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Abstract
The Italian Neuroimaging Network Initiative (INNI) is an expanding repository of brain MRI data from multiple sclerosis 
(MS) patients recruited at four Italian MRI research sites. We describe the raw data quality of resting-state functional MRI 
(RS-fMRI) time-series in INNI and the inter-site variability in functional connectivity (FC) features after unified automated 
data preprocessing. MRI datasets from 489 MS patients and 246 healthy control (HC) subjects were retrieved from the INNI 
database. Raw data quality metrics included temporal signal-to-noise ratio (tSNR), spatial smoothness (FWHM), framewise 
displacement (FD), and differential variation in signals (DVARS). Automated preprocessing integrated white-matter lesion 
segmentation (SAMSEG) into a standard fMRI pipeline (fMRIPrep). FC features were calculated on pre-processed data and 
harmonized between sites (Combat) prior to assessing general MS-related alterations. Across centers (both groups), median 
tSNR and FWHM ranged from 47 to 84 and from 2.0 to 2.5, and median FD and DVARS ranged from 0.08 to 0.24 and from 
1.06 to 1.22. After preprocessing, only global FC-related features were significantly correlated with FD or DVARS. Across 
large-scale networks, age/sex/FD-adjusted and harmonized FC features exhibited both inter-site and site-specific inter-group 
effects. Significant general reductions were obtained for somatomotor and limbic networks in MS patients (vs. HC). The 
implemented procedures provide technical information on raw data quality and outcome of fully automated preprocessing 
that might serve as reference in future RS-fMRI studies within INNI. The unified pipeline introduced little bias across sites 
and appears suitable for multisite FC analyses on harmonized network estimates.
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Introduction

Multiple sclerosis (MS) is the most frequent chronic 
inflammatory, demyelinating and neurodegenerative dis-
ease affecting the central nervous system (CNS) in young 
adults [1]. MS is a heterogeneous, multifactorial, immu-
nological disease characterized by recurrent clinical mani-
festations and progression of disability over time [1]. The 
principal hallmark of MS is the accumulation of focal 
demyelinating lesions in the white and gray matter of the 
brain as well as in the spinal cord [1]. The diagnosis of 
MS is based on proof of disease dissemination in space 
and time and exclusion of other disorders that can mimic 
this condition. Thanks to its sensitivity to MS-related focal 
abnormalities, conventional brain MRI, including T1- and 
T2-weighted sequences, has become fundamental for an 
early and accurate diagnosis as well as for monitoring MS 
disease activity and response to treatment [2, 3]. In addi-
tion to its clinical value, advanced MRI techniques are 
improving our understanding of the structural and func-
tional changes underlying MS pathophysiology, providing 
invaluable insights into disease mechanisms [4, 5]. Despite 
the important findings provided by MRI studies so far, 
there are several drawbacks, including, for most of them, 
the small-sample size of patients enrolled. This limitation 
strongly affects the robustness and reproducibility of the 
results obtained in the field. In contrast, studies on larger 
cohorts of patients enable the testing of hypotheses with 
superior statistical power, thus enhancing the reliability 
of the results [6].

In recent years, major technological advances in the 
analysis of neuroimages have been made thanks to the 
availability of large, shared neuroimaging data reposito-
ries, giving access to thousands of MRI scans on the web 
[7]. Several types of data sharing have been proposed and 
utilized. The most common form of data sharing involves 
data previously reported in publications in the form of 
coordinate-based metadata [8]. Some repositories contain 
already-processed data, such as statistical maps [9], while 
others contain raw datasets from individual subjects [10, 
11]. Notable examples of established sharing initiatives 
collecting MRI data from patients and healthy subjects are 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
the Autism Brain Imaging Data Exchange (ABIDE), and 
the UK Biobank [12–15].

The Italian Neuroimaging Network Initiative (INNI) 
has supported the creation of a centralized repository, 
where brain MRI, demographical, clinical, and neuropsy-
chological data from MS patients and healthy controls 
are collected from the participating sites, with the main 
goal of defining the role of clinical and conventional MRI 
biomarkers in understanding MS pathophysiology [16]. 

In addition, the INNI initiative will promote the use at a 
national level of advanced structural and functional MRI 
techniques to be applied for advanced studies on MS. The 
MRI data collected within the INNI database include high 
resolution 3D T1-weighted scans for anatomical volumet-
ric studies, T2-weighted or Fluid Attenuated Inversion 
Recovery (FLAIR) scans for MS lesions quantification, 
and diffusion tensor imaging (DTI) and resting-state func-
tional MRI (RS-fMRI) series for advanced MRI studies.

An important issue regarding the collection of large-scale 
multicenter MRI data is quality control (QC), as poorly 
acquired data can compromise the trustworthiness and reli-
ability of a study [17]. For instance, many automated pre-
processing steps (such as segmentation and registration) and 
the subsequent statistical inferences are highly sensitive to 
the presence of image artifacts and to spurious signal fluctu-
ations [18, 19]. Moreover, the heterogeneity of scanners and 
acquisition protocols can potentially affect the consistency 
of MRI-derived features and, therefore, undermine statistical 
testing and/or classification performances [20, 21]. For this 
reason, harmonizing the MRI data is generally considered 
important [22]–[24] and specific recommendations for MS 
multicenter studies have been recently updated [25].

As regards INNI, a study was previously published to 
provide information on the quality of conventional and volu-
metric 3D T1-weighted MRI data uploaded into the reposi-
tory [26].

The aim of this study is twofold. First, to propose quan-
titative and objective metrics that can characterize the qual-
ity of brain RS-fMRI raw datasets from single MS patients 
collected within the INNI repository. Second, to assess the 
variability of functional MRI quality and connectivity fea-
tures across different sites and scanners when the former is 
assessed on raw data and the same preprocessing pipeline is 
applied to obtain the latter, as well as the relation between 
quality metrics and features. Based on the results, the INNI 
consortium could eventually promote a standardized use of 
these quality metrics to compare the results of functional 
connectivity (FC) studies on the same multicenter MRI 
dataset.

Materials and methods

The INNI project is promoted by the Neuroimaging Study 
Group of the Italian Society of Neurology and is financially 
supported by a special research grant from the Fondazione 
Italiana Sclerosi Multipla (FISM). FISM is the owner of 
the database, according to Italian copyright law. The INNI 
currently involves four Italian MS centers (Neuroimag-
ing Research Unit, Division of Neuroscience, IRCCS San 
Raffaele Scientific Institute; Department of Human Neuro-
science, “La Sapienza” University, Rome; Department of 
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Neurological Sciences, University of Campania Luigi Van-
vitelli and Care “Hermitage Capodimonte”, Naples; Depart-
ment of Neurological and Behavioural Sciences, University 
of Siena, Siena).

Datasets

MRI data from MS patients and healthy control (HC) sub-
jects were retrieved from the INNI repository (https:// datab 
ase. inni- ms. org) based on the current availability of at least 
one anatomical 3D-T1-weighted (3D-T1w) scan and one RS-
fMRI scan from the same exam. Based on the demographic 
data (age and sex) of the MS patients, HCs were selected to 
maximize the size of a sample of HCs age- and sex-matched 
to the MS sample for each center. As a result, MRI data 
from the exams of 489 MS patients with the main clini-
cal MS phenotypes (relapsing–remitting [RRMS], primary 
progressive [PPMS], secondary progressive [SPMS], benign 
[BMS] and clinically isolated syndrome [CIS]), and 246 
HCs acquired in all four participating centers (labeled here 
as A, B, C and D), were downloaded. All MRI exams were 
executed on 3 Tesla scanners: Intera and Achieva, respec-
tively, for Centers A and D (Philips Medical Systems, Best, 
The Netherlands); Signa HDxt for Center B (GE Healthcare, 
Milwaukee, USA); Magnetom Verio for Center C (Siemens, 
Erlangen, Germany). Patient positioning was performed 
according to the usual internal procedures of each center. In 
each center, all MRI data were acquired on the same scanner 
and with the same protocol, except for Center A, where 36 
MS patients and 17 HCs scans were acquired with the same 
anatomical sequence but with slightly different acquisition 
parameters. Demographic and clinical data and MRI acqui-
sition parameters for each center are summarized, respec-
tively, in Tables 1 and 2.

Study approval was obtained from the local ethics com-
mittee of each participating center and written informed 
consent was given by all participants at the time of data 
acquisition.

Image quality metrics

We used the MRIQC workflow [27] to derive a set of image 
quality metrics (IQMs) to assess the quality of the raw RS-
fMRI data. A justification for the use of these IQMs and a 
complete description of the metrics can be found at https:// 
mriqc. readt hedocs. io/ en/ latest/ measu res. html. For the sake 
of simplicity, we selected only a subset of the IQMs pro-
vided by MRIQC: temporal signal-to-noise ratio (tSNR) was 
selected as a reliable measure for temporal information; full 
width at half maximum (FWHM) was preferred to spatial 
signal-to-noise ratio (SNR) as measure for spatial informa-
tion, since the use of multichannel phase-array surface coils 
and parallel imaging acquisition techniques would not pro-
vide an accurate assessment of the spatial SNR [28]; frame-
wise displacement (FD) [29] is the most common measure to 
summarize head motion; differential variation in the signal 
(DVARS) [30, 31] is another popular measure to character-
ize fMRI data quality with respect to the contribution of 
non-neural sources (including also physiological noise).

The tSNR is calculated in each voxel as the ratio between 
the average BOLD signal across time and the correspond-
ing temporal standard deviation [32]. Higher tSNR values 
are indicative of a superior ability to detect small changes 
in image intensity associated with subtle brain activation 
[33]. The FWHM describes the average width of local 
extrema in the intensity of an image. The mean FWHM 
(over time) is indicative of the average intrinsic smooth-
ness of the images (prior to preprocessing). Higher mean 

Table 1  Demographic and clinical information for each center participating in the INNI initiative (the statistically significant differences are 
reported in bold)

Center A Center B Center C Center D Total

Patients/controls 260/99 141/94 72/37 16/16 489/246
Age, mean ± sd
 Patients 40.9 ± 12.3 37.1 ± 10.3 40.3 ± 11.0 42.7 ± 7.18 39.8 ± 11.6
 Controls 38.1 ± 13.5 38.2 ± 11.6 37.2 ± 12.8 42.6 ± 6.97 38.3 ± 12.4
 p (t value) 0.08 (1.78) 0.45 (− 0.76) 0.21 (1.27) 0.98 (0.02) 0.12 (1.55)

Sex
 Patients 156 F/104 M 94 F/47 M 54 F/18 M 12 F/4 M 316 F/173 M
 Controls 51 F/48 M 54 F/40 M 23 F/14 M 12 F/4 M 140F/106 M
 p ( �2 value) 0.15 (2.11) 0.15 (2.06) 0.16 (1.94) 1.00 (0.00) 0.04 (4.13)

MS phenotype (RR/SP/PP/CIS/B) 166/53/18/0/23 122/4/1/14/0 65/3/1/3/0 15/0/0/0/1 368/60/20/17/24
Disease duration, mean ± sd 12.7 ± 8.54 11.1 ± 8.98 9.57 ± 6.52 8.56 ± 9.14 11.9 ± 8.52
EDSS, median (IQR) 2 (3) 2 (1.5) 1.5 (1.5) 1.5 (0.5) 2 (2.5)
SDMT, mean ± sd 42.5 ± 16.0 40.3 ± 14.7 45.2 ± 11.4 45.8 ± 13.4 42.4 ± 15.0

https://database.inni-ms.org
https://database.inni-ms.org
https://mriqc.readthedocs.io/en/latest/measures.html
https://mriqc.readthedocs.io/en/latest/measures.html
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FWHM values increase the ability to detect small BOLD 
signal changes over contiguous pixels [34]. DVARS indexes 
the rate of change of BOLD signal across the entire brain 
at each time point and higher values for mean DVARS indi-
cate higher levels of physiological noise. Here, we used a 
standardized version for DVARS, where the mean values are 
normalized to the standard deviation of the temporal differ-
ence time series. For a given image time-series, the mean 
FD is indicative of the average amount of motion, regardless 
of the type (translation or rotation) and orientation. Higher 
values for mean FD indicate higher levels of head motion 
(prior to preprocessing). All IQMs were evaluated prior 
the subsequent MRI data preprocessing, which was carried 
out after the exclusion of high-motion subjects (i.e., mean 
FD > 0.25 mm) [35].

Structural MRI preprocessing

All anatomical scans were resampled to an isometric 
1 × 1 × 1 mm grid to standardize the structural MRI preproc-
essing. Automatic brain tissue segmentation was performed 
with FreeSurfer v7.1.1 [36]. We used the Sequence Adap-
tive Multimodal SEGmentation (SAMSEG) [37] procedure 
to automatically and simultaneously perform whole-brain 
tissue segmentation (including white matter [WM], gray 
matter [GM], cerebrospinal fluid [CSF] segmentation), and 
MS lesion segmentation. The characteristic property of 

SAMSEG is that it accepts multi-contrast MRI data without 
specific requirements on the pulse sequences (e.g., 2D or 
3D) and is therefore well suited for multicenter MS studies. 
Nonetheless, we segmented each anatomical data set using 
only the 3D T1-weighted images, as FLAIR scans were not 
available from all sites.

Functional MRI preprocessing

Functional MRI preprocessing was carried out using 
fMRIPrep v20.2.1 [38]. The following steps were applied 
to all datasets: skull stripping, motion correction, slice 
time correction, susceptibility distortion correction, and 
co-registration of the functional and anatomical scans. Of 
note: as slice acquisition timing information was missing in 
the DICOM files, the slice time correction was skipped for 
Philips datasets. Moreover, as field maps or reverse phase 
encoding acquisitions were not available for most of the 
exams, fMRIPrep adopted a field map-less susceptibility 
distortion correction procedure which is based on nonlin-
ear registration of the EPI images to the same-subject T1w 
images [39].

Automatic removal of motion artifacts using independent 
component analysis ICA-AROMA [40] was performed on 
the pre-processed BOLD time-series. ICA-AROMA motion 
components were collected and used as noise regressors 
along with the mean physiological noise signals from WM 

Table 2  MRI acquisition 
parameters for each center 
participating in the INNI 
initiative

Center A Group B Group C Group D

Scanner Philips Intera GE Signa HDxt Siemens Verio Philips Achieva
Coil 8-channel coil 8-channel coil 12-channel coil 32-channel coil
3D-T1 weighted
 Sequence [FFE–TFE] IR-FSPGR MPRAGE TFE
 Imaging plane [Axial–Sagittal] Sagittal Sagittal Axial
 Spatial resolution  [mm3] [0.9 × 0.9 × 1.6–1 × 1 × 1] 1 × 1 × 1.2 0.5 × 0.5 × 1 1 × 1 × 2
 Acquisition matrix [256 × 256–256 × 256] 256 × 256 256 × 256 256 × 256
 Slices [220–204] 166 176 192
 TR [ms] [25–7] 6.9 1900 10
 TE [ms] [4.6–3.1] 2.8 2.9 4
 TI [ms] – 650 900 –
 Flip angle [°] [30–9] 8 [8–9] 8

RS-fMRI
 Sequence EPI EPI EPI EPI
 Imaging plane Axial Axial Axial Axial
 Spatial resolution  [mm3] 1.875 × 1.875 × 4 4 × 4 × 4 3 × 3 × 3 1.875 × 1.875 × 4
 Acquisition matrix 128 × 128 64 × 64 64 × 64 128 × 128
 Slices 30 29 50 30
 TR [ms] 3000 1500 3000 3000
 TE [ms] 35 32 30 35
 Flip angle [°] 90 90 89 90
 Volumes 200 240 140 200
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and CSF. Finally, the time series were band-pass filtered 
between 0.01 Hz and 0.1 Hz.

Functional connectivity features

For each participant, FC network features and (within-GM) 
global connectivity features were calculated (see Sects. 2.5.1 
and 2.5.2). Prior to the statistical analyses, all features were 
adjusted for age, sex, and mean FD within each center using 
linear regression. The entire preprocessing pipeline and the 
extraction of the features was carried out on a HP Z6 G4 
workstation equipped with two 8-core Intel (R) Xeon (R) 
Bronze 3106 @1.70 GHz, for a total of 16 CPU threads and 
128 GB RAM. For each data set (from one patient), the total 
processing time (on a single CPU core) was approximately 
4 h.

Network‑level features

The mean time-series were extracted from 100 pre-defined 
cortical parcels in native space using the Schaefer atlas [41]. 
These regions are clustered into seven functional networks: 
visual (VN), somatomotor (SMN), dorsal attention (DAN), 
ventral attention (VAN), limbic (LN), frontoparietal (FPN), 
and default (DMN) [42]. The Pearson correlation coefficient 
was computed between the mean time-series of each pair 
of regions, in a 100 × 100 connectivity matrix for each par-
ticipant. Fisher’s r-to-z transformation was applied for all 
connectivity matrices to improve the normality. For each 
network, the average correlation coefficient was calculated 
from the within-network positive values, as the correct inter-
pretation of negative correlations is notoriously ambiguous 
[43–45].

Global features

Voxel-based maps of intrinsic brain activity and connectivity 
were computed using the Data Processing and Analysis of 
Brain Imaging (DPABI) toolbox [46] in MATLAB R2021a 
(The MathWorks Inc., Natick, Massachusetts, United States). 
Amplitude of low-frequency fluctuations (ALFF) was taken 
as a voxel-based measure of the amplitude of spontaneous 
neural signal fluctuations from the filtering of the BOLD 
signal in the frequency range of spontaneous neural activity 
(0.01–0.1 Hz) [47]. ALFF maps were extracted from the 
time-series prior to band-pass filtering. Regional homogene-
ity (ReHo) is based on the local synchronization between the 
time series of a given voxel and its nearest 26 neighboring 
voxels and was taken as another voxel-based measure of 
brain activity [48]. A higher ReHo value for a given voxel 
indicates higher regional coherence. Finally, degree central-
ity (DC) was taken as a measure of local–global FC; it is 
defined as the number of voxels across the whole brain that 

show strong correlation (above a threshold of r > 0.25) with 
a target voxel [49]. Following the work from Buckner et al., 
we chose a threshold of 0.25 to remove connections that 
had low temporal correlation attributable to noise (in the 
same work, the authors showed that different thresholds did 
not qualitatively change the results). From a brain network 
perspective, DC is measured as the number of connections 
a voxel has with the rest of the brain (binarized DC), or the 
sum of weights across all those connections (weighted DC) 
[50]. We used weighted DC, since it provides a more reli-
able measure for characterizing centrality of functional brain 
networks [51]. RS-fMRI maps were extracted as reported in 
[52]: ALFF maps were calculated in native space and then 
normalized to the Montreal Neurological Institute (MNI152) 
template; instead, following the work from Yan et al., ReHo 
and DC maps were directly calculated in MNI152 space to 
ensure the same voxel size across sites [52]. All maps were 
Z-standardized and further smoothed with a Gaussian kernel 
of 4.5 mm [52]. For each of these features, we computed the 
mean across the individual GM mask, thus summarizing the 
global brain activity and connectivity across the entire GM.

Feature harmonization

Harmonization techniques are used to handle non-biolog-
ical variance introduced by differences in MRI scanners 
and acquisition protocols [25]. To remove these unwanted 
effects, we applied the ComBat harmonization [53, 54] in 
its R implementation (freely available at https:// github. com/ 
Jfort in1/ ComBa tHarm oniza tion) to all datasets. We included 
age, sex, and group (controls: 0; MS: 1) as biological covari-
ates in the harmonization process to preserve them from the 
removal of scanner-related effects in the presence of differ-
ent age and sex distributions between sites. However, harmo-
nized features were subsequently adjusted for age, sex, and 
mean FD prior to the multisite statistical analysis.

Statistical analysis

Statistical analysis was performed with the R software ver-
sion 4.1.2 (R Foundation for Statistical Computing, Vienna, 
Austria. URL: https:// www.R- proje ct. org/). The Pearson’s 
chi-squared test ( �2 test) was used to test for differences in 
the MS phenotype and sex group distributions among the 
four participating centers; the analysis of variance (ANOVA) 
and the Student’s t test were used to test for differences in 
age among the four participating centers and between cent-
ers. Kruskal–Wallis tests due to non-normal distribution of 
data (identified using the Shapiro–Wilk test) were used to 
evaluate differences in IQMs and FC features among the 
different centers. For post hoc testing, Dunn’s test was used 
to determine which centers produced estimates that were 
significantly different from others. Bonferroni correction 

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/Jfortin1/ComBatHarmonization
https://www.R-project.org/
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was applied to adjust p values for multiple comparisons. A 
p value < 0.05 was considered as a statistically significant 
result.

