Several studies showed that shifting of visuospatial attention modulates sensory processing at multiple levels of the visual pathways and beyond, including the occipital striate cortices level. However, inconsistent findings have been reported thus leaving these issues still disputed. 21 participants took part to the present study (the EEG signals of 4 of them were discarded due to artifacts). We used ERPs and their neural sources to investigate whether shifting spatial attention in space across the horizontal meridian of the visual field affected striate cortices activation at the earliest latency. Time-series of scalp topographical maps indicated that, unlike ERPs to attentional-neutral central cues, ERPs to attention-directing local cues showed earliest polarity inversions as a function of stimulated field and processing latency range considered, at occipital-parietal electrodes. In between 60-75 ms, attentional shifting cues elicited a positivity for both visual fields, whereas at a later latency (75–90 ms) they elicited a positivity and a negativity for the upper and lower visual hemifields, respectively. Computed neural sources included striate, besides extrastriate, cortices for both visual hemifields and latency ranges. Conjointly, behavioral responses to targets were faster when they were preceded by local than by neutral cues, and when presented in the upper than the lower hemifield. Our findings support the hypothesis that attention shifts may affect early sensory processing in visual cortices.
Spatial attention modulates earliest visual processing: An electrical neuroimaging study
Alberto Zani
Primo
Membro del Collaboration Group
;
2020-01-01
Abstract
Several studies showed that shifting of visuospatial attention modulates sensory processing at multiple levels of the visual pathways and beyond, including the occipital striate cortices level. However, inconsistent findings have been reported thus leaving these issues still disputed. 21 participants took part to the present study (the EEG signals of 4 of them were discarded due to artifacts). We used ERPs and their neural sources to investigate whether shifting spatial attention in space across the horizontal meridian of the visual field affected striate cortices activation at the earliest latency. Time-series of scalp topographical maps indicated that, unlike ERPs to attentional-neutral central cues, ERPs to attention-directing local cues showed earliest polarity inversions as a function of stimulated field and processing latency range considered, at occipital-parietal electrodes. In between 60-75 ms, attentional shifting cues elicited a positivity for both visual fields, whereas at a later latency (75–90 ms) they elicited a positivity and a negativity for the upper and lower visual hemifields, respectively. Computed neural sources included striate, besides extrastriate, cortices for both visual hemifields and latency ranges. Conjointly, behavioral responses to targets were faster when they were preceded by local than by neutral cues, and when presented in the upper than the lower hemifield. Our findings support the hypothesis that attention shifts may affect early sensory processing in visual cortices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.