Familial platelet disorder with propensity to acute myelogenous leukemia, or FPD/AML (OMIM #601399), is a rare autosomal dominant condition, with only 12 families reported. It is characterized by qualitative and quantitative platelet defects and predisposition to the development of myeloid malignancies. Causal mutations have been identified in the RUNX1 gene (also known as AML1, CBFA2) in the 11 families so far analyzed. RUNX1 is a gene frequently involved in the pathogenesis of sporadic leukemia and myelodysplastic syndromes, through acquired chromosome rearrangements and point mutations. We report an Italian family with three members affected with FPD/AML, two sibs and their father, who developed myelodysplastic syndromes (which in one subsequently evolved into AML). Direct sequencing and polymorphisms haplotype analysis of the region of chromosome 21 where RUNX1 is mapped demonstrated that FPD/AML in this family was not caused by any mutation of the RUNX1 gene, thus providing evidence for the genetic heterogeneity of this disorder. Cytogenetic studies showed monosomy 7 in the marrow of all the three affected subjects, as well as an independent clone with trisomy 8 in the father. The importance of mutator effects in the pathogenesis of familial myeloid malignancies characterized by relevant chromosome changes, in the presence or absence of an underlying Mendelian disorder, has already been suggested. Our results and a review of the cytogenetic literature led us to postulate that mutations also causing FPD/AML may have a mutator effect that could give origin to myelodysplastic syndromes and acute myeloid leukemias through acquired chromosome changes. © 2004 Wiley-Liss, Inc.

Familial platelet disorder with propensity to acute myelogenous leukemia: Genetic heterogeneity and progression to leukemia via acquisition of clonal chromosome anomalies / Minelli, A.; Maserati, E.; Rossi, G.; Bernardo, M. E.; De Stefano, P.; Cecchini, M. P.; Valli, R.; Albano, V.; Pierani, P.; Leszl, A.; Sainati, L.; Lo Curto, F.; Danesino, C.; Locatelli, F.; Pasquali, F.. - In: GENES, CHROMOSOMES & CANCER. - ISSN 1045-2257. - 40:3(2004), pp. 165-171. [10.1002/gcc.20030]

Familial platelet disorder with propensity to acute myelogenous leukemia: Genetic heterogeneity and progression to leukemia via acquisition of clonal chromosome anomalies

Bernardo M. E.
Data Curation
;
2004-01-01

Abstract

Familial platelet disorder with propensity to acute myelogenous leukemia, or FPD/AML (OMIM #601399), is a rare autosomal dominant condition, with only 12 families reported. It is characterized by qualitative and quantitative platelet defects and predisposition to the development of myeloid malignancies. Causal mutations have been identified in the RUNX1 gene (also known as AML1, CBFA2) in the 11 families so far analyzed. RUNX1 is a gene frequently involved in the pathogenesis of sporadic leukemia and myelodysplastic syndromes, through acquired chromosome rearrangements and point mutations. We report an Italian family with three members affected with FPD/AML, two sibs and their father, who developed myelodysplastic syndromes (which in one subsequently evolved into AML). Direct sequencing and polymorphisms haplotype analysis of the region of chromosome 21 where RUNX1 is mapped demonstrated that FPD/AML in this family was not caused by any mutation of the RUNX1 gene, thus providing evidence for the genetic heterogeneity of this disorder. Cytogenetic studies showed monosomy 7 in the marrow of all the three affected subjects, as well as an independent clone with trisomy 8 in the father. The importance of mutator effects in the pathogenesis of familial myeloid malignancies characterized by relevant chromosome changes, in the presence or absence of an underlying Mendelian disorder, has already been suggested. Our results and a review of the cytogenetic literature led us to postulate that mutations also causing FPD/AML may have a mutator effect that could give origin to myelodysplastic syndromes and acute myeloid leukemias through acquired chromosome changes. © 2004 Wiley-Liss, Inc.
2004
Blood Platelet Disorders
Bone Marrow Cells
Child
Chromosomes, Human, Pair 7
Chromosomes, Human, Pair 8
Core Binding Factor Alpha 2 Subunit
Cytogenetic Analysis
DNA Mutational Analysis
DNA-Binding Proteins
Disease Progression
Female
Genetic Markers
Genetic Predisposition to Disease
Humans
Italy
Leukemia, Erythroblastic, Acute
Male
Monosomy
Myelodysplastic Syndromes
Pedigree
Proto-Oncogene Proteins
Transcription Factors
Trisomy
Chromosome Aberrations
Genetic Heterogeneity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/106164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 20
social impact