Because the scale of the measurements could be also 
affected by inter-site differences [53], the variance of the 
FC estimates was also compared between sites using the 
Fligner–Killeen test to determine whether the variances are 
homogenous between sites [55]. In this case, we only con-
sidered the HCs of each site, as MS pathology would likely 
affect the variance of a group differently across sites also due 
to phenotypic differences.

Wilcoxon rank sum test was used to evaluate differences 
between MS and HCs on FC features, without and with 
ComBat harmonization. The correlations between FD or 
DVARS (from raw data) and connectivity features (from pre-
processed data) were also assessed for each site to evaluate 
the impact of the initial technical quality of the raw data on 
FC features. As the role of the preprocessing should be to 
reduce as much as possible the influence of technical fac-
tors and artifacts on the inter-individual variability of the 
final features, this analysis allows to assess the impact of 
the initial raw data quality on the FC features when these 
are derived from the same preprocessing pipeline applied 
to the data from each center. Correlation coefficients were 
considered statistically significant when the p value of the 
test was below 0.05, after Bonferroni correction for all tests 
performed.

Results

In this section, we illustrate the differences in demographic 
data and IQMs (prior to data preprocessing) across centers 
and scanners, along with boxplots and raincloud plots to 
qualitatively show the inter-site effects. Next, we illustrate 

the differences in the FC features (after data preprocess-
ing) across the centers and between groups, along with box-
plots and raincloud plots to qualitatively show the inter-site 
effects, without and with multisite harmonization applied to 
the features. Numerical results are reported as median values 
and interquartile ranges.

The distribution of demographic information (age and 
sex) across sites is shown in Fig. 1. Both the age and sex dis-
tribution were slightly unbalanced across sites (age: p = 0.02, 
sex: p = 0.03) albeit post hoc testing failed to reveal any sig-
nificant differences for pair-wise comparisons after correc-
tion for multiple comparisons. For the MS groups, clinical 
MS phenotypes’ distributions were found to be unbalanced 
between centers (p < 0.001). Tissue and lesion volumes 
derived from SAMSEG are reported in Table 3.

The distribution of the median tSNR across groups and 
sites is shown in Fig. 2a. There was a significant inter-
site effect (p < 0.001) in the tSNR, the highest tSNR val-
ues being observed for patients and controls in Center B 
(median = 84.2 [16.8]; median = 83.8 [14.5]) and the low-
est tSNR values being observed in Center C (median = 48.3 
[5.68]; median = 46.8 [7.09]). No differences between MS 
patients and HCs were found in any of the centers.

The distribution of the mean FWHM across groups and 
sites is shown in Fig. 2b. There was a significant inter-site 
effect (p < 0.001), the highest FWHM values being observed 
for patients and controls acquired in Center B (median = 2.56 
[0.14] mm; median = 2.53 [0.12] mm) and the lowest 
FWHM values being observed in Center C (median = 1.99 
[0.11] mm; median = 1.99 [0.15] mm). Only for Center A, 
FWHM was significantly different (p < 0.01) between MS 
patients and HCs.

The distribution of the DVARS across groups and sites 
is shown in Fig. 2c. There was a significant inter-site effect 
(p < 0.001), the highest DVARS values being observed for 

Fig. 1  Distributions of participant’s demographical characteristics across the four centers: age (a) and sex (b)
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Table 3  Tissue volumes and 
lesion load as derived from 
SAMSEG; all volumes are 
in units of ml and are not 
adjusted for age, sex, and total 
intracranial volumes

Center A Center B Center C Center D

Gray matter
 Patients (MS) 437 ± 57 466 ± 51 454 ± 45 451 ± 51
 Controls (HCs) 476 ± 54 489 ± 51 482 ± 48 480 ± 51
 p (t value) 6.4 ×  10–9 (− 6.09) 5.5 ×  10–4 (− 3.51) 5.3 ×  10–3 (− 2.88) 0.087 (− 1.77)

White matter ×

 Patients 406 ± 52 370 ± 36 390 ± 43 375 ± 39
 Controls 423 ± 51 382 ± 41 401 ± 39 396 ± 47
 p (t value) 5.4 ×  10–3 (− 2.81) 0.018 (− 2.38) 0.20 (− 1.30) 0.18 (− 1.36)

Cerebrospinal fluid
 Patients 392 ± 62 408 ± 48 402 ± 52 411 ± 50
 Controls 373 ± 48 392 ± 46 392 ± 44 392 ± 48
 p (t value) 2.2 ×  10–3 (3.10) 0.011 (− 2.55) 0.31 (1.02) 0.28 (1.10)

Lesion load 5.18 ± 7.24 4.38 ± 6.29 3.60 ± 4.89 4.71 ± 4.42

Fig. 2  Boxplots representing IQMs for every subject’s fMRI data for different centers: median tSNR (a), mean FWHM (b), DVARS (c), and 
mean FD (d)
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patients and controls acquired in Center A (median = 1.22 
[0.18]; median = 1.22 [0.18]) and the lowest DVARS val-
ues being observed in Center C (median = 1.06 [0.05]; 
median = 1.05 [0.05]). No differences between MS patients 
and HCs were found in any of the centers.

The distribution of the mean FD across groups and 
sites is shown in Fig. 2d. There was a significant inter-
site effect (p < 0.001), the highest motion being observed 
for data acquired in Center D (median = 0.22 [0.20] mm; 
median = 0.25 [0.10] mm) and the lowest motion being 
observed for data acquired in Center C (median = 0.07 
[0.06]; median = 0.09 [0.05]). No differences in mean FD 
between MS and HC groups were found significant in any 
of the centers.

Based on the motion estimates, “high-motion” subjects 
(i.e., subjects with mean FD > 0.25 mm) were excluded from 
the subsequent analyses of FC estimates from the pre-pro-
cessed data. Thus, 32/260 MS and 5/99 HC from Center A, 
5/141 MS from Center B, 2/72 MS from Center C, 6/16 MS 
and 8/16 HC from Center D were excluded, the total number 
of “low-motion” subjects available for the group analysis 
resulting in 444 MS patients and 233 HC subjects.

After exclusion of high-motion subjects (mean 
FD > 0.25), the age- and sex-adjusted FC estimates (as 
obtained from pre-processed data) were correlated with the 
mean FD and DVARS on a site basis. The correlation (r 
score with p-value) and determination (R2 score) coefficients 
are reported in Tables 4 and 5. According to this analysis, 
visual network FC was significantly (positively) correlated 
to DVARS in Center A (r = 0.19, R2 = 0.035, p < 0.05 after 

correction for multiple comparisons). Global features were 
significantly (positively) correlated to DVARS for the data 
from Center A (with the exclusion of ALFF) and from Center 
B; otherwise, the variance in the FC features explained by 
DVARS in the pre-processed data was always below 5% for 
all sites with the only further exception of ALFF in Center C 
and Center D, where four out of seven networks (SMN,VAN, 
LN, and DMN) displayed an  R2 above 0.05, albeit none of 
these correlations were statistically significant after correc-
tion for multiple correction.. Two global features (ALFF and 
ReHo) were significantly (negatively) correlated to the mean 
FD for the data from Center B (r > 0.25, R2 > 0.05, p < 0.05 
after correction for multiple comparisons); otherwise, the 
variance in the FC features explained by the residual motion 
in the pre-processed data was always below 5% for all sites 
with the only further exception of Center D, where three out 
of seven networks (SMN, LN, and FPN) and all three global 
features (ALFF, ReHo, and DC) displayed an R2 above 0.05, 
albeit none of these correlations were statistically significant 
after correction for multiple correction. Anyway, for the sub-
sequent inter-site and group-level analyses, all FC features 
(without or with preliminary inter-site harmonization) were 
further adjusted for mean FD on a site basis.

Figure 3 illustrates the boxplots and distributions for 
each center of the age-, sex- and mean FD-adjusted FC 
features (without harmonization) for the seven large-scale 
resting-state networks based on Yeo parcellation. There 
was a significant inter-site effect (p < 0.01) in each network 
and post hoc analyses revealed significant differences in 
most pair-wise comparisons between centers, with different 

Table 4  Correlation coefficients 
and R2 between DVARS and 
FC features (both networks and 
global); uncorrected p values 
are indicated in brackets

Values in bold indicate statistically significant correlations after Bonferroni correction (p < 0.05)

Center A Center B Center C Center D

VN r = 0.19 (< 0.01)
R2 = 0.035

r = − 0.05 (0.43)
R2 = 0.003

r = − 0.21 (0.03)
R2 = 0.044

r = − 0.15 (0.56)
R2 = 0.022

SMN r = 0.08 (0.13)
R2 = 0.007

r = 0.05 (0.47)
R2 = 0.002

r = − 0.06 (0.57)
R2 = 0.003

r = 0.38 (0.12)
R2 = 0.146

DAN r = 0.08 (0.18)
R2 = 0.006

r = 0.15 (0.03)
R2 = 0.022

r = − 0.04 (0.69)
R2 = 0.002

r = 0.01 (0.97)
R2 = 0.0001

VAN r = 0.16 (< 0.01)
R2 = 0.024

r = 0.14 (0.04)
R2 = 0.018

r = − 0.01 (0.90)
R2 = 0.0002

r = 0.52 (0.03)
R2 = 0.266

LN r = 0.03 (0.65)
R2 = 0.001

r = − 0.13 (0.05)
R2 = 0.017

r = − 0.11 (0.24)
R2 = 0.013

r = 0.41 (0.09)
R2 = 0.171

FPN r = 0.05 (0.40)
R2 = 0.002

r = 0.07 (0.27)
R2 = 0.005

r = 0.08 (0.41)
R2 = 0.007

r = 0.01 (0.96)
R2 = 0.0001

DMN r = 0.10 (0.07)
R2 = 0.010

r = 0.07 (0.26)
R2 = 0.005

r = 0.09 (0.33)
R2 = 0.009

r = 0.23 (0.36)
R2 = 0.052

ALFF r = − 0.06 (0.30)
R2 = 0.003

r = 0.28 (< 0.01)
R2 = 0.078

r = − 0.24 (0.01)
R2 = 0.056

r = 0.21 (0.40)
R2 = 0.044

ReHo r = 0.28 (< 0.01)
R2 = 0.080

r = 0.31 (< 0.01)
R2 = 0.096

r = − 0.08 (0.39)
R2 = 0.007

r = 0.20 (0.42)
R2 = 0.040

DC r = 0.21 (< 0.01)
R2 = 0.044

r = 0.23 (< 0.01)
R2 = 0.053

r = − 0.04 (0.68)
R2 = 0.002

r = 0.14 (0.59)
R2 = 0.019
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networks showing different patterns of inter-site changes. 
Furthermore, when comparing the variance of the FC fea-
tures across sites (only in HCs), the Fligner–Killeen test was 
significant for the VN (p-corrected < 0.01). From the pair-
wise comparisons on the variance, Center A and Center B 
significantly differed in variance for the VN (p < 0.01).

Figure 4 illustrates the boxplots and distributions for each 
center of the harmonized and age-, sex- and FD-adjusted FC 
features for the seven functional networks from Yeo parcel-
lation. Expectedly, we did not find any residual inter-site 
effects in any of the seven networks. Also, Fligner–Killeen 
tests for variance homogeneity were not significant for any 
of the seven networks.

At the level of groups, and without harmonization, MS 
patients showed a significantly decreased FC for the SMN 
(p < 0.01), the LN (p < 0.001), and the DMN (p < 0.05), as 
illustrated in the boxplots of Fig. 5a. After applying Combat 
harmonization, we found significant differences between MS 
patients and HCs across all centers for the SMN (p < 0.05) 
and the LN (p < 0.01) as illustrated in the boxplots of 
Fig. 5b. None of the comparisons between MS and HCs 
survived the Bonferroni correction for multiple compari-
sons in the within-center analyses, either with or without 
harmonization.

Figure 6 illustrates the boxplots and distributions for the 
mean global features, as well as the corresponding metrics 
with harmonization applied. Before harmonization, all three 
global FC features (ALFF, ReHo and DC) exhibited signifi-
cant differences between sites using different scanners. In 
the HC group, Fligner–Killeen test for variance homogeneity 

was significant only for DC (p < 0.01), with Center A and 
Center B showing more variability compared to Center C 
and Center D. At the level of groups, there were no sig-
nificant differences between MS patients and HCs across all 
centers without harmonization (Fig. 7a), although within-
center analyses revealed an increased ALFF in MS patients 
from Center B. After harmonization of global features, 
differences and variance heterogeneity (in HCs) were suc-
cessfully removed. Group-level comparisons revealed that 
MS patients pooled from all centers showed a significant 
increase (p < 0.05) in ALFF, as illustrated in Fig. 7b. In 
within-center analysis, MS patients in Center B still showed 
an increased ALFF.

Discussion

Controlling the quality and homogeneity of MRI datasets 
and MRI-derived features across different centers is a crucial 
prerequisite for obtaining reliable results in large multicenter 
brain MRI studies on MS [25]. In this work, we used vali-
dated IQMs to describe the quality and homogeneity of a 
representative sample of RS-fMRI data from the INNI data-
base and investigated the extent to which inter-site effects 
impact the multisite analysis of some typical FC features 
after unified automated data preprocessing. This allows us to 
report the outcome of RS-fMRI data quality control for this 
database as well as to discuss the extent of inter-site effects 
emerging from the different acquisition hardware and pro-
cedures implemented in the four research centers affiliated 

Table 5  Correlation coefficients 
and R2 between Framewise 
Displacement (FD) and FC 
features (both networks and 
global); uncorrected p values 
are indicated in brackets

Values in bold indicate statistically significant correlations after Bonferroni correction (p < 0.05)

Center A Center B Center C Center D

VN r = 0.03 (0.57)
R2 = 0.001

r = − 0.01 (0.89)
R2 = 0.0001

r = 0.09 (0.34)
R2 = 0.009

r = 0.09 (0.72)
R2 = 0.008

SMN r = − 0.11 (0.04)
R2 = 0.012

r = − 0.06 (0.38)
R2 = 0.003

r = − 0.15 (0.13)
R2 = 0.021

r = − 0.57 (0.01)
R2 = 0.327

DAN r = − 0.10 (0.08)
R2 = 0.010

r = − 0.10 (0.15)
R2 = 0.009

r = − 0.19 (0.04)
R2 = 0.037

r = − 0.14 (0.59)
R2 = 0.019

VAN r = − 0.13 (0.02)
R2 = 0.017

r = − 0.11 (0.10)
R2 = 0.012

r = − 0.07 (0.48)
R2 = 0.005

r = − 0.02 (0.94)
R2 = 0.0003

LN r = − 0.12 (0.03)
R2 = 0.015

r = − 0.04 (0.59)
R2 = 0.001

r = − 0.12 (0.23)
R2 = 0.013

r = − 0.27 (0.28)
R2 = 0.071

FPN r = 0.02 (0.78)
R2 = 0.00023

r = 0.06 (0.38)
R2 = 0.003

r = − 0.04 (0.69)
R2 = 0.002

r = 0.35 (0.16)
R2 = 0.121

DMN r = − 0.09 (0.09)
R2 = 0.009

r = − 0.01 (0.88)
R2 = 0.0001

r = − 0.03 (0.73)
R2 = 0.001

r = 0.07 (0.77)
R2 = 0.006

ALFF r = − 0.14 (0.01)
R2 = 0.020

r = − 0.27 (< 0.01)
R2 = 0.074

r = − 0.15 (0.12)
R2 = 0.023

r = 0.26 (0.29)
R2 = 0.070

ReHo r = −  r = − 0.15 (0.01)
R2 = 0.024

r = − 0.28 (< 0.01)
R2 = 0.077

r = − 0.14 (0.14)
R2 = 0.021

r = − 0.23 (0.36)
R2 = 0.052

DC r = − 0.08 (0.16)
R2 = 0.006

r = − 0.11 (0.08)
R2 = 0.013

r = − 0.13 (0.18)
R2 = 0.017

r = − 0.23 (0.36)
R2 = 0.053
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with the INNI project. Ultimately, we provide important 
information to the repository for future multicenter studies 
on MS patients based on the available RS-fMRI data. Par-
ticularly, the presented characterization of RS-fMRI data 

currently included in the INNI database demonstrated that 
the collection of data from different centers (with differ-
ent MRI scanners and acquisition protocols) poses specific 
challenges in terms of quality and homogeneity of the data.

Fig. 3  Boxplots and probability density estimation for the functional 
connectivity features in each of the seven functional networks from 
the Schaefer parcellation before ComBat harmonization (these plots 

were generated using the R package available at https:// github. com/ 
RainC loudP lots/ RainC loudP lots). On the y-axis, data are reported as 
Fisher z transformed correlation coefficients

https://github.com/RainCloudPlots/RainCloudPlots
https://github.com/RainCloudPlots/RainCloudPlots
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The tSNR metric provides a convenient index for 
assessing the RS-fMRI time-course stability. In the litera-
ture, tSNR analyses have been often performed to compare 
acquisition protocols [56, 57], preprocessing pipelines [58, 

59], and multisite datasets [60–63]. Within-site variabil-
ity in tSNR values is essentially due to the variability in 
thermal and physiological noise sources [33]. Across sites, 
tSNR is expected to increase with increasing voxel size 

Fig. 4  Boxplots and probability density estimation for the con-
nectivity features in each of the seven functional networks from the 
Schaefer parcellation after ComBat harmonization (these plots were 

generated using the R package available at https:// github. com/ RainC 
loudP lots/ RainC loudP lots). On the y-axis, values are reported as 
Fisher z transformed correlation coefficients

https://github.com/RainCloudPlots/RainCloudPlots
https://github.com/RainCloudPlots/RainCloudPlots
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[64] and/or with an increasing number of time points in 
the series [59, 65]. Hence, we could possibly explain that 
Center C, which provides RS-fMRI acquisitions with only 
140 time points (i.e., at least 60 time points less than the 
other three sites), had the lowest tSNR, and that Center 
B, which provides RS-fMRI acquisitions with 240 time 
points and the lowest resolution, had the highest tSNR. 
Inter-site differences in tSNR have been also related to 
the number of receive coils and the presence/absence of 
fat suppression [61]. Other studies have demonstrated how 
the presence or absence of different acceleration methods 
in EPI acquisition can affect the tSNR [33, 57]. Thus, we 

cannot exclude that the inter-site differences in tSNR could 
be partly explained by the different acceleration method.

FWHM provides a measure of the intrinsic spatial 
smoothness of the raw functional data and could therefore 
be related to the sensitivity of the RS-fMRI signals to the 
spatial characteristics of the underlying BOLD sources inde-
pendently of the voxel size. Here, we observed statistically 
significant differences in the FWHM metric across sites that 
were not explained by voxel size as good as by the scanner 
type. In fact, we noticed that GE (Center B) and Philips 
scanners (centers A and D) exhibited greater FWHM val-
ues compared to a Siemens scanner (Center C), in line with 

Fig. 5  Resting-state networks showing statistically significant differ-
ences between MS and HCs without (a) and with ComBat harmoni-
zation (b). With feature harmonization statistical differences are pre-

served in SMN and LN, but not in DMN. On the y-axis, values are 
reported as Fisher z transformed correlation coefficients
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previous works [66, 67]. A major cause of site differences 
in FWHM could be the presence (and type) or absence of 
spatial filtering during the image reconstruction process in 
k-space; in fact, Friedman and colleagues hypothesized in 
their work (a multicenter study where GE and Siemens scan-
ners are included) that the key reason why images from GE 
scanners are smoother than those from Siemens scanners 
is the different k-space filtering algorithm employed [66]. 
Thus, the same reason could be attributed to explain the 
differences with Philips scanners. Given the importance of 
k-space filtering on raw smoothness, a better solution would 
be that all scanners use the same filter and the same filter set-
tings. When this is not feasible, another strategy to possibly 
alleviate inter-site differences in FWHM would be the post 

hoc smoothness equalization, i.e., smoothing all images to 
a level equal to the largest FWHM estimated. According to 
Friedman et al. [66], spatial smoothing would also improve 
tSNR with beneficial effects on the overall ability to detect 
small changes in BOLD signal, although this increase would 
come at the price of decreased effective spatial resolution 
[66].

DVARS measures how much the intensity of the entire 
brain image varies in the comparison between two consecu-
tive time points. Consequently, DVARS jointly indexes the 
amount of intra-voxel motion and physiological noise in the 
time series [30]. Since it is based on BOLD signal intensity, 
DVARS is expected to differ across different datasets, scan-
ners and sequences, as indeed shown by results (Fig. 2c). 

Fig. 6  Boxplots and probability density estimation for the global connectivity features without (a) and with ComBat harmonization (b) (these 
plots were generated using the R package available at https:// github. com/ RainC loudP lots/ RainC loudP lots)

https://github.com/RainCloudPlots/RainCloudPlots
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Center C showed the lowest standardized DVARS values, 
thus indicating a lower level of global noise in fMRI data 
in comparison with other centers. Explaining inter-site dif-
ferences in DVARS with the different technical parameters 
used in acquisition phase is not so straightforward, as this 
quality measure is likely influenced by inter-subject vari-
ability. This is potentially linked to the fact that DVARS is 
sensitive to temporal signal variations beyond those reflected 
in head motion, and thus might reflect some other source of 
artifactual signal variation, such as cardiac pulsation and 
respiratory rate variability [68].

Framewise displacement (FD) is the most typical met-
ric to quantitatively assess the total amount of head motion 
that potentially corrupts RS-fMRI time-series. Indeed, FD is 
widely used in RS-fMRI studies to implement an exclusion 

criterion based on the amount of motion in the raw images 
prior to preprocessing (e.g., by setting a maximum thresh-
old on the mean FD and/or on the proportion of time points 
with motion corrupted data as indexed by an instantaneous 
FD higher than a given threshold) or to implement vari-
ous scrubbing strategies for motion artifact removal [29]. 
The exclusion of a small subset of high-motion datasets can 
dramatically improve the overall quality and reduce the cor-
relation between motion and FC features [69]. As the effect 
of motion artifacts strongly depend on the compliance of the 
subjects, it could be expected that FD estimates are mostly 
independent from the MRI site, scanner and sequence [30], 
but this may not necessarily be the case, as showed in other 
works [70]. Indeed, we found a significant variability in the 
median FD across the four sites. In this case, such variability 

Fig. 7  Boxplot of global connectivity features from pooled data without (a) and with ComBat harmonization (b)
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could be directly related to acquisition parameters. In fact, 
Center A and Center D, which showed the highest median 
FD, also had the smallest in-plane voxel dimensions (mm) 
in their acquisition protocol (1.875 × 1.875 × 4), whereas 
Center B and Center C had voxel dimensions, respectively, 
of 4 × 4 × 4 and 3 × 3 × 3. Thus, the different resolution of 
raw functional images (together with the isotropic voxel) 
also renders the data differentially sensitive to motion, as 
indexed by the FD metric. In addition, and not surprisingly, 
centers showing the highest median FD (A and D) also had 
the highest resting-state scan time (~ 600 s, against ~ 360 s 
and ~ 420 s for Center B and C, respectively). Indeed, shorter 
scan times obviously imply that patients are less likely to 
become uncomfortable and move during the same scan [71]. 
Moreover, a 32-channel coil was used in Center D, thereby 
we could expect an even higher sensitivity to motion events 
from the acquisitions in Center D. Ideally, the impact of 
motion on pre-processed data should be minimal after proper 
correction; however, residual motion-related effects might 
still affect the data variably across patients, thereby regress-
ing out the mean FD from the variance of FC features is 
generally advised [72].

Overall, for the IQMs considered here, we did not 
expect to find any significant difference between popula-
tions within each site (considering that all subjects within 
a site were acquired with the same scanner and RS-fMRI 
protocol). However, surprisingly, we found a significant dif-
ference (p < 0.01, after correction) in FWHM between MS 
patients and HCs for Center A. As stated before, FWHM 
measures the degree of inherent smoothness of an image, 
thus the higher the degree of spatial homogeneity of the 
image, the higher the FWHM. In addition, longer repeti-
tion times improve tissue contrast in EPI images [73]. Thus, 
we can hypothesize that lower tissue contrast plays a role 
in increased FWHM. This would explain why in Center B 
(TR = 1.5 s), FWHM values are higher compared to all other 
centers (TR = 3 s). Because signals of neural origin are not 
present in CSF (and WM), this compartment (whose signal 
reflects only physiological and hardware noise) could largely 
contribute to the overall image smoothness. Subsequently, 
the absence of significant difference between patients and 
controls in other sites could be at least partially explained by 
two factors: first, we found that only in Center A (p < 0.01, 
after correction) and in Center B (p < 0.05, after correction), 
MS patients had greater CSF volume compared to controls 
(see Table 3), meaning that only in these two centers, we 
could allegedly expect some difference between groups; 
second, the lack of any difference in Center B could be 
explained by the lower tissue contrast that would mitigate 
the contribute of the CSF to the FWHM values.

Contrary to tSNR and FWHM, which were reported in 
our QC procedure merely as descriptive measures of the 
data, DVARS and FD were also used to investigate how 

residual physiological noise and motion differently affect FC 
features in each center after preprocessing. Thus, to possibly 
address the actual (residual) dependence of all FC features 
from the amount of noise and motion, we also considered 
the site-wise correlations between mean FD and DVARS 
(estimated prior to preprocessing) and all FC features (after 
preprocessing), after regressing out age and sex. For those 
sites for which such correlations would be statistically sig-
nificant (i.e., p < 0.05 after correction for multiple sites), we 
could eventually draw an indication that noisy data are still 
influencing the FC features, even after denoising. However, 
overall, our results seem to indicate that the variance of 
residual head motion (accounted by FD and DVARS) does 
not greatly contribute to the variance fMRI-derived network 
features, suggesting that the chosen preprocessing pipeline 
did not introduce an extra-bias (e.g., due to filtering and 
shaping of the data) because of the technical differences 
between sites (also noting that in Center D, the importance 
of higher R2 values is hampered by the small-sample size 
[74, 75]. Nonetheless, global features like ALFF, ReHo, 
and DC seemed to be more influenced by DVARS (both in 
Center A and Center B) and head motion (only in Center 
B). Motion and physiological noise (especially in regions 
near blood vessels and ventricles) have already been found 
to have an impact on ALFF [69, 76]. ReHo, as a measure of 
local connectivity, may be particularly sensitive to cardiac 
and respiration effects [77]. As of DC, it is known that physi-
ological noise can also result in higher correlations between 
brain regions [78], thus possibly contributing to influence 
DC values. Our results suggest that our unified automated 
pipeline successfully removed noise- and motion-related 
variability from network-derived features in all centers. 
However, global maps calculated in a few sites were (dif-
ferently) influenced by global noise, thus suggesting that 
caution should be taken when using these features: for exam-
ple, including mean FD as covariate to regress (as we did 
in our subsequent analyses) is probably in order and might 
be beneficial.

After proper exclusion of high-motion subjects, to pos-
sibly address site-related differences after preprocessing, we 
first analyzed any possible site-related effect on the most 
typical and widely reported FC measures as derived from 
pre-processed RS-fMRI signals using Pearson correlation 
statistics and a standard network parcellation of the cerebral 
cortex, after regressing out age, sex, and mean FD for each 
site. As we used a 100-parcel atlas, the reproducibility of 
these results might also depend on the specific parcellation 
size adopted in the unified RS-fMRI data processing pipe-
line. Indeed, Yu et al. showed that the magnitude of site-
related effects in RS-fMRI functional connectivity analyses 
is not invariant to the parcellation size [79]. For example, 
one might expect that when the effect of interest is highly 
focal, such as, e.g., in the case of a seed-based functional 
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connectivity analysis from a specific region to the whole 
brain, increasing the size of the parcellation might be more 
effective in terms of reproducibility of the metric. However, 
when the focus is on the analysis of large-scale functional 
connectivity networks, as is the case for the present work, 
reducing the size of the parcellation should be preferrable 
[41]. Of note, as most of the resting-state networks can be 
variably altered in MS pathology [80], e.g., due to pheno-
type, therapy, symptoms, and immunomodulatory, it should 
be expected that, besides the site effects discussed here, the 
MS clinical variability of the samples across sites would 
contribute to the inter/intra-site variability. Prior to harmo-
nization, we found that the FC was significantly different 
across the four sites in all networks. However, variance 
across sites was quite homogeneous in the control groups, 
with the only exception of the visual network. Site effects in 
multisite RS-fMRI measurements have been widely reported 
in previous studies [52, 79, 81]. Not differently from other 
multisite datasets, in the INNI repository, the consistent 
inter-site variability in the RS-fMRI measurements may be 
attributed mainly to differences in imaging protocol param-
eters [82]. These differences could be standardized to some 
extent, but site effects will still be unavoidable in large mul-
ticenter studies [52]. In fact, other sources of variability in 
RS-fMRI connectivity can be attributed to differences in 
clinical and demographical characteristics. However, regres-
sion-based statistical procedures can be performed to model 
and, subsequently, remove unwanted site effects. Here, we 
considered using the ComBat harmonization algorithm, 
which was previously developed and used in genomics [83], 
and recently adapted and successfully applied to multicenter 
MRI datasets [53, 54, 79].

To assess whether site effects remained after harmoniza-
tion, we repeated the same statistical analyses. We found that 
ComBat harmonization successfully corrected for unwanted 
site effects in all networks. Moreover, ComBat was also able 
to remove the scaling effects associated with site in the vis-
ual network, proving also its usefulness to homogenize vari-
ances across different groups. After harmonization, pooled 
MS patients from all centers showed reduced within-network 
FC in somatomotor and limbic networks. Abnormalities of 
FC within these two networks were reported in previous 
studies using a variety of scanners and methods [84–86]. 
Of note, from pooled non-harmonized data, we found sig-
nificant differences also in default-mode network. Since this 
difference did not arise from pooled harmonized data, it is 
very likely that it was driven by inter-site effects. On the con-
trary, the differences in the SMN and LN were still present 
after harmonization, reflecting a possible actual alteration 
in MS FC.

Site-related effects were also observed for global fea-
tures, such as ALFF, ReHo and DC, after averaging over 

the entire gray matter. However, this was not surprising, 
as calculation of these features can be easily impacted by 
different acquisition parameters.

In a previous work, significant differences in ALFF 
emerged between Siemens and GE sites, with the latter 
showing a higher mean value [87], and this was consist-
ently observed in our study. In Wang et al., extremely large 
site-related effects for ALFF were mainly attributed to sig-
nal scaling, as BOLD signal has arbitrary units and is often 
scaled dissimilarly across different MRI scanners [88]. 
However, the signal scaling effect should not intervene 
after standardization, whereas other factors may cause 
site-related effects of ALFF, such as different TRs. This 
would explain why the only site showing significant vari-
ability against all other sites was Center B, i.e., the only 
one with a different TR. On the other hand, sites using the 
same TR (Center A, Center C, and Center D) showed no 
differences in ALFF values.

ReHo is computed with Kendall’s Coefficient of Con-
cordance (KCC), which is an index that depends on the 
time series of each voxel, the number of neighboring 
voxels (set to 26), and the number of time points. This 
last variable can explain why Center C (140 time points) 
showed the lowest ReHo values, whereas Center B (240 
time points) showed the highest ReHo. On this basis, we 
expected that sites using the same number of time points 
(centers A and D), i.e., 200 volumes, would not display 
significant variability in ReHo values, as indeed shown 
by the results. In addition, it should be also noted that the 
native voxel resolution of the data from centers A and D 
is quite higher than the native voxel resolution of centers 
B and C, thereby a lower impact was to be expected for 
centers A and D for the interpolation needed to bring data 
from native to MNI voxel space, compared to centers B 
and C. However, while different degrees of interpolation 
necessarily cause different contributions of the signals 
from the original (native) voxels at each individual loca-
tion, the global metric derived here from the ReHo maps 
is calculated from the spatial averaging of all GM voxels, 
thereby the impact of the interpolation on the global met-
ric is expectedly reduced.

Finally, DC is a measure that counts the number of 
voxels correlated with a target voxel. Having calculated 
it directly in MNI152, differences between sites cannot be 
justified with the different voxel sizes. Instead, we suppose 
there is an inverse relationship of degree centrality val-
ues with the number of time points. As shown by results, 
Center C (140 time points) had the highest DC values, and 
Center B (240 time points) had the lowest DC values. This 
could be explained hypothesizing that a lower number of 
volumes contribute to increase the number of voxels with 
spurious correlation above threshold.
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Conclusions

In conclusion, the QC analysis performed in this study pro-
vides a systematic quality assessment of RS-fMRI data col-
lected from MS patients and HCs within the INNI repository, 
with the goal of promoting and implementing procedures for 
a more harmonized use of fMRI data and to provide ref-
erence information and initial guidelines for the design of 
large-scale harmonized fMRI studies in MS. Our proposed 
automated pipeline, characterized by the implementation of 
a unified preprocessing workflow for pooled multisite fMRI 
data, introduced little or no bias in FC features, making it 
a valuable tool for future multisite studies in INNI. In fact, 
both the correlations between pre-parcellated brain regions 
and the distribution of the most popular metrics of sponta-
neous brain activity exhibited site-related effects that were 
successfully removed with a simple statistical harmonization 
procedure, ultimately exhibiting an acceptable level of vari-
ance homogeneity in the control group and a good consist-
ency of the inter-group effects. Nonetheless, this work is 
merely descriptive of a subset of the subjects included in the 
INNI repository and concerns regarding the within-subject 
reproducibility of the RS-fMRI metrics have been raised 
[89]. Consequently, the lack of a within-subject reproduci-
bility analysis represents a limitation of this study and future 
QC studies within INNI should possibly address this aspect, 
e.g., by adding repeated RS-fMRI acquisitions in the proto-
col. As a full standardization of fMRI acquisition protocols 
across sites was not requested in the first phase of the INNI 
project [16], more can be done in the acquisition phase to 
reduce variability across sites and improve robustness and 
reproducibility of quantitative fMRI measures. Moreover, 
based on our results, it will be highly recommendable to 
harmonize fMRI-derived measures to minimize site-related 
effects, while preserving inter-subject biological variability.
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