The accuracy of 3D reconstructions of the craniomaxillofacial region using cone beam computed tomography (CBCT) is important for the morphological evaluation of specific anatomical structures. Moreover, an accurate segmentation process is fundamental for the physical reconstruction of the anatomy (3D printing) when a preliminary simulation of the therapy is required. In this regard, the objective of this study is to evaluate the accuracy of four different types of software for the semiautomatic segmentation of the mandibular jaw compared to manual segmentation, used as a gold standard. Twenty cone beam computed tomography (CBCT) with a manual approach (Mimics) and a semi-automatic approach (Invesalius, ITK-Snap, Dolphin 3D, Slicer 3D) were selected for the segmentation of the mandible in the present study. The accuracy of semi-automatic segmentation was evaluated: (1) by comparing the mandibular volumes obtained with semi-automatic 3D rendering and manual segmentation and (2) by deviation analysis between the two mandibular models. An analysis of variance (ANOVA) was used to evaluate differences in mandibular volumetric recordings and for a deviation analysis among the different software types used. Linear regression was also performed between manual and semi-automatic methods. No significant differences were found in the total volumes among the obtained 3D mandibular models (Mimics = 40.85 cm3, ITK-Snap = 40.81 cm3, Invesalius = 40.04 cm3, Dolphin 3D = 42.03 cm3, Slicer 3D = 40.58 cm3). High correlations were found between the semi-automatic segmentation and manual segmentation approach, with R coefficients ranging from 0,960 to 0,992. According to the deviation analysis, the mandibular models obtained with ITK-Snap showed the highest matching percentage (Tolerance A = 88.44%, Tolerance B = 97.30%), while those obtained with Dolphin 3D showed the lowest matching percentage (Tolerance A = 60.01%, Tolerance B = 87.76%) (p < 0.05). Colour-coded maps showed that the area of greatest mismatch between semi-automatic and manual segmentation was the condylar region and the region proximate to the dental roots. Despite the fact that the semi-automatic segmentation of the mandible showed, in general, high reliability and high correlation with the manual segmentation, caution should be taken when evaluating the morphological and dimensional characteristics of the condyles either on CBCT-derived digital models or physical models (3D printing).

One step before 3D printing-evaluation of imaging software accuracy for 3-dimensional analysis of the mandible: A comparative study using a surface-to-surface matching technique / Giudice, A. L.; Ronsivalle, V.; Grippaudo, C.; Lucchese, A.; Muraglie, S.; Lagravere, M. O.; Isola, G.. - In: MATERIALS. - ISSN 1996-1944. - 13:12(2020). [10.3390/ma13122798]

One step before 3D printing-evaluation of imaging software accuracy for 3-dimensional analysis of the mandible: A comparative study using a surface-to-surface matching technique

Lucchese A.;
2020-01-01

Abstract

The accuracy of 3D reconstructions of the craniomaxillofacial region using cone beam computed tomography (CBCT) is important for the morphological evaluation of specific anatomical structures. Moreover, an accurate segmentation process is fundamental for the physical reconstruction of the anatomy (3D printing) when a preliminary simulation of the therapy is required. In this regard, the objective of this study is to evaluate the accuracy of four different types of software for the semiautomatic segmentation of the mandibular jaw compared to manual segmentation, used as a gold standard. Twenty cone beam computed tomography (CBCT) with a manual approach (Mimics) and a semi-automatic approach (Invesalius, ITK-Snap, Dolphin 3D, Slicer 3D) were selected for the segmentation of the mandible in the present study. The accuracy of semi-automatic segmentation was evaluated: (1) by comparing the mandibular volumes obtained with semi-automatic 3D rendering and manual segmentation and (2) by deviation analysis between the two mandibular models. An analysis of variance (ANOVA) was used to evaluate differences in mandibular volumetric recordings and for a deviation analysis among the different software types used. Linear regression was also performed between manual and semi-automatic methods. No significant differences were found in the total volumes among the obtained 3D mandibular models (Mimics = 40.85 cm3, ITK-Snap = 40.81 cm3, Invesalius = 40.04 cm3, Dolphin 3D = 42.03 cm3, Slicer 3D = 40.58 cm3). High correlations were found between the semi-automatic segmentation and manual segmentation approach, with R coefficients ranging from 0,960 to 0,992. According to the deviation analysis, the mandibular models obtained with ITK-Snap showed the highest matching percentage (Tolerance A = 88.44%, Tolerance B = 97.30%), while those obtained with Dolphin 3D showed the lowest matching percentage (Tolerance A = 60.01%, Tolerance B = 87.76%) (p < 0.05). Colour-coded maps showed that the area of greatest mismatch between semi-automatic and manual segmentation was the condylar region and the region proximate to the dental roots. Despite the fact that the semi-automatic segmentation of the mandible showed, in general, high reliability and high correlation with the manual segmentation, caution should be taken when evaluating the morphological and dimensional characteristics of the condyles either on CBCT-derived digital models or physical models (3D printing).
2020
3D biomaterials
Accuracy
Dental 3D rendering
Dental 3D scanner
Dentistry
Manufacturing
Models
Printing
Scanner
Segmentation
File in questo prodotto:
File Dimensione Formato  
materials-13-02798.pdf

accesso aperto

Tipologia: PDF editoriale (versione pubblicata dall'editore)
Licenza: Creative commons
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/105671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 56
social impact