Tumor vessels are an attractive target for cancer therapy, including metastasis treatment. Angiogenesis inhibitors targeting the VEGF lignaling pathway have proven to be efficacious in preclinical cancer models and in clinical trials. However, angiogenesis inhibition concomitantly elicits tumor adaptation and progression to stages of greater malignancy, with heightened invasiveness and in some cases increased distant metastasis. Here, we investigated whether NGR-TNF, a vascular targeting agent in phase III clinical development, coupling the CNGRCG angiogenic vessel-homing peptide with TNF-a, has an effect on metastasis in a model of murine breast cancer, which spontaneously metastasize to lungs, and on the growth of experimental melanoma lung metastasis. We report that NGR-TNF does not increase cancer invasiveness, as other antiangiogenics agents do, but controls metastatic growth in both models, both when administered as primary treatment and in adjuvant settings, improving the overall survival of metastasis-bearing mice.

Tumor vessels are an attractive target for cancer therapy, including metastasis treatment. Angiogenesis inhibitors targeting the VEGF signalling pathway have proven to be efficacious in preclinical cancer models and in clinical trials. However, angiogenesis inhibition concomitantly elicits tumor adaptation and progression to stages of greater malignancy, with heightened invasiveness and in some cases increased distant metastasis. Here, we investigated whether NGR-TNF, a vascular targeting agent in phase III clinical development, coupling the CNGRCG angiogenic vessel-homing peptide with TNF-alpha, has an effect on metastasis in a model of murine breast cancer, which spontaneously metastasize to lungs, and on the growth of experimental melanoma lung metastasis. We report that NGR-TNF does not increase cancer invasiveness, as other antiangiogenics agents do, but controls metastatic growth in both models, both when administered as primary treatment and in adjuvant settings, improving the overall survival of metastasis-bearing mice. Z8 0 ZR 0 ZS 0 ZB 1

Anti-metastatic activity of the tumor vascular targeting agent NGR-TNF

DOGLIONI , CLAUDIO;BORDIGNON , CLAUDIO;
2015-01-01

Abstract

Tumor vessels are an attractive target for cancer therapy, including metastasis treatment. Angiogenesis inhibitors targeting the VEGF lignaling pathway have proven to be efficacious in preclinical cancer models and in clinical trials. However, angiogenesis inhibition concomitantly elicits tumor adaptation and progression to stages of greater malignancy, with heightened invasiveness and in some cases increased distant metastasis. Here, we investigated whether NGR-TNF, a vascular targeting agent in phase III clinical development, coupling the CNGRCG angiogenic vessel-homing peptide with TNF-a, has an effect on metastasis in a model of murine breast cancer, which spontaneously metastasize to lungs, and on the growth of experimental melanoma lung metastasis. We report that NGR-TNF does not increase cancer invasiveness, as other antiangiogenics agents do, but controls metastatic growth in both models, both when administered as primary treatment and in adjuvant settings, improving the overall survival of metastasis-bearing mice.
2015
Tumor vessels are an attractive target for cancer therapy, including metastasis treatment. Angiogenesis inhibitors targeting the VEGF signalling pathway have proven to be efficacious in preclinical cancer models and in clinical trials. However, angiogenesis inhibition concomitantly elicits tumor adaptation and progression to stages of greater malignancy, with heightened invasiveness and in some cases increased distant metastasis. Here, we investigated whether NGR-TNF, a vascular targeting agent in phase III clinical development, coupling the CNGRCG angiogenic vessel-homing peptide with TNF-alpha, has an effect on metastasis in a model of murine breast cancer, which spontaneously metastasize to lungs, and on the growth of experimental melanoma lung metastasis. We report that NGR-TNF does not increase cancer invasiveness, as other antiangiogenics agents do, but controls metastatic growth in both models, both when administered as primary treatment and in adjuvant settings, improving the overall survival of metastasis-bearing mice. Z8 0 ZR 0 ZS 0 ZB 1
vascular targeting agent; NGR-TNF
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/10131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact