The aims of this study were to present a deep learning approach for the automated classification of multiple sclerosis and its mimics and compare model performance with that of 2 expert neuroradiologists.
Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics / Rocca, Maria A; Anzalone, Nicoletta; Storelli, Loredana; Del Poggio, Anna; Cacciaguerra, Laura; Manfredi, Angelo A; Meani, Alessandro; Filippi, Massimo. - In: INVESTIGATIVE RADIOLOGY. - ISSN 0020-9996. - 56:4(2021), pp. 252-260. [10.1097/RLI.0000000000000735]
Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics
Rocca, Maria A
Primo
;Anzalone, NicolettaSecondo
;Storelli, Loredana;Cacciaguerra, Laura;Manfredi, Angelo A;Filippi, MassimoUltimo
2021-01-01
Abstract
The aims of this study were to present a deep learning approach for the automated classification of multiple sclerosis and its mimics and compare model performance with that of 2 expert neuroradiologists.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Invest Radiol 56_252.pdf
solo gestori archivio
Tipologia:
PDF editoriale (versione pubblicata dall'editore)
Licenza:
Copyright dell'editore
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.