The aims of this study were to present a deep learning approach for the automated classification of multiple sclerosis and its mimics and compare model performance with that of 2 expert neuroradiologists.

Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics / Rocca, Maria A; Anzalone, Nicoletta; Storelli, Loredana; Del Poggio, Anna; Cacciaguerra, Laura; Manfredi, Angelo A; Meani, Alessandro; Filippi, Massimo. - In: INVESTIGATIVE RADIOLOGY. - ISSN 0020-9996. - 56:(2021), pp. 252-260. [10.1097/RLI.0000000000000735]

Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics

Rocca, Maria A;Anzalone, Nicoletta;Cacciaguerra, Laura;Manfredi, Angelo A;Filippi, Massimo
2021-01-01

Abstract

The aims of this study were to present a deep learning approach for the automated classification of multiple sclerosis and its mimics and compare model performance with that of 2 expert neuroradiologists.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/105643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact