The aims of this study were to present a deep learning approach for the automated classification of multiple sclerosis and its mimics and compare model performance with that of 2 expert neuroradiologists.

Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics / Rocca, Maria A; Anzalone, Nicoletta; Storelli, Loredana; Del Poggio, Anna; Cacciaguerra, Laura; Manfredi, Angelo A; Meani, Alessandro; Filippi, Massimo. - In: INVESTIGATIVE RADIOLOGY. - ISSN 0020-9996. - 56:4(2021), pp. 252-260. [10.1097/RLI.0000000000000735]

Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics

Rocca, Maria A
Primo
;
Anzalone, Nicoletta
Secondo
;
Storelli, Loredana;Cacciaguerra, Laura;Manfredi, Angelo A;Filippi, Massimo
Ultimo
2021-01-01

Abstract

The aims of this study were to present a deep learning approach for the automated classification of multiple sclerosis and its mimics and compare model performance with that of 2 expert neuroradiologists.
2021
artificial intelligence, differential diagnosis, MRI, multiple sclerosis, white matter diseases
File in questo prodotto:
File Dimensione Formato  
Invest Radiol 56_252.pdf

solo gestori archivio

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Copyright dell'editore
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/105643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact