Next generation sequencing is currently a cornerstone of genetic testing in routine diagnostics, allowing for the detection of sequence variants with so far unprecedented large scale, mainly in genetically heterogenous diseases, such as neurological disorders. It is a fast-moving field, where new wet enrichment protocols and bioinformatics tools are constantly being developed to overcome initial limitations. Despite the as yet undiscussed advantages, however, there are still some challenges in data analysis and the interpretation of variants. In this review, we address the current state of next generation sequencing diagnostic testing for inherited human disorders, particularly giving an overview of the available high-throughput sequencing approaches; including targeted, whole-exome and whole-genome sequencing; and discussing the main critical aspects of the bioinformatic process, from raw data analysis to molecular diagnosis.

Current scenario of the genetic testing for rare neurological disorders exploiting next generation sequencing

Di Resta, Chiara
Primo
;
Ferrari, Maurizio
2020-01-01

Abstract

Next generation sequencing is currently a cornerstone of genetic testing in routine diagnostics, allowing for the detection of sequence variants with so far unprecedented large scale, mainly in genetically heterogenous diseases, such as neurological disorders. It is a fast-moving field, where new wet enrichment protocols and bioinformatics tools are constantly being developed to overcome initial limitations. Despite the as yet undiscussed advantages, however, there are still some challenges in data analysis and the interpretation of variants. In this review, we address the current state of next generation sequencing diagnostic testing for inherited human disorders, particularly giving an overview of the available high-throughput sequencing approaches; including targeted, whole-exome and whole-genome sequencing; and discussing the main critical aspects of the bioinformatic process, from raw data analysis to molecular diagnosis.
2020
clinical practice
genetic testing
neurogenesis
next generation sequencing
sequencing approaches
variant interpretation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/103737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact