The neurovascular unit (NVU) is the most important biological barrier between vascular districts and central nervous system (CNS) parenchyma, which maintains brain homeostasis, protects the CNS from pathogens penetration, and mediates neuroimmune communication. T lymphocytes migration across the blood–brain barrier is heavily affected in different brain diseases, representing a major target for novel drug development. In vitro models of NVU could represent a primary tool to investigate the molecular events occurring at this interface. To move toward the establishment of personalized therapies, a patient-related NVU-model is set, incorporating human primary astrocytes integrated into a microfluidic platform. The model is morphologically and functionally characterized, proving to be an advantageous tool to investigate human T lymphocytes transmigration and thus the efficacy of potential novel drugs affecting this process.

A Microfluidic Human Model of Blood–Brain Barrier Employing Primary Human Astrocytes

Pardi R.;
2019-01-01

Abstract

The neurovascular unit (NVU) is the most important biological barrier between vascular districts and central nervous system (CNS) parenchyma, which maintains brain homeostasis, protects the CNS from pathogens penetration, and mediates neuroimmune communication. T lymphocytes migration across the blood–brain barrier is heavily affected in different brain diseases, representing a major target for novel drug development. In vitro models of NVU could represent a primary tool to investigate the molecular events occurring at this interface. To move toward the establishment of personalized therapies, a patient-related NVU-model is set, incorporating human primary astrocytes integrated into a microfluidic platform. The model is morphologically and functionally characterized, proving to be an advantageous tool to investigate human T lymphocytes transmigration and thus the efficacy of potential novel drugs affecting this process.
2019
astrocytes
blood–brain barrier
cytokines
microfluidics
T cells
Astrocytes
Blood-Brain Barrier
Humans
Primary Cell Culture
Microfluidic Analytical Techniques
Models, Cardiovascular
Models, Neurological
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11768/110023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact