Background: A large pool of preexisting alloreactive effector T cells can cause allogeneic graft rejection following transplantation. However, it is possible to induce transplant tolerance by altering the balance between effector and regulatory T (Treg) cells. Among the various Treg-cell types, Foxp3+Treg and IL-10–producing T regulatory type 1 (Tr1) cells have frequently been associated with tolerance following transplantation in both mice and humans. Previously, we demonstrated that rapamycin+IL-10 promotes Tr1-cell–associated tolerance in Balb/c mice transplanted with C57BL/6 pancreatic islets. However, this same treatment was unsuccessful in C57BL/6 mice transplanted with Balb/c islets (classified as a stringent transplant model). We accordingly designed a protocol that would be effective in the latter transplant model by simultaneously depleting effector T cells and fostering production of Treg cells. We additionally developed and tested a clinically translatable protocol that used no depleting agent. Methodology/Principal Findings: Diabetic C57BL/6 mice were transplanted with Balb/c pancreatic islets. Recipient mice transiently treated with anti-CD45RB mAb+rapamycin+IL-10 developed antigen-specific tolerance. During treatment, Foxp3+Treg cells were momentarily enriched in the blood, followed by accumulation in the graft and draining lymph node, whereas CD4+IL-10+IL-42 T (i.e., Tr1) cells localized in the spleen. In long-term tolerant mice, only CD4+IL-10+IL-42 T cells remained enriched in the spleen and IL-10 was key in the maintenance of tolerance. Alternatively, recipient mice were treated with two compounds routinely used in the clinic (namely, rapamycin and G-CSF); this drug combination promoted tolerance associated with CD4+IL-10+IL-42 T cells. Conclusions/Significance: The anti-CD45RB mAb+rapamycin+IL-10 combined protocol promotes a state of tolerance that is IL-10 dependent. Moreover, the combination of rapamycin+G-CSF induces tolerance and such treatment could be readily translatable into the clinic.

Rapamycin combined with anti-CD45RB mAb and IL-10 or with G-CSF induces tolerance in a stringent mouse model of islet transplantation

RONCAROLO , MARIA GRAZIA;BATTAGLIA, MARCO MARIA
2011-01-01

Abstract

Background: A large pool of preexisting alloreactive effector T cells can cause allogeneic graft rejection following transplantation. However, it is possible to induce transplant tolerance by altering the balance between effector and regulatory T (Treg) cells. Among the various Treg-cell types, Foxp3+Treg and IL-10–producing T regulatory type 1 (Tr1) cells have frequently been associated with tolerance following transplantation in both mice and humans. Previously, we demonstrated that rapamycin+IL-10 promotes Tr1-cell–associated tolerance in Balb/c mice transplanted with C57BL/6 pancreatic islets. However, this same treatment was unsuccessful in C57BL/6 mice transplanted with Balb/c islets (classified as a stringent transplant model). We accordingly designed a protocol that would be effective in the latter transplant model by simultaneously depleting effector T cells and fostering production of Treg cells. We additionally developed and tested a clinically translatable protocol that used no depleting agent. Methodology/Principal Findings: Diabetic C57BL/6 mice were transplanted with Balb/c pancreatic islets. Recipient mice transiently treated with anti-CD45RB mAb+rapamycin+IL-10 developed antigen-specific tolerance. During treatment, Foxp3+Treg cells were momentarily enriched in the blood, followed by accumulation in the graft and draining lymph node, whereas CD4+IL-10+IL-42 T (i.e., Tr1) cells localized in the spleen. In long-term tolerant mice, only CD4+IL-10+IL-42 T cells remained enriched in the spleen and IL-10 was key in the maintenance of tolerance. Alternatively, recipient mice were treated with two compounds routinely used in the clinic (namely, rapamycin and G-CSF); this drug combination promoted tolerance associated with CD4+IL-10+IL-42 T cells. Conclusions/Significance: The anti-CD45RB mAb+rapamycin+IL-10 combined protocol promotes a state of tolerance that is IL-10 dependent. Moreover, the combination of rapamycin+G-CSF induces tolerance and such treatment could be readily translatable into the clinic.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/10621
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
social impact