Lung adenocarcinoma (LUAD) is the main non-small-cell lung cancer diagnosed in ~40–50% of all lung cancer cases. Despite the improvements in early detection and personalized medicine, even a sizable fraction of patients with early-stage LUAD would experience disease relapses and adverse prognosis. Previous reports indicated the existence of LUAD molecular subtypes characterized by specific gene expression and mutational profiles, and correlating with prognosis. However, the biological and molecular features of such subtypes have not been further explored. Consequently, the mechanisms driving the emergence of aggressive LUAD remained unclear. Here, we adopted a multi-tiered approach ranging from molecular to functional characterization of LUAD and used it on multiple cohorts of patients (for a total of 1227 patients) and LUAD cell lines. We investigated the tumor transcriptome and the mutational and immune gene expression profiles, and we used LUAD cell lines for cancer cell phenotypic screening. We found that loss of lung cell lineage and gain of stem cell-like characteristics, along with mutator and immune evasion phenotypes, explain the aggressive behavior of a specific subset of lung adenocarcinoma that we called C1-LUAD, including early-stage disease. This subset can be identified using a 10-gene prognostic signature. Poor prognosis patients appear to have this specific molecular lung adenocarcinoma subtype which is characterized by peculiar molecular and biological features. Our data support the hypothesis that transformed lung stem/progenitor cells and/or reprogrammed epithelial cells with CSC characteristics are hallmarks of this aggressive disease. Such discoveries suggest alternative, more aggressive, therapeutic strategies for early-stage C1-LUAD.
Aggressive early-stage lung adenocarcinoma is characterized by epithelial cell plasticity with acquirement of stem-like traits and immune evasion phenotype / Melocchi, V.; Dama, E.; Mazzarelli, F.; Cuttano, R.; Colangelo, T.; Di Candia, L.; Lugli, E.; Veronesi, G.; Pelosi, G.; Ferretti, G. M.; Taurchini, M.; Graziano, P.; Bianchi, F.. - In: ONCOGENE. - ISSN 0950-9232. - (2021). [Epub ahead of print] [10.1038/s41388-021-01909-z]
Aggressive early-stage lung adenocarcinoma is characterized by epithelial cell plasticity with acquirement of stem-like traits and immune evasion phenotype
Veronesi G.;
2021-01-01
Abstract
Lung adenocarcinoma (LUAD) is the main non-small-cell lung cancer diagnosed in ~40–50% of all lung cancer cases. Despite the improvements in early detection and personalized medicine, even a sizable fraction of patients with early-stage LUAD would experience disease relapses and adverse prognosis. Previous reports indicated the existence of LUAD molecular subtypes characterized by specific gene expression and mutational profiles, and correlating with prognosis. However, the biological and molecular features of such subtypes have not been further explored. Consequently, the mechanisms driving the emergence of aggressive LUAD remained unclear. Here, we adopted a multi-tiered approach ranging from molecular to functional characterization of LUAD and used it on multiple cohorts of patients (for a total of 1227 patients) and LUAD cell lines. We investigated the tumor transcriptome and the mutational and immune gene expression profiles, and we used LUAD cell lines for cancer cell phenotypic screening. We found that loss of lung cell lineage and gain of stem cell-like characteristics, along with mutator and immune evasion phenotypes, explain the aggressive behavior of a specific subset of lung adenocarcinoma that we called C1-LUAD, including early-stage disease. This subset can be identified using a 10-gene prognostic signature. Poor prognosis patients appear to have this specific molecular lung adenocarcinoma subtype which is characterized by peculiar molecular and biological features. Our data support the hypothesis that transformed lung stem/progenitor cells and/or reprogrammed epithelial cells with CSC characteristics are hallmarks of this aggressive disease. Such discoveries suggest alternative, more aggressive, therapeutic strategies for early-stage C1-LUAD.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.