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Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity
is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relent-
lessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving
“chronic” worsening is likely linked with the early accumulation of compartmentalized inflammation within the central
nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially
lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating
lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network
dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an over-
view of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms
underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical
practice.
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The Rationale of the Review
The heterogeneous and largely unpredictable clinical
outcome of multiple sclerosis (MS) has puzzled physicians
for decades. Most patients (�85%) present with a
relapsing–remitting (RR) course, characterized by acute
attacks followed by complete or partial recovery, and even-
tually experience progressive accumulation of irreversible
disability1 in the later stage of the disease (secondary pro-
gressive [SP] MS). While this phenotypic distinction
enhances homogeneity in clinical trials and allows standard-
ized communication among clinicians, emerging evidence
suggests a biological continuum in which pathological mech-
anisms underlying relapses and progression coexist from the
early stage of the disease.2–5 Despite the successful therapeu-
tic suppression of relapses and magnetic resonance imaging
(MRI) active inflammatory lesions (Fig 2A–D), MS patients
often report a gradual but progressive worsening of physical
and cognitive functions. This discrepancy indicates an ongo-
ing “smoldering” biological activity, albeit challenging to
detect, which is commonly referred to as progression inde-
pendent of relapsing activity (PIRA)2 or silent progression,6

and is distinct from relapse-associated worsening (RAW).
In the pooled analysis of the OPERA trials, in both

the ocrelizumab and interferon-treated groups, PIRA events
accounted for disability accumulation in a substantial pro-
portion (>80%) of RRMS patients despite their relatively
short disease duration (mean six years).2 A large pooled
clinical trials dataset3 and recent data from a real-world
observational cohort5 confirmed this finding. Among
patients from the Italian MS registry experiencing disease
worsening, PIRA was more commonly reported than RAW
since the second year after the disease onset. Furthermore,
its frequency proportionally increased with the disease dura-
tion.5 Notably, patients free of ongoing inflammatory
attacks can also experience significant deterioration of their
cognitive function from the earliest disease stages,7,8 which
accumulates silently for several years.9 However, PIRA has
historically referred to progression independent of clinical
relapses but inadequately captures subclinical disease activity
accounting for disease worsening. Indeed, the emerging def-
inition of PIRA includes new asymptomatic brain and spi-
nal cord lesions PIRMA (progression independent of
relapse and MRI activity), thus aligning to outcomes mea-
sures used in MRI research and trials.

The effective suppression of acute inflammatory
parameters (relapses and active MRI lesions) might falsely
indicate disease control while underlying biological mecha-
nisms leading to a subtle deterioration remain clinically
undetected. Understanding mechanisms and identifying
biomarkers of such silent deterioration remain essential
unmet needs.

Pathological Substrates
Immunopathologically, it is plausible to hypothesize that
the smoldering MS activity is characterized by a continu-
ous interplay between intrathecal (cerebrospinal fluid
[CSF] and meninges) and parenchymal chronic processes
of inflammation and neurodegeneration, which associate
glial activation and neuro-axonal dysfunction/loss with
additional age-related pathological mechanisms.10–14

A complex interaction among different immuno-
pathogenic and neurodegenerative processes (Fig 1) possi-
bly underlines the disease progression and includes: (1)
acute blood-brain barrier breakdown/brain and spinal cord
atrophy; (2) perivascular/meningeal inflammation; (3)
acute focal white matter (WM) lesions/ diffuse gray matter
(GM) lesions; (4) acute glia priming/chronic microglia
activation; (5) mitochondrial damage/impaired energy pro-
duction; (6) loss of trophic support/ remyelination failure.

Several potential underlying mechanisms for PIRA15

have been suggested in the past decade including the
formation of meningeal lymphoid-aggregates with the
associated subpial cortical demyelination and the conse-
quent accumulation of neuronal damage and cortical
atrophy, the accumulation of chronic active lesions (CAL,
also termed slowly expanding, smoldering or mixed active/
inactive lesions); and the remyelination failure. However,
their exact extent, involvement, timing, and role still need
to be fully understood. Possible concomitant key drivers
of PIRA could also be (1) the slowly accumulating WM
and GM demyelination, possibly linked to the presence of
perivascular, meningeal, and choroid plexus inflammatory
cell infiltrates; (2) persistent microglial activation (driven
by degenerating cells and inflammation) contributing to
neuro-axonal energy failure through oxidative stress
mechanisms; and (3) ongoing retrograde and anterograde
axonal injury.

Previous histological and more recent combined
imaging-neuropathological studies highlighted heteroge-
neous immunopathological patterns of active demyelin-
ation among patients, although lesions’ homogeneity may
also occur within individual patients,16–18 possibly con-
verging into a final common pathway related to chronic
neuronal-axonal damage and disease progression.

Chronic Active Lesions and Iron-Related
Changes
Pathologically, CAL are characterized by a rim of activated
myeloid phagocytes (microglia and macrophages) with
occasional myelin degradation products as a sign of
continuous low-level myelin destruction. These lesions
differ from chronic inactive lesions in the number of
myeloid phagocytes at their rims but a similar number of
CD3+ T cells, which remain very sparse, suggesting a
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crucial role of microglia and macrophages in progressive
lesion activity.19 In �45% of pathologically detected
CAL, phagocytes accumulate iron and frequently adopt a
senescent morphology (Fig 2K1).20–22 The myeloid cells
at the rim have an activated phenotype with expression of
proinflammatory p22phox, CD40, CD86, and inducible
nitric oxide synthase (iNOS), C1QA, as well as a lack of
anti-inflammatory CD206 expression and loss of the qui-
escence marker P2ry12.20,23–25 Conversely, the putatively
anti-inflammatory marker CD163 is expressed on the
myeloid cells rims.24–27 In line with the pro-inflammatory
activation, an increased number of APP+ axonal spheroids
is found at the slowly expanding rims,28–30 which indi-
cates axonal degeneration, as confirmed by elevated neu-
rofilament light chain serum levels found among patients
with a large number of MRI-detected iron rim
lesions.30,31 The microglia and macrophages at the iron
rims additionally express the activation marker translocator
protein (TSPO), which can be detected by positron emis-
sion tomography (PET) imaging using a TSPO-specific
tracer in-vivo.32 In addition to contributing to the axonal
destruction, the inflammatory environment at the slowly
expanding rim, including secreted mediators from T cells,
particularly IFNg,33 appears responsible for the
remyelination failure in this type of lesion.20,26 Notably,
the proportion of slowly expanding but not classically
active lesions strongly correlated with disease severity in a
large study on 182 autopsy MS cases.34

Grey Matter Demyelination and Meningeal
Inflammation (Including Spinal Cord and Deep
grey matter)
CAL are also seen in the cortical GM, deep GM, and the
spinal cord.35 These can be more extensive than WM
lesions and frequently appear to follow an outside-in
gradient, typified by the subpial lesions of the neocortical
GM (Fig 1F1,F2).36,37 While most GM lesions in the
cerebral cortex follow a subpial pattern (so-called type III),
intracortical perivascular lesions (type II) and lesions that
extend into both the GM and WM (leukocortical type I)
are also frequently observed, although in smaller numbers
than subpial lesions.38–40 Unlike WM lesions, minimal
parenchymal or perivascular immune cell infiltration is
associated with most cortical GM lesions,38,39 leading to
the view that they are unlikely to be linked to acute
inflammatory events. Significant GM demyelination can
also be seen in deeper GM regions, including the thala-
mus41,42 and cerebellum.43,44 In the spinal cord, the
extent of demyelination in the GM is generally more
severe than that observed in the WM.45

In contrast to the lack of association between GM paren-
chymal and perivascular infiltrates and GM demyelination,

Figure 1: Diagram representing different parameters and
features that may change during disease progression and
contribute to progression independent of relapse: (A) acute
blood-brain barrier breakdown/brain and spinal cord
atrophy; (B) perivascular/meningeal inflammation; (C) acute
focal white matter (WM) lesions/ diffuse gray matter (GM)
lesions; (D) acute glia priming/chronic microglia activation;
(E) mitochondrial damage/impaired energy production; (F)
loss of trophic support/ remyelination failure.

3

Calabrese et al: PIRA in Multiple Sclerosis

 15318249, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ana.26913 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



(Figure legend continues on next page.)
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there is a significant relationship between
demyelination and the degree of immune cell infiltration in
the overlying meninges (Fig 2F1,F2,G1,G2).10,40,46–49

The presence of large immune cell aggregates of both T
and B cells, together with the development of tertiary lym-
phoid structures in some cases,40,48 is suggested to give rise
to an inflammatory and cytotoxic CSF that can both chron-
ically activate cells within the CNS parenchyma and also
provide cytotoxic mediators that can diffuse into the under-
lying tissues.50,51 The degree of immune cell infiltration in
the meninges is also associated with increased WM lesion
number and activity, particularly in the spinal cord,45,52

but also in the subcortical WM,53 suggesting a similar
mechanism of compartmentalized inflammation-induced
pathology in both the WM and GM. Thus, there is
substantial evidence for a progressive but slow accumu-
lation of demyelinating and neurodegenerative pathol-
ogy that is not related to clinical inflammatory relapses
and may drive the accumulating disability throughout
the disease course of MS.

Focus on Surface-in Gradient of Neuro-glia

Abnormalities. In progressive MS, the meningeal inflam-
mation is associated with a substantial “surface-in” gradi-
ent of neuronal and axonal loss in subpial cortical GM
lesions54 and subependymal thalamic lesions.41 Even in
the absence of demyelination, a substantial graded neuro-
axonal damage can be observed, albeit always associated
with a concomitant gradient of astrocyte and oligodendro-
cyte loss, microglia activation, high levels of meningeal
inflammation, and with faster and more severe disease
progression.37,41,54,55 Similarly, the surface-in gradient of

MS thalamic damage is correlated to a specific CSF pro-
tein profile, including (1) a high level of neu-
rodegeneration markers, such as neurofilaments light
chain (NfL); (2) molecules related to both innate immune
activity and lymphoid neogenesis (CCL19, CXCL10,
CXCL13); and (3) major inflammatory factors (including
sTNFR1, fibrinogen, IFN-γ, IL2 and IL10). These data
strongly suggest a key role of intrathecal inflammation in
the slow build-up of diffuse GM pathology and support
the use of CSF profile as a biomarker signature of progres-
sive GM pathology. A similar gradient of brain abnormali-
ties is found at early disease phases, even in pediatric
MS.37,56–58 In addition, these data suggest a link between
inflammatory/cytotoxic CSF and accumulating neuronal
loss, also reproduced in animal models in which the levels
of neurotoxic pro-inflammatory cytokines, such as TNF
and lymphotoxin-alpha, are chronically elevated in the
meningeal space.37,41,51,55,59

Neuronal and Synaptic Damage in the Cortex
and Deep Grey Matter
Neuroaxonal loss, rather than demyelination, is likely to
be one of the main determinants of GM atrophy,60–62

and is strongly associated with disability progression. The
neuroaxonal loss has been described to a variable extent
in all GM structures, including the cerebral cortex
(19%–40%),54,60,63–67 cerebellar cortex (29%),43 hippo-
campus (27%),68 thalamus (30%–35%),69,70 and spinal
cord (36–75%).71–74 Neuroaxonal loss is probably related
to lesion-dependent and lesion-independent mechanisms.
Indeed, retrograde neuronal degeneration can occur
because of focal WM damage.46 In the GM, reduced

Figure 2: Diagram representing the parameters and features that may contribute to the different MS phases and progression
independent of relapse: (A) Contrast enhancing lesion with blood—brain barrier (BBB) breakdown; (B) CD3+ T cell infiltrating
perivascular space; (C) active multiple sclerosis (MS) lesions characterized by elevated presence of MHC class II+ activated
microglia/macrophages; (D) focal white matter lesions detected neuropathologically by myelin oligodendrocyte glycoprotein
immunostaining (D1) and using fluid attenuated iversion recovery (FLAIR) MRI images (D2); (E) T2 hyperintense white matter
lesions visible on T2-FLAIR sequence (E1) characterized by a lower intracellular volume fraction (ICV_f), E2, (derived from neurite
orientation dispersion and density imaging, NODDI, and representing the space bounded within membranes processes typically
considered a measure of axons and dendrites contribution) compared to normal appearing white matter suggesting substantial
intralesional axonal loss; (F) cortical lesions visible as extensive areas of demyelination by using myelin proteolipid protein (PLP)
immunostaining (F1) or appearing as hyperintensities in double inversion recovery sequences overlayed to the structural T1w
sequence (F2) to assess the extension in the cortex; (G) meningeal inflammation as represented by leptomeningeal enhancement
in post-gadolinium FLAIR acquisitions (G1-G2) and meningeal infiltrate enriched in CD3+ T cells (G3); (H) brain volume loss
independent of disease activity with images referring to 2 patients (subject 1 images H1 to H5; subject 2 images from H6 to
H10) with the same atrophy rates over 2 years (� �1.1% per year) and different focal activity, H1/H6 T1w at baseline, H2/H7
T1w after 24 months, H3/H4 regions where edge displacement is most evident as measured by the SIENA method, H4/H9 shows
the relative FLAIR images at baseline and H5/H10 at M24 where the first subject is active (green border/light blue body
indicating new lesions) the second shows no changes in lesion load over the 2 years; (I) spinal cord progressive damage as
represented in an axial (I1) and sagittal (I2) 3 T 3D MP2RAGE and in a 3 T 3D STIR (I3) [courtesy of Dr. Daniel Reich NINDS, NIH];
(J) diffuse spinal cord lesions as represented in a sagittal STIR (J1), axial multi-echo GRE (J2) and myelin oligodendrocyte
glycoprotein immunostaining (J3) [Reali et al., J Neuropath 2020]; (K) chronic active lesion characterized by MHCII+ activated
microglia accumulation at the lesion edge of luxol fast blue stained white matter (WM) lesion (K1) and paramagnetic rim lesions
detected using MRI filtered phase (K2) and Quantitative Susceptibility Mapping (K3).
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neuronal density has often been more pronounced in cor-
tical lesions, particularly those close to pia/CSF
boundaries,43,63,64,70,73 indicating a causal relationship
between GM demyelination and neuronal loss. In addi-
tion, specific neuronal subpopulations may be more sus-
ceptible to MS-related damage. Recent studies have
suggested a selective vulnerability of inhibitory neuronal
networks with a preferential loss of inhibitory interneu-
rons in the MS cortex, potentially altering normal brain
network functioning.75

Similarly, the diffuse synaptic loss observed in MS
brains is probably related to lesion-dependent and lesion-
independent mechanisms. Data from animal models and
post-mortem MS brains suggest that acute synaptic loss is
associated with inflammation, which resolves and
is followed by synaptic re-organization.76–83 Synapses are
probably targeted by complement factors C1q and C3 and
removed by activated microglia in close contact with neu-
rons.77,81–85 In animal models, inflammatory cytokines
(such as TNFα, IL-1, IFNγ) have been shown to induce
synaptic alterations79,80,86 and could contribute to syn-
aptopathy among MS patients. Beyond structural synaptic
damage, inflammation in the CNS can lead to abnormali-
ties in the ability of synapses to express forms of long-term
plasticity, such as long-term potentiation, contributing to
brain network failure and disconnection.

Lower synaptic density has been reported in GM
lesions compared to the normal-appearing
GM (NAGM),64,74,76,87 suggesting that focal demyelin-
ation enhances long-term synaptic loss. However, the syn-
aptic loss appears to be relatively independent of focal
demyelination76,77,88 and was found to be unrelated to
the extent of the neuroaxonal loss,76,77,88 suggesting the
coexistence of a diffuse primary synaptic pathology, possi-
bly driven by the chronic inflammation present in the
GM and meninges.

Role of Chronic Oxidative Injury/Mitochondrial
Damage and Energy Deficit
The occurrence of an “energetic crisis” is widely recog-
nized as one of the key pathological mechanisms underly-
ing the dysfunction of the neuro-axonal unit.89

Demyelinated axons require more energy to operate and
guarantee conduction, ultimately increasing the metabolic
demand.90 During demyelination, the mitochondria
within the MS plaques move from the neuronal cell body
to the axon, increasing the axonal mitochondrial con-
tent.91 Such a homeostatic response cannot fully and per-
sistently compensate for the increased axonal energy
demand. Nuclear-encoded mitochondrial genes and the
functional activities of mitochondrial respiratory chain
complexes I and III, are decreased in the motor cortex of

severely disabled MS patients,92 and multiple deletions of
mitochondrial DNA (mtDNA) have been histologically
demonstrated throughout the GM in progressive MS,
with respiratory-deficient neurons harboring high levels of
clonally expanded mtDNA deletions at the single-cell
level.93 In demyelinated axons predominantly located at
the edge of chronic active lesions, reduced levels of com-
plex IV activity have been shown,94 together with an
inverse correlation between complex IV activity and mac-
rophage/microglial density, suggesting that soluble prod-
ucts released by such cells might be responsible for the
observed functional impairment.94,95 Reactive oxygen and
nitrogen species (ROS and RNS) deriving from innate
immune cells, when excessively liberated, can trigger mito-
chondrial pathology and initiate a process of focal axonal
swelling, determining axon fragmentation.96 Further
experimental evidence of the contribution of mitochon-
drial and energy deficits comes from fluid biomarker stud-
ies. Patients with progressive MS display increased CSF
levels of mtDNA,97 while CSF lactate levels correlate with
disease-worsening and axonal damage markers, such as
neurofilament light protein.98 It is worth noting that not
only a condition of “virtual” hypoxia due to an increased
energy demand but also the presence of “true” tissue hyp-
oxia (i.e., oxygen deficiency) has been hypothesized to
occur in MS.89 Taken together, evidence suggests the
vicious “hypoxia-inflammation” cycle as a potential tar-
get99 for neuroprotective strategies aiming at restoring the
neuronal mitochondrial activity and ultimately preventing
the disease progression.100

Alterations in Normal Appearing White and
Grey Matter
The normal-appearing tissue of the WM (NAWM) and
GM is affected by axonal injury (both intrinsic and extrin-
sic to the tissues), gliosis, widespread diffuse microglial
activation, and disrupted myelin, which displays altered
biochemical and biophysical qualities.101–105 Normal
composition of mature myelin is essential for oligodendro-
cyte and axonal health, myelin ensheathment, and place-
ment and organization of the nodes of Ranvier.106

Widespread changes at the node of Ranvier, the flanking
paranodal assembly, and the juxtaparanode, are seen near
and far from the MS lesion.107–109 Notably, activated
microglia are associated with nodal disruption, where
attenuating microglial activation with minocycline reduces
nodal and paranodal damage and blocking glutamate,
which is excessively generated by activated microglia, abro-
gates this change.107–109 These changes in the NAWM
and NAGM could contribute to clinical worsening inde-
pendent of new inflammatory attacks.90,96
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Immuno-pathological Mechanisms
Role of Adaptive Immunity
Focus on the Role of T Cells. Organ-specific adaptive
immune mechanisms against several target antigens in the
periphery, CSF, and focal lesions are involved in MS path-
ogenesis. It is currently assumed that the pathological
immunological processes start in the periphery and
become chronic in the CNS compartment (outside-in
hypothesis).110 Key players of the antigen-specific immune
response are autoreactive CD4+ T cells,110 but also
proinflammatory B cells at various differentiation stages111

(for a detailed review, see112,113 and below).
The MS-associated HLA-DR15 molecules shape a

CD4+ T cell repertoire that is fully functional and protec-
tive against infections but also carries T cell receptors with
cross-reactivity against CNS antigens, including myelin
basic protein, proteolipid protein, myelin oligodendrocyte
glycoprotein (MOG),114,115 Ras guanyl-releasing protein 2
(RASGRP2),116 GDP L-fucose synthase,117 Prokineticin-2,
reticulon-3, fatty acid binding protein 7 (FABB7),
synaptosomal-associated protein 91,118 and alpha-crystallin
B (CRYAB).119 The majority of autoreactive CD4+ T cells
in the peripheral blood and CSF are proinflammatory,
expressing a T helper (Th) 1 (secreting IFN-) or Th17
(secreting IL-17) or Th1* (secreting both) pheno-
type.116,120–122

Other Th cell subtypes, such as T follicular helper
cells123 and Th2 cells secreting IL-4 and IL-5, have also
been identified.124 Th1 and Th1* CD4+ T cells appear
most important and engage in crosstalk and immunologi-
cal synapse formation with proinflammatory B cells, which
results in increased spontaneous or autoproliferation and
enrichment for brain-homing T cells.116 These T cells rec-
ognize HLA-DR15-derived self-peptides, which may play
a role during thymic selection and are also presented on
peripheral memory B cells,125 but also foreign antigens
from the MS-associated EBV and gut microbiota like
Akkermansia muciniphila.117,125 Interestingly, 1 of the
abovementioned MS target antigens, RASGRP2, is
expressed by the brain’s proinflammatory B cells and corti-
cal neurons.116 Increasing evidence from the peripheral
blood, the CSF, and meningeal follicles hints at a role of
the cross-talk between proinflammatory memory B cells
and plasmablasts on 1 side and memory CD4+ T
cells with a Th1/Th1* phenotype on the other.116,126

The chemokine receptor CXCR3 on B and Th1 T
cells,127 its ligands CXCL9, CXCL10, and CXCL13,
IFN-gamma and nuclear factor kappa B signalling128 are
all involved in this interaction. CSF-infiltrating T cells
may respond to a multiple of the abovementioned MS
autoantigens, but also viral epitopes from EBV129 and
Torque Teno Virus (TTV),130 and even HLA-DR15125

and immunoglobulin-derived peptides.130

A role of adaptive (T cell-mediated) immune mecha-
nisms in PIRA is indicated by T cell receptor sequencing
studies that have shown clonal CD4+ and CD8+ T cell
expansions in chronic active lesions131 and demonstration
that a clonally expanded RASGRP2-specific CD4+ T cell
clone has also been found in the autoproliferating
T cell compartment in the periphery.116 A contribution to
chronic active lesions and PIRA is further supported by a
single-cell RNA sequencing study, which showed that
lymphocyte activation and proinflammatory markers con-
tribute to their immune signature.23 Finally, a correlation
exists between lymphocyte infiltrates in the meninges and
WM lesions in progressive MS.53 While proving the
relevance of adaptive immune mechanisms for PIRA is
challenging, the above observations indicate that they
might be involved.

Focus on the Role of B Cells. The clinical efficacy of B cell
depletion strategies in preventing new lesion forma-
tion130,132 confirmed the central role of B cells in MS
pathogenesis. Several pieces of evidence underscore the
close interaction between T and B cells crosstalk and
the importance of related cytokine pathways in the periph-
ery and intrathecally in the CSF/meninges. Among these
pathways, the expression of chemokine receptors CXCR3
and T-bet by CD4+ Th1 cells and B cells126,133,134, the
demonstration of their ligands (CXCL10 and CXCL13)
and of other cytokines (LT, TNF, IFNg)59,135,136 were
largely investigated in the past decade.

B cells are mainly seen in the subarachnoid spaces in
meningeal tertiary lymphoid-like structures.10,40,48 They
can also be found in the perivascular space of medium-
sized veins within the plaque centre, mainly in the WM
and, to a lesser extent, in the GM.137,138 In these intrace-
rebral niches, B cells may contribute to compartmentalized
inflammation by perpetuating humoral immune response,
antigen presentation, and release of proinflammatory and
cytotoxic mediators.139,140 Supernatants from cultured B
cells from MS patients were toxic and induced more signifi-
cant apoptosis in cultured neurons and oligodendrocytes
than supernatants from cultured B cells from healthy con-
trols.139,140 The same antigen-experienced B cell clones
were found in meningeal immune cell infiltrates, the CSF
and perivascular parenchymal lesions.141–143 In addition, it
has been demonstrated that B cell clones are bidirectionally
exchanged between the CNS and the periphery and that
affinity maturation occurs on both sides of the blood–brain
barrier.144 More recently, a study in mouse models
suggested that meningeal B cells encompass multiple stages
of development and may originate in calvaria and then
infiltrate and maturate in the meninges via a network of
channels uncoupled from the systemic circulation.145
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Genetic variation in B cell activation146 as well as the infec-
tion by lymphotropic viruses, such as the Epstein–Barr
virus,147,148 represent the prevalent hypothesis of aberrant
and altered intrathecal B cell survival and activity in
MS. All these findings suggest that the same stimuli might
be involved in both initial B cell activation and clonal
expansion events and then in the chronic invasion of differ-
ent niches of the CNS.112

Role of Innate Immunity
Focus on Microglia. Many pro-inflammatory mechanisms
have been suggested to be involved in active demyelin-
ation and neurodegeneration. Still, the production of reac-
tive oxygen species appears particularly important. In
contrast to rodent models, NADPH oxidase (Nox2)
expression in human microglia and macrophages is promi-
nent, while the iNOS expression is sparse. This is associ-
ated with a profound acute oxidative injury in neurons
and glia in active lesions.149 In the earliest descriptions of
MS pathology in the late 19th century, it was already
noted that active demyelination and neurodegeneration in
MS lesions are closely associated with activated microglia
and macrophages. A subset of microglia and macrophages
at the edge of chronic active lesions contain iron and can
be visualized in vivo with MRI.20 Such an iron rim is a
marker for the slow expansion of lesions, relevant for silent
or overt disease progression in MS.28

New markers became available during the past few
years, allowing us to differentiate between activated
microglia and recruited myeloid cells within the lesions.
They suggest most phagocytes in active MS lesions are
derived from the microglia pool.24

Recent spatial transcriptomics or proteomics studies
confirmed the findings, which had been elucidated before
with conventional methodology.23,150,151 They provide
evidence of a profound heterogeneity of microglia and
macrophage phenotypes, with different compositions in
lesions based on variable contributions of active demyelin-
ation, inactive lesions or remyelination. Whether these
different cell phenotypes reflect genuine cellular subpopu-
lations or the transition between naïve, pro-inflammatory
and anti-inflammatory cells is a question that remains
unresolved. Meningeal inflammation in progressive MS
patients was recently found to induce phenotypic changes
in cortical microglia that are differentially associated with
neurodegeneration.82

Focus on the Role of Complement. Complement is a key
component of the innate immune system. The microglia
synthesize, activate, and respond rapidly to soluble and
membrane-bound products of complement activation.151

Genetic variants in the complement genes are associated

with a more severe clinical outcome,23,152,153 and
increased complement activation is reported in cohorts
that experienced a worsening progressive MS
course.42,84,154,155 Complement expression is induced in
cortical glia in a chronic leptomeningeal inflammation
model. Complement contributes to compartmentalized
inflammation by co-activating microglia and astroglia, rec-
ruiting circulating lymphocytes and macrophages, and
driving synaptic, neuritic, and myelin degenera-
tion.23,59,156–161

Biomarkers of Silent Disease Activity

Imaging Biomarkers
Paramagnetic Rim Lesions and Slowly Expanding
Lesions
The persistent microglia/macrophage activity within the
rim of CAL (Fig 2K1) and the associated axonal damage
might represent 1 of the key components of the continu-
ous, hidden, and deleterious inflammatory activity driving
PIRA in MS. Over the past decade, an increasing clinical
interest has been devoted to the detection of CAL as they
are associated with higher disease severity and brain and
spinal cord atrophy, thus representing a negative prognos-
tic indicator for clinical worsening and disease progres-
sion.31,162–164

A subset of CAL can now be visualized using
susceptibility-sensitive MRI sequences, that is, T2* and
phase contrast, R2* (Fig 2K2,K3) or quantitative suscepti-
bility mapping (QSM), as non-enhancing lesions with a
paramagnetic rim (termed “paramagnetic rim lesions” or
PRL). MRI-neuropathological studies consistently showed
that the magnetic susceptibility contrast at the lesion rim
is mainly related to iron accumulation within activated
microglia/macrophages.20,26,162,165–167

While activated microglia/macrophages play a crucial
role in myelin and debris clearance (a critical step for
repair and remyelination), in the context of the highly
inflammatory and dysregulated environment at the CAL
edge, these immune cell populations are believed to be
exerting a further detrimental role, as recently demon-
strated by single-nucleus RNAseq phenotyping.23

A recent pooled-data analysis of 31 published MRI
studies highlighted that PRL are present in �50% of
relapsing and �60% of progressive patients.168 Compared
to non-PRL, PRL are more destructive lesions, as reflected
by significantly longer T1 times, decreased R2*,169

reduced myelin water fractions, and low neurite dispersion
index.166,170 In longitudinal MRI studies, PRL has been
found to persist for years,171 and a subset of them slowly
expand over time.20,162 Little is known regarding the
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long-term dynamics of PRL and their response to current
DMTs, but susceptibility reduction of the rim over a
median time frame of 7 years has been reported.23,28

A recent 4-year longitudinal study of 445 patients
directly evaluated the role of PRL in PIRA: patients
treated with anti-CD20 antibodies experiencing PIRA at
follow-up had higher baseline PRL count.172

Alternative candidate biomarkers of CAL are the
slowly expanding lesions (SEL) representing the subset of
non-enhancing chronic lesions showing radial and linear
expansion over 1–2 years. SEL are identified by applying
Jacobian determinant algorithms (non-linear deformation)
to registered T1-weighted and T2-FLAIR images on at
least three time-points. The computed radial and linear
lesion expansion has been interpreted as lesion expansion.
No histopathological validation has been provided for SEL
quantified by the Jacobian determinant algorithm, and
pathological processes other than inflammatory demyelin-
ation might explain the imaging finding (i.e., Wallerian
neurodegeneration, and microvascular comorbidities). SEL
have been detected in both relapsing and progressive MS
patients, and they were shown to predict disability and
progression at 7 and 9 years of follow-up.173–175 Modest
effects on SEL were seen in MS patients treated by current
disease-modifying therapies.173,176–178

The limited overlap between PRL and SEL is a mat-
ter of current debate; in a recent study,179 PRL satisfying
the mathematical definition of SEL (39% of all PRL)
showed microstructural tissue degeneration tissue over
72 weeks. A possible explanation for the discrepancy
between the 2 biomarkers is that a subset of SEL has low
iron content and, therefore, is not visible as PRL. In addi-
tion, recent imaging studies validated that not all CALs
correspond to SELs or PRLs. Still, when PRLs are co-
localized with SELs, they show expansion and worsening
microstructural damage over time,179 supporting a key
role of smoldering inflammation in accumulating neu-
rodegeneration and disease progression.179

Brain and Grey Matter Atrophy
MRI changes in brain volume have proven clinical rele-
vance in MS (Fig 2H1–H10) as a marker of irreversible
tissue loss (i.e., brain atrophy).180 Several studies have
consistently shown that brain atrophy rates are higher in
patients with MS than in healthy subjects since the earliest
disease stage. Atrophy appears diffuse in the MS brain and
spinal cord, particularly in subcortical and cortical regions,
possibly reflecting the early neuroaxonal involvement.181

Compared with clinically stable patients, patients
with PIRA had an increased rate of brain volume loss,
mainly driven by cerebral GM loss (Fig 2H1–H10).
Moreover, MS patients with PIRA had similar brain

atrophy6 and cortical thinning and deep GM volume loss
rates182 to those patients experiencing disability accumula-
tion due to relapses. Interestingly, these studies indepen-
dently suggested that atrophy rates could be partially
dissociated from relapse activity and likely to reflect mech-
anisms leading to the silent progression of MS.

Complementary to the brain atrophy assessment, the
‘brain-age’ paradigm183 utilizes the relationship between
disease and healthy brain structural ageing to understand
the impact of diseases. The difference between an
individual’s chronological age and the brain-predicted age
(brain-PAD or brain age gap) has been proposed as an
age-adjusted index of structural brain health. Using 3D
T1-weighted MRI and machine learning algorithms, the
brain-age paradigm offers the advantage of setting a sub-
ject’s state in the context of a normal population with an
easily interpreted figure. MS has a pronounced effect on
the brain-PAD metric, indicative of poor structural brain
health. Furthermore, measures of brain-predicted age
increase more rapidly than usual chronological ageing in
both RR and progressive MS, implying that the brain-age
approach is sensitive to accelerations in MS brain atro-
phy.184 Recently, brain age was associated with the wors-
ening of the Symbol Digit Modality Test (SDMT)
performance.185

Focal Cortical Demyelination
Substantial immunopathological (Fig 2F1) and imaging
(Fig 2F2) evidence confirmed that focal demyelination
occurs in MS since the early phases of the disease within
both the cortical and deep GM, accumulates over time
and provides a good clinical correlate in terms of disability
accumulation.10,36,54,101,186

CLs are at least partly independent of WM acute
demyelination88,187 and usually do not show contrast
enhancement.36 The focal cortical damage is associated
with a progression of physical and cognitive disability
independently of relapse186,188–190 and its occurrence at
clinical onset predicts a greater risk of disability progres-
sion.186,190–192

A 30-year longitudinal study indicated the focal cor-
tical demyelination as 1 of the primary substrates of dis-
ease progression, with CLs’ burden alone explaining 43%
of the variance of the expanded disability status scale
(EDSS).89 On the contrary, a study on “benign MS” rev-
ealed that after 15 years of the disease, those patients who
still demonstrated scarce disability progression and cogni-
tive preservation showed a remarkably lower CLs number
compared to early RRMS.192 In line with these data, the
lesions of deep GM, especially the thalamic lesions, have
been associated with disability progression being greater in
progressive MS compared to RRMS.193
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Taken together, data suggest that cortical and deep
GM lesions are expressions of complex “smoldering” path-
ological processes and contribute to the development of
the PIRA.

Nevertheless, although current imaging protocols
using double inversion recovery (DIR), phase sensitive
inversion recovery (PSIR), or T2* weighted and
magnetization-prepared rapid gradient-echo (MPRAGE)
sequences at ultra-high field MRI (i.e., 7 T) have substan-
tially improved their detection, most of the GM lesions
remain undetectable in vivo.194

Spinal Cord Damage
Spinal cord involvement is gaining attention as a critical
region for explaining the disability progression (Fig 2J1–
J3, I1–I3). The prognostic relevance of isolated spinal
cord lesions (SCL) for developing a progressive disease
course has been shown by studying extreme disease cases.
Patients with solitary demyelinating lesions involving the
spinal cord or cervical-medullary/brainstem regions devel-
oped an early progressive disease course.195 In addition, in
subjects with radiological isolated syndrome (RIS), SCL
increased the risk of evolving to PPMS rather than
RRMS.196 From the analysis of conventional MRI
sequences, a few imaging features have been identified that
can contribute to the early identification of those patients
who will develop a progressive MS course or accumulate
more severe disability. These include the presence of dif-
fuse signal hyperintensities on proton-density weighted
sequences (i.e., abnormal areas of intermediate signal
intensity between that of focal lesions and normal-
appearing spinal cord, lacking a well-demarcated border
from the adjacent normal-appearing cord)197,198 and the
involvement of cord central GM (Fig 2J1–J3).199–201 Har-
boring spinal cord lesions is an important prognostic fac-
tor in identifying CIS patients with a shorter time to
conversion to MS,202 more severe accumulation of clinical
disability203 and evolution to SPMS after 15 years of
follow-up.204 Using quantitative MRI techniques, such as
magnetisation transfer MRI,205 a gradient of microstruc-
tural damage in the outer surface of the cord, which might
reflect the presence of subpial demyelination, was found
in patients with MS and was more severe among those
with a progressive phenotype. A recent 7 T study206

found that SCL have a greater propensity to occur closer
to the central canal and subpial CSF interfaces, with a dif-
ferent behavior according to MS clinical phenotype (more
involvement of central canal in progressive MS and of the
outer subpial surface in RRMS).

In addition to focal demyelinating lesions, irrevers-
ible tissue loss (i.e., atrophy) in the spinal cord can be seen
among MS patients. Spinal cord atrophy (Fig 2I1–I3)

occurs in all MS clinical phenotypes, is more pronounced
and diffuse in progressive rather than relapsing MS
patients, is associated with concurrent clinical disability
and tends to progress over time.207,208 While a significant
relationship is present between cord atrophy and accumu-
lating disability in the short-term,209–211 it disappears at
longer clinical follow-up (more than 10 years), suggesting
that spinal cord atrophy may be critical for clinical deteri-
oration in the first years of the disease. However, it might
subsequently reach a ceiling effect.212–214 A recent study
with 12 years of follow-up found that RRMS patients
who developed SPMS had faster cord atrophy rates
(�2.19% per year) at least 4 years before conversion com-
pared to those patients who remained RRMS (�0.88%
per year).214 A faster spinal cord atrophy rate was associ-
ated with a shorter time to silent progression and SPMS
conversion, challenging the traditional dichotomy of an
RRMS and subsequent SPMS phenotype.

New Promising Imaging Biomarkers to Identify
the Disease Progression
The Neurite Orientation Dispersion and Density

Imaging. The neurite orientation dispersion and density
imaging (NODDI) is a diffusion-weighted multi-shell
MRI model that provides specific measures of tissue
microstructure (Fig 2E2). These include the intracellular
volume fraction (ICV_f)/neurite density index (NDI),
reflecting neurite density, and orientation dispersion index
(ODI), quantifying neurite orientation variability and tis-
sue coherence and complexity.215 In a recent study, PRL
showed decreased myelin water fraction but also NDI
relative to lesions without a rim,216 confirming the patho-
logical evidence of ongoing demyelination and axonal
damage in these lesions.34,217 Significantly lower ICV_f/NDI
in the NAWM218,219 and cortex,216,218–220 and ODI in the
cortex219,220 were found in progressive compared to RRMS
patients, and they correlated with more severe clinical dis-
ability, thus confirming in vivo that a clinically relevant
progressive neurite loss and a simplification of dendritic
arborization may contribute to the disease severity.219,220

Constrained spherical deconvolution (CSD) is
another diffusion-weighted multi-shell MRI model that
allows to define the fiber-bundle cross-section area, a
marker of axonal shrinkage/loss across a plane perpendicu-
lar to the fiber-bundle axis that may better quantify the
degeneration of the WM fiber-bundles.221,222 A signifi-
cant reduction of fiber-bundle cross-section area, gradually
worsening over 1 year and reflecting more severe WM
tract volume loss, has been found in progressive compared
to RRMS patients,223,224 mainly involving clinically rele-
vant WM tracts, including the cerebellar peduncles, the
cortico-spinal tract, the cingulum and the corpus
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callosum. Moreover, a lower fiber-bundle cross-section
area in the NAWM and in the sensorimotor WM tracts
was found to be significantly correlated with more severe
clinical disability223 and with gait and motor control
impairment, respectively.225

Soma and neurite density imaging (SANDI) is
another model that may estimate not only MRI signal
fractions attributed to neurites (fneurite), but also of bodies
of any CNS cell (fsoma).

226 Two recent studies showed
that, compared to HC, MS patients were characterized by
significantly lower fneurite both in the NAWM and GM
and lower fsoma in ther GM.227,228 These microstructural
abnormalities were significantly more severe in progressive
MS patients,227 and they were associated with a more severe
clinical disability and structural brain damage.227,228

Nonetheless, the feasibility of these advanced
diffusion-weighted multi-shell MRI model in the clinical
setting is limited. Longitudinal studies are still needed to
further explore the correlation between their derived mea-
sure changes and MS progression.

Leptomeningeal Enhancement. Leptomeningeal enhance-
ment (LME, (Fig 2E2), Fig 2G1–G3), typically visualized
on delayed post-contrast FLAIR MRI, has been recently
explored as a biomarker for blood-meningeal barrier open-
ing and meningeal inflammation in MS.10,229

LME detection on post-contrast 7 T FLAIR is more
prevalent than on 3 T FLAIR, occurs at frequencies closer
to histopathologic data and allows the investigation of the
relationship between meningeal inflammation and cortical
pathology.230

Two patterns of LME have been described: “nodular”,
with discrete, spherical nodules at the pial surface or
subarachnoid space, and “spread/fill” with the appearance
of contrast spread through the local subarachnoid
space.230 In a recent meta-analysis including 1,605 MS
patients, the proportion of patients with LME was higher
in progressive than in the relapsing MS group (39.8%
vs. 53.4%).231 LME is associated with a more severe MS
course and disease progression,230,232–235 with the extent
of cortical,234 thalamic,234 and hippocampal236 lesions
and with the rate of brain and cortical atro-
phy.230,232,233,236 However, LME is not specific to MS, as
it has also been described in aged healthy con-
trols230,237,238 as well as in patients with other inflamma-
tory and infective neurologic conditions.231,237,239–241

Positron Emission Tomography. Using radiotracers binding
to the TSPO, a mitochondrial protein upregulated in acti-
vated microglial/macrophage and astrocytes activation, sev-
eral PET studies have consistently demonstrated that
increased glial activation could be detected not only in

active WM lesions but also, to a lesser extent, in CLs, and
a subset of chronic WM lesions (possibly CAL).32,242–249

The number and volume of lesions with positive PET
TSPO uptake were higher in progressive than in RRMS
patients and correlated with the development of clinical
disability242 and with WM lesions accumulation. Using
18F-DPA7142, a fluorinated second-generation TSPO
radioligand, more than half of WM lesions (53%) showed
a homogeneously active core, and their number was the
best predictor of cortical atrophy and disability progression
over 2 years.250

TSPO PET also revealed a more diffuse brain
inflammatory component in the NAWM, thalamus and
cortex.242–249,251,252 Consistently with pathological
findings,88 such widespread glial-microglial activation was
higher in patients with a more severe disability and a pro-
gressive disease course, correlated with structural brain
damage,242–249 and predicted disability progression up to
4 years later.243

Fluid Biomarkers
Potential Biomarkers of Neuroaxonal
Degeneration
Neurofilaments are polymeric proteins constituting micro-
tubules and microfilaments in the neuronal cytoskeleton,
providing structural support for axons. They consist of
3 subunits, according to their molecular weight, named
“high,” “intermediate,” and “light,” which are liberated in
the extracellular space after axonal damage. Although
In MS, high CSF NfL levels were consistently and convinc-
ingly associated with gadolinium-enhancing lesions and
relapses253, data on their association PIRA are less robust.
Nevertheless, several studies suggested a relationship
between serum NFL and the development of progressive
disease, lower total and deep GM volume, lower mean cor-
tical thickness, and higher T2 lesion count.254–256

Moreover, a recently very elegant study aimed at
determining whether and when NfL levels are elevated in
the context of confirmed disability worsening suggested a
clear relationship between the NFL levels and the risk of
disability worsening not related to disease activity.257 An
NfL z score greater than 1.0 was associated with a higher
risk of diagnosing confirmed disability progression not
related to relapse activity in less than 24 months.257 All
these data suggested that sNfL could be a useful tool for
the early identification of patients at risk of worse disease
outcomes associated with relapse-associated worsening but
also with the PIRA.

Similarly, the degree of cortical neurodegeneration
can be detected by measuring the CSF protein levels of
parvalbumin (PVALB), a calcium-binding protein
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expressed by a subset of GABAergic inhibitory cortical
interneurons, classified as fast-spiking interneurons. They
were found reduced in layer II of the primary motor cor-
tex of MS patients, particularly within the NAGM.92

Increased CSF PVALB levels in MS have been demon-
strated to reflect interneuron loss, cortical atrophy, and
severe cognitive decline in MS patients, both at the time
of diagnosis and, increasing with progression, at the
time of death.136

Inflammatory Biomarkers of Glia Activity and
Chronic Inflammation
In addition to specific markers of neuronal damage, several
inflammatory biomarkers related to glial or immune cell
activity in MS have been recently analyzed, and at the
moment, a wide range of new biomarkers that can predict
disability progression, monitor disease activity, and assess
treatment response have been proposed.

Although kappa free light chain (KFLC) index has
become a useful diagnostic biomarker in MS, in a very
recent retrospectively identified based on 131 patients
with clinically isolated syndrome or early RRMS, the
KFLC index was observed to be significantly higher in
PIRA compared with non-PIRA.258

Serum levels of glial fibrillary acidic protein
(sGFAP), a protein highly expressed by astrocytes, were
associated with disease progression in RRMS,259 and dis-
ability worsening in PP260; more recently, in a study
including 355 patients and 259 healthy controls, patients
with worsening progressive MS showed 50.9% higher
sGFAP levels compared with those with stable MS
suggesting that GFAP can be a prognostic biomarker for
future PIRA.261 Differently from sNFL, sGFAP does not
typically elevate during acute inflammation but reflects
accelerated GM brain volume loss and is associated with a
higher risk of confirmed disability worsening.261 Notably,
GFAP age and sex specific normal ranges are advocated as
well as a “gold standard” detection method.260

Increased CSF levels of activin A, a molecule
expressed by activated microglia (42), which is part of the
senescence-associated secretome, may indicate that MS
patients enter an early inflammation process that could be
at least partly responsible for the silent disease activity
among MS patients older than 45 years.55

While IL12p40 and CHI3L1, expressed by immune
cells of the myeloid lineage, have been proposed as prom-
ising CSF biomarkers of MS lesional activity,262 increased
CSF levels of CHI3L1 have been specifically observed in
patients with a higher burden of chronic active lesions.263

In addition, specific CSF protein profiles, including high
protein levels of proinflammatory cytokines (TNFa, IFNg,
IL6), molecules involved in lymphoid neogenesis

(CXCL12, CXCL13, TNF), and B cell and plasma cell/
blast activity (IL6, IL10, TNF, BAFF, APRIL, LIGHT,
TWEAK), were found associated with elevated GM lesion
load either in progressive post-mortem MS cases or in
naive MS patients at the time of diagnosis.135 The same
CSF inflammatory pattern was proposed to predict a
higher risk of disease activity and more severe cortical
damage.136 A composite biomarker study on a large and
multicenter MS population could validate all the previous
studies to better identify each patient’s disease state since
the diagnosis is needed. A new approach integrating all
the serum and CSF analyses of an extensive pattern of bio-
markers with demographic, clinical, imaging, cellular,
metabolomics, microbiome, genomics, and proteomics
data with new bioinformatics and machine learning will
help to identify also patient subgroups with high risk of
PIRA outcome.

Conclusions for the Clinical Practice
It is now clear that the pathological mechanisms underly-
ing clinical progression begin early in the disease course.
However, they are usually so gradual that the progression
is initially unnoticed by physicians.6,264

The recent finding that patients with pediatric-onset
are less likely to exhibit PIRA over a decade of follow-up
might correlate with their protection against disability,265

possibly for repair capacity and for the different immuno-
pathological mechanisms.

The accuracy in PIRA detection is also challenged
by concurrent relapses with variable degrees of recovery,
raising the need to monitor patients with additional visits
that become necessary, mainly when defining confirmed
disability accumulation at 3- or 6-month follow-up.

Composite measures, including T25FW and 9HPT,
should be adopted, given the notable percentage of dis-
ability accumulation detected by such measures.2

All the studies so far available,2,3,5,6 clearly suggested
the need for strict clinical monitoring based on cognitive
evaluation, which includes measures of information
processing speed (as SDMT). From the imaging point of
view, longitudinal measures of whole and regional atro-
phy, especially of cortical GM,6,182 and PRL are associated
with PIRA, and look like promising markers for clinical
practice.162,168,186,195

Understanding whether fluid markers could help
predict the PIRA represents a novel goal of precision med-
icine. sNfL and sGFAP have been suggested as potential
candidates,261 with a great effort undergoing their applica-
tion at a single-patient level, but they are still not
applicable to predict PIRA in a clinical context.266 CSF
inflammatory markers, such as TNF, IFNγ, and molecules
associated with B cell recruitment, have been not only
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related to cortical damage but also demonstrated the capa-
bility to predict subsequent EDSS accumulation and corti-
cal thinning, with additional predictive value to commonly
adopted clinical and MRI measures.136 Similarly, CSF
inflammatory markers could be adapted to predict MS
treatment response better,267 suggesting their ability to
identify patients responding to specific drugs according to
their mechanisms or disease endophenotypes.135,136,268

We believe there is an urgent need to (1) improve
the awareness about PIRA in the neurological community
and improve its detection in clinical practice; (2) better
define the role of MRI and fluid markers to predict PIRA;
and (3) validate, integrate these markers, and finally trans-
late them into clinical practice for a precision medicine
approach.
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