7.1. Clinical and demographic features of the two cohorts involved in genetic association 
study. F/M = female/male; FU = follow-up. 

 

 

 
Figure 7.1. Regional plot for the top associated signal in chromosome 14 in the OSR cohort. 
Colors of the dots reflect the R2 values, indicating linkage disequilibrium. Reference genome is 
GRCh37/19. 
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CHR SNP BP A1 OR.OSR P.OSR NMISS.SWE OR.SWE P.SWE 

14 rs11621525 62203056 A 0.57 3.30E-06 2056 0.802 0.0120 

14 rs10873142 62203462 C 0.59 1.34E-05 2042 0.795 0.0080 

14 rs4899057 62202942 G 0.59 1.34E-05 2045 0.797 0.0087 

14 rs4902082 62212675 C 0.59 1.34E-05 2032 0.798 0.0095 

14 rs12435848 62176891 A 0.61 2.11E-05 2053 0.799 0.0087 

14 rs1951795 62171426 A 0.60 2.66E-05 2062 0.794 0.0079 

14 rs12232182 62176220 C 0.66 1.50E-04 2051 0.866 0.0802 

14 rs12434438 62197298 G 0.65 1.73E-04 2061 0.852 0.0546 

14 rs2301111 62200201 G 0.65 1.73E-04 2053 0.854 0.0584 

14 rs7153817 62201500 G 0.65 1.73E-04 2053 0.854 0.0584 

Table 7.2. Top 10 associated SNPs in the OSR cohort and replication in the SWE cohort. For both the cohorts, the OR of having a SP course is 
reported. NMISS = Number of Non-Missing Genotypes.  
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The signal maps to chromosome 14 and it is localized in an intron of the gene Hypoxia-

Inducible Factor 1-alfa (HIF1A), a fundamental regulator of cell response to hypoxia and 

iron metabolism, as well as of different immune mechanisms (Zhang et al, 2018).  

In literature, multiple evidence pinpoints the functional effects of the variants in this 

genetic locus, strongly supporting their role on a change of HIF1A expression.  

Namely, the rs11621525 variant is known to exert an expression Quantitative-Trait-

Loci (eQTL) effect on HIF1A, as the A allele resulted to be associated to decreased 

expression of HIF1A in whole blood in a large cohort involving more than 31,000 healthy 

subjects (p=1.16E-21) (Võsa U et al, 2021). 

A similar effect was found also when assessing the methylation Quantitative-Trait-

Loci (mQTL) effect.  Notably, results from a meta-analysis from an international 

consortium involving more than 36,000 healthy subjects (GoDMC, 2021) showed that 

the rs11621525 A allele is associated to increased methylation levels in whole blood of a 

CpG (cg20931965) located in the enhancer region for HIF1A, therefore strongly 

suggesting a decrease in gene expression (p=8.04E-175). This effect was also present in 

a smaller study (cg20931965, p=2.31E-21) on a Dutch cohort (Bonder et al, 2017), which 

also found an association between the SNP and increased methylation level of a CpG 

located in the promoter region of HIF1A (cg23174662, p=6.68E-23).  

 

7.1.2 eQTL and mQTL in MS patients 

To gain an insight on potential similar effects on gene expression and methylation 

exerted by the variant in the HIF1A locus in MS patients, we studied the eQTL effect in 

PBMC from 78 RR-MS patients who were naive from DMT and had not been treated 

with steroid drugs in the 30 days before sampling. We found that the rs11621525 A allele 

was associated with a decreased expression of HIF1A (p=0.0193, beta=-0.54), adjusting 

for age and sex (Figure 7.2). This finding confirms that the A allele, which is protective 

towards the SP course, leads to decreased HIF1A expression in the immune cells of 

patients with MS.  

Details regarding PBMC extraction, RNA-sequencing experiments, and eQTL effect 

analysis are reported in the Methods section (Chapter 9.5.6)  
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Figure 7.2. Expression Quantitative-Trait-Loci (eQTL) effect in PBMC from naive RR-MS 
patients. On the x axis the rs11621525 genotype is shown. On the y axis, inverse normal 
transformed RNA-seq counts for HIF1A are shown.  

 

7.1.3 Impact of the HIF1A variant on NFL levels 

To further assess the relationship between the genetic variation in the reported HIF1A 

locus and silent subclinical inflammation, we also studied the NFL levels, a recognized 

marker of ongoing axonal injury and chronic white matter inflammation, that have also 

been found associated with the burden of PRL (Maggi et al, 2021).  

Plasma NFL (pNFL) levels were available for a subset of the patients involved in the 

association analysis of the SWE cohort, that had a RR-MS course at the time of sampling 

and had been sampled within 20 years from disease onset (n=117). In this group, we found 

that patients with at least one copy of the rs11621525 A allele showed lower pNFL levels 

(p=0.0026) (Figure 7.3A).  

The same association was found when assessing CSF NFL levels, that were available 

for 71 RR-MS. The A allele for rs11621525 showed the same effect and was significantly 

associated with lower NFL (p=0.049) (Figure 7.3B).  

A similar effect was found in patients at first demyelinating event (Clinically Isolated 

Syndrome, CIS), in whom the A allele was associated with lower CSF NFL levels 

(p=0.019, n=34), further pointing out the impact of reported genetic association on 

chronic inflammation and ongoing axonal neurodegeneration. 
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Figure 7.3. Effect of the rs11621525 variant of plasma and CSF NFL levels in RR-MS. NFL levels 
are reported in form of a z-score, after normalization by rank transformation. * = p-value < 0.05; 
** = p-value < 0.01. 

 

7.1.4 HIF1A variant and response to Disease-Modifying Treatment (DMT) 

To give an insight on a potential effect of the genetic variant in HIF1A on disease-

modifying treatment and silent inflammation, we studied whether pNFL levels, which are 

known to decrease in MS after the beginning of a DMT (De Flon et al, 2016; Kuhle et al, 

2020; Bridel et al 2021), were additionally influenced by the rs11621525 A allele.  

Overall, in our analysis, the levels of pNFL decreased at 1 year from the beginning of 

a DMT, as expected. However, we found that in patients starting dimethyl fumarate 

(DMF), but not other DMT (teriflunomide, fingolimod or natalizumab), the rs11621525 

A allele was associated with a more pronounced reduction of pNFL levels after 1 year 

from treatment start (+/- 6 months), supporting that genetic variation in the HIF1A locus 

may impact the response to DMF treatment (p=0.027) (Figure 7.4). 
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Figure 7.4. Impact of the rs11621525 variant on the NFL levels after DMT. The change in plasma 
NFL z-score after treatment is shown (y-axis), grouping patients by the status of the rs11621525 
A allele (TT versus AT/AA) on the x-axis. * = p-value < 0.05; ns = not statistically significant. 

 

The positive effect of the rs11621525 A allele on the response to treatment with DMF 

was also confirmed clinically in a cohort of 138 RR-MS patients from OSR on continuous 

DMF treatment. In this cohort, carriers of the A allele were more likely to reach the 

NEDA-3 status at 2-years from treatment start, adjusting for sex and age at onset 

(p=0.0062). This association was even stronger when restricting the analysis to the subset 
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of patients who were DMT-naive (n=49, p=7.12E-04). Detailed inclusion criteria are 

reported in Chapter 9.5.9. 

 

 
Figure 7.1. Effect of the variant in HIF1A on the clinical response to treatment with Dimethyl 
Fumarate. EDA = Evidence of Disease Activity; NEDA = No Evidence of Disease Activity.  

 

7.1.5 The genetic variant in HIF1A affects the PRL burden 

As we found a genetic variant in iron metabolism that affects the susceptibility to SP-

MS, we also investigated whether the same variant exerts an effect on the PRL, which, as 

discussed, are characterized by a consistent iron enrichment at their edges where the 

inflammation becomes chronically active.  

We then proceeded with MRI acquisition and PRL segmentation in a subgroup of 

subjects for which rs11621525 genotype was available, as shown in Figure 7.6 and 

reported in the Methods section (Chapter 9.5.10).  

We found that the A allele for rs11621525 was significantly associated with lower 

mean volume of the PRL (p=0.0163, beta=-0.60) in a cohort of 35 RR-MS patients, 

adjusting for sex and total number of PRL (Figure 7.7). 

This finding confirms that genetic factors in HIF1A are important for the development 

and expansion of PRL, mirroring an effect of the gene on silent inflammation and disease 

progression. 
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Figure 7.6. Examples of two multiple sclerosis patients with or without paramagnetic rim lesions. A and D: On 3D axial fluid-attenuated inversion 
recovery sequence, multiple T2-hyperintense white matter lesions are visible in two multiple sclerosis patients. B and C: Brain T2-hyperintense white 
matter lesions (red-coded) were identified by a fully automated approach on 3D axial fluid-attenuated inversion recovery sequence and their masks were 
then registered onto the susceptibility-weighted image space. On unwrapped phase images, no paramagnetic rim lesion was found in MS patient #1 (C), 
whereas several paramagnetic rim lesions (red arrows) were found in MS patients #2 (F).  



 

 71 

 
Figure 7.7. The variant in HIF1A affects the volumetric burden of the paramagnetic rim lesions. 
Y-axis: rank-transformed mean volume of the PRL; x-axis = number of copies of rs11621525 A 
allele.  

 

7.2 Considerations 

Iron is an essential cofactor for a variety of enzymes involved in maintaining the health 

of oligodendrocytes and myelin, and it is involved in remyelination mechanisms 

(Stephenson et al, 2014). At the same time, iron accumulation is detrimental for cell 

survival, as it is associated with oxidative stress, development of a pro-inflammatory 

environment, glutamate toxicity, and impaired DNA repair (Stephenson et al, 2014). 

Since iron is a fundamental component of lesions that typically associate with silent 

inflammation and disease progression in MS, we explored whether genetic factors in iron 

metabolism could affect the susceptibility to develop progressive MS and could help 

prioritizing meaningful molecular mechanisms involved in the pathobiology of the PRL 

and progressive MS.  

The results of our genetic analysis implied a locus in the HIF1A locus in the 

susceptibility to SP-MS in a discovery Italian cohort, that was successfully replicated in 

an independent larger Swedish cohort. Taking advantage of a broad set of data, we then 

clarified the impact of the lead variant on gene expression, NFL levels, and the burden of 
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the PRL, adding different levels of evidence that involve HIF1A as a driver of chronic 

silent inflammation in MS.  

The contribution of this gene is also supported by a recent single nuclei RNA-

sequencing study, in which HIF1A was found to be upregulated in the chronic active edge 

of MS lesions (Absinta et al, 2021). In the same study, in an analysis comparing different 

immune cells (excluding lymphocytes), HIF1A was upregulated in a cluster of cells that 

identified as monocytes or monocyte-derived dendritic cells (moDC). Cells from this 

cluster presented a strong upregulation of all the genes belonging to HIF1A signaling 

pathway, hypoxia and ferroptosis, and the authors suggested that they could represent a 

cluster of antigen-presenting cells (APC) which are exposed to a hypoxic environment 

(Absinta et al, 2021).  

The moDC functionally differentiate from monocytes, migrate from the bone marrow 

to the site of inflammation (Merad et al, 2013) and act as professional APC for memory 

and helper T lymphocytes, which constitutes the last step in the inflammatory cascade of 

MS lesions (Hemmer et al, 2015). HIF1A is fundamental for the function and migration 

of monocytes and moDC. In a low oxygen environment, HIF1A is upregulated in the 

dendritic cells, and impacts their ability to respond to chemokines that drive their 

migration and activity (Köhler et al, 2012).  

HIF1A is essential in the fine tuning of the Th17/T regulatory lymphocytes balance. 

HIF1A knock-out mice do not develop the symptoms of the Experimental Autoimmune 

Encephalomyelitis (EAE) and show an increase of the T regulatory cells and a decrease 

of the effector Th17 cells, additionally supporting that the activation of HIF1A is key in 

the context of inflammation (Dang et al, 2011). Importantly, hypoxia triggers HIF1A 

activation not only in T lymphocytes, but also in cells of the myeloid lineage (Cramer et 

al, 2003).  

To gain an insight on a possible effect on the response to MS treatment, we then 

assessed if the variant in the HIF1A locus affects the levels of NFL at one-year after the 

beginning of a DMT. In this experiment, in patients starting DMF, but not other DMT, 

the rs11621525 A allele significantly improved the response to the drug, in terms of NFL 

reduction. We also explored this finding on a clinical level in a pharmacogenomic 

analysis that additionally supported that the variant significantly affects the response to 

DMF treatment.  
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DMF, an exogenous fumaric acid ester, is an approved drug for the treatment of RR-

MS and has multiple effects, involving both peripheral immunity and the central nervous 

system (Blair H, 2019). In the periphery, DMF reduces the activation of T helper (Th) 

lymphocytes in the effector Th17 cells and enhances the T regulatory and Th2 counterpart 

(Wu et al, 2017). In the central nervous system, DMF exerts an antioxidant activity, acting 

through the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) and the upregulation of 

genes as SOD2, ferritin and GST (Mills et al, 2018). Moreover, monomethyl fumarate, 

the active metabolite of DMF, crosses the blood-brain barrier and reduces glutamate 

toxicity (Luchtman et al, 2016).  Therefore, a neuroprotective of DMF was hypothesized, 

even though the exact mechanisms have not been fully explored and understood so far.  

The pharmacodynamics of DMF has many points in common with mechanisms 

involving HIF1A. Endogenous fumarate is one of the main regulators of HIF1A 

expression (Isaacs et al, 2005) and DMF increases the degradation of HIF1A in the 

proteasome (Zhao et al, 2014). The inhibition of HIF1A leads to increased NRF2 

expression, promoting an antioxidant activity (Briggs et al, 2016).  

HIF1A is overexpressed by the moDC and in the edges of the chronic active lesions 

(Absinta et al, 2021), and monocytes have been found to be significantly affected by DMF 

treatment, together with production of Reactive Oxygen Species (ROS) (Carlström et al, 

2019), providing additional evidence that myeloid lineage cells are crucial in the 

pathogenesis of MS (Galli et al, 2019). In this regard, preliminary data show that anti-

CD20 treatment, that conversely acts on cells of the lymphoid lineage, does not affect 

PRL changes, but further validation is strongly needed (Maggi et al, 2022). 

Exploring the mechanisms driving disease progression in MS is crucial, as the 

treatment of the disease in its progressive course is still largely an unmet need. The PRL 

are the most promising in vivo biological correlate of silent inflammation in MS and an 

increasing number of clinical trials is introducing them as an outcome measure, when 

testing the efficacy of drugs on disease progression (Martire et al, 2022).  

Our data show that genetic variation in the HIF1A gene impacts silent inflammation 

in progressive MS patients. This novel mechanism is strictly linked to endogenous and 

exogenous fumaric acid esters, prompting future investigation to assess their potential in 

the treatment of chronic inflammation in MS.
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8. Discussion 

In the present work, we took advantage of multiple layers of information to explore 

disease heterogeneity in MS, through a diverse set of measures of disease activity, 

severity, and progression. The results of the single studies are discussed more extensively 

in the respective chapters. Herein, we want to provide some general considerations that 

emerge from our work, when integrating different kinds of evidence from different 

studies. 

In a genome-wide meta-analysis involving 1,408 patients with MS, we found different 

genetic loci that showed a potential association with disease activity, assessed by the 

NEDA-3 status at 2-years from the beginning of a first line DMT. Some of the implicated 

genes take on a special interest in the context of MS mechanisms, as the SEMA3E and the 

NAMPT loci, which are discussed in Chapter 3.4.  

In the same study, the second top associated locus mapped to the MKRN3 (Makorin 

Ring Finger Protein 3) gene. This gene is well known as a regulator of the Gonadotropin-

Releasing hormone and acts as a break for the onset of puberty, modulating hypothalamic 

activity (Abreu et al, 2020). At the end of childhood, as puberty approaches, the 

expression of MKRN3 starts to decrease in brain, eventually resulting in increased 

gonadotropin expression (Abreu et al, 2020).  During puberty, there is a remodulation of 

the levels of the sex hormones, accompanied by the onset of reproductive maturity and 

the development of the secondary sexual characteristics (Wood et al, 2019). Puberty is 

also known to lead to extensive changes in the immune system, affecting the T regulatory 

balance, the maturation of dendritic cells and the formation of IgG antibodies (Ucciferri 

and Dunn, 2022). Since MS is more likely to first present in young adults in the 

reproductive age, different works have explored the role of puberty and changes in 

circulating levels of sex hormones in MS (Chitnis, 2013). Multiple levels of evidence 

show that factors regulated by sex hormones, that dramatically change after the onset of 

puberty, are important in the disease, in which the epigenetic component has a primary 

role, even though the exact mechanisms are not clear (Thompson EE et al, 2018; Ucciferri 

and Dunn, 2022). In this work, we found an association between a genetic locus in 

MKRN3, that is known to regulate the onset of puberty, and disease activity in MS. 

Remarkably, when investigating how the methylation profile in the immune cells 

impacts the same outcome of disease activity, the NEDA-3 status, again our analysis 
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supported the importance of another fundamental regulator of puberty and sexual 

maturation, that is the AMH. The role of sexual differentiation and maturation was also 

additionally fostered by a Gene Ontology enrichment analysis, that prioritized terms as 

‘Fertilization’ and ‘Regulation of reproductive system’ (Table 4.6). Moreover, in an 

analysis on 1,117 women with MS we found that the use of oral contraceptive, menopause 

and pregnancy before the diagnosis were all associated with a less severe disease course 

of MS, together with a trend for association between an older age at menarche and less 

severe MS (Table 6.2). We reckon that the evidence coming from this integrated approach 

of different ‘omics’ (genomics, epigenomics and environmental factors) raises interest 

towards the role on puberty on disease manifestations, in terms of disease activity and 

global severity. In this regard, our work confirms that the extensive modifications that 

occur in this age are a crucial step in the cascade of events that lead to MS.  

In Chapter 7, we found evidence that a locus in the HIF1A gene affects the 

susceptibility to progressive MS in two independent cohorts from Italy and Sweden, for 

a total of 2,817 patients. In the same Chapter, through additional multiple levels of 

evidence, we depicted how HIF1A, likely finely modulated by genetic factors, acts as a 

strong driver of the chronic and silent inflammation that is characteristic of the 

progressive course in MS. We were also able to correlate genetic variation in HIF1A with 

the paramagnetic rim lesions, the biological in vivo correlate of chronic inflammation. 

Surprisingly, in an independent double-centric cohort of patients described in Chapter 4, 

we found that increased methylation levels in a CpG in the body of the APBA3 (Amyloid 

Beta Precursor Protein Binding Family A member 3) gene was significantly associated to 

higher probability of having signs of disease activity, and this association held after 

correction for multiple testing (Table 4.3). APBA3 is a potent inductor of HIF1A in 

monocytes and macrophages in hypoxic conditions, promoting their inflammatory 

activity and their migration to sites of tissue inflammation (Hara et al, 2017). We reckon 

that it is remarkable that, in two independent studies investigating manifestations of 

disease under different circumstances, HIF1A emerged as a hub that drives inflammation 

in MS at different stages. We hypothesize that different measures can capture a single 

biological entity, which is probably active since the early phases of MS, as also supported 

by recent literature (Kaufmann et al, 2022; Portaccio et al, 2022).  
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Of note, HIF1A is also the connecting element between inflammation and oxidative 

stress. We discovered that the response to Dimethyl Fumarate, a DMT for MS which is 

known to play a key role in the modulation of oxidative stress (Carlström et al, 2019), is 

affected by genetic variation in HIF1A. This preliminary evidence fosters future 

investigation on the potential of Dimethyl Fumarate in hampering chronic inflammation 

in progressive MS.  

Notably, in Chapter 5 we found a protective effect of alcohol on disease severity, 

assessed by the ARMSS score. In a sub-analysis the protective effect was found if patients 

reported to drink wine or beer, while the effect of spirits consumption was detrimental 

(Table 6.4). Even though a validation in larger cohorts is needed to rule out any potential 

confounder, this finding may additionally support that antioxidant activity on the central 

nervous system, which is exerted by different compounds as the polyphenols contained 

in wine, may have a benefit on disease severity (Zhou et al, 2021). In this regard, it is also 

worth mentioning that, in Chapter 5, we provided evidence that higher vitamin D levels 

are causally associated with disease activity in MS. Vitamin D, along with many functions 

that primary act on the immune system, was hypothesized to play a role also on the central 

nervous system through neuroprotective and antioxidant mechanisms implicating Nrf2 

(Nachliely et al, 2019), a transcription factor which is strictly linked to HIF1A and the 

Dimethyl Fumarate, as described in Chapter 7.  

 

To conclude, in this PhD project we found different molecular and environmental 

markers associated with the diverse manifestations of the disease, exploring the spectrum 

of clinical heterogeneity in MS at multiple levels. We showed that an integration of 

different sources of evidence, coming from molecular, clinical, and environmental data, 

can be successful in identifying mechanisms that are relevant to disease pathogenesis.  

We strongly believe in the value of this integrated approach. Our focus for future 

investigation will be translating our discoveries to meaningful lifestyle and 

pharmacological interventions. 
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9. Methods 

9.1 Study 1: Genetic factors underlying disease activity 
9.1.1 Inclusion criteria and NEDA-3 definition 

The Italian cohort was composed by patients who had been admitted to the Multiple 

Sclerosis Centre of the IRCCS San Raffaele Hospital in Milan (OSR). We conducted a 

manual revision of medical records and databases to collect the data which are necessary 

to define the NEDA-3 status after two-years follow-up. For each patient, as a baseline 

(BL) timepoint, we selected the beginning of the earliest first line DMT for which 

complete clinical data were available to define the NEDA-3 status after two years from 

treatment start. We excluded patients who had been treated with immunosuppressive 

(e.g., azathioprine, mitoxantrone, cyclophosphamide, etc.) or second line (e.g., 

ocrelizumab, natalizumab, fingolimod, cladribine, alemtuzumab, etc.) drugs prior to BL 

timepoint.  

Patients were classified as reaching the NEDA-3 status after 2 years from the beginning 

of a first line DMT (interferon, glatiramer acetate, dimethyl fumarate or teriflunomide), 

if all of the following were satisfied during the follow-up time: 1) no relapses; 2) no new 

or enlarging T2 lesions and no gadolinium-enhancing at brain or spinal cord MRI; 3) no 

Expanded Disability Status Scale (EDSS) score progression. EDSS progression was 

defined as follows: an increase in the EDSS score of at least 1.5 if baseline EDSS was 0; 

an increase of EDSS of at least 1.0 if baseline EDSS was between 1 and 5.5 points; an 

increase of EDSS of at least 0.5 points if baseline EDSS was => 6.0. 

In order to be included, patients also needed to have available whole-genome genetic 

data at the Laboratory of Human Genetics of Neurological Disorders in OSR.  

For the OSR cohort, a total of 1,183 patients with available clinical data to define 

NEDA-3 status at 2-year follow-up and available genetic data were included in the study 

and underwent the quality controls (QC).  

In the French cohort, patients were recruited at the Centre Hospitalier Universitaire de 

Toulouse (CHUT), according to the same inclusion criteria used for the OSR cohort. 

Harmonization of the clinical datasets involving the two cohorts was performed at OSR. 

A total of 299 patients with available clinical and genetic data underwent the QC. 

 

 



 

 80 

9.1.2 Genotype imputation and QC in the OSR cohort 

Imputation to reference genome (Haplotype Reference Consortium, McCarthy et al, 

2016) was conducted on all the individuals with available whole-genome genetic data at 

the Laboratory of Human Genetics of Neurological Disorders in OSR. 

Since individuals had been genotyped on four different platforms (Illumina 

OmniExpress, Illumina Omni 2.5, Illumina Human Quad, Illumina Global Screening 

Array), imputation was carried out separately on each platform with later merging on 

bona-fide imputed variants. Given the high level of overlap between OmniExpress and 

Omni2.5, samples genotyped on these two platforms were jointly quality-controlled and 

imputed. Variants’ rsIDs were assigned from dbSNP v151 GRCh37p13 

(http://www.ncbi.nlm.nih.gov/SNP/). 

Prior to imputation, a set of homogeneous QC steps at sample and SNP level were 

conducted for each of the three cohorts separately.  At sample level, we excluded subjects 

for which a mismatch with declared sex was observed, those with call-rate < 90% and 

outliers exceeding the mean level of heterozygosity by >3 standard deviations. At variant 

level, we discarded rare SNPs with AF<1%, SNPs with a call-rate<90% and those 

departing from HWE at p<10E-6. 

After imputation, we extracted the subjects who had fulfilled the clinical inclusion 

criteria, for a total of 1,170 subjects and 9,388,047 variants that passed imputation QC. 

On these, we applied an additional round of study-specific QC. To identify individuals 

with potential biological relationship in the study cohort, we performed a pairwise 

identical by descent (IBD) estimate, that found 5 pairs of subjects with potential 

relatedness (PI_HAT>=0.250). Two pairs were excluded for PI_HAT >=0.50 and of the 

remaining 3 pairs, the individuals who were the least characterized were removed (total 

number of individuals removed: 7). To identify population outliers, we run a Principal 

Component Analysis (PCA) and excluded nine subjects (mean +/- 6 standard deviations) 

(Figure 3.1). As an additional level of QC for the study cohort, we retained only the SNPs 

with a call rate => 0.99 and Minor Allele Frequency (MAF) of at least 5%. A PCA on the 

final dataset was also run to use PCs as covariates in the subsequent association analysis. 

The final dataset included 1,154 subjects and 4,231,855 variants.
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Figure 9.1. Principal Component Analysis for the OSR cohort. The red points show population outliers (+/- 6 standard deviations). PC = Principal 
Component 
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9.1.3 Genotype imputation and QC in the CHUT cohort 

Patients of the CHUT cohort had been genotyped on two different platforms: Axiom 

Genome-Wide LAT 1 (Affymetrix, USA) and Illumina OmniExpress. The imputation 

was carried out separately, as described in the QC section for the OSR cohort. Post-

imputation QC were performed as reported for the OSR cohort. Starting from 299 

patients, a total of 254 subjects and 5,127,516 SNPs were retained after the QC.  

 

9.1.4 Genome-Wide Association Study (GWAS) and meta-analysis 

The two cohorts were first analyzed separately using PLINK v1.9 (Chang et al, 2015). 

Logistic regression was carried out using the NEDA-3 status as outcome and genotype as 

predictor. To select the covariates for logistic regression model we conducted a 

preliminary exploratory analysis between clinical and demographic factors and the 

NEDA-3 status (Table 3.2). Sex, age, and Principal Component (PC) 1 to 8 were included 

in the OSR cohort as covariate. In the CHUT cohort PC1 and PC2, age and sex were 

included as covariates. The genetic association analysis was conducted calculating the 

odds ratio (OR) of having Evidence of Disease Activity (EDA) given by the A1 allele 

(effect allele).  

 

 OREDA [95% CI] p-value 

Sex (F) 1.40 [1.09-1.82] 0.0092 

Age at onset 0.97 [0.96-0.98] < 0.001 

Age at BL 0.97 [0.96-0.98] < 0.001 

Disease duration 0.99 [0.97-1.01] 0.383 

EDSS at BL 1.15 [1.00-1.31] 0.048 

Relapses in the 2-yr before BL 1.14 [0.99-1.29] 0.054 

DMT before BL  1.21 [0.74-2.04] 0.46 

 

Table 9.2. Covariate analysis of clinical and demographic factors towards the NEDA-3 status. 
Mann-Whitney or chi-square test is reported on the right column. OREDA = Odds Ratio of having 
Evidence of Disease Activity (EDA). BL = baseline. EDSS = Expanded Disability Status Scale 
score. DMT = Disease-Modifying Treatment. 2-yr = 2 years. 
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After the two single cohort GWAS, the results were meta-analyzed using a fixed-effect 

model with PLINK v1.9, retaining only the variants that were common to both the cohorts 

(n=3,948,158). Threshold for genome-wide significance was set at p < 5e-08.  

 

9.1.5 Variant to genes 

To assign a gene to each of the investigated variants, we used the Variant2Gene 

pipeline from Open Target Genetics (Ghoussaini et al, 2021; Mountjoy et al 2021). For 

each variant, this approach allows to calculate a score, representing the probability that a 

variant exerts its effect on a specific gene. As a novelty, the score integrates not only 

positional information (distance from a Transcription Start Site), but also extensive 

evidence from literature involving multiple Quantitative-Trait-Loci (QTL) effects 

(namely: expression-, proteomic- and splicing- QTL), link with promoter capture Hi-C in 

17 human primary hematopoietic cell types, known variant-trait association etc.  

 

9.1.6 Gene ontology enrichment and pathway analysis 

Starting from the results of the two-cohorts meta-analysis, we selected the top 100 

mapped genes according to Variant2Gene as mentioned, and we used WebGestalt (Liao 

et a, 2019) to run an enrichment analysis based on Gene Ontology terms in the ‘Biological 

process’ category and a pathway analysis using KEGG. The settings for both analyses 

were: a range of genes for term/category comprised between 5 and 2,000; a Benjamini-

Hochberg correction for multiple testing. 

 

9.2 Study 2: Epigenetic factors underlying disease activity 

9.2.1 Study cohort 

In this study, we included patients with diagnosis of RR-MS from two different 

centers: IRCCS San Raffaele Hospital in Milan, Italy (OSR) and Centre Hospitalier 

Universitaire de Toulouse, France (CHUT). All patients were not on any Disease-

Modifying Treatment (DMT) at the time of sampling. Patients previously treated with 

second line DMT or immunosuppressive drugs were excluded, as well as patients who 

had been treated with corticosteroid drugs in the 30 days before sampling. All patients 

started a treatment with a first line DMT (Table 4.1) and were followed up to assess the 

NEDA-3 status at 2-years from drug start. 
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A total of 249 patients fulfilling the above-mentioned criteria were included and 

underwent down-stream methylation profiling and analysis (Table 4.1). 

 

9.2.2. PBMC extraction and methylation profiling 

After blood sampling, Peripheral Blood Mononuclear Cells (PBMC) were extracted 

through density gradient centrifugation by LymphoprepTM (STEMCELL Technologies, 

Vancouver, Canada), as described in the manufacturer’s protocol. Bisulphite conversion 

and methylation profiling was performed at the Laboratory of Human Genetics of 

Neurological Disorder at OSR. A randomization procedure for phenotype (NEDA-3) and 

center (CHUT/OSR) was carried out to minimize potential batch effect. After bisulphite 

conversion, whole-epigenome methylation profile was obtained by the means of Illumina 

Infinium MethylationEPIC BeadChips (Illumina, Inc., San Diego, CA, USA), following 

the manufacturer’s instructions.  

 

9.2.3 Quality Controls (QC) 

A total of 249 subjects and 865,859 probes underwent QC. The following probes were 

filtered out: probes with a detection p-value>0.01, non-CpG probes, X and Y 

chromosome probes, cross-reactive probes, probes mapping to known SNPs, probes with 

less than 3 bead counts in at least 5% of the subjects (Pidsley et al, 2016). No issues were 

detected during QC on samples when checking for sex or age mismatch and overall 

sample quality.  

After QCs, a total of 249 subjects and 778,879 probes were retained. Within-array 

normalization and normalization for type I and II probes was performed using the ssNoob 

method, implemented in the minfi pipeline (Aryee et al, 2014). M-values (!"#! "
#$	"	) were 

calculated, to be used in statistical analysis (Du et al, 2010). We run a Principal 

Component Analysis (PCA) on methylation and detected a batch effect exerted by 

methylation slide and position in the slide, as extensively reported by others (Sun et al, 

2011; Ross et al, 2022). Therefore, we applied a batch correction using an empirical Bayes 

method by the means of the ComBat function implemented in the SVA package in R (Leek 

et al, 2022), which reduces error estimates and improves reproducibility (Leek et al, 

2010).  
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In addition, we obtained estimated cell proportions based on methylation beta-values 

using a reference-free deconvolution approach (Houseman et al, 2016), implemented in 

the EpiDISH R package (Zheng et al, 2018). Cell-proportions (CD8, CD4, monocytes, 

NK, B cells and neutrophils) were used as a covariate in the subsequent analysis, to 

minimize cell fraction-dependent differential methylation. 

A schematic overview on the QC carried out at the individual- and probe-level is 

reported in Table 9.2.1.  

 

9.2.4 Differential methylation analysis 

We used the limma Bioconductor package version 3.50.3 (Ritchie et al, 2015) to build 

generalized linear models assessing the relationship between DNA methylation and the 

NEDA-3 status, using as covariates sex, age at disease onset, center, and cell type 

proportions. The p-values of association were then adjusted by a 5% False-Discovery 

Rate (FDR) correction to minimize multiple testing bias for the Differentially Methylated 

Positions (DMP) analysis.  

We then built Differentially Methylated Regions (DMR) using the DMRcate pipeline 

(Peters et al, 2019). We used standard parameters (lambda = 1000, C = 2), to detect DMR 

encompassing minimum 3 CpGs, with at least a 2% change in methylation beta-values. 

DMR were defined by minimum smoothed FDR p-value < 1e-07. The identified DMR 

were ranked using Fisher’s combined probability test, as described in the DMRcate 

pipeline (Peters et al, 2019). 

 

9.2.5 Gene ontology enrichment analysis 

Enrichment for Gene Ontology (GO) terms (category ‘Biological process’) was 

performed using the top 100 mapped genes from the DMP analysis. The analysis was 

conducted using WebGestalt (Liao et al, 2019), with standard settings. 

 

9.2.6 MQTL and eQTL effect 

Methylation- and expression- Quantitative Trait Loci (mQTL and eQTL) effects were 

calculated on PBMC from MS patients. RNA-sequencing experiments and related QC are 

described in Chapter 9.5.6. MQTL and eQTL effects were computed using linear models 

and adjusting for center, age at sampling, and sex.   
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Pipeline Subjects removed Subjects retained  Probes removed Probes retained 

Overall sample quality 0 249 - 865,859 

Sex and age mismatch 0 249 - 865,859 

Detection p-value > 0.01 in > 5% - - 3,001 862,858 

Non-CpG probes - - 2,931 859,927 

Probes in X or Y chromosome - - 19,091 840,836 

Cross-reactive or SNP probes  - - 59,355 781,481 

Probes with 3 < BC in => 5% of samples  - - 2,602 778,879 

Final number  249   778,879 

 

Table 9.2.1 Overview of the QC at the individual- and probe-level on the methylation profile. BC = bead counts.
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9.3 Study 3: Vitamin D and disease activity 

9.3.1 Study cohort 

Vitamin D levels were measured in a subgroup of the cohort of untreated MS patients 

described in Chapter 4 and including patients from IRCCS San Raffaele Hospital (OSR) 

and the Centre Hospitalier Universitaire de Toulouse (CHUT). As already reported in 

Chapter 4, the inclusion criteria were a) diagnosis of RR-MS; b) no DMT at the time of 

blood sampling; c) no previous treatment with second line or immunosuppressive drugs; 

c) no steroid treatment in the 30 days prior to blood sampling; d) availability of clinical 

data to evaluate the NEDA status at 2 years from the beginning of a new first line DMT. 

Vitamin D measurement was available in a total of 230 patients, fulfilling the above-

mentioned inclusion criteria. Clinical features of the cohort are reported in Table 5.1. 

 

9.3.2 Vitamin D measurement and analysis 

Vitamin D levels were examined through the measurement of 25-hydroxyvitamin D at 

CHUT using a commercially available electro-chemiluminescence competitive binding 

assay (Cobas, Roche) on a Roche Cobas 8000 analyzer. Vitamin D measurement was 

performed in 230 patients with available information on NEDA-3 status after 2-years of 

follow-up. In the quality controls, an extreme outlier was excluded from further analysis.  
To control for seasonal variation of the vitamin D levels, we modelled a periodic 

function to estimate the seasonal effect, as suggested (Saltytė Benth et al, 2012): 

 

−sin )2+ ∗ -"./ℎ12 2 − cos(2+ ∗ -"./ℎ12 ) 

 

Then, we built a linear regression model (Unadjusted vitamin D ~ seasonal effect) and 

summed the residuals of this model to the unadjusted vitamin D levels, to obtain season-

adjusted vitamin D levels, which was used for downstream analysis (Figure 9.3.1). This 

approach has been previously shown to be effective in minimizing the effect of the 

seasonal variation and it has already been implemented in other studies on vitamin D in 

MS (Saltytė Benth et al, 2012; Martinelli et al, 2014).  
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Figure 9.3.1. Effect of the adjustment for the seasonal variation on the vitamin D levels. Vitamin 
D levels on the y axis are reported in ng/ml. Month: calendar month of blood sampling for vitamin 
D. A The blue line shows loess smoothing, capturing the seasonal variation in vitamin D levels, 
which are higher during spring and summer. 

 

A logistic regression model was used to assess the predictive value of baseline adjusted 

vitamin D level towards the NEDA-3 status after two years from follow-up in non-treated 

MS patients, adjusting for age at sampling. A Mann-Whitney-Wilcox test was used to 

assess the difference of the mean adjusted vitamin D levels grouping patients by number 

of relapses during the follow-up (0 = no relapses; 1 = one relapses; 2+ = two or more 

relapses). Introducing gender or the number of relapses before baseline did not have a 

significant impact on the results in a subsequent sensitivity analysis.  

 

9.3.3 Mendelian Randomization analysis 

For the Mendelian Randomization (MR) analysis, we used the publicly available 

summary statistics from a previously published GWAS on vitamin D levels (Revez et al, 

2020). In this study, vitamin D levels were analyzed in 417,580 subjects of European 

ancestry from the UK Biobank (Revez et al, 2020) in the form of rank-based inverse 

normal transformed 25-OH-vitamin D without adjustment for Body Mass Index (BMI). 

The same analysis was also conducted with vitamin D levels in a form of a 1-standard 

deviation variation in natural-log transformed values on a slightly lower number of 
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subjects (416,247) but with BMI adjustment. For our purpose, we used the results of this 

second analysis with BMI adjustment to exclude its potential confounding effect.  

Prior to the MR analysis, we selected the instrumental variables (IV) from the meta-

analysis GWAS on NEDA-3 described in Chapter 3.  First, we aligned the effect allele in 

our meta-analysis to match the effect allele reported in the vitamin D GWAS from Revez 

et al. Then, we retained from our results the variants which satisfied the following criteria: 

- same direction of effect in the vitamin D GWAS and in our meta-analysis (that is, 

increase in vitamin D and higher probability of NEDA3- status at 2-years or decreased in 

vitamin D and lower probability of NEDA-3 status); 

- a genome-wide significant (p<5e-08) association in the vitamin D GWAS and a 

nominally significant (p< 0.05) association in our meta-analysis. 

A total of 5,508 variants, before linkage disequilibrium (LD) clumping, satisfied such 

criteria and underwent downstream analysis. To perform MR analysis, we used the 

TwoSampleMR R package (Emani et al, 2018). As a first step, implemented in the 

TwoSampleMR pipeline, we applied a LD clumping on the 5,508 IVs, as it is a necessary 

condition for MR to prevent bias. To exclude horizontal pleiotropy (=presence of 

pathways other than the exposure that explain the effect of the genetic variants on the 

outcome), we performed a MR Egger analysis and visually inspected the related funnel 

plot (Figure 5.4D), satisfying the requirement for MR analysis. The final number of IVs 

selected was 15. To assess the effect of the IVs on the outcome, a random-effects inverse-

variance weighted (IVW) analysis was performed. We also applied the following 

additional methods for MR to validate our primary analysis with the IVW MR: MR Egger, 

weighted median, weighted mode, simple and weighted mode with the No Measurement 

Error in the SNP effect (NOME) assumption (Bowden et al, 2015). A leave-one-out 

approach was used to explore the impact of the exclusion of the most associated IVs on 

the results.        
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9.4 Study 4: Environmental factors and disease severity 

9.4.1 Study cohort 

A total of 1,892 consecutive patients who were admitted to the Multiple Sclerosis 

Centre at IRCCS San Raffaele Hospital between September 2019 and November 2021 

filled out an Environmental Questionnaire (EQ). Detailed clinical data were available for 

1,777 out of 1,892 patients. We excluded patients with a follow-up time from onset < 2 

years and patients with age < 18 years old at the latest follow-up, for a total of 1,688 

patients who were included in the study. The clinical features of the cohort are reported 

in Table 6.1. 

 

9.4.2 Environmental questionnaire 

The EQ was available both in a paper and electronic version, that patients filled out at 

the Multiple Sclerosis Centre at IRCCS San Raffaele Hospital during follow-up visits or 

remotely from home, without any supervision. The electronic version was created using 

LimeSurvey (Limesurvey GmbH).  The questionnaire was administered in the local 

language (Italian) and it was divided into seven sections: a) demographic data, b) personal 

and family medical history, c) smoking habits, d) sunlight exposure, e) body weight and 

dietary habits, f) pregnancy and hormonal factors and g) infectious agents and vaccines. 

For the purpose of this study, we will focus on sections E and F. An extract of EQ as an 

example in shown in Appendix: Supplementary Figures, Figure S6.1. 

 

9.4.3 Statistical analysis 

The analysis was conducted using R version 4.1.3. The latest available Expanded 

Disability Status Scale (EDSS) score and the age at the time of EDSS evaluation were 

used to calculate the Age-Related Multiple Sclerosis Severity (ARMSS) score, a validated 

tool to assess disability in MS patients (Manouchehrinia et al, 2017). The global ARMSS 

score was calculated on the final cohort (n=1,688) using the package ms.sev version 1.0.4 

(Westerlind et al, 2016). The ARMSS scores underwent rank transformation to fit a 

normal distribution (Shapiro-Wilk test p-value before normalization < 0.0001) and were 

used as an outcome in linear regression models. To assess the potential impact of other 

factors on the ARMSS score, we also performed a covariate analysis. In particular, neither 

gender (p=0.40) or SP versus PP course (p=0.58) significantly affected the ARMSS score. 
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9.4.4 Definition of categories of alcohol consumption 

Exposure to alcohol consumption was analyzed separately in men and women, as 

suggested (Baraona et al, 2001). Following the latest recommendation from the Italian 

Ministry for Health (https://www.epicentro.iss.it/passi/rapporto2010/), supported also by 

the European Centre for Disease Control and Prevention, we grouped patients into three 

categories (no consumption, moderate consumption, and high consumption), based on the 

reported number of weekly alcoholic units (AU) consumed (Table 9.4.1). An alcoholic 

unit corresponds to 12 g of alcohol, and it is approximately defined as 125 ml of wine, 

333 ml of beer, 40 ml of spirits.  

 

 Male Female 

No consumption 0 AU/week 0 AU/week 

Moderate consumption 1-14 AU/week 1-7 AU/week 

High consumption >14 AU/week >7 AU/week 

Table 9.4.1 Classification of patients into categories for alcohol consumptions. AU = alcoholic 
unit. 

 

 

9.5 Study 5: Genetic factors driving silent inflammation in progressive MS 

9.5.1 Study cohorts for the genetic analysis 

We compared patients with relapsing-remitting MS (RR-MS) versus secondary 

progressive MS (SP-MS). Patients in the RR-MS group had a confirmed relapsing-

remitting course after at least 20 years from disease onset and a maximum Expanded 

Disability Status Scale (EDSS) score of 3.5 at last follow-up. Conversely, in patients of 

the SP-MS group, disease progression had been confirmed within 20 years from disease 

onset and EDSS was at least 4.0 at last follow-up (Table 7.1).  

 

 RR-MS SP-MS 

Confirmed clinical course => 20 years from onset < 20 years from onset 

EDSS at latest follow-up <= 3.5 => 4.0 

Table 9.5.1. Inclusion criteria for the patients involved in the genetic association study.  
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Starting from a large cohort of MS patients with available whole-genome genotype 

data at the Laboratory of Human Genetics of Neurological Disorders at OSR, we 

identified 772 patients with definite diagnosis of MS according to 2017 revised criteria 

(Thompson AJ et al, 2018), who fulfilled the inclusion criteria for RR-MS (n=406) or SP-

MS (n=366) reported in Table 7.1.  

For the SWE cohort, the same criteria were applied, leading to inclusion of a total of 2,062 

patients (RR-MS = 863, SP-MS = 1199). 

 

9.5.2 Genome-wide quality controls in the OSR cohort 

Imputation to Haplotype Reference Consortium (HRC) reference genome and quality 

controls during the imputation process were performed as already described in Chapter 

9.1. In total, starting of the 772 subjects, 13 did not pass the imputation QC. 

On the remaining 759 subjects and 9,388,047 imputed genetic variants (reference 

genome: GRCh19/hg37), we applied a filter for missingness >=0.02 (no subject was 

excluded). To discovery individuals with potential biological relationship, we performed 

a pairwise identity by descent (IBD) estimate, that identified 6 subjects potentially related 

(PI_HAT>=0.250). For each pair of subjects, the individuals who were the least 

characterized were removed (n=3). To identify population outliers (more than ± 6 

standard deviations from population mean), we run a Principal Component Analysis 

(PCA) and excluded one subject. The final number of subjects included in the study was 

755. For both IBD estimation and PCA, the regions with extended linkage disequilibrium 

(LD) were removed and the dataset was pruned (no pair of SNPs with R2 > 0.1 in a 

window of 1000 kb). 

Subsequently, we filtered out all the SNPs with MAF <= 0.05, genotyping call rate < 

99% and Hardy-Weinberg Equilibrium (p<1e-06), for a total of 4,272,520 genetic 

variants in 755 subjects.  

 

9.5.3 Selection of SNPs in iron metabolism genes 

To determine a comprehensive list of genes involved in iron metabolism, we manually 

screened Gene Ontology (GO) and Human Phenotype (HP) terms related to iron 

homeostasis (Ashburner et al, 2000). This list of genes was merged with the Kyoto 

Encyclopedia of Genes and Genome (KEGG) ‘Ferroptosis’ pathway (Kanehisa et al, 
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2000). In total, we identified 336 genes relevant to iron metabolism. GRCh37/hg19 genes 

coordinates were extracted using UCSC Table Browser (Karolchik et al, 2004). 334 out 

of 336 genes were mapped, and the longest isoform was selected, adding a 2 kb flanking 

region to enrich for promoter and enhancer regions. An extensive list of mapped genes 

and pathways and gene mapping is reported in Appendix - Supplementary Tables S7.1 

and S7.2.  

Starting from whole genome data, we then extracted the mapped regions, resulting in 

23,019 imputed variants and 755 subjects undergoing downstream association analysis. 

At this step, no filter for LD was applied to the variants.  

 

9.5.4 Genetic association analysis in the discovery cohort 

To calculate a threshold for statistical significance that was able to provide robust 

results despite multiple testing, we pruned the variants accounting for linkage 

disequilibrium (R2>=0.6). The number of genetically independent variants left was 

considered the total number of independent tests and a Bonferroni correction was applied 

to account for type I error (Benke et al, 2013). Following this approach, the threshold for 

significance was established at p<3.08e-05 (0.05/1,625). 

We then tested the association between genotypes for the selected variants and MS 

course, comparing RR-MS versus SP-MS using logistic regression and adjusting for sex 

and the first eight principal components to account for population stratification. PLINK 

v1.9 software was used for all the genetic QC and the association analysis (Chang et al, 

2015).  

 

9.5.5 Replication of the genetic association 

The subjects of the replication cohort were part of the National Swedish MS Registry. 

Clinical information and blood samples for genotyping were gathered and managed at the 

Karolinska Institutet (Stockholm, Sweden). Reference genome for the imputation was 

GRCh37/hg19. Imputation and QC were run as described for the OSR cohort. A total of 

2,062 patients with benign RRMS (n=863) and SPMS (n=1199) were included, who 

fulfilled the same criteria used for the discovery cohort and had available imputed genetic 

data. Sex and the first eight principal components were used as covariates.  
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9.5.6 RNA-seq and eQTL effect in PBMC 

The subjects for this experiment were recruited at OSR. All patients were DMT-naive 

at the time of sampling, were not treated with corticosteroid drugs in the 30 days prior to 

sampling and had a diagnosis of RR-MS. 

After blood sampling, Peripheral Blood Mononuclear Cells (PBMC) were isolated 

through density gradient using Lymphoprep (StemCell Technologies). RNA was 

extracted using Quick-DNA/RNA Miniprep Plus (Zymo), according to the manufacturing 

protocol. Quantity and quality of RNA was assessed by Qubit (Thermo Fisher Scientific) 

and Tapestation (Agilent). The transcriptomic profile of patients was obtained via next-

generation sequencing technology. RNA libraries were generated using the TruSeq 

Stranded mRNA Library Prep Kit (Illumina) and sequenced on a HiSeq3000 sequencer 

(Illumina), reaching >25 million reads/samples. RNA-seq reads were aligned to hg19 

reference genome by means of STAR tool (Dobin et al, 2013), using Trimmomatic 

(Bolger et al, 2014) to remove poor-quality bases and adapter sequences. Quantification 

of gene expression levels and gene-level summarization was performed using 

featureCounts (Liao et al, 2014), according to GENCODE v19 annotation gene model. 

Quality control of raw and aligned reads was performed by means of MultiQC tool (Ewels 

et al, 2016). To discard features deemed as not expressed, we only retained those with > 

5 counts in at least 25% of the whole cohort.  

The expression-Quantitative Trait Loci (eQTL) effect was computed via linear 

modelling, implying HIF1A normalized counts as outcome and the genotype (TT versus 

AT/AA) as predictor, adjusting for sex and age at sampling. 

 

9.5.7 Plasma NFL 
Plasma neurofilament light chain (pNFL) samples belonged to a previously published 

cohort of MS patients coming from a Swedish nationwide surveillance phase 4 study on 

DMT monitoring (Hillert et al, 2015). All patients had a diagnosis of MS and were naive 

or had been treated with glatiramer acetate or interferon and were sampled before the 

beginning of the first or new DMT and at regular intervals after treatment start.  NFL 

levels were determined from frozen EDTA plasma samples using a sensitive 

immunoassay on the Simoa platform through a commercially available NF-Light kit and 
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antibodies from UmanDiagnostics according to the manufacturer’s instructions 

(Quanterix, Lexington, MA).  

All the pNFL levels have been adjusted for BMI and age at sampling, as suggested by 

recent literature (Benkert et al, 2022) and implied in linear modelling in form of a z-score, 

after rank normalization using the RNOmni R package to fit a normal distribution 

(McCaw et al, 2020). Normality of the data was then confirmed with the Shapiro-Wilk 

test. In addition, adjustment for disease duration at sampling and line of treatment about 

to start was also performed for pNFL in the experiment described in Chapter 7.3.3. 

When evaluating the response to a new DMT in terms of change of pNFL, we built 

mixed linear models, adopting a paired-samples design.   

 

9.5.8 Cerebrospinal fluid NFL 

Cerebrospinal fluid (CSF) NFL samples were collected at the Karolinska Institutet 

(Stockholm, Sweden). After sampling, the CSF was centrifuged immediately and stored 

at -80°C. NFL levels were measured using commercially available ELISA kits (Uman 

diagnostics, Umeå, Sweden) according to the manufacturers’ instructions. CSF NFL 

levels were normalized as described for pNFL. The analysis on CSF NFL in RR patients 

was adjusted for disease duration and age at sampling. 

 

9.5.9 Pharmacogenomic study of DMF 

To assess the contribution of the rs11621525 variant on the clinical response to 

treatment with Dimethyl Fumarate (DMF), we studied a cohort of 138 patients from OSR. 

Inclusion criteria were: 1) diagnosis of RR-MS; 2) not previously treated with second line 

DMT or other immunosuppressive drugs; 3) continuous DMF treatment for 2-years or 

shift to other DMT for lack of efficacy of DMF; 4) availability of clinical information to 

define the NEDA-3 status at two-years from DMF start; 5) availability of genotyping 

data. 

 

9.5.10 Paramagnetic Rim Lesions (PRL) analysis 

9.5.10.1 MRI acquisition  

MRI acquisition was performed at the Neuroimaging of CNS White Matter Unit at 

OSR using a 3.0 Tesla Philips Ingenia CX scanner (Philips Medical Systems). The 
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following brain MRI sequences were acquired (receiving Coil=dS-Head-32): (a) sagittal 

three dimensional (3D) fluid attenuation inversion recovery (FLAIR), field of view 

(FOV)=256×256 mm, voxel size=1×1×1 mm, 192 slices, matrix=256×256, repetition 

time (TR)=4800 ms, echo time (TE)=270 ms, inversion time (TI)=1650 ms, echo train 

length (ETL)=167, acquisition time (TA)=6.15 min; (b) sagittal 3D T1-weighted turbo 

field echo, FOV=256×256, voxel size=1×1×1 mm, 204 slices, matrix=256×256, TR=7 

ms, TE=3.2 ms, TI=1000 ms, flip angle=8°, TA=8.53 min; (c) 3D T2-weighted scan, 

FOV=256×256 mm, pixel size=1×1 mm, 192 axial slices with 1 mm slice thickness, TR 

2500 ms, TE 330 ms, ETL=117, TA= 3 min; (c) 3D susceptibility-weighted image (SWI), 

FOV=230x230, pixel size=0.60×0.60 mm, 135 slices, 2 mm-thick, matrix=384x382, 

TR=39 ms, TEs=5.5:6:35.5 ms, flip angle=17°, TA=6 min; both magnitude and phase 

images for each echo were saved. For all scans, the slices were positioned parallel to a 

line joining the most infero-anterior and infero-posterior margins of the corpus callosum. 

 

9.5.10.2 Conventional MRI analysis 

Brain T2-hyperintense WM lesions were identified by a fully automated approach 

using the 3D FLAIR and 3D T1weighted as input images (Valverde et al, 2017). T2-

hyperintense WM lesion volume was obtained for each patient from their lesion masks, 

after a careful visual check of the results provided by the automatic segmentation. 

 

9.5.10.3 SWI processing 

Maps of local B0 field changes were derived from the multi-echo SWIs using the 

package QSM (Sun and Wilman, 2015) for MatLab (The MathWorks Inc., Naticks, 

USA). Briefly, we first unwrapped phase images to eliminate discontinuities due to the 

limited range of phase values, using the best path method (Abdul-Rahman et al, 2007). 

Subsequently, using a magnitude-weighted least square regression, we fit unwrapped 

phase images to the echo time. Finally, to make paramagnetic rim visible, we removed 

global spatial changes of the main magnetic field using regularization enabled 

sophisticated harmonic artefact reduction for phase data (Sun et al, 2014). 

The 3D FLAIR image and the T2-hyperintense white matter lesion mask were then 

registered onto the SWI space using the magnitude of the first echo of the SWI sequence 

as reference image, which contains anatomical information, through rigid transformations 
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minimizing the normalized mutual information as cost function using FLIRT (FMRIB’s 

Linear Image Registration Tool) embedded in FSL. 

 

9.5.10.4 Quantification of paramagnetic rim lesion number and volume 

Paramagnetic rim lesions (PRL) were defined as discrete FLAIR-hyperintense lesions 

either completely or partially surrounded by a paramagnetic rim of hypointense signal in 

unwrapped phase images (Figure 7.7).  

For each patient, the number and volume of total T2-hyperintense WM lesions as well 

as of T2-hyperintense WM lesions with or without the hypointense paramagnetic rim 

were automatically estimated using MatLab.  

Firstly, from the global lesion mask, different intensity values were manually given 

according to the different type of lesions (1=non-paramagnetic rim lesion, 

2=paramagnetic rim lesion) creating a new label mask. Then, an automatic pipeline 

estimated the number and the dimension of the 3D connected objects (lesions) found 

within label masks, separately for each type of lesion (intensity value). Total number of 

T2-hyperintense WM lesions was obtained from the sum of T2-hyperintense WM lesions 

with or without the hypointense paramagnetic rim. Volumes were finally obtained by 

correcting the dimension for the voxel size.   

 

9.5.10.5 PRL volume analysis  

Starting from 103 patients with diagnosis of RR-MS or SP-MS, available MRI data on 

the PRL and available genetic data at OSR, a total of 47 patients (46%) had at least one 

PRL, while the remaining 56 had no PRL. We selected patients with maximum disease 

duration from onset of 20 years (n=35). The mean volumes were rank transformed to fit 

a normal distribution and the impact of the rs11621525 A allele on the lesion mean 

volume was assessed through linear modelling, adjusting for sex and total number of 

PRL. 

 

 

 

 

 



 

 98 

 

 



 

 99 

References 

Abdul-Rahman HS, Gdeisat MA, Burton DR, Lalor MJ, Lilley F, Moore CJ. Fast and 

robust three-dimensional best path phase unwrapping algorithm. Appl Opt. 

2007;46(26):6623-35. 

Abreu AP, Toro CA, Song YB, Navarro VM, Bosch MA, Eren A, Liang JN, Carroll 

RS, Latronico AC, Rønnekleiv OK, Aylwin CF, Lomniczi A, Ojeda S, Kaiser UB. 

MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. 

J Clin Invest. 2020 Aug 3;130(8):4486-4500. 

Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, Meani A, Filippi M, 

Jacobson S, Cortese IC, Reich DS. Persistent 7-tesla phase rim predicts poor outcome in 

new multiple sclerosis patient lesions. J Clin Invest. 2016 Jul 1;126(7):2597-609. 

Absinta M, Sati P, Fechner A, Schindler MK, Nair G, Reich DS. Identification of 

chronic Active Multiple Sclerosis Lesions on 3T MRI. AJNR Am J Neuroradiol. 2018 

Jul;39(7):1233-1238. 

Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, Ohayon J, Wu T, Cortese 

ICM, Reich DS. Association of chronic Active Multiple Sclerosis Lesions With Disability 

In Vivo. JAMA Neurol. 2019 Dec 1;76(12):1474-1483. 

Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, Fitzgerald KC, Song 

A, Liu P, Lin JP, Wu T, Johnson KR, McGavern DB, Schafer DP, Calabresi PA, Reich 

DS. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature. 

2021 Sep;597(7878):709-714.  

Alamri A, Rahman R, Zhang M, Alamri A, Gounni AS, Kung SKP. Semaphorin-3E 

Produced by Immature Dendritic Cells Regulates Activated Natural Killer Cells 

Migration. Front Immunol. 2018 May 9;9:1005. 

Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, 

Irizarry RA (2014). Minfi: A flexible and comprehensive Bioconductor package for the 

analysis of Infinium DNA Methylation microarrays. Bioinformatics, 30(10), 1363–1369 

Ascherio A, Munger KL, White R, Köchert K, Simon KC, Polman CH, Freedman MS, 

Hartung HP, Miller DH, Montalbán X, Edan G, Barkhof F, Pleimes D, Radü EW, 

Sandbrink R, Kappos L, Pohl C. Vitamin D as an early predictor of multiple sclerosis 

activity and progression. JAMA Neurol. 2014 Mar;71(3):306-14. 



 

 100 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, 

Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, 

Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene 

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 

2000 May;25(1):25-9. 

Banwell B, Giovannoni G, Hawkes C, Lublin F. Editors' welcome and a working 

definition for a multiple sclerosis cure. Mult Scler Relat Disord. 2013 Apr;2(2):65-7. 

Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, 

checks, and balances. Lancet Neurol. 2021 Jun;20(6):470-483. 

Baranzini SE, Mudge J, Van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller 

NA, et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for 

multiple sclerosis. Nature. 2010;464:1351–6 

Baraona E, Abittan CS, Dohmen K, Moretti M, Pozzato G, Chayes ZW, Schaefer C, 

Lieber CS. Gender differences in pharmacokinetics of alcohol. Alcohol Clin Exp Res. 

2001 Apr;25(4):502-7. 

Benke KS, Wu Y, Fallin DM, Maher B, Palmer LJ. Strategy to control type I error 

increases power to identify genetic variation using the full biological trajectory. Genet 

Epidemiol. 2013 Jul;37(5):419-30. 

Benkert P, Meier S, Schaedelin S, Manouchehrinia A, Yaldizli Ö, Maceski A, 

Oechtering J, Achtnichts L, Conen D, Derfuss T, Lalive PH, Mueller C, Müller S, 

Naegelin Y, Oksenberg JR, Pot C, Salmen A, Willemse E, Kockum I, Blennow K, 

Zetterberg H, Gobbi C, Kappos L, Wiendl H, Berger K, Sormani MP, Granziera C, Piehl 

F, Leppert D, Kuhle J; NfL Reference Database in the Swiss Multiple Sclerosis Cohort 

Study Group. Serum neurofilament light chain for individual prognostication of disease 

activity in people with multiple sclerosis: a retrospective modelling and validation study. 

Lancet Neurol. 2022 Mar;21(3):246-257. 

Berer K, Mues M, Koutrolos M, AlRasbi Z, Boziki M, Johner C, Wekerle H & 

Krishnamoorthy G (2011) Commensal microbiota and myelin autoantigen cooperate to 

trigger autoimmune demyelination. Nature 479: 538–541 

Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, Liu C, Klotz L, Stauffer 

U, Baranzini SE, Kümpfel T, Hohlfeld R, Krishnamoorthy G, Wekerle H. (2017). Gut 

microbiota from multiple sclerosis patients enables spontaneous autoimmune 



 

 101 

encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the 

United States of America, 114(40), 10719–10724. 

Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, Elledge SJ, Niebuhr 

DW, Scher AI, Munger KL, Ascherio A. Longitudinal analysis reveals high prevalence 

of Epstein-Barr virus associated with multiple sclerosis. Science. 2022 Jan 

21;375(6578):296-301. 

Blair HA. Dimethyl Fumarate: A Review in Relapsing-Remitting MS. Drugs. 2019 

Dec;79(18):1965-1976. 

Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L. The Bivalent 

Genome: Characterization, Structure, and Regulation. Trends Genet. 2020 

Feb;36(2):118-131. 

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina 

sequence data. Bioinformatics. 2014 Aug 1;30(15):2114-20. 

Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, Vermaat M, van Iterson M, 

van Dijk F, van Galen M, Bot J, Slieker RC, Jhamai PM, Verbiest M, et al. Disease 

variants alter transcription factor levels and methylation of their binding sites. Nat Genet. 

2017 Jan;49(1):131-138. 

Bos SD, Page CM, Andreassen BK, Elboudwarej E, Gustavsen MW, Briggs F, et al. 

Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in 

multiple sclerosis. PLoS One. 2015;10:1–16. 

Bove R, Chitnis T. The role of gender and sex hormones in determining the onset and 

outcome of multiple sclerosis. Mult Scler. 2014 Apr;20(5):520-6. 

Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid 

instruments: effect estimation and bias detection through Egger regression. Int J 

Epidemiol 2015;44:512-25. 

Bridel C, Leurs CE, van Lierop ZYGJ, van Kempen ZLE, Dekker I, Twaalfhoven 

HAM, Moraal B, Barkhof F, Uitdehaag BMJ, Killestein J, Teunissen CE. Serum 

Neurofilament Light Association With Progression in Natalizumab-Treated Patients With 

Relapsing-Remitting Multiple Sclerosis. Neurology. 2021 Nov 9;97(19):e1898-e1905. 

Briggs KJ, Koivunen P, Cao S, Backus KM, Olenchock BA, Patel H, Zhang Q, 

Signoretti S, Gerfen GJ, Richardson AL, Witkiewicz AK, Cravatt BF, Clardy J, Kaelin 



 

 102 

WG Jr. Paracrine Induction of HIF by Glutamate in Breast Cancer: EglN1 Senses 

Cysteine. Cell. 2016 Jun 30;166(1):126-39. 

Brownlee WJ, Miszkiel KA, Tur C, Barkhof F, Miller DH, Ciccarelli O. Inclusion of 

optic nerve involvement in dissemination in space criteria for multiple sclerosis. 

Neurology. 2018 Sep 18;91(12):e1130-e1134. 

Brynedal B, Duvefelt K, Jonasdottir G, Roos IM, Akesson E, Palmgren J, Hillert J. 

HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. 

PLoS One. 2007 Jul 25;2(7):e664. 

Cagol A, Schaedelin S, Barakovic M, Benkert P, Todea RA, Rahmanzadeh R, 

Galbusera R, Lu PJ, Weigel M, Melie-Garcia L, Ruberte E, Siebenborn N, Battaglini M, 

Radue EW, Yaldizli Ö, Oechtering J, Sinnecker T, Lorscheider J, Fischer-Barnicol B, 

Müller S, Achtnichts L, Vehoff J, Disanto G, Findling O, Chan A, Salmen A, Pot C, 

Bridel C, Zecca C, Derfuss T, Lieb JM, Remonda L, Wagner F, Vargas MI, Du Pasquier 

R, Lalive PH, Pravatà E, Weber J, Cattin PC, Gobbi C, Leppert D, Kappos L, Kuhle J, 

Granziera C. Association of Brain Atrophy With Disease Progression Independent of 

Relapse Activity in Patients With Relapsing Multiple Sclerosis. JAMA Neurol. 2022 Jul 

1;79(7):682-692. 

Campagna MP, Xavier A, Lea RA, Stankovich J, Maltby VE, Butzkueven H, Lechner-

Scott J, Scott RJ, Jokubaitis VG. Whole-blood methylation signatures are associated with 

and accurately classify multiple sclerosis disease severity. Clin Epigenetics. 2022 Dec 

30;14(1):194. 

Carlström KE, Ewing E, Granqvist M, Gyllenberg A, Aeinehband S, Enoksson SL, 

Checa A, Badam TVS, Huang J, Gomez-Cabrero D, Gustafsson M, Al Nimer F, 

Wheelock CE, Kockum I, Olsson T, Jagodic M, Piehl F. Therapeutic efficacy of dimethyl 

fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in 

monocytes. Nat Commun. 2019 Jul 12;10(1):3081. 

Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ (2015) Second-

generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4. 

Chitnis T. Role of puberty in multiple sclerosis risk and course. Clin Immunol. 2013 

Nov;149(2):192-200. 

Clark IC, Gutiérrez-Vázquez C, Wheeler MA, Li Z, Rothhammer V, Linnerbauer M, 

Sanmarco LM, Guo L, Blain M, Zandee SEJ, Chao CC, Batterman KV, Schwabenland 



 

 103 

M, Lotfy P, Tejeda-Velarde A, Hewson P, Manganeli Polonio C, Shultis MW, Salem Y, 

Tjon EC, Fonseca-Castro PH, Borucki DM, Alves de Lima K, Plasencia A, Abate AR, 

Rosene DL, Hodgetts KJ, Prinz M, Antel JP, Prat A, Quintana FJ. Barcoded viral tracing 

of single-cell interactions in central nervous system inflammation. Science. 2021 Apr 

23;372(6540):eabf1230 

Confavreux C, Vukusic S. Age at disability milestones in multiple sclerosis. Brain. 

2006 Mar;129(Pt 3):595-605. 

Conti L, De Palma R, Rolla S, Boselli D, Rodolico G, Kaur S, Silvennoinen O, 

Niccolai E, Amedei A, Ivaldi F, Clerico M, Contessa G, Uccelli A, Durelli L, Novelli F. 

Th17 cells in multiple sclerosis express higher levels of JAK2, which increases their 

surface expression of IFN-γR2. J Immunol. 2012 Feb 1;188(3):1011-8. 

Correale J, Hohlfeld, R, Baranzini SE. (2022). The role of the gut microbiota in 

multiple sclerosis. Nature reviews. Neurology, 18(9), 544–558. 

Cosorich I, Dalla Costa G, Sorini C, Ferrarese R, Messina MJ, Dolpady J, Radice E, 

Mariani A, Testoni PA., Canducci F, Comi G, Martinelli V, Falcone M. (2017). High 

frequency of intestinal TH17 cells correlates with microbiota alterations and disease 

activity in multiple sclerosis. Science advances, 3(7), e1700492. 

Costa C, Martínez-Sáez E, Gutiérrez-Franco A, Eixarch H, Castro Z, Ortega-Aznar A, 

Ramón Y Cajal S, Montalban X, Espejo C. Expression of semaphorin 3A, semaphorin 

7A and their receptors in multiple sclerosis lesions. Mult Scler. 2015 Nov;21(13):1632-

43. 

Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, Song A, Wasén C, 

Tauhid S, Chu R, Anderson MC, De Jager PL, Polgar-Turcsanyi M, Healy BC, Glanz BI, 

Bakshi R, Chitnis T, Weiner HL. Gut Microbiome in Progressive Multiple Sclerosis. Ann 

Neurol. 2021 Jun;89(6):1195-1211. 

Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, 

Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS. HIF-

1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003 Mar 7;112(5):645-

57. 

Cyran AM, Zhitkovich A. HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising 

Cellular Defenses and Engaging Immune System. Chem Res Toxicol. 2022 Oct 

17;35(10):1690-1700. 



 

 104 

D'hooghe MB, Haentjens P, Nagels G, D'Hooghe T, De Keyser J. Menarche, oral 

contraceptives, pregnancy and progression of disability in relapsing onset and progressive 

onset multiple sclerosis. J Neurol. 2012 May;259(5):855-61. 

Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, 

Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll 

DM, Pan F. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011 

Sep 2;146(5):772-84. 

De Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, Ke X, 

Monsuur AJ, Whittaker P, Delgado M, Morrison J, Richardson A, Walsh EC, Gao X, 

Galver L, Hart J, Hafler DA, Pericak-Vance M, Todd JA, Daly MJ, Trowsdale J, 

Wijmenga C, Vyse TJ, Beck S, Murray SS, Carrington M, Gregory S, Deloukas P, Rioux 

JD. A high-resolution HLA and SNP haplotype map for disease association studies in the 

extended human MHC. Nat Genet. 2006 Oct;38(10):1166-72. 

De Flon P, Gunnarsson M, Laurell K, Söderström L, Birgander R, Lindqvist T, Krauss 

W, Dring A, Bergman J, Sundström P, Svenningsson A. Reduced inflammation in 

relapsing-remitting multiple sclerosis after therapy switch to rituximab. Neurology. 2016 

Jul 12;87(2):141-7. 

Dewailly D, Andersen CY, Balen A, Broekmans F, Dilaver N, Fanchin R, Griesinger 

G, Kelsey TW, La Marca A, Lambalk C, Mason H, Nelson SM, Visser JA, Wallace WH, 

Anderson RA. The physiology and clinical utility of anti-Mullerian hormone in women. 

Hum Reprod Update. 2014 May-Jun;20(3):370-85. 

Díaz C, Zarco LA, Rivera DM. Highly active multiple sclerosis: An update. Mult Scler 

Relat Disord. 2019 May;30:215-224. 

Diaz-Cruz C, Chua AS, Malik MT, Kaplan T, Glanz BI, Egorova S, Guttmann CRG, 

Bakshi R, Weiner HL, Healy BC, Chitnis T. The effect of alcohol and red wine 

consumption on clinical and MRI outcomes in multiple sclerosis. Mult Scler Relat Disord. 

2017 Oct;17:47-53. 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson 

M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan 

1;29(1):15-21. 



 

 105 

Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM. Comparison of Beta-

value and M-value methods for quantifying methylation levels by microarray analysis. 

BMC Bioinformatics. 2010 Nov 30;11:587. 

Dugger SA, Platt A, Goldstein DB. Drug development in the era of precision medicine. 

Nat Rev Drug Discov. 2018 Mar;17(3):183-196. 

Eiza N, Garty M, Staun-Ram E, Miller A, Vadasz Z. The possible involvement of 

sema3A and sema4A in the pathogenesis of multiple sclerosis. Clin Immunol. 2022 

May;238:109017. 

Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, Wei W, 

Belachew S, Arnold DL. Slowly expanding/evolving lesions as a magnetic resonance 

imaging marker of chronic active multiple sclerosis lesions. Mult Scler. 2019 

Dec;25(14):1915-1925. 

Eshaghi A, Marinescu RV, Young AL, Firth NC, Prados F, Jorge Cardoso M, Tur C, 

De Angelis F, Cawley N, Brownlee WJ, De Stefano N, Laura Stromillo M, Battaglini M, 

Ruggieri S, Gasperini C, Filippi M, Rocca MA, Rovira A, Sastre-Garriga J, Geurts JJG, 

Vrenken H, Wottschel V, Leurs CE, Uitdehaag B, Pirpamer L, Enzinger C, Ourselin S, 

Gandini Wheeler-Kingshott CA, Chard D, Thompson AJ, Barkhof F, Alexander DC, 

Ciccarelli O. Progression of regional grey matter atrophy in multiple sclerosis. Brain. 

2018 Jun 1;141(6):1665-1677. 

Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for 

multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. 

Fahim M, Rafiee Zadeh A, Shoureshi P, Ghadimi K, Cheshmavar M, Sheikhinia N, 

Afzali M. Alcohol and multiple sclerosis: an immune system-based review. Int J Physiol 

Pathophysiol Pharmacol. 2020 Apr 15;12(2):58-69. 

Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, Jostins L, Plant K, 

Andrews R, McGee C, Knight JC. Innate immune activity conditions the effect of 

regulatory variants upon monocyte gene expression. Science. 2014 Mar 

7;343(6175):1246949. 

Feinstein A, Freeman J, Lo AC. Treatment of progressive multiple sclerosis: what 

works, what does not, and what is needed. Lancet Neurol. 2015 Feb;14(2):194-207 

Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, Rocca MA. Multiple 

sclerosis. Nat Rev Dis Primers. 2018 Nov 8;4(1):43 



 

 106 

Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, De Stefano N, Geurts JJG, 

Paul F, Reich DS, Toosy AT, Traboulsee A, Wattjes MP, Yousry TA, Gass A, Lubetzki 

C, Weinshenker BG, Rocca MA. Assessment of lesions on magnetic resonance imaging 

in multiple sclerosis: practical guidelines. Brain. 2019 Jul 1;142(7):1858-1875. 

Fisniku LK, Brex PA, Altmann DR, et al. Disability and T2 MRI lesions: a 20-year 

follow-up of patients with relapse onset of multiple sclerosis. Brain 2008; 131: 808– 17. 

Fitzgerald KC, Munger KL, Köchert K, Arnason BG, Comi G, Cook S, Goodin DS, 

Filippi M, Hartung HP, Jeffery DR, O'Connor P, Suarez G, Sandbrink R, Kappos L, Pohl 

C, Ascherio A. Association of Vitamin D Levels With Multiple Sclerosis Activity and 

Progression in Patients Receiving Interferon Beta-1b. JAMA Neurol. 2015 

Dec;72(12):1458-65. 

Galli E, Hartmann FJ, Schreiner B, Ingelfinger F, Arvaniti E, Diebold M, Mrdjen D, 

van der Meer F, Krieg C, Nimer FA, Sanderson N, Stadelmann C, Khademi M, Piehl F, 

Claassen M, Derfuss T, Olsson T, Becher B. GM-CSF and CXCR4 define a T helper cell 

signature in multiple sclerosis. Nat Med. 2019 Aug;25(8):1290-1300. 

Gava G, Bartolomei I, Costantino A, Berra M, Venturoli S, Salvi F, Meriggiola MC. 

Long-term influence of combined oral contraceptive use on the clinical course of 

relapsing-remitting multiple sclerosis. Fertil Steril. 2014 Jul;102(1):116-22. 

Ghadirian, P., Dadgostar, B., Azani, R., Maisonneuve, P. A case-control study of the 

association between socio-demographic, lifestyle and medical history factors and 

multiple sclerosis. Can. J. Public Health 92, 281–285 (2001). 

Ghoussaini M, Mountjoy E, Carmona M, Peat G, Schmidt EM, Hercules A, Fumis L, 

Miranda A, Carvalho-Silva D, Buniello A, Burdett T, Hayhurst J, Baker J, Ferrer J, 

Gonzalez-Uriarte A, Jupp S, Karim MA, Koscielny G, Machlitt-Northen S, Malangone 

C, Pendlington ZM, Roncaglia P, Suveges D, Wright D, Vrousgou O, Papa E, Parkinson 

H, MacArthur JAL, Todd JA, Barrett JC, Schwartzentruber J, Hulcoop DG, Ochoa D, 

McDonagh EM, Dunham I. Open Targets Genetics: systematic identification of trait-

associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 

2021 Jan 8;49(D1):D1311-D1320. 

Gianfrancesco MA, Stridh P, Rhead B, Shao X, Xu E, Graves JS, Chitnis T, Waldman 

A, Lotze T, Seiner T, Belman A, Greenberg B, Weinstock-Guttman B, Aaen G, Tillema 

JM, Hart J, Caillier S, Ness J, Harris Y, Rubin J, Candee M, Krupp L, Gorman M, Benson 



 

 107 

L, Rodriguez M, Mar S, Kahn I, Rose J, Roalstad S, Casper TC, Shen L, Quach H, Quach 

D, Hillert J, Bäärnhielm M, Hedstrom A, Olsson T, Kockum I, Alfredsson L, Metayer C, 

Schaefer C, Barcellos LF, Waubant E; Network of Pediatric Multiple Sclerosis Centers. 

Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset 

MS. Neurology. 2017 Apr 25;88(17):1623-1629.  

Gombash SE, Lee PW, Sawdai E, Lovett-Racke AE. Vitamin D as a Risk Factor for 

Multiple Sclerosis: Immunoregulatory or Neuroprotective? Front Neurol. 2022 May 

16;13:796933. 

Goris A, Vandebergh M, McCauley JL, Saarela J, Cotsapas C. Genetics of multiple 

sclerosis: lessons from polygenicity. Lancet Neurol. 2022 Sep;21(9):830-842. 

Graves JS, Henry RG, Cree BAC, Lambert-Messerlian G, Greenblatt RM, Waubant 

E, Cedars MI, Zhu A; University of California, San Francisco MS-EPIC Team,; Bacchetti 

P, Hauser SL, Oksenberg JR. Ovarian aging is associated with gray matter volume and 

disability in women with MS. Neurology. 2018 Jan 16;90(3):e254-e260.  

Hara T, Nakaoka HJ, Hayashi T, Mimura K, Hoshino D, Inoue M, Nagamura F, 

Murakami Y, Seiki M, Sakamoto T. Control of metastatic niche formation by targeting 

APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017 May 

30;114(22):E4416-E4424. 

Harding K, Williams O, Willis M, Hrastelj J, Rimmer A, Joseph F, Tomassini V, 

Wardle M, Pickersgill T, Robertson N, Tallantyre E. Clinical Outcomes of Escalation vs 

Early Intensive Disease-Modifying Therapy in Patients With Multiple Sclerosis. JAMA 

Neurol. 2019 May 1;76(5):536-541. 

Harding KE, Robertson NP. New rare genetic variants in multiple sclerosis. J Neurol. 

2019 Jan;266(1):278-280. 

Hassani A, Corboy JR, Al-Salam S, Khan G. Epstein-Barr virus is present in the brain 

of most cases of multiple sclerosis and may engage more than just B cells. PloS One 

(2018) 13:e0192109. doi: 10.1371/journal.pone.0192109 

Hausler D, Torke S, Peelen E, Bertsch T, Djukic M, Nau R, et al. High dose vitamin 

D exacerbates central nervous system autoimmunity by raising T-cell excitatory calcium. 

Brain. (2019) 142:2737–55. 

Healy BC, Ali EN, Guttmann CR, Chitnis T, Glanz BI, Buckle G, Houtchens M, 

Stazzone L, Moodie J, Berger AM, Duan Y, Bakshi R, Khoury S, Weiner H, Ascherio A. 



 

 108 

Smoking and disease progression in multiple sclerosis. Arch Neurol. 2009 Jul;66(7):858-

64. 

Hedström AK, Bäärnhielm M, Olsson T, Alfredsson L. Tobacco smoking, but not 

Swedish snuff use, increases the risk of multiple sclerosis. Neurology. 2009 Sep 

1;73(9):696-701. 

Hedström AK, Sundqvist E, Bäärnhielm M, Nordin N, Hillert J, Kockum I, Olsson T, 

Alfredsson L. Smoking and two human leukocyte antigen genes interact to increase the 

risk for multiple sclerosis. Brain. 2011 Mar;134(Pt 3):653-64. 

Hedström AK, Bäärnhielm M, Olsson T, Alfredsson L. Exposure to environmental 

tobacco smoke is associated with increased risk for multiple sclerosis. Mult Scler. 2011 

Jul;17(7):788-93.  

Hedström AK, Lima Bomfim I, Barcellos L, Gianfrancesco M, Schaefer C, Kockum 

I, Olsson T, Alfredsson L. Interaction between adolescent obesity and HLA risk genes in 

the etiology of multiple sclerosis. Neurology. 2014a Mar 11;82(10):865-72.  

Hedström AK, Hillert J, Olsson T & Alfredsson L. Alcohol as a modifiable lifestyle 

factor affecting multiple sclerosis risk. JAMA Neurol. 71, 300–305 (2014b). 

Hedström AK, Olsson T, Alfredsson L. Body mass index during adolescence, rather 

than childhood, is critical in determining MS risk. Mult Scler. 2016 Jun;22(7):878-83. 

Heinz R and Waltenbaugh C. Ethanol consumption modifies dendritic cell antigen 

presentation in mice. Alcohol Clin Exp Res 2007; 31: 1759-1771. 

Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess 

S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, 

Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC. The MR-Base platform 

supports systematic causal inference across the human phenome. Elife. 2018 May 

30;7:e34408. 

Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune 

responses in the course of multiple sclerosis. Lancet Neurol. 2015 Apr;14(4):406-19. 

Hillert J, Stawiarz L. The Swedish MS registry – clinical support tool and scientific 

resource. Acta Neurol Scand. 2015;132(199):11-9. 

Hilven K, Vandebergh M, Smets I, Mallants K, Goris A, Dubois B. Genetic basis for 

relapse rate in multiple sclerosis: Association with LRP2 genetic variation. Mult Scler. 

2018 Nov;24(13):1773-1775. doi: 10.1177/1352458517749894. 



 

 109 

Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front 

Immunol. 2020 Dec 17;11:587078. 

Houseman EA, Kile ML, istiani DC, Ince TA, Kelsey KT, Marsit CJ. Reference-free 

deconvolution of DNA methylation data and mediation by cell composition effects. BMC 

Bioinformatics. 2016 Jun 29;17:259. doi: 10.1186/s12859-016-1140-4. 

Hupperts R, Smolders J, Vieth R, Holmøy T, Marhardt K, Schluep M, Killestein J, 

Barkhof F, Beelke M, Grimaldi LME; SOLAR Study Group. Randomized trial of daily 

high-dose vitamin D3 in patients with RRMS receiving subcutaneous interferon β-1a. 

Neurology. 2019 Nov 12;93(20):e1906-e1916. 

Huynh JL, Garg P, Thin TH, Yoo S, Dutta R, Trapp BD, Haroutunian V, Zhu J, 

Donovan MJ, Sharp AJ, Casaccia P. Epigenome-wide differences in pathology-free 

regions of multiple sclerosis-affected brains. Nat Neurosci. 2014 Jan;17(1):121-30. 

International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control 

Consortium; Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, et al. 

Genetic risk and a primary role for cell-mediated immune mechanisms in multiple 

sclerosis. Nature. 2011 Aug 10;476(7359):214-9. 

International Multiple Sclerosis Genetics Consortium. Low-frequency and rare-coding 

variation contributes to multiple sclerosis risk. Cell 2018; 175: 1679–87.e7. 

International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map 

implicates peripheral immune cells and microglia in susceptibility. Science. 2019 Sep 

27;365(6460):eaav7188. 

Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL, Merino M, Trepel 

J, Zbar B, Toro J, Ratcliffe PJ, Linehan WM, Neckers L. HIF overexpression correlates 

with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in 

regulation of HIF stability. Cancer Cell. 2005 Aug;8(2):143-53. 

Ivashynka A, Copetti M, Naldi P, D'Alfonso S, Leone MA. The Impact of Lifetime 

Alcohol and Cigarette Smoking Loads on Multiple Sclerosis Severity. Front Neurol. 2019 

Aug 13;10:866. 

Jäkel S, Agirre E, Mendanha Falcão A, van Bruggen D, Lee KW, Knuesel I, Malhotra 

D, Ffrench-Constant C, Williams A, Castelo-Branco G. Altered human oligodendrocyte 

heterogeneity in multiple sclerosis. Nature. 2019 Feb;566(7745):543-547. 



 

 110 

Johnston CJ, Smyth DJ, Dresser DW, Maizels RM. TGF-β in tolerance, development 

and regulation of immunity. Cell Immunol. 2016 Jan;299:14-22. 

Jongen PJ. Health-Related Quality of Life in Patients with Multiple Sclerosis: Impact 

of Disease-Modifying Drugs. CNS Drugs. 2017 Jul;31(7):585-602. 

Källberg H, Jacobsen S, Bengtsson C, Pedersen M, Padyukov L, Garred P, Frisch M, 

Karlson EW, Klareskog L, Alfredsson L. Alcohol consumption is associated with 

decreased risk of rheumatoid arthritis: results from two Scandinavian case-control 

studies. Ann Rheum Dis. 2009 Feb;68(2):222-7. 

Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic 

Acids Res. 2000 Jan 1;28(1):27-30. 

Kappos L, Radue E-W, O’Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, 

Agoropoulou C, Leyk M, Zhang-Auberson L, et al (2010) A Placebo-Controlled Trial of 

Oral Fingolimod in Relapsing Multiple Sclerosis. N Engl J Med 362: 387– 401 

Kappos L, De Stefano N, Freedman MS, Cree BA, Radue EW, Sprenger T, Sormani 

MP, Smith T, Häring DA, Piani Meier D, Tomic D. Inclusion of brain volume loss in a 

revised measure of 'no evidence of disease activity' (NEDA-4) in relapsing-remitting 

multiple sclerosis. Mult Scler. 2016 Sep;22(10):1297-305. 

Kappos L, Fox RJ, Burcklen M, Freedman MS, Havrdová EK, Hennessy B, Hohlfeld 

R, Lublin F, Montalban X, Pozzilli C, Scherz T, D'Ambrosio D, Linscheid P, Vaclavkova 

A, Pirozek-Lawniczek M, Kracker H, Sprenger T. Ponesimod Compared With 

Teriflunomide in Patients With Relapsing Multiple Sclerosis in the Active-Comparator 

Phase 3 OPTIMUM Study: A Randomized Clinical Trial. JAMA Neurol. 2021 May 

1;78(5):558-567. 

Karczewski, K.J., Francioli, L.C., Tiao, G. et al. The mutational constraint spectrum 

quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). 

Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ. 

The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004 Jan 1;32(Database 

issue):D493-6 

Kaufmann M, Schaupp AL, Sun R, Coscia F, Dendrou CA, Cortes A, Kaur G, Evans 

HG, Mollbrink A, Navarro JF, Sonner JK, Mayer C, DeLuca GC, Lundeberg J, Matthews 

PM, Attfield KE, Friese MA, Mann M, Fugger L. Identification of early 



 

 111 

neurodegenerative pathways in progressive multiple sclerosis. Nat Neurosci. 2022 

Jul;25(7):944-955. 

Kister I, Kantarci OH. Multiple Sclerosis Severity Score: Concept and applications. 

Mult Scler. 2020 Apr;26(5):548-553. 

Klutstein M, Nejman D, Greenfield R, Cedar H. DNA Methylation in Cancer and 

Aging. Cancer Res. 2016 Jun 15;76(12):3446-50. 

Koch M, Kingwell E, Rieckmann P, Tremlett H. The natural history of primary 

progressive multiple sclerosis. Neurology. 2009 Dec 8;73(23):1996-2002. 

Köhler T, Reizis B, Johnson RS, Weighardt H, Förster I. Influence of hypoxia-

inducible factor 1α on dendritic cell differentiation and migration. Eur J Immunol. 2012 

May;42(5):1226-36. 

Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius Å, Liman V, 

Norgren N, Blennow K, Zetterberg H. Comparison of three analytical platforms for 

quantification of the neurofilament light chain in blood samples: ELISA, 

electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med. 2016 Oct 

1;54(10):1655-61 

Kuhle J, Plavina T, Barro C, Disanto G, Sangurdekar D, Singh CM, de Moor C, Engle 

B, Kieseier BC, Fisher E, Kappos L, Rudick RA, Goyal J. Neurofilament light levels are 

associated with long-term outcomes in multiple sclerosis. Mult Scler. 2020 

Nov;26(13):1691-1699. 

Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H. An updated 

histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017 

Jan;133(1):13-24. 

Kulakova OG, Kabilov MR, Danilova LV, Popova EV, Baturina OA, Tsareva EY, et 

al. Whole-genome DNA methylation analysis of peripheral blood mononuclear cells in 

multiple sclerosis patients with different disease courses. Acta Naturae. 2016;8:103–10. 

Kular L, Liu Y, Ruhrmann S, Zheleznyakova G, Marabita F, Gomez-Cabrero D, James 

T, Ewing E, Lindén M, Górnikiewicz B, Aeinehband S, Stridh P, Link J, Andlauer TFM, 

Gasperi C, Wiendl H, Zipp F, Gold R, Tackenberg B, Weber F, Hemmer B, Strauch K, 

Heilmann-Heimbach S, Rawal R, Schminke U, Schmidt CO, Kacprowski T, Franke A, 

Laudes M, Dilthey AT, Celius EG, Søndergaard HB, Tegnér J, Harbo HF, Oturai AB, 

Olafsson S, Eggertsson HP, Halldorsson BV, Hjaltason H, Olafsson E, Jonsdottir I, 



 

 112 

Stefansson K, Olsson T, Piehl F, Ekström TJ, Kockum I, Feinberg AP, Jagodic M. DNA 

methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple 

sclerosis. Nat Commun. 2018 Jun 19;9(1):2397. 

Kular L, Jagodic M. Epigenetic insights into multiple sclerosis disease progression. J 

Intern Med. 2020 Jul;288(1):82-102. 

Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability 

status scale (EDSS). Neurology. 1983 Nov;33(11):1444-52. 

Langer-Gould A, Brara SM, Beaber BE, Koebnick C. Childhood obesity and risk of 

pediatric multiple sclerosis and clinically isolated syndrome. Neurology. 2013 Feb 

5;80(6):548-52. 

Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and 

pathogenesis. Nat Rev Neurol. 2012 Nov 5;8(11):647-56. 

Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of 

the adaptive immune system?. Science 2010, 330(6012), 1768–1773 

Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC 

(2022). sva: Surrogate Variable Analysis. R package version 3.46.0. 

Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, 

Baggerly K, Irizarry RA. Tackling the widespread and critical impact of batch effects in 

high-throughput data. Nat Rev Genet. 2010 Oct;11(10):733-9. 

Li C, Lu W, Yang L, Li Z, Zhou X, Guo R, Wang J, Wu Z, Dong Z, Ning G, Shi Y, 

Gu Y, Chen P, Hao Z, Han T, Yang M, Wang W, Huang X, Li Y, Gao S, Hu R. MKRN3 

regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3. Natl 

Sci Rev. 2020 Mar;7(3):671-685. 

Li X, Zhang Y, Yan Y, Ciric B, Ma CG, Chin J, Curtis M, Rostami A, Zhang GX. 

LINGO-1-Fc-Transduced Neural Stem Cells Are Effective Therapy for chronic Stage 

Experimental Autoimmune Encephalomyelitis. Mol Neurobiol. 2017 Aug;54(6):4365-

4378. doi: 10.1007/s12035-016-9994-z. Epub 2016 Jun 25.  

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for 

assigning sequence reads to genomic features. Bioinformatics. 2014 Apr 1;30(7):923-30. 

Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis 

toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019 Jul 2;47(W1):W199-

W205.  



 

 113 

Limesurvey GmbH. LimeSurvey: An Open Source survey tool. LimeSurvey GmbH, 

Hamburg, Germany. URL: http://www.limesurvey.org 

Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, 

Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple 

sclerosis: Pathogenesis and treatment target. Front Immunol. 2022 Sep 23;13:996469. 

Løken-Amsrud KI, Holmøy T, Bakke SJ, Beiske AG, Bjerve KS, Bjørnarå BT, Hovdal 

H, Lilleås F, Midgard R, Pedersen T, Benth JS, Sandvik L, Torkildsen O, Wergeland S, 

Myhr KM. Vitamin D and disease activity in multiple sclerosis before and during 

interferon-β treatment. Neurology. 2012 Jul 17;79(3):267-73. 

Luchtman D, Gollan R, Ellwardt E, Birkenstock J, Robohm K, Siffrin V, Zipp F. In 

vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on 

glutamatergic excitotoxicity. J Neurochem. 2016 Mar;136(5):971-80.  

Maggi P, Kuhle J, Schädelin S, van der Meer F, Weigel M, Galbusera R, Mathias A, 

Lu PJ, Rahmanzadeh R, Benkert P, La Rosa F, Bach Cuadra M, Sati P, Théaudin M, Pot 

C, van Pesch V, Leppert D, Stadelmann C, Kappos L, Du Pasquier R, Reich DS, Absinta 

M, Granziera C. chronic White Matter Inflammation and Serum Neurofilament Levels in 

Multiple Sclerosis. Neurology. 2021 Aug 10;97(6):e543-e553. 

Maggi P, Vanden Bulcke C, Pedrini E, Bugli C, Sellimi A, Wynen A, Ben Ayad A, 

Mullins WA, Kalaitzidis G, Lolli V, Perrotta G, El Sankari1 S, Duprez T, Li X, Calabresi 

PA, van Pesch V, Reich DS, Absinta M. Chronic active multiple sclerosis lesions are 

poorly responsive to anti-CD20 antibody treatment. Oral communication (O118). 

ECTRIMS 2022. Mult Scler. 2022 Oct; 28 (issue 3, suppl). 

Maltby VE, Graves MC, Lea RA, Benton MC, Sanders KA, Tajouri L, et al. Genome-

wide DNA methylation profiling of CD8+ T cells shows a distinct epigenetic signature 

to CD4+ T cells in multiple sclerosis patients. Clin Epigenetics. 2015;7:1–6. 

Maltby VE, Lea RA, Graves MC, Sanders KA, Benton MC, Tajouri L, Scott RJ, 

Lechner-Scott J. Genome-wide DNA methylation changes in CD19+ B cells from 

relapsing-remitting multiple sclerosis patients. Sci Rep. 2018 Nov 27;8(1):17418. 

Manouchehrinia A, Tench CR, Maxted J, Bibani RH, Britton J, Constantinescu CS. 

Tobacco smoking and disability progression in multiple sclerosis: United Kingdom 

cohort study. Brain. 2013 Jul;136(Pt 7):2298-304. 



 

 114 

Manouchehrinia A, Westerlind H, Kingwell E, Zhu F, Carruthers R, Ramanujam R, 

Ban M, Glaser A, Sawcer S, Tremlett H, Hillert J. Age Related Multiple Sclerosis 

Severity Score: Disability ranked by age. Mult Scler. 2017 Dec;23(14):1938-1946. 

Marabita F, Almgren M, Sjöholm LK, Kular L, Liu Y, James T, et al. Smoking induces 

DNA methylation changes in multiple sclerosis patients with exposure-response 

relationship. Sci Rep. 2017;7:1–15. 

Martinelli V, Dalla Costa G, Colombo B, Dalla Libera D, Rubinacci A, Filippi M, 

Furlan R, Comi G. Vitamin D levels and risk of multiple sclerosis in patients with 

clinically isolated syndromes. Mult Scler. 2014 Feb;20(2):147-55. 

Martire MS, Moiola L, Rocca MA, Filippi M, Absinta M. What is the potential of 

paramagnetic rim lesions as diagnostic indicators in multiple sclerosis? Expert Rev 

Neurother. 2022 Oct;22(10):829-837. 

Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends 

Genet. 2022 Jul;38(7):676-707. 

McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, 

Fuchsberger C, Danecek P, Sharp K, et al; Haplotype Reference Consortium. A reference 

panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016 Oct;48(10):1279-

83. 

McCaw ZR, Lane JM, Saxena R, Redline S, Lin X. Operating characteristics of the 

rank-based inverse normal transformation for quantitative trait analysis in genome-wide 

association studies. Biometrics. 2020 Dec;76(4):1262-1272. 

Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and 

function of dendritic cells and their subsets in the steady state and the inflamed setting. 

Annu Rev Immunol. 2013;31:563–604. 

Meyer T, Shimon D, Youssef S, Yankovitz G, Tessler A, Chernobylsky T, Gaoni-

Yogev A, Perelroizen R, Budick-Harmelin N, Steinman L, Mayo L. NAD+ metabolism 

drives astrocyte proinflammatory reprogramming in central nervous system 

autoimmunity. Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2211310119. doi: 

10.1073/pnas.2211310119. Epub 2022 Aug 22.  

Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T. Systematic 

literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) 



 

 115 

and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple 

sclerosis. BMC Neurol. 2014 Mar 25;14:58. 

Mills EA, Ogrodnik MA, Plave A, Mao-Draayer Y. Emerging Understanding of the 

Mechanism of Action for Dimethyl Fumarate in the Treatment of Multiple Sclerosis. 

Front Neurol. 2018 Jan 23;9:5. 

Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, Carnero-

Montoro E, Lawson DJ, Burrows K, Suderman M, et al. Genomic and phenotypic insights 

from an atlas of genetic effects on DNA methylation. Nat Genet. 2021 Sep;53(9):1311-

1321. 

Mirza, A., & Mao-Draayer, Y. (2017). The gut microbiome and microbial 

translocation in multiple sclerosis. Clinical immunology, 183, 213–224. 

Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB. Obesity and 

Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med. 

2016;13(6):e1002053. Published 2016 Jun 28. 

Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, de Seze J, 

Giovannoni G, Hartung H-P, Hemmer B, et al (2017) Ocrelizumab versus Placebo in 

Primary Progressive Multiple Sclerosis. N Engl J Med 376: 209–220 

Moolhuijsen LME, Visser JA. Anti-Müllerian Hormone and Ovarian Reserve: Update 

on Assessing Ovarian Function. J Clin Endocrinol Metab. 2020 Nov 1;105(11):3361–73. 

Mountjoy E, Schmidt EM, Carmona M, Schwartzentruber J, Peat G, Miranda A, Fumis 

L, Hayhurst J, Buniello A, Karim MA, Wright D, Hercules A, Papa E, Fauman EB, 

Barrett JC, Todd JA, Ochoa D, Dunham I, Ghoussaini M. An open approach to 

systematically prioritize causal variants and genes at all published human GWAS trait-

associated loci. Nat Genet. 2021 Nov;53(11):1527-1533 

Movassagh H, Koussih L, Shan L, Gounni AS. The regulatory role of semaphorin 3E 

in allergic asthma. Int J Biochem Cell Biol. 2019 Jan;106:68-73. 

Munger K, Åivo J, Hongell K, Soilu-Ha ̈nninen M, Surcel H, Ascherio A. Vitamin D 

status during pregnancy and risk of multiple sclerosis in offspring of women in the 

Finnish maternity cohort. JAMA Neurol. 2016;73(5):515. 

Munger K, Levin L, Hollis B, Howard N, Ascherio A. Serum 25-hydroxyvitamin D 

levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832. 



 

 116 

Munger KL, Bentzen J, Laursen B, Stenager E, Koch-Henriksen N, Sørensen TI, Baker 

JL. Childhood body mass index and multiple sclerosis risk: a long-term cohort study. 

Mult Scler. 2013 Sep;19(10):1323-9. 

Nachliely M, Trachtenberg A, Khalfin B, Nalbandyan K, Cohen-Lahav M, Yasuda K, 

et al. Dimethyl fumarate and vitamin D derivatives cooperatively enhance VDR and Nrf2 

signaling in differentiating AML cells in vitro and inhibit leukemia progression in a 

xenograft mouse model. J Steroid Biochem Mol Biol. (2019) 188:8–16. 

Ness KJ, Fan J, Wilke WW, Coleman RA, Cook RT and Schlueter AJ. Chronic ethanol 

consumption decreases murine Langerhans cell numbers and delays migration of 

Langerhans cells as well as dermal dendritic cells. Alcohol Clin Exp Res 2008; 32: 657-

668. 

Nicholas R, Straube S, Schmidli H, Pfeiffer S, Friede T. Time-patterns of annualized 

relapse rates in randomized placebo-controlled clinical trials in relapsing multiple 

sclerosis: a systematic review and meta-analysis. Mult Scler. 2012 Sep;18(9):1290-6. 

Nizri E, Irony-Tur-Sinai M, Lory O, Orr-Urtreger A, Lavi E, Brenner T. Activation of 

the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via 

suppression of Th1 and Th17 responses. J Immunol. 2009 Nov 15;183(10):6681-8. 

Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and 

environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017 Jan;13(1):25-36. 

Peters, T.J., Buckley, M.J., Statham, A.L. et al. De novo identification of differentially 

methylated regions in the human genome. Epigenetics & chromatin 8, 6 (2015). 

Peters TJ, Buckley MJ, Chen Y, Smyth GK, Goodnow CC, Clark SJ. Calling 

differentially methylated regions from whole genome bisulphite sequencing with 

DMRcate. Nucleic Acids Res. 2021 Nov 8;49(19):e109. 

Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, Van Djik 

S, Muhlhausler B, Stirzaker C, Clark SJ. Critical evaluation of the Illumina 

MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. 

Genome Biol. 2016 Oct 7;17(1):208. 

Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler 

SF, et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell 

compartment. J Immunol. (2004) 173:2227– 30. 



 

 117 

Portaccio E, Bellinvia A, Fonderico M, Pastò L, Razzolini L, Totaro R, Spitaleri D, 

Lugaresi A, Cocco E, Onofrj M, Di Palma F, Patti F, Maimone D, Valentino P, 

Confalonieri P, Protti A, Sola P, Lus G, Maniscalco GT, Brescia Morra V, Salemi G, 

Granella F, Pesci I, Bergamaschi R, Aguglia U, Vianello M, Simone M, Lepore V, 

Iaffaldano P, Filippi M, Trojano M, Amato MP. Progression is independent of relapse 

activity in early multiple sclerosis: a real-life cohort study. Brain. 2022 Aug 

27;145(8):2796-2805. 

Prosperini L, Mancinelli CR, Solaro CM, Nociti V, Haggiag S, Cordioli C, De Giglio 

L, De Rossi N, Galgani S, Rasia S, Ruggieri S, Tortorella C, Capra R, Mirabella M, 

Gasperini C. Induction Versus Escalation in Multiple Sclerosis: A 10-Year Real World 

Study. Neurotherapeutics. 2020 Jul;17(3):994-1004.   

Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, 

Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M. Drug 

repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019 

Jan;18(1):41-58.  

Ramanujam R, Hedström AK, Manouchehrinia A, Alfredsson L, Olsson T, Bottai M, 

Hillert J. Effect of Smoking Cessation on Multiple Sclerosis Prognosis. JAMA Neurol. 

2015 Oct;72(10):1117-23. 

Revez JA, Lin T, Qiao Z, Xue A, Holtz Y, Zhu Z, Zeng J, Wang H, Sidorenko J, 

Kemper KE, Vinkhuyzen AAE, Frater J, Eyles D, Burne THJ, Mitchell B, Martin NG, 

Zhu G, Visscher PM, Yang J, Wray NR, McGrath JJ. Genome-wide association study 

identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun. 

2020 Apr 2;11(1):1647. 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma 

powers differential expression analyses for RNA-sequencing and microarray studies.” 

Nucleic Acids Research, 43(7), e47. 

Rocca MA, Battaglini M, Benedict RH, De Stefano N, Geurts JJ, Henry RG, Horsfield 

MA, Jenkinson M, Pagani E, Filippi M. Brain MRI atrophy quantification in MS: From 

methods to clinical application. Neurology. 2017 Jan 24;88(4):403-413. 

Ross JP, van Dijk S, Phang M, Skilton MR, Molloy PL, Oytam Y. Batch-effect 

detection, correction and characterisation in Illumina HumanMethylation450 and 

MethylationEPIC BeadChip array data. Clin Epigenetics. 2022 Apr 29;14(1):58. 



 

 118 

Rotstein DL, Healy BC, Malik MT, Carruthers RL, Musallam AJ, Kivisakk P, Weiner 

HL, Glanz B, Chitnis T. Effect of vitamin D on MS activity by disease-modifying therapy 

class. Neurol Neuroimmunol Neuroinflamm. 2015 Oct 29;2(6):e167. 

Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, Achiti 

I, Confavreux C, Coustans M, le Page E, Edan G, McDonnell GV, Hawkins S, Trojano 

M, Liguori M, Cocco E, Marrosu MG, Tesser F, Leone MA, Weber A, Zipp F, Miterski 

B, Epplen JT, Oturai A, Sørensen PS, Celius EG, Lara NT, Montalban X, Villoslada P, 

Silva AM, Marta M, Leite I, Dubois B, Rubio J, Butzkueven H, Kilpatrick T, Mycko MP, 

Selmaj KW, Rio ME, Sá M, Salemi G, Savettieri G, Hillert J, Compston DA. Multiple 

Sclerosis Severity Score: using disability and disease duration to rate disease severity. 

Neurology. 2005 Apr 12;64(7):1144-51. 

Saltytė Benth J, Myhr KM, Løken-Amsrud KI, Beiske AG, Bjerve KS, Hovdal H, 

Midgard R, Holmøy T. Modelling and prediction of 25-hydroxyvitamin D levels in 

Norwegian relapsing-remitting multiple sclerosis patients. Neuroepidemiology. 

2012;39(2):84-93. 

Salzer J, Hallmans G, Nystrom M, Stenlund H, Wadell G & Sundstrom P (2012) 

Vitamin D as a protective factor in multiple sclerosis. Neurology 79: 2140–2145 

Sargsyan SA, Shearer AJ, Ritchie AM, Burgoon MP, Anderson S, Hemmer B, et al. 

Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. 

Neurology (2010) 74:1127–35. 

Scalfari A, Neuhaus A, Daumer M, Muraro PA, Ebers GC. Onset of secondary 

progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg 

Psychiatry 2014; 85: 67–75. 

Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, Vistnes 

S, Stockley JH, Young A, Steindel M, Tung B, Goyal N, Bhaduri A, Mayer S, Engler JB, 

Bayraktar OA, Franklin RJM, Haeussler M, Reynolds R, Schafer DP, Friese MA, Shiow 

LR, Kriegstein AR, Rowitch DH. Neuronal vulnerability and multilineage diversity in 

multiple sclerosis. Nature. 2019 Sep;573(7772):75-82. 

Sena A, Couderc R, Vasconcelos JC, Ferret-Sena V, Pedrosa R. Oral contraceptive use 

and clinical outcomes in patients with multiple sclerosis. J Neurol Sci. 2012 Jun 15;317(1-

2):47-51. 



 

 119 

Sepúlveda M, Ros C, Martínez-Lapiscina EH, Solà-Valls N, Hervàs M, Llufriu S, La 

Puma D, Casals E, Blanco Y, Villoslada P, Graus F, Castelo-Branco C, Saiz A. Pituitary-

ovary axis and ovarian reserve in fertile women with multiple sclerosis: A pilot study. 

Mult Scler. 2016 Apr;22(4):564-8. 

Sinnecker T, Clarke MA, Meier D, Enzinger C, Calabrese M, De Stefano N, Pitiot A, 

Giorgio A, Schoonheim MM, Paul F, Pawlak MA, Schmidt R, Kappos L, Montalban X, 

Rovira À, Evangelou N, Wuerfel J; MAGNIMS Study Group. Evaluation of the Central 

Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA Neurol. 2019 

Dec 1;76(12):1446-1456. 

Smolders J, Torkildsen Ø, Camu W, Holmøy T. An Update on Vitamin D and Disease 

Activity in Multiple Sclerosis. CNS Drugs. 2019 Dec;33(12):1187-1199.University of 

California, San Francisco MS-EPIC Team:; Cree BA, Gourraud PA, Oksenberg JR, 

Bevan C, Crabtree-Hartman E, Gelfand JM, Goodin DS, Graves J, Green AJ, Mowry E, 

Okuda DT, Pelletier D, von Büdingen HC, Zamvil SS, Agrawal A, Caillier S, Ciocca C, 

Gomez R, Kanner R, Lincoln R, Lizee A, Qualley P, Santaniello A, Suleiman L, Bucci 

M, Panara V, Papinutto N, Stern WA, Zhu AH, Cutter GR, Baranzini S, Henry RG, 

Hauser SL. Long-term evolution of multiple sclerosis disability in the treatment era. Ann 

Neurol. 2016 Oct;80(4):499-510. 

Sommer K, Guo B, Pomerantz JL, Bandaranayake AD, Moreno-García ME, 

Ovechkina YL, Rawlings DJ. Phosphorylation of the CARMA1 linker controls NF-

kappaB activation. Immunity. 2005 Dec;23(6):561-74. 

Stephenson E, Nathoo N, Mahjoub Y, Dunn JF, Yong VW. Iron in multiple sclerosis: 

roles in neurodegeneration and repair. Nat Rev Neurol. 2014 Aug;10(8):459-68. 

Stewart N, Simpson S Jr, van der Mei I, Ponsonby AL, Blizzard L, Dwyer T, Pittas F, 

Eyles D, Ko P, Taylor BV. Interferon-β and serum 25-hydroxyvitamin D interact to 

modulate relapse risk in MS. Neurology. 2012 Jul 17;79(3):254-60. 

Sun H, Wilman AH. Background field removal using spherical mean value filtering 

and Tikhonov regularization. Magn Reson Med. 2014;71(3):1151-7. 

Sun H, Wilman AH. Quantitative susceptibility mapping using single-shot echo-planar 

imaging. Magn Reson Med. 2015 May;73(5):1932-8. 



 

 120 

Sun Z, Chai HS, Wu Y, White WM, Donkena KV, Klein CJ, Garovic VD, Therneau 

TM, Kocher JP. Batch effect correction for genome-wide methylation data with Illumina 

Infinium platform. BMC Med Genomics. 2011 Dec 16;4:84. 

Sureshchandra S, Raus A, Jankeel A, Ligh BJK, Walter NAR, Newman N, Grant KA, 

Messaoudi I. Dose-dependent effects of chronic alcohol drinking on peripheral immune 

responses. Sci. Rep. 2019, 9, 7847. 

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, 

Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, 

Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, 

Tintoré M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, 

Weinshenker BG, Reingold SC, Cohen JA. Diagnosis of multiple sclerosis: 2017 

revisions of the McDonald criteria. Lancet Neurol. 2018 Feb;17(2):162-173.  

Thompson EE, Nicodemus-Johnson J, Kim KW, Gern JE, Jackson DJ, Lemanske RF, 

et al. Global DNA methylation changes spanning puberty are near predicted estrogen-

responsive genes and enriched for genes involved in endocrine and immune processes. 

Clin Epigenetics. (2018) 10:62. doi: 10.1186/ s13148-018-0491-2. 

Thöne J, Kollar S, Nousome D, Ellrichmann G, Kleiter I, Gold R, Hellwig K. Serum 

anti-Müllerian hormone levels in reproductive-age women with relapsing-remitting 

multiple sclerosis. Mult Scler. 2015 Jan;21(1):41-7. 

Tintore M, Rovira À, Río J, Otero-Romero S, Arrambide G, Tur C, Comabella M, Nos 

C, Arévalo MJ, Negrotto L, Galán I, Vidal-Jordana A, Castilló J, Palavra F, Simon E, 

Mitjana R, Auger C, Sastre-Garriga J, Montalban X. Defining high, medium and low 

impact prognostic factors for developing multiple sclerosis. Brain. 2015 Jul;138(Pt 

7):1863-74. 

Ucciferri CC, Dunn SE. Effect of puberty on the immune system: Relevance to 

multiple sclerosis. Front Pediatr. 2022 Dec 2;10:1059083. 

Valverde S, Cabezas M, Roura E, Gonzalez-Villa S, Pareto D, Vilanova JC, et al. 

Improving automated multiple sclerosis lesion segmentation with a cascaded 3D 

convolutional neural network approach. Neuroimage. 2017;155:159-68. 

Van Hijfte L, Loret G, Bachmann H, Reynders T, Breuls M, Deschepper E, Kuhle J, 

Willekens B, Laureys G. Lifestyle factors in multiple sclerosis disability progression and 



 

 121 

silent brain damage: A cross-sectional study. Mult Scler Relat Disord. 2022 

Sep;65:104016. 

Vandebergh M, Andlauer TFM, Zhou Y, Mallants K, Held F, Aly L, Taylor BV, 

Hemmer B, Dubois B, Goris A. Genetic Variation in WNT9B Increases Relapse Hazard 

in Multiple Sclerosis. Ann Neurol. 2021 May;89(5):884-894. 

Vandebergh M, Dubois B, Goris A. Effects of Vitamin D and Body Mass Index on 

Disease Risk and Relapse Hazard in Multiple Sclerosis: A Mendelian Randomization 

Study. Neurol Neuroimmunol Neuroinflamm. 2022 Apr 7;9(3):e1165. 

Verdin E. NAD⁺ in aging, metabolism, and neurodegeneration. Science. 2015 Dec 

4;350(6265):1208-13. 

Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, et al. Large-scale cis- and 

trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate 

blood gene expression. Nat Genet. 2021 Sep;53(9):1300-1310. 

Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca 

N, Uitdehaag B, van der Mei I, Wallin M, Helme A, Angood Napier C, Rijke N, Baneke 

P. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third 

edition. Mult Scler. 2020 Dec;26(14):1816-1821.  

Wang C, Dehghani B, Li Y, Kaler LJ, Vandenbark AA, Offner H. Oestrogen 

modulates experimental autoimmune encephalomyelitis and interleukin- 17 production 

via programmed death 1. Immunology. (2009) 126:329–35.  

Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, et al. Distribution, 

silencing potential, and evolutionary impact of promoter DNA methylation in the human 

genome. Nat Genet. 2007;39:457–66. 

Wesnes K, Riise T, Casetta I, Drulovic J, Granieri E, Holmøy T, Kampman MT, 

Landtblom AM, Lauer K, Lossius A, Magalhaes S, Pekmezovic T, Bjørnevik K, Wolfson 

C, Pugliatti M, Myhr KM. Body size and the risk of multiple sclerosis in Norway and 

Italy: the EnvIMS study. Mult Scler. 2015 Apr;21(4):388-95. 

Westerlind Helga and Manouchehrinia Ali. Ms.sev: Package for Calculation of 

ARMSS, Local MSSS and Global MSSS. 2016 Dec. https://cran.r-

project.org/web/packages/ms.sev 

Williams A, Piaton G, Aigrot MS, Belhadi A, Théaudin M, Petermann F, Thomas JL, 

Zalc B, Lubetzki C. Semaphorin 3A and 3F: key players in myelin repair in multiple 



 

 122 

sclerosis? Brain. 2007 Oct;130(Pt 10):2554-65. doi: 10.1093/brain/awm202. Epub 2007 

Sep 11.  

Wood CL, Lane LC, Cheetham T. Puberty: normal physiology (brief overview). Best 

Pract Res Clin Endocrinol Metab. (2019) 33:101265. 

Wu Q, Wang Q, Mao G, Dowling CA, Lundy SK, Mao-Draayer Y. Dimethyl Fumarate 

Selectively Reduces Memory T Cells and Shifts the Balance between Th1/Th17 and Th2 

in Multiple Sclerosis Patients. J Immunol. 2017 Apr 15;198(8):3069-3080. 

Xu HY, Zhang HX, Xiao Z, Qiao J, Li R. Regulation of anti-Müllerian hormone 

(AMH) in males and the associations of serum AMH with the disorders of male fertility. 

Asian J Androl. 2019 Mar-Apr;21(2):109-114. 

Ysrraelit MC, Correale J. Impact of sex hormones on immune function and multiple 

sclerosis development. Immunology. 2019 Jan;156(1):9-22. 

Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF‑1 signaling pathway in 

hypoxia‑ischemia (Review). Mol Med Rep. 2018 Oct;18(4):3547-3554. 

 Zhao G, Liu Y, Fang J, Chen Y, Li H, Gao K. Dimethyl fumarate inhibits the 

expression and function of hypoxia-inducible factor-1α (HIF-1α). Biochem Biophys Res 

Commun. 2014 Jun 6;448(3):303-7. 

Zheleznyakova GY, Piket E, Marabita F, Pahlevan Kakhki M, Ewing E, Ruhrmann S, 

Needhamsen M, Jagodic M, Kular L. Epigenetic research in multiple sclerosis: progress, 

challenges, and opportunities. Physiol Genomics. 2017 Sep 1;49(9):447-461. 

Zheng SC, Breeze CE, Beck S, Teschendorff AE. Identification of differentially 

methylated cell types in epigenome-wide association studies. Nat Methods. 2018 

Dec;15(12):1059-1066. 

Zhou DD, Luo M, Huang SY, Saimaiti A, Shang A, Gan RY, Li HB. Effects and 

Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid Med Cell Longev. 

2021 Jul 11;2021:9932218. 

Zou Y, Zhang WF, Liu HY, Li X, Zhang X, Ma XF, Sun Y, Jiang SY, Ma QH, Xu 

DE. Structure and function of the contactin-associated protein family in myelinated axons 

and their relationship with nerve diseases. Neural Regen Res. 2017 Sep;12(9):1551-1558. 

 

 



 

 123 

APPENDIX 

Supplementary Tables 

Table S3.1 & Table S3.1 

 
CHR SNP BP A1 NMISS OR P Gene 

15 rs11633419 23779479 T 1152 0.639 7.80E-07 MKRN3 

15 rs4778558 23782995 T 1147 0.640 7.88E-07 MKRN3 

15 rs10431854 23780472 C 1152 0.639 7.98E-07 MKRN3 

15 rs11638266 23781646 G 1152 0.639 7.98E-07 MKRN3 

15 rs11858970 23777111 G 1151 0.640 8.88E-07 MKRN3 

15 rs8036462 23777880 G 1153 0.641 9.17E-07 MKRN3 

7 rs2158725 83297241 C 1151 0.533 1.46E-06 SEMA3E 

7 rs9649281 105985813 T 1149 0.626 2.20E-06 NAMPT 

7 rs9649282 105986115 A 1149 0.626 2.20E-06 NAMPT 

7 rs6975444 105973847 T 1150 0.632 3.34E-06 NAMPT 

7 rs6975772 105974057 T 1150 0.632 3.34E-06 NAMPT 

16 rs1549660 76367186 T 1145 0.652 3.47E-06 CNTNAP4 

3 rs17785714 167897639 T 1152 0.403 3.84E-06 GOLIM4 

3 rs75910889 167898645 A 1152 0.403 3.84E-06 GOLIM4 

10 rs920259 60396065 A 1154 0.625 4.24E-06 BICC1 

16 rs9934361 76354742 C 1151 0.66 4.68E-06 CNTNAP4 

5 rs10462567 78630605 A 1150 1.55 4.72E-06 JMY 

3 rs41464047 167896971 T 1152 0.41 5.48E-06 GOLIM4 

3 rs57169293 167897194 G 1152 0.41 5.48E-06 GOLIM4 

3 rs9968241 167897462 A 1152 0.41 5.48E-06 GOLIM4 

 

Table S3.1. Results from the GWAS in the OSR cohort. The 20 top-associated SNPs are reported. 
NMISS = Number of non-missing genotypes. OR = odds ratio for the EDA status. Gene = 
University of California Santa Cruz (UCSC) gene symbol for the gene with the highest score 
following the OpenTarget Genetics pipeline. 
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CHR SNP BP A1 NMISS OR P Gene 
15 rs11632455 60126990 T 250 0.32 4.44E-06 FOXB1 

4 rs2287145 62944272 A 253 0.17 4.85E-06 ADGRL3 

13 rs8002310 75182628 A 254 0.27 5.41E-06 KLF12 

5 rs4836114 124082582 C 250 3.13 6.00E-06 ZNF608 

13 rs7331788 75165636 C 254 0.28 6.63E-06 KLF12 

13 rs9573423 75187987 C 254 0.28 9.49E-06 KLF12 

13 rs9573418 75171074 G 254 0.30 1.37E-05 KLF12 

13 rs9565107 75175663 C 254 0.30 1.37E-05 KLF12 

1 rs61830764 212289976 A 248 0.39 1.43E-05 DTL 

3 rs35844296 3743992 A 249 0.27 1.47E-05 LRRN1 

17 rs35814610 13041714 C 251 0.36 1.66E-05 ELAC2 

17 rs8077659 13042271 A 251 0.36 1.66E-05 ELAC2 

17 rs8077563 13042365 T 251 0.36 1.66E-05 ELAC2 

17 rs8077971 13042481 A 251 0.36 1.66E-05 ELAC2 

19 rs746641 33369655 C 254 0.35 1.87E-05 FAAP24 

8 rs28534381 40324892 A 249 0.35 1.90E-05 TCIM 

13 rs7338814 75174084 C 254 0.31 1.91E-05 KLF12 

10 rs2484191 27694764 T 254 0.17 2.05E-05 MASTL 

2 rs111631454 210092724 C 253 0.22 2.05E-05 MAP2 

17 rs764191 13039792 T 251 0.36 2.08E-05 ELAC2 

 

Table S3.2. Results from the GWAS in the CHUT cohort. The 20 top-associated SNPs are 
reported. NMISS = Number of non-missing genotypes. OR = odds ratio for the EDA status. Gene 
= University of California Santa Cruz (UCSC) gene symbol for the gene with the highest score 
following the OpenTarget Genetics pipeline. For rs2287145 the nearest gene was selected, as the 
variant was missing in the OpenTarget repository 
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Table S7.1 & Table S7.2 

 
CHR START END GENE START-2kb START+2kb 

1 11994723 12035599 PLOD1 11992723 12037599 

1 17312452 17338423 ATP13A2 17310452 17340423 

1 22963117 22966175 C1QA 22961117 22968175 

1 43212005 43232755 P3H1 43210005 43234755 

1 44440601 44443972 ATP6V0B 44438601 44445972 

1 44462154 44483012 SLC6A9 44460154 44485012 

1 47264669 47285021 CYP4B1 47262669 47287021 

1 47308766 47366147 CYP4Z2P 47306766 47368147 

1 47394845 47407156 CYP4A11 47392845 47409156 

1 47489239 47516423 CYP4X1 47487239 47518423 

1 47533159 47583992 CYP4Z1 47531159 47585992 

1 47603106 47614526 CYP4A22 47601106 47616526 

1 60358979 60392423 CYP2J2 60356979 60394423 

1 94352589 94375012 GCLM 94350589 94377012 

1 109648572 109656479 C1orf194 109646572 109658479 

1 145413190 145417545 HJV 145411190 145419545 

1 155259083 155271225 PKLR 155257083 155273225 

1 198492351 198510075 ATP6V1G3 198490351 198512075 

1 213031596 213072705 FLVCR1 213029596 213074705 

1 220087605 220101993 SLC30A10 220085605 220103993 

1 228353428 228369958 IBA57 228351428 228371958 

1 231499496 231560790 EGLN1 231497496 231562790 

1 235530727 235612280 TBCE 235528727 235614280 

1 242158791 242162385 MAP1LC3C 242156791 242164385 

2 3501689 3523350 ADI1 3499689 3525350 

2 10861774 10925236 ATP6V1C2 10859774 10927236 

2 31557187 31637611 XDH 31555187 31639611 

2 38294745 38303323 CYP1B1 38292745 38305323 

2 42994228 43019751 HAAO 42992228 43021751 

2 46524540 46613842 EPAS1 46522540 46615842 

2 46755024 46769141 ATP6V1E2 46753024 46771141 

2 47168312 47303275 TTC7A 47166312 47305275 
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2 69623244 69664760 NFU1 69621244 69666760 

2 70314584 70316334 PCBP1 70312584 70318334 

2 71162997 71192561 ATP6V1B1 71160997 71194561 

2 72356366 72374991 CYP26B1 72354366 72376991 

2 86668583 86719839 KDM3A 86666583 86721839 

2 96931883 96939900 CIAO1 96929883 96941900 

2 119981383 120023227 STEAP3 119979383 120025227 

2 127941411 127963343 CYP27C1 127939411 127965343 

2 131095815 131099922 CCDC115 131093815 131101922 

2 172378865 172414643 CYBRD1 172376865 172416643 

2 190425315 190445537 SLC40A1 190423315 190447537 

2 200793633 200820459 TYW5 200791633 200822459 

2 201450730 201536217 AOX1 201448730 201538217 

2 204103163 204170563 CYP20A1 204101163 204172563 

2 219246751 219261617 SLC11A1 219244751 219263617 

2 219524378 219528166 BCS1L 219522378 219530166 

2 219646471 219680016 CYP27A1 219644471 219682016 

2 220074487 220085174 RP11-803J6.1, 

ABCB6 

220072487 220087174 

2 223725731 223808119 ACSL3 223723731 223810119 

2 239072632 239077515 ERFE 239070632 239079515 

3 3168599 3190706 TRNT1 3166599 3192706 

3 11314009 11599139 ATG7 11312009 11601139 

3 42913683 42917633 CYP8B1 42911683 42919633 

3 46477495 46506598 LTF 46475495 46508598 

3 48601505 48632593 COL7A1 48599505 48634593 

3 49027340 49044581 P4HTM 49025340 49046581 

3 50355220 50360281 HYAL2 50353220 50362281 

3 71003864 71180092 FOXP1 71001864 71182092 

3 113465865 113530905 ATP6V1A 113463865 113532905 

3 133464799 133497850 TF 133462799 133499850 

3 145787227 145879282 PLOD2 145785227 145881282 

3 148890289 148939832 CP 148888289 148941832 

3 184428154 184429836 MAGEF1 184426154 184431836 

3 186383797 186396023 HRG 186381797 186398023 
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3 189674516 189838908 P3H2 189672516 189840908 

3 195776154 195809032 TFRC 195774154 195811032 

3 196728611 196756687 MELTF 196726611 196758687 

4 15606006 15657035 FBXL5 15604006 15659035 

4 76781025 76823681 PPEF2 76779025 76825681 

4 83550689 83720010 SCD5 83548689 83722010 

4 89011415 89080011 ABCG2 89009415 89082011 

4 90645249 90759447 SNCA 90643249 90761447 

4 103182820 103266655 SLC39A8 103180820 103268655 

4 103998781 104021024 BDH2 103996781 104023024 

4 106067841 106200960 TET2 106065841 106202960 

4 108852716 108874613 CYP2U1 108850716 108876613 

4 129190391 129209984 PGRMC2 129188391 129211984 

4 139085247 139163503 SLC7A11 139083247 139165503 

4 146019155 146050676 ABCE1 146017155 146052676 

4 166248817 166264314 MSMO1 166246817 166266314 

4 185676748 185747215 ACSL1 185674748 185749215 

4 187112673 187134617 CYP4V2 187110673 187136617 

5 1392904 1445543 SLC6A3 1390904 1447543 

5 68462836 68474070 CCNB1 68460836 68476070 

5 94799598 94890709 TTC37 94797598 94892709 

5 115140429 115152405 CDO1 115138429 115154405 

5 121187649 121188523 FTMT 121185649 121190523 

5 131285666 131347355 ACSL6 131283666 131349355 

5 131584600 131631008 P4HA2 131582600 131633008 

5 133492081 133512724 SKP1 133490081 133514724 

5 137890570 137911318 HSPA9 137888570 137913318 

5 141488323 141534008 NDFIP1 141486323 141536008 

5 154198051 154230213 FAXDC2 154196051 154232213 

5 172410762 172461900 ATP6V0E1 172408762 172463900 

6 5186833 5261172 LYRM4 5184833 5263172 

6 7727010 7881961 BMP6 7725010 7883961 

6 10396915 10415470 TFAP2A 10394915 10417470 

6 26087508 26095469 HFE 26085508 26097469 

6 31512227 31514625 ATP6V1G2 31510227 31516625 
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6 31926580 31937532 SKIV2L 31924580 31939532 

6 31973358 31976712 CYP21A1P, 

CYP21A 

31971358 31978712 

6 32006092 32009447 CYP21A2 32004092 32011447 

6 38136226 38607924 BTBD9 38134226 38609924 

6 46517444 46620523 CYP39A1 46515444 46622523 

6 53362139 53409927 GCLC 53360139 53411927 

6 106632351 106773695 ATG5 106630351 106775695 

7 1022834 1029276 CYP2W1 1020834 1031276 

7 6061877 6098860 EIF2AK1 6059877 6100860 

7 15239942 15601640 AGMO 15237942 15603640 

7 39606002 39612480 YAE1 39604002 39614480 

7 87834431 87849399 SRI 87832431 87851399 

7 87905743 87936228 STEAP4 87903743 87938228 

7 89783688 89794141 STEAP1 89781688 89796141 

7 89840999 89866992 STEAP2 89838999 89868992 

7 91741462 91763840 CYP51A1 91739462 91765840 

7 97736196 97838944 LMTK2 97734196 97840944 

7 99282301 99332819 CYP3A7-

CYP3A51P, 

CYP3A7 

99280301 99334819 

7 99354582 99381811 CYP3A4 99352582 99383811 

7 99425635 99464173 CYP3A43 99423635 99466173 

7 100218038 100239201 TFR2 100216038 100241201 

7 100849257 100861011 PLOD3 100847257 100863011 

7 128502856 128505903 ATP6V1F 128500856 128507903 

7 138391038 138458782 ATP6V0A4 138389038 138460782 

7 139528951 139720125 TBXAS1 139526951 139722125 

7 139784545 139876741 KDM7A 139782545 139878741 

7 148395932 148498202 CUL1 148393932 148500202 

7 149570056 149577787 ATP6V0E2 149568056 149579787 

7 150745378 150749843 ASIC3 150743378 150751843 

8 20054703 20079207 ATP6V1B2 20052703 20081207 

8 22225049 22280249 SLC39A14 22223049 22282249 

8 23386362 23430063 SLC25A37 23384362 23432063 
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8 27727398 27850369 SCARA5 27725398 27852369 

8 42249278 42263455 VDAC3 42247278 42265455 

8 54628102 54755871 ATP6V1H 54626102 54757871 

8 59402736 59412720 CYP7A1 59400736 59414720 

8 65508528 65711348 CYP7B1 65506528 65713348 

8 87111138 87166454 ATP6V0D2 87109138 87168454 

8 104033247 104085285 ATP6V1C1 104031247 104087285 

8 128748314 128753680 MYC 128746314 128755680 

8 143953772 143961236 CYP11B1 143951772 143963236 

8 143991974 143999259 CYP11B2 143989974 144001259 

9 32384600 32450832 ACO1 32382600 32452832 

9 71650478 71693993 FXN 71648478 71695993 

9 79792360 80032399 VPS13A 79790360 80034399 

9 88879462 88897490 ISCA1 88877462 88899490 

9 96338908 96441869 PHF2 96336908 96443869 

9 116148591 116163618 ALAD 116146591 116165618 

9 117349993 117361152 ATP6V1G1 117347993 117363152 

9 130911731 130915734 LCN2 130909731 130917734 

9 139257440 139268133 CARD9 139255440 139270133 

9 140100118 140113813 NDOR1 140098118 140115813 

10 13319795 13342130 PHYH 13317795 13344130 

10 45869623 45941567 ALOX5 45867623 45943567 

10 48413091 48416853 GDF2 48411091 48418853 

10 51565107 51590734 NCOA4 51563107 51592734 

10 70320116 70454239 TET1 70318116 70456239 

10 74766979 74856732 P4HA1 74764979 74858732 

10 76969911 76991207 VDAC2 76967911 76993207 

10 90965693 90967071 CH25H 90963693 90969071 

10 94821020 94828454 CYP26C1 94819020 94830454 

10 94833646 94837641 CYP26A1 94831646 94839641 

10 96522462 96612671 CYP2C19 96520462 96614671 

10 96698414 96749148 CYP2C9 96696414 96751148 

10 96796528 96829254 CYP2C8 96794528 96831254 

10 99218080 99258366 MMS19 99216080 99260366 

10 101370274 101380221 SLC25A28 101368274 101382221 
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10 102106771 102124588 SCD 102104771 102126588 

10 102295640 102313681 HIF1AN 102293640 102315681 

10 104590287 104597290 CYP17A1 104588287 104599290 

10 114135955 114188138 ACSL5 114133955 114190138 

10 131934638 131977932 GLRX3 131932638 131979932 

10 135340866 135352620 CYP2E1 135338866 135354620 

11 568088 568198 MIR210 566088 570198 

11 2185158 2193035 TH 2183158 2195035 

11 5246695 5248301 HBB 5244695 5250301 

11 6452267 6462254 HPX 6450267 6464254 

11 14899555 14913751 CYP2R1 14897555 14915751 

11 18042083 18062335 TPH1 18040083 18064335 

11 27062508 27149354 BBOX1 27060508 27151354 

11 31391376 31454382 DNAJC24 31389376 31456382 

11 34937676 35017675 PDHXPDX1 34935676 35019675 

11 43902356 43941825 ALKBH3 43900356 43943825 

11 46698624 46722215 ARHGAP1 46696624 46724215 

11 61731756 61735132 FTH1 61729756 61737132 

11 62623483 62656355 SLC3A2 62621483 62658355 

11 67806461 67818366 TCIRG1 67804461 67820366 

11 69455872 69469242 CCND1 69453872 69471242 

11 69480331 69490165 LTO1 69478331 69492165 

11 73977701 74022699 P4HA3 73975701 74024699 

11 85668213 85780139 PICALM 85666213 85782139 

11 93754377 93847374 HEPHL1 93752377 93849374 

11 107373452 107436461 ALKBH8 107371452 107438461 

11 110300660 110335608 FDX1 110298660 110337608 

11 111895537 111935002 DLAT 111893537 111937002 

11 113280316 113346001 DRD2 113278316 113348001 

11 119531702 119599435 NECTIN1 119529702 119601435 

11 121163387 121184119 SC5D 121161387 121186119 

12 7085346 7125842 LPCAT3 7083346 7127842 

12 27849427 27850566 REP15 27847427 27852566 

12 46576840 46663208 SLC38A1, SAT1 46574840 46665208 

12 46751970 46766645 SLC38A2, SAT2 46749970 46768645 
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12 48166966 48176536 SLC48A1 48164966 48178536 

12 51379774 51422058 SLC11A2 51377774 51424058 

12 53845885 53874946 PCBP2 53843885 53876946 

12 58156116 58160976 CYP27B1 58154116 58162976 

12 67663060 67708388 CAND1 67661060 67710388 

12 68548549 68553521 IFNG 68546549 68555521 

12 72332625 72426221 TPH2 72330625 72428221 

12 103232103 103311381 PAH 103230103 103313381 

12 108956293 108963160 ISCU 108954293 108965160 

12 109525992 109531293 ALKBH2 109523992 109533293 

12 116997185 117014425 MAP1LC3B2 116995185 117016425 

12 123459353 123464588 OGFOD2 123457353 123466588 

12 124196864 124246301 ATP6V0A2 124194864 124248301 

13 28494167 28500451 PDX1 28492167 28502451 

14 23815526 23821660 SLC22A17 23813526 23823660 

14 32030590 32330429 NUBPL 32028590 32332429 

14 34393420 34420284 EGLN3 34391420 34422284 

14 62162118 62214977 HIF1A 62160118 62216977 

14 67804580 67826720 ATP6V1D 67802580 67828720 

14 74960422 74962271 ISCA2 74958422 74964271 

14 76044939 76114512 FLVCR2 76042939 76116512 

14 78138748 78174356 ALKBH1 78136748 78176356 

14 96001322 96011055 GLRX5 95999322 96013055 

14 100150754 100193638 CYP46A1 100148754 100195638 

15 43489425 43513323 EPB42 43487425 43515323 

15 45003684 45010357 B2M 45001684 45012357 

15 51500253 51630795 CYP19A1 51498253 51632795 

15 64364760 64386207 CIAO2A 64362760 64388207 

15 69307033 69349501 NOX5 69305033 69351501 

15 69706626 69740764 KIF23 69704626 69742764 

15 73344824 73597547 NEO1 73342824 73599547 

15 74630102 74660081 CYP11A1 74628102 74662081 

15 75011882 75017877 CYP1A1 75009882 75019877 

15 75041183 75048941 CYP1A2 75039183 75050941 

15 78730517 78793798 IREB2 78728517 78795798 
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16 202853 204504 HBZ 200853 206504 

16 222845 223709 HBA2 220845 225709 

16 226678 227520 HBA1 224678 229520 

16 230332 231178 HBQ1 228332 233178 

16 779768 790997 CIAO3 777768 792997 

16 1832932 1839192 NUBP2 1830932 1841192 

16 2563726 2570224 ATP6V0C 2561726 2572224 

16 4526340 4560348 HMOX2 4524340 4562348 

16 10837697 10863208 NUBP1 10835697 10865208 

16 29464913 29466285 BOLA2 29462913 29468285 

16 30204255 30205627 BOLA2B 30202255 30207627 

16 53737874 54148379 FTO 53735874 54150379 

16 56485423 56511407 OGFOD1 56483423 56513407 

16 57462086 57481369 CIAPIN1 57460086 57483369 

16 66965957 66968326 CIAO2B 66963957 66970326 

16 67471916 67515089 ATP6V0D1 67469916 67517089 

16 74746855 74808729 FA2H 74744855 74810729 

16 87425800 87438380 MAP1LC3B 87423800 87440380 

17 4534213 4544971 ALOX15 4532213 4546971 

17 6899383 6914055 ALOX12 6897383 6916055 

17 7529555 7531194 SAT2 7527555 7533194 

17 7571719 7590868 TP53 7569719 7592868 

17 7942357 7952451 ALOX15B 7940357 7954451 

17 7975953 7991021 ALOX12B 7973953 7993021 

17 7999217 8022234 ALOXE3 7997217 8024234 

17 26684686 26689089 TMEM199 26682686 26691089 

17 26721660 26733230 SLC46A1 26719660 26735230 

17 36886509 36891858 CISD3 36884509 36893858 

17 40610861 40674597 ATP6V0A1 40608861 40676597 

17 40962149 40976310 BECN1 40960149 40978310 

17 57697049 57774317 CLTC 57695049 57776317 

17 74523429 74533987 CYGB 74521429 74535987 

17 74708913 74722881 JMJD6 74706913 74724881 

17 80347085 80376513 OGFOD3 80345085 80378513 

18 48556582 48611411 SMAD4 48554582 48613411 
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18 55212072 55253969 FECH 55210072 55255969 

18 60790578 60986613 BCL2 60788578 60988613 

19 1104648 1106787 GPX4 1102648 1108787 

19 3490818 3500621 DOHH 3488818 3502621 

19 7587495 7598895 MCOLN1 7585495 7600895 

19 8455204 8469317 RAB11B 8453204 8471317 

19 10828728 10942586 DNM2 10826728 10944586 

19 11685474 11689801 ACP5 11683474 11691801 

19 13049413 13055304 CALR 13047413 13057304 

19 15619335 15663128 CYP4F22 15617335 15665128 

19 15726028 15740447 CYP4F8 15724028 15742447 

19 15751706 15771570 CYP4F3 15749706 15773570 

19 15783827 15807984 CYP4F12 15781827 15809984 

19 15988833 16008884 CYP4F2 15986833 16010884 

19 16023179 16045676 CYP4F11 16021179 16047676 

19 35773409 35776045 HAMP 35771409 35778045 

19 41305333 41314346 EGLN2 41303333 41316346 

19 41349442 41356352 CYP2A6 41347442 41358352 

19 41381343 41388657 CYP2A7 41379343 41390657 

19 41396730 41406413 CYP2A6 41394730 41408413 

19 41497203 41524301 CYP2B6 41495203 41526301 

19 41594355 41602100 CYP2A13 41592355 41604100 

19 41620352 41634281 CYP2F1 41618352 41636281 

19 41699114 41713444 CYP2S1 41697114 41715444 

19 44010870 44031396 ETHE1 44008870 44033396 

19 49468565 49470136 FTL 49466565 49472136 

19 54926604 54947899 TTYH1 54924604 54949899 

20 3869741 3904502 PANK2 3867741 3906502 

20 4666796 4682234 PRNP 4664796 4684234 

20 6748744 6760910 BMP2 6746744 6762910 

20 33146500 33148149 MAP1LC3A 33144500 33150149 

20 33516235 33543601 GSS 33514235 33545601 

20 34256609 34287287 NFS1 34254609 34289287 

20 48120410 48184707 PTGIS 48118410 48186707 

20 52769987 52790516 CYP24A1 52767987 52792516 
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21 33031934 33041243 SOD1 33029934 33043243 

21 43782390 43786644 TFF1 43780390 43788644 

22 18074902 18111588 ATP6V1E1 18072902 18113588 

22 29138042 29153496 HSCB 29136042 29155496 

22 35777059 35790207 HMOX1 35775059 35792207 

22 37461478 37499693 TMPRSS6 37459478 37501693 

22 38507501 38577761 PLA2G6 38505501 38579761 

22 41865128 41924993 ACO2 41863128 41926993 

22 42522500 42526883 CYP2D6 42520500 42528883 

22 42536213 42540575 CYP2D7 42534213 42542575 

22 50925212 50928750 MIOX 50923212 50930750 

X 18709044 18846034 PPEF1 18707044 18848034 

X 23801274 23804327 SAT1 23799274 23806327 

X 31089357 31090170 FTHL17 31087357 31092170 

X 37639269 37672714 CYBB 37637269 37674714 

X 48932091 48937564 WDR45 48930091 48939564 

X 53963112 54071569 PHF8 53961112 54073569 

X 55035487 55057497 ALAS2 55033487 55059497 

X 65382432 65487230 HEPH 65380432 65489230 

X 74273006 74376175 ABCB7 74271006 74378175 

X 77166193 77305892 ATP7A 77164193 77307892 

X 108884563 108976621 ACSL4 108882563 108978621 

X 135044230 135056134 MMGT1 135042230 135058134 

X 153656977 153664862 ATP6AP1 153654977 153666862 

X 153759605 153775233 G6PD 153757605 153777233 

X 154718672 154842622 TMLHE 154716672 154844622 

Table S7.1. List of the mapped genes in iron metabolism included in the genetic analysis. 
Reference genome: GRCh37/hg19). Gene symbols and positions in base-pairs (BP) including 
the 2 KB flanking region are reported.  
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Gene set Source N of genes 

GOBP_IRON_ION_TRANSPORT GO 79 

GOBP_CELLULAR_IRON_ION_HOMEOSTASIS GO 70 

GOBP_RESPONSE_TO_IRON_ION GO 28 

GOBP_RESPONSE_TO_IRON_II_ION GO 5 

GOBP_RESPONSE_TO_IRON_III_ION GO 5 

GOBP_IRON_SULFUR_CLUSTER_ASSEMBLY GO 24 

GOBP_IRON_IMPORT_INTO_CELL GO 11 

GOBP_IRON_ION_TRANSMEMBRANE_TRANSPORT GO 19 

GOBP_REGULATION_OF_IRON_ION_TRANSPORT GO 9 

GOBP_REGULATION_OF_IRON_ION_TRANSMEMBRANE_TRANSPORT GO 6 

GOBP_IRON_ION_HOMEOSTASIS GO 86 

GOBP_MULTICELLULAR_ORGANISMAL_IRON_ION_HOMEOSTASIS GO 7 

GOBP_CELLULAR_RESPONSE_TO_IRON_ION GO 9 

GOBP_PROTEIN_MATURATION_BY_IRON_SULFUR_CLUSTER_TRANSFER GO 16 

GOBP_SEQUESTERING_OF_IRON_ION GO 7 

GOBP_IRON_ION_IMPORT_ACROSS_PLASMA_MEMBRANE GO 6 

GOBP_IRON_COORDINATION_ENTITY_TRANSPORT GO 14 

GOMF_IRON_ION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY GO 10 

GOMF_IRON_ION_BINDING GO 150 

GOMF_FERROUS_IRON_BINDING GO 26 

GOMF_FERRIC_IRON_BINDING GO 10 
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HP_ABNORMALITY_OF_IRON_HOMEOSTASIS HP 19 

HP_IRON_ACCUMULATION_IN_BRAIN HP 9 

KEGG_FERROPTOSIS KEGG 41 

Table S7.2. List of gene sets from Gene Ontology (GO), Human Phenotype (HP) and Kyoto Encyclopedia of Genes and Genome (KEGG) included in 
the study. N genes = number of genes in the gene set. 
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Supplementary Figures 

Figure S2.1: Overview of the work 

 
Figure S2.1. An overview of the work, showing the different layers of data (left panel) used in the reported studies. Gene exp = gene expression. MRI = 
Magnetic Resonance Imaging. NFL = Neurofilament light chain. OSR = IRCCS San Raffaele Hospital. CHUT = Centre Hospitalier Universitaire de 
Toulouse. KI = Karolinska Institutet.  
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Figure S6.1: Environmental questionnaire 

 
Figure S5.1. An extract of the Environmental Questionnaire, section E (Body weight and dietary 
habits).   